Properties

Label 738.2.ba.a.179.3
Level $738$
Weight $2$
Character 738.179
Analytic conductor $5.893$
Analytic rank $0$
Dimension $48$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [738,2,Mod(17,738)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("738.17"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(738, base_ring=CyclotomicField(40)) chi = DirichletCharacter(H, H._module([20, 33])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 738 = 2 \cdot 3^{2} \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 738.ba (of order \(40\), degree \(16\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0,0,0,-4,0,4,0,0,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.89295966917\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(3\) over \(\Q(\zeta_{40})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{40}]$

Embedding invariants

Embedding label 179.3
Character \(\chi\) \(=\) 738.179
Dual form 738.2.ba.a.503.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.156434 + 0.987688i) q^{2} +(-0.951057 - 0.309017i) q^{4} +(0.454725 - 0.231694i) q^{5} +(-2.47024 - 0.593051i) q^{7} +(0.453990 - 0.891007i) q^{8} +(0.157707 + 0.485372i) q^{10} +(0.749706 + 0.877793i) q^{11} +(1.99976 - 3.26331i) q^{13} +(0.972180 - 2.34705i) q^{14} +(0.809017 + 0.587785i) q^{16} +(4.13047 + 0.325075i) q^{17} +(1.92242 + 3.13710i) q^{19} +(-0.504067 + 0.0798363i) q^{20} +(-0.984266 + 0.603159i) q^{22} +(6.21581 - 4.51605i) q^{23} +(-2.78583 + 3.83437i) q^{25} +(2.91030 + 2.48563i) q^{26} +(2.16607 + 1.32737i) q^{28} +(9.14125 - 0.719432i) q^{29} +(-5.04650 + 1.63971i) q^{31} +(-0.707107 + 0.707107i) q^{32} +(-0.967221 + 4.02876i) q^{34} +(-1.26069 + 0.302664i) q^{35} +(2.33070 - 7.17315i) q^{37} +(-3.39921 + 1.40800i) q^{38} -0.510350i q^{40} +(6.27492 - 1.27492i) q^{41} +(5.66299 + 0.896930i) q^{43} +(-0.441760 - 1.06650i) q^{44} +(3.48808 + 6.84575i) q^{46} +(-1.17903 - 4.91101i) q^{47} +(-0.486684 - 0.247978i) q^{49} +(-3.35136 - 3.35136i) q^{50} +(-2.91030 + 2.48563i) q^{52} +(0.512168 + 6.50772i) q^{53} +(0.544290 + 0.225452i) q^{55} +(-1.64988 + 1.93176i) q^{56} +(-0.719432 + 9.14125i) q^{58} +(2.09802 + 2.88767i) q^{59} +(-1.54792 - 9.77318i) q^{61} +(-0.830073 - 5.24088i) q^{62} +(-0.587785 - 0.809017i) q^{64} +(0.153251 - 1.94724i) q^{65} +(-1.23719 + 1.44857i) q^{67} +(-3.82786 - 1.58555i) q^{68} +(-0.101723 - 1.29251i) q^{70} +(-8.02851 + 6.85699i) q^{71} +(8.63876 + 8.63876i) q^{73} +(6.72023 + 3.42413i) q^{74} +(-0.858911 - 3.57762i) q^{76} +(-1.33138 - 2.61297i) q^{77} +(0.430110 + 1.03838i) q^{79} +(0.504067 + 0.0798363i) q^{80} +(0.277612 + 6.39710i) q^{82} +2.60736i q^{83} +(1.95355 - 0.809186i) q^{85} +(-1.77177 + 5.45296i) q^{86} +(1.12248 - 0.269483i) q^{88} +(-0.725172 + 3.02056i) q^{89} +(-6.87518 + 6.87518i) q^{91} +(-7.30712 + 2.37423i) q^{92} +(5.03499 - 0.396262i) q^{94} +(1.60102 + 0.981107i) q^{95} +(-10.0740 - 8.60401i) q^{97} +(0.321059 - 0.441900i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 4 q^{5} + 4 q^{7} - 8 q^{11} - 4 q^{13} + 4 q^{14} + 12 q^{16} - 16 q^{17} - 4 q^{19} + 16 q^{20} + 20 q^{22} - 40 q^{25} - 20 q^{26} - 4 q^{28} + 32 q^{29} - 40 q^{31} - 4 q^{34} - 52 q^{35} - 24 q^{37}+ \cdots + 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/738\mathbb{Z}\right)^\times\).

\(n\) \(83\) \(703\)
\(\chi(n)\) \(-1\) \(e\left(\frac{37}{40}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.156434 + 0.987688i −0.110616 + 0.698401i
\(3\) 0 0
\(4\) −0.951057 0.309017i −0.475528 0.154508i
\(5\) 0.454725 0.231694i 0.203359 0.103617i −0.349345 0.936994i \(-0.613596\pi\)
0.552704 + 0.833377i \(0.313596\pi\)
\(6\) 0 0
\(7\) −2.47024 0.593051i −0.933662 0.224152i −0.262049 0.965055i \(-0.584398\pi\)
−0.671613 + 0.740902i \(0.734398\pi\)
\(8\) 0.453990 0.891007i 0.160510 0.315018i
\(9\) 0 0
\(10\) 0.157707 + 0.485372i 0.0498713 + 0.153488i
\(11\) 0.749706 + 0.877793i 0.226045 + 0.264665i 0.861825 0.507206i \(-0.169322\pi\)
−0.635780 + 0.771870i \(0.719322\pi\)
\(12\) 0 0
\(13\) 1.99976 3.26331i 0.554633 0.905079i −0.445320 0.895371i \(-0.646910\pi\)
0.999953 0.00970714i \(-0.00308993\pi\)
\(14\) 0.972180 2.34705i 0.259826 0.627276i
\(15\) 0 0
\(16\) 0.809017 + 0.587785i 0.202254 + 0.146946i
\(17\) 4.13047 + 0.325075i 1.00179 + 0.0788423i 0.568730 0.822524i \(-0.307435\pi\)
0.433057 + 0.901367i \(0.357435\pi\)
\(18\) 0 0
\(19\) 1.92242 + 3.13710i 0.441033 + 0.719701i 0.993500 0.113834i \(-0.0363133\pi\)
−0.552467 + 0.833535i \(0.686313\pi\)
\(20\) −0.504067 + 0.0798363i −0.112713 + 0.0178519i
\(21\) 0 0
\(22\) −0.984266 + 0.603159i −0.209846 + 0.128594i
\(23\) 6.21581 4.51605i 1.29609 0.941661i 0.296176 0.955133i \(-0.404288\pi\)
0.999909 + 0.0134722i \(0.00428848\pi\)
\(24\) 0 0
\(25\) −2.78583 + 3.83437i −0.557167 + 0.766874i
\(26\) 2.91030 + 2.48563i 0.570757 + 0.487472i
\(27\) 0 0
\(28\) 2.16607 + 1.32737i 0.409349 + 0.250849i
\(29\) 9.14125 0.719432i 1.69749 0.133595i 0.807587 0.589749i \(-0.200773\pi\)
0.889901 + 0.456153i \(0.150773\pi\)
\(30\) 0 0
\(31\) −5.04650 + 1.63971i −0.906378 + 0.294500i −0.724867 0.688889i \(-0.758099\pi\)
−0.181511 + 0.983389i \(0.558099\pi\)
\(32\) −0.707107 + 0.707107i −0.125000 + 0.125000i
\(33\) 0 0
\(34\) −0.967221 + 4.02876i −0.165877 + 0.690927i
\(35\) −1.26069 + 0.302664i −0.213095 + 0.0511595i
\(36\) 0 0
\(37\) 2.33070 7.17315i 0.383164 1.17926i −0.554639 0.832091i \(-0.687144\pi\)
0.937803 0.347167i \(-0.112856\pi\)
\(38\) −3.39921 + 1.40800i −0.551425 + 0.228408i
\(39\) 0 0
\(40\) 0.510350i 0.0806934i
\(41\) 6.27492 1.27492i 0.979977 0.199109i
\(42\) 0 0
\(43\) 5.66299 + 0.896930i 0.863598 + 0.136781i 0.572492 0.819910i \(-0.305977\pi\)
0.291106 + 0.956691i \(0.405977\pi\)
\(44\) −0.441760 1.06650i −0.0665978 0.160781i
\(45\) 0 0
\(46\) 3.48808 + 6.84575i 0.514290 + 1.00935i
\(47\) −1.17903 4.91101i −0.171979 0.716345i −0.989989 0.141141i \(-0.954923\pi\)
0.818010 0.575204i \(-0.195077\pi\)
\(48\) 0 0
\(49\) −0.486684 0.247978i −0.0695263 0.0354254i
\(50\) −3.35136 3.35136i −0.473954 0.473954i
\(51\) 0 0
\(52\) −2.91030 + 2.48563i −0.403586 + 0.344695i
\(53\) 0.512168 + 6.50772i 0.0703517 + 0.893904i 0.926287 + 0.376820i \(0.122982\pi\)
−0.855935 + 0.517084i \(0.827018\pi\)
\(54\) 0 0
\(55\) 0.544290 + 0.225452i 0.0733920 + 0.0304000i
\(56\) −1.64988 + 1.93176i −0.220474 + 0.258142i
\(57\) 0 0
\(58\) −0.719432 + 9.14125i −0.0944661 + 1.20031i
\(59\) 2.09802 + 2.88767i 0.273139 + 0.375943i 0.923446 0.383728i \(-0.125360\pi\)
−0.650308 + 0.759671i \(0.725360\pi\)
\(60\) 0 0
\(61\) −1.54792 9.77318i −0.198191 1.25133i −0.863342 0.504619i \(-0.831633\pi\)
0.665151 0.746709i \(-0.268367\pi\)
\(62\) −0.830073 5.24088i −0.105419 0.665592i
\(63\) 0 0
\(64\) −0.587785 0.809017i −0.0734732 0.101127i
\(65\) 0.153251 1.94724i 0.0190085 0.241525i
\(66\) 0 0
\(67\) −1.23719 + 1.44857i −0.151147 + 0.176971i −0.830814 0.556551i \(-0.812125\pi\)
0.679666 + 0.733521i \(0.262125\pi\)
\(68\) −3.82786 1.58555i −0.464196 0.192276i
\(69\) 0 0
\(70\) −0.101723 1.29251i −0.0121582 0.154485i
\(71\) −8.02851 + 6.85699i −0.952808 + 0.813775i −0.982591 0.185781i \(-0.940518\pi\)
0.0297827 + 0.999556i \(0.490518\pi\)
\(72\) 0 0
\(73\) 8.63876 + 8.63876i 1.01109 + 1.01109i 0.999938 + 0.0111528i \(0.00355011\pi\)
0.0111528 + 0.999938i \(0.496450\pi\)
\(74\) 6.72023 + 3.42413i 0.781211 + 0.398047i
\(75\) 0 0
\(76\) −0.858911 3.57762i −0.0985239 0.410381i
\(77\) −1.33138 2.61297i −0.151724 0.297776i
\(78\) 0 0
\(79\) 0.430110 + 1.03838i 0.0483912 + 0.116827i 0.946227 0.323504i \(-0.104861\pi\)
−0.897835 + 0.440331i \(0.854861\pi\)
\(80\) 0.504067 + 0.0798363i 0.0563564 + 0.00892597i
\(81\) 0 0
\(82\) 0.277612 + 6.39710i 0.0306571 + 0.706442i
\(83\) 2.60736i 0.286195i 0.989709 + 0.143098i \(0.0457063\pi\)
−0.989709 + 0.143098i \(0.954294\pi\)
\(84\) 0 0
\(85\) 1.95355 0.809186i 0.211892 0.0877685i
\(86\) −1.77177 + 5.45296i −0.191055 + 0.588008i
\(87\) 0 0
\(88\) 1.12248 0.269483i 0.119657 0.0287270i
\(89\) −0.725172 + 3.02056i −0.0768681 + 0.320179i −0.997535 0.0701705i \(-0.977646\pi\)
0.920667 + 0.390349i \(0.127646\pi\)
\(90\) 0 0
\(91\) −6.87518 + 6.87518i −0.720715 + 0.720715i
\(92\) −7.30712 + 2.37423i −0.761820 + 0.247530i
\(93\) 0 0
\(94\) 5.03499 0.396262i 0.519320 0.0408713i
\(95\) 1.60102 + 0.981107i 0.164261 + 0.100659i
\(96\) 0 0
\(97\) −10.0740 8.60401i −1.02286 0.873605i −0.0308199 0.999525i \(-0.509812\pi\)
−0.992040 + 0.125920i \(0.959812\pi\)
\(98\) 0.321059 0.441900i 0.0324319 0.0446386i
\(99\) 0 0
\(100\) 3.83437 2.78583i 0.383437 0.278583i
\(101\) 4.89602 3.00028i 0.487172 0.298540i −0.257137 0.966375i \(-0.582779\pi\)
0.744309 + 0.667836i \(0.232779\pi\)
\(102\) 0 0
\(103\) 1.71321 0.271346i 0.168808 0.0267366i −0.0714582 0.997444i \(-0.522765\pi\)
0.240266 + 0.970707i \(0.422765\pi\)
\(104\) −1.99976 3.26331i −0.196092 0.319994i
\(105\) 0 0
\(106\) −6.50772 0.512168i −0.632085 0.0497462i
\(107\) −7.43350 5.40075i −0.718623 0.522110i 0.167321 0.985902i \(-0.446488\pi\)
−0.885944 + 0.463792i \(0.846488\pi\)
\(108\) 0 0
\(109\) −0.309072 + 0.746167i −0.0296038 + 0.0714698i −0.937990 0.346662i \(-0.887315\pi\)
0.908386 + 0.418132i \(0.137315\pi\)
\(110\) −0.307822 + 0.502320i −0.0293497 + 0.0478944i
\(111\) 0 0
\(112\) −1.64988 1.93176i −0.155899 0.182534i
\(113\) −1.80986 5.57016i −0.170257 0.523997i 0.829128 0.559058i \(-0.188837\pi\)
−0.999385 + 0.0350615i \(0.988837\pi\)
\(114\) 0 0
\(115\) 1.78014 3.49373i 0.165999 0.325792i
\(116\) −8.91616 2.14058i −0.827845 0.198748i
\(117\) 0 0
\(118\) −3.18032 + 1.62046i −0.292773 + 0.149175i
\(119\) −10.0105 3.25259i −0.917657 0.298165i
\(120\) 0 0
\(121\) 1.51232 9.54840i 0.137483 0.868036i
\(122\) 9.89501 0.895852
\(123\) 0 0
\(124\) 5.30621 0.476511
\(125\) −0.777569 + 4.90938i −0.0695479 + 0.439108i
\(126\) 0 0
\(127\) 16.7151 + 5.43105i 1.48322 + 0.481928i 0.935074 0.354454i \(-0.115333\pi\)
0.548148 + 0.836382i \(0.315333\pi\)
\(128\) 0.891007 0.453990i 0.0787546 0.0401275i
\(129\) 0 0
\(130\) 1.89929 + 0.455980i 0.166579 + 0.0399921i
\(131\) −3.34214 + 6.55932i −0.292004 + 0.573091i −0.989675 0.143328i \(-0.954220\pi\)
0.697671 + 0.716418i \(0.254220\pi\)
\(132\) 0 0
\(133\) −2.88837 8.88948i −0.250453 0.770816i
\(134\) −1.23719 1.44857i −0.106877 0.125137i
\(135\) 0 0
\(136\) 2.16484 3.53270i 0.185633 0.302926i
\(137\) −2.72392 + 6.57613i −0.232720 + 0.561837i −0.996496 0.0836457i \(-0.973344\pi\)
0.763775 + 0.645482i \(0.223344\pi\)
\(138\) 0 0
\(139\) −6.76359 4.91404i −0.573680 0.416803i 0.262760 0.964861i \(-0.415367\pi\)
−0.836440 + 0.548058i \(0.815367\pi\)
\(140\) 1.29251 + 0.101723i 0.109237 + 0.00859715i
\(141\) 0 0
\(142\) −5.51664 9.00233i −0.462946 0.755459i
\(143\) 4.36374 0.691148i 0.364914 0.0577967i
\(144\) 0 0
\(145\) 3.99007 2.44512i 0.331357 0.203056i
\(146\) −9.88380 + 7.18100i −0.817989 + 0.594304i
\(147\) 0 0
\(148\) −4.43325 + 6.10184i −0.364411 + 0.501568i
\(149\) −12.7717 10.9080i −1.04630 0.893622i −0.0518280 0.998656i \(-0.516505\pi\)
−0.994469 + 0.105034i \(0.966505\pi\)
\(150\) 0 0
\(151\) −18.4114 11.2825i −1.49830 0.918159i −0.998651 0.0519306i \(-0.983463\pi\)
−0.499648 0.866228i \(-0.666537\pi\)
\(152\) 3.66794 0.288673i 0.297509 0.0234145i
\(153\) 0 0
\(154\) 2.78907 0.906225i 0.224750 0.0730257i
\(155\) −1.91486 + 1.91486i −0.153805 + 0.153805i
\(156\) 0 0
\(157\) −2.00435 + 8.34871i −0.159964 + 0.666300i 0.833535 + 0.552466i \(0.186313\pi\)
−0.993500 + 0.113834i \(0.963687\pi\)
\(158\) −1.09288 + 0.262377i −0.0869447 + 0.0208736i
\(159\) 0 0
\(160\) −0.157707 + 0.485372i −0.0124678 + 0.0383720i
\(161\) −18.0328 + 7.46942i −1.42118 + 0.588672i
\(162\) 0 0
\(163\) 4.71832i 0.369567i 0.982779 + 0.184784i \(0.0591585\pi\)
−0.982779 + 0.184784i \(0.940842\pi\)
\(164\) −6.36177 0.726533i −0.496771 0.0567327i
\(165\) 0 0
\(166\) −2.57526 0.407881i −0.199879 0.0316577i
\(167\) 0.805984 + 1.94582i 0.0623689 + 0.150572i 0.951991 0.306125i \(-0.0990325\pi\)
−0.889622 + 0.456697i \(0.849032\pi\)
\(168\) 0 0
\(169\) −0.748269 1.46856i −0.0575592 0.112966i
\(170\) 0.493621 + 2.05608i 0.0378590 + 0.157694i
\(171\) 0 0
\(172\) −5.10866 2.60299i −0.389532 0.198476i
\(173\) 5.20524 + 5.20524i 0.395747 + 0.395747i 0.876730 0.480983i \(-0.159720\pi\)
−0.480983 + 0.876730i \(0.659720\pi\)
\(174\) 0 0
\(175\) 9.15565 7.81966i 0.692102 0.591111i
\(176\) 0.0905712 + 1.15082i 0.00682706 + 0.0867460i
\(177\) 0 0
\(178\) −2.86993 1.18876i −0.215110 0.0891016i
\(179\) 11.2155 13.1317i 0.838287 0.981508i −0.161698 0.986840i \(-0.551697\pi\)
0.999986 + 0.00533190i \(0.00169721\pi\)
\(180\) 0 0
\(181\) 0.871880 11.0783i 0.0648063 0.823442i −0.875523 0.483176i \(-0.839483\pi\)
0.940329 0.340266i \(-0.110517\pi\)
\(182\) −5.71502 7.86606i −0.423626 0.583071i
\(183\) 0 0
\(184\) −1.20191 7.58857i −0.0886061 0.559437i
\(185\) −0.602149 3.80182i −0.0442709 0.279515i
\(186\) 0 0
\(187\) 2.81129 + 3.86941i 0.205582 + 0.282959i
\(188\) −0.396262 + 5.03499i −0.0289004 + 0.367214i
\(189\) 0 0
\(190\) −1.21948 + 1.42783i −0.0884706 + 0.103586i
\(191\) 11.7603 + 4.87126i 0.850943 + 0.352472i 0.765159 0.643842i \(-0.222660\pi\)
0.0857841 + 0.996314i \(0.472660\pi\)
\(192\) 0 0
\(193\) −1.30078 16.5280i −0.0936323 1.18971i −0.846810 0.531895i \(-0.821480\pi\)
0.753178 0.657817i \(-0.228520\pi\)
\(194\) 10.0740 8.60401i 0.723271 0.617732i
\(195\) 0 0
\(196\) 0.386235 + 0.386235i 0.0275882 + 0.0275882i
\(197\) 16.1458 + 8.22669i 1.15034 + 0.586128i 0.921899 0.387430i \(-0.126637\pi\)
0.228441 + 0.973558i \(0.426637\pi\)
\(198\) 0 0
\(199\) −2.40924 10.0352i −0.170786 0.711376i −0.990373 0.138421i \(-0.955797\pi\)
0.819587 0.572955i \(-0.194203\pi\)
\(200\) 2.15171 + 4.22296i 0.152149 + 0.298609i
\(201\) 0 0
\(202\) 2.19744 + 5.30509i 0.154611 + 0.373265i
\(203\) −23.0077 3.64407i −1.61483 0.255763i
\(204\) 0 0
\(205\) 2.55797 2.03360i 0.178656 0.142033i
\(206\) 1.73457i 0.120853i
\(207\) 0 0
\(208\) 3.53596 1.46464i 0.245175 0.101555i
\(209\) −1.31248 + 4.03939i −0.0907860 + 0.279411i
\(210\) 0 0
\(211\) −23.8174 + 5.71805i −1.63966 + 0.393647i −0.945356 0.326040i \(-0.894286\pi\)
−0.694300 + 0.719686i \(0.744286\pi\)
\(212\) 1.52389 6.34747i 0.104661 0.435946i
\(213\) 0 0
\(214\) 6.49711 6.49711i 0.444134 0.444134i
\(215\) 2.78292 0.904225i 0.189794 0.0616676i
\(216\) 0 0
\(217\) 13.4385 1.05763i 0.912264 0.0717967i
\(218\) −0.688631 0.421993i −0.0466400 0.0285810i
\(219\) 0 0
\(220\) −0.447982 0.382613i −0.0302029 0.0257957i
\(221\) 9.32076 12.8289i 0.626982 0.862967i
\(222\) 0 0
\(223\) −4.77463 + 3.46897i −0.319733 + 0.232300i −0.736061 0.676915i \(-0.763317\pi\)
0.416329 + 0.909214i \(0.363317\pi\)
\(224\) 2.16607 1.32737i 0.144727 0.0886887i
\(225\) 0 0
\(226\) 5.78471 0.916208i 0.384793 0.0609453i
\(227\) −7.76404 12.6698i −0.515318 0.840922i 0.484101 0.875012i \(-0.339147\pi\)
−0.999419 + 0.0340901i \(0.989147\pi\)
\(228\) 0 0
\(229\) 23.4440 + 1.84508i 1.54922 + 0.121926i 0.824000 0.566589i \(-0.191737\pi\)
0.725221 + 0.688516i \(0.241737\pi\)
\(230\) 3.17224 + 2.30477i 0.209171 + 0.151972i
\(231\) 0 0
\(232\) 3.50902 8.47153i 0.230379 0.556183i
\(233\) −1.87377 + 3.05771i −0.122755 + 0.200317i −0.908114 0.418722i \(-0.862478\pi\)
0.785360 + 0.619040i \(0.212478\pi\)
\(234\) 0 0
\(235\) −1.67399 1.95999i −0.109199 0.127855i
\(236\) −1.10299 3.39466i −0.0717987 0.220974i
\(237\) 0 0
\(238\) 4.77853 9.37839i 0.309746 0.607911i
\(239\) −9.62785 2.31144i −0.622774 0.149515i −0.0902353 0.995920i \(-0.528762\pi\)
−0.532539 + 0.846406i \(0.678762\pi\)
\(240\) 0 0
\(241\) −23.3491 + 11.8970i −1.50405 + 0.766351i −0.995507 0.0946858i \(-0.969815\pi\)
−0.508542 + 0.861037i \(0.669815\pi\)
\(242\) 9.19426 + 2.98740i 0.591030 + 0.192037i
\(243\) 0 0
\(244\) −1.54792 + 9.77318i −0.0990954 + 0.625664i
\(245\) −0.278763 −0.0178095
\(246\) 0 0
\(247\) 14.0817 0.895997
\(248\) −0.830073 + 5.24088i −0.0527097 + 0.332796i
\(249\) 0 0
\(250\) −4.72730 1.53599i −0.298981 0.0971447i
\(251\) −19.3010 + 9.83434i −1.21827 + 0.620738i −0.940462 0.339899i \(-0.889607\pi\)
−0.277806 + 0.960637i \(0.589607\pi\)
\(252\) 0 0
\(253\) 8.62419 + 2.07048i 0.542198 + 0.130170i
\(254\) −7.97900 + 15.6597i −0.500647 + 0.982575i
\(255\) 0 0
\(256\) 0.309017 + 0.951057i 0.0193136 + 0.0594410i
\(257\) 5.56862 + 6.52001i 0.347361 + 0.406707i 0.906391 0.422440i \(-0.138826\pi\)
−0.559030 + 0.829147i \(0.688826\pi\)
\(258\) 0 0
\(259\) −10.0114 + 16.3372i −0.622079 + 1.01514i
\(260\) −0.747481 + 1.80458i −0.0463568 + 0.111915i
\(261\) 0 0
\(262\) −5.95574 4.32710i −0.367947 0.267329i
\(263\) −1.85288 0.145825i −0.114254 0.00899196i 0.0212033 0.999775i \(-0.493250\pi\)
−0.135457 + 0.990783i \(0.543250\pi\)
\(264\) 0 0
\(265\) 1.74070 + 2.84056i 0.106930 + 0.174494i
\(266\) 9.23188 1.46219i 0.566043 0.0896524i
\(267\) 0 0
\(268\) 1.62427 0.995356i 0.0992183 0.0608011i
\(269\) −1.82728 + 1.32759i −0.111411 + 0.0809449i −0.642096 0.766624i \(-0.721935\pi\)
0.530685 + 0.847569i \(0.321935\pi\)
\(270\) 0 0
\(271\) −15.0466 + 20.7099i −0.914018 + 1.25804i 0.0517576 + 0.998660i \(0.483518\pi\)
−0.965776 + 0.259378i \(0.916482\pi\)
\(272\) 3.15055 + 2.69082i 0.191030 + 0.163155i
\(273\) 0 0
\(274\) −6.06905 3.71912i −0.366645 0.224680i
\(275\) −5.45434 + 0.429266i −0.328909 + 0.0258857i
\(276\) 0 0
\(277\) 1.10241 0.358196i 0.0662376 0.0215219i −0.275711 0.961241i \(-0.588913\pi\)
0.341948 + 0.939719i \(0.388913\pi\)
\(278\) 5.91159 5.91159i 0.354554 0.354554i
\(279\) 0 0
\(280\) −0.302664 + 1.26069i −0.0180876 + 0.0753404i
\(281\) 19.3259 4.63973i 1.15288 0.276783i 0.388441 0.921474i \(-0.373014\pi\)
0.764443 + 0.644691i \(0.223014\pi\)
\(282\) 0 0
\(283\) −2.91725 + 8.97836i −0.173412 + 0.533708i −0.999557 0.0297492i \(-0.990529\pi\)
0.826145 + 0.563458i \(0.190529\pi\)
\(284\) 9.75449 4.04044i 0.578823 0.239756i
\(285\) 0 0
\(286\) 4.41813i 0.261250i
\(287\) −16.2566 0.571990i −0.959598 0.0337635i
\(288\) 0 0
\(289\) 0.164410 + 0.0260400i 0.00967119 + 0.00153177i
\(290\) 1.79083 + 4.32345i 0.105161 + 0.253882i
\(291\) 0 0
\(292\) −5.54643 10.8855i −0.324580 0.637024i
\(293\) 4.38916 + 18.2822i 0.256418 + 1.06806i 0.940808 + 0.338941i \(0.110069\pi\)
−0.684390 + 0.729116i \(0.739931\pi\)
\(294\) 0 0
\(295\) 1.62308 + 0.827000i 0.0944993 + 0.0481498i
\(296\) −5.33321 5.33321i −0.309986 0.309986i
\(297\) 0 0
\(298\) 12.7717 10.9080i 0.739843 0.631886i
\(299\) −2.30715 29.3151i −0.133426 1.69534i
\(300\) 0 0
\(301\) −13.4570 5.57408i −0.775649 0.321284i
\(302\) 14.0238 16.4198i 0.806979 0.944851i
\(303\) 0 0
\(304\) −0.288673 + 3.66794i −0.0165565 + 0.210371i
\(305\) −2.96827 4.08547i −0.169962 0.233933i
\(306\) 0 0
\(307\) 4.55899 + 28.7843i 0.260195 + 1.64281i 0.678572 + 0.734534i \(0.262599\pi\)
−0.418377 + 0.908273i \(0.637401\pi\)
\(308\) 0.458761 + 2.89650i 0.0261403 + 0.165043i
\(309\) 0 0
\(310\) −1.59174 2.19084i −0.0904045 0.124431i
\(311\) −1.62732 + 20.6771i −0.0922771 + 1.17249i 0.760187 + 0.649705i \(0.225107\pi\)
−0.852464 + 0.522786i \(0.824893\pi\)
\(312\) 0 0
\(313\) 14.9511 17.5055i 0.845088 0.989471i −0.154911 0.987928i \(-0.549509\pi\)
0.999999 0.00154212i \(-0.000490872\pi\)
\(314\) −7.93238 3.28570i −0.447650 0.185423i
\(315\) 0 0
\(316\) −0.0881827 1.12047i −0.00496067 0.0630312i
\(317\) −14.3739 + 12.2764i −0.807316 + 0.689513i −0.954045 0.299664i \(-0.903126\pi\)
0.146729 + 0.989177i \(0.453126\pi\)
\(318\) 0 0
\(319\) 7.48477 + 7.48477i 0.419066 + 0.419066i
\(320\) −0.454725 0.231694i −0.0254199 0.0129521i
\(321\) 0 0
\(322\) −4.55651 18.9792i −0.253924 1.05767i
\(323\) 6.92070 + 13.5826i 0.385078 + 0.755758i
\(324\) 0 0
\(325\) 6.94174 + 16.7588i 0.385058 + 0.929613i
\(326\) −4.66023 0.738108i −0.258106 0.0408800i
\(327\) 0 0
\(328\) 1.71279 6.16979i 0.0945730 0.340670i
\(329\) 12.8306i 0.707373i
\(330\) 0 0
\(331\) 13.5794 5.62476i 0.746390 0.309165i 0.0231223 0.999733i \(-0.492639\pi\)
0.723268 + 0.690568i \(0.242639\pi\)
\(332\) 0.805719 2.47975i 0.0442196 0.136094i
\(333\) 0 0
\(334\) −2.04795 + 0.491668i −0.112059 + 0.0269029i
\(335\) −0.226959 + 0.945351i −0.0124001 + 0.0516500i
\(336\) 0 0
\(337\) −19.3581 + 19.3581i −1.05450 + 1.05450i −0.0560754 + 0.998427i \(0.517859\pi\)
−0.998427 + 0.0560754i \(0.982141\pi\)
\(338\) 1.56754 0.509323i 0.0852627 0.0277035i
\(339\) 0 0
\(340\) −2.10799 + 0.165902i −0.114322 + 0.00899730i
\(341\) −5.22272 3.20049i −0.282826 0.173316i
\(342\) 0 0
\(343\) 14.5775 + 12.4503i 0.787109 + 0.672255i
\(344\) 3.37012 4.63857i 0.181704 0.250095i
\(345\) 0 0
\(346\) −5.95543 + 4.32687i −0.320166 + 0.232614i
\(347\) 22.3403 13.6902i 1.19929 0.734927i 0.228195 0.973615i \(-0.426718\pi\)
0.971096 + 0.238689i \(0.0767176\pi\)
\(348\) 0 0
\(349\) 8.98820 1.42359i 0.481127 0.0762031i 0.0888402 0.996046i \(-0.471684\pi\)
0.392287 + 0.919843i \(0.371684\pi\)
\(350\) 6.29113 + 10.2662i 0.336275 + 0.548751i
\(351\) 0 0
\(352\) −1.15082 0.0905712i −0.0613387 0.00482746i
\(353\) −12.2481 8.89877i −0.651901 0.473634i 0.212017 0.977266i \(-0.431997\pi\)
−0.863918 + 0.503632i \(0.831997\pi\)
\(354\) 0 0
\(355\) −2.06204 + 4.97821i −0.109442 + 0.264216i
\(356\) 1.62308 2.64863i 0.0860232 0.140377i
\(357\) 0 0
\(358\) 11.2155 + 13.1317i 0.592759 + 0.694031i
\(359\) 2.29656 + 7.06809i 0.121208 + 0.373040i 0.993191 0.116496i \(-0.0371662\pi\)
−0.871983 + 0.489536i \(0.837166\pi\)
\(360\) 0 0
\(361\) 2.48010 4.86747i 0.130532 0.256183i
\(362\) 10.8055 + 2.59417i 0.567924 + 0.136347i
\(363\) 0 0
\(364\) 8.66324 4.41414i 0.454077 0.231364i
\(365\) 5.92981 + 1.92671i 0.310381 + 0.100849i
\(366\) 0 0
\(367\) −4.98806 + 31.4934i −0.260374 + 1.64394i 0.417438 + 0.908705i \(0.362928\pi\)
−0.677813 + 0.735235i \(0.737072\pi\)
\(368\) 7.68316 0.400512
\(369\) 0 0
\(370\) 3.84921 0.200111
\(371\) 2.59423 16.3793i 0.134686 0.850373i
\(372\) 0 0
\(373\) −29.7351 9.66152i −1.53962 0.500254i −0.588352 0.808605i \(-0.700223\pi\)
−0.951273 + 0.308351i \(0.900223\pi\)
\(374\) −4.26155 + 2.17137i −0.220360 + 0.112279i
\(375\) 0 0
\(376\) −4.91101 1.17903i −0.253266 0.0608038i
\(377\) 15.9326 31.2694i 0.820569 1.61046i
\(378\) 0 0
\(379\) 8.95946 + 27.5744i 0.460217 + 1.41640i 0.864900 + 0.501945i \(0.167382\pi\)
−0.404683 + 0.914457i \(0.632618\pi\)
\(380\) −1.21948 1.42783i −0.0625581 0.0732462i
\(381\) 0 0
\(382\) −6.65100 + 10.8534i −0.340295 + 0.555310i
\(383\) −3.64633 + 8.80302i −0.186319 + 0.449813i −0.989246 0.146264i \(-0.953275\pi\)
0.802927 + 0.596078i \(0.203275\pi\)
\(384\) 0 0
\(385\) −1.21082 0.879712i −0.0617091 0.0448343i
\(386\) 16.5280 + 1.30078i 0.841253 + 0.0662080i
\(387\) 0 0
\(388\) 6.92216 + 11.2959i 0.351420 + 0.573465i
\(389\) 27.0435 4.28327i 1.37116 0.217171i 0.572971 0.819576i \(-0.305791\pi\)
0.798190 + 0.602405i \(0.205791\pi\)
\(390\) 0 0
\(391\) 27.1423 16.6328i 1.37264 0.841157i
\(392\) −0.441900 + 0.321059i −0.0223193 + 0.0162159i
\(393\) 0 0
\(394\) −10.6512 + 14.6601i −0.536598 + 0.738564i
\(395\) 0.436168 + 0.372523i 0.0219460 + 0.0187437i
\(396\) 0 0
\(397\) −0.832476 0.510142i −0.0417808 0.0256033i 0.501451 0.865186i \(-0.332800\pi\)
−0.543232 + 0.839583i \(0.682800\pi\)
\(398\) 10.2885 0.809725i 0.515717 0.0405878i
\(399\) 0 0
\(400\) −4.50757 + 1.46460i −0.225379 + 0.0732300i
\(401\) 3.89680 3.89680i 0.194597 0.194597i −0.603082 0.797679i \(-0.706061\pi\)
0.797679 + 0.603082i \(0.206061\pi\)
\(402\) 0 0
\(403\) −4.74091 + 19.7473i −0.236161 + 0.983683i
\(404\) −5.58353 + 1.34049i −0.277791 + 0.0666917i
\(405\) 0 0
\(406\) 7.19840 22.1544i 0.357251 1.09950i
\(407\) 8.04388 3.33188i 0.398720 0.165155i
\(408\) 0 0
\(409\) 12.8222i 0.634016i 0.948423 + 0.317008i \(0.102678\pi\)
−0.948423 + 0.317008i \(0.897322\pi\)
\(410\) 1.60841 + 2.84460i 0.0794336 + 0.140485i
\(411\) 0 0
\(412\) −1.71321 0.271346i −0.0844040 0.0133683i
\(413\) −3.47006 8.37747i −0.170751 0.412228i
\(414\) 0 0
\(415\) 0.604110 + 1.18563i 0.0296546 + 0.0582005i
\(416\) 0.893465 + 3.72155i 0.0438057 + 0.182464i
\(417\) 0 0
\(418\) −3.78434 1.92822i −0.185098 0.0943123i
\(419\) −16.7810 16.7810i −0.819805 0.819805i 0.166274 0.986080i \(-0.446826\pi\)
−0.986080 + 0.166274i \(0.946826\pi\)
\(420\) 0 0
\(421\) −7.40253 + 6.32236i −0.360777 + 0.308133i −0.811298 0.584633i \(-0.801238\pi\)
0.450520 + 0.892766i \(0.351238\pi\)
\(422\) −1.92179 24.4186i −0.0935512 1.18868i
\(423\) 0 0
\(424\) 6.03094 + 2.49810i 0.292888 + 0.121318i
\(425\) −12.7533 + 14.9321i −0.618624 + 0.724316i
\(426\) 0 0
\(427\) −1.97227 + 25.0601i −0.0954449 + 1.21274i
\(428\) 5.40075 + 7.43350i 0.261055 + 0.359312i
\(429\) 0 0
\(430\) 0.457748 + 2.89011i 0.0220746 + 0.139373i
\(431\) 1.33556 + 8.43239i 0.0643316 + 0.406174i 0.998749 + 0.0499951i \(0.0159206\pi\)
−0.934418 + 0.356179i \(0.884079\pi\)
\(432\) 0 0
\(433\) 16.3965 + 22.5678i 0.787965 + 1.08454i 0.994358 + 0.106072i \(0.0338273\pi\)
−0.206394 + 0.978469i \(0.566173\pi\)
\(434\) −1.05763 + 13.4385i −0.0507680 + 0.645068i
\(435\) 0 0
\(436\) 0.524524 0.614138i 0.0251201 0.0294119i
\(437\) 26.1167 + 10.8179i 1.24933 + 0.517490i
\(438\) 0 0
\(439\) −2.29826 29.2021i −0.109690 1.39374i −0.767737 0.640765i \(-0.778617\pi\)
0.658047 0.752977i \(-0.271383\pi\)
\(440\) 0.447982 0.382613i 0.0213567 0.0182403i
\(441\) 0 0
\(442\) 11.2129 + 11.2129i 0.533343 + 0.533343i
\(443\) 31.4603 + 16.0298i 1.49472 + 0.761599i 0.994543 0.104324i \(-0.0332678\pi\)
0.500178 + 0.865922i \(0.333268\pi\)
\(444\) 0 0
\(445\) 0.370092 + 1.54154i 0.0175440 + 0.0730761i
\(446\) −2.67935 5.25851i −0.126871 0.248998i
\(447\) 0 0
\(448\) 0.972180 + 2.34705i 0.0459312 + 0.110888i
\(449\) 19.7941 + 3.13507i 0.934139 + 0.147953i 0.604907 0.796296i \(-0.293210\pi\)
0.329232 + 0.944249i \(0.393210\pi\)
\(450\) 0 0
\(451\) 5.82346 + 4.55226i 0.274216 + 0.214358i
\(452\) 5.85682i 0.275482i
\(453\) 0 0
\(454\) 13.7283 5.68647i 0.644303 0.266879i
\(455\) −1.53338 + 4.71926i −0.0718860 + 0.221242i
\(456\) 0 0
\(457\) 18.1440 4.35599i 0.848741 0.203765i 0.214331 0.976761i \(-0.431243\pi\)
0.634410 + 0.772997i \(0.281243\pi\)
\(458\) −5.48981 + 22.8667i −0.256522 + 1.06849i
\(459\) 0 0
\(460\) −2.77264 + 2.77264i −0.129275 + 0.129275i
\(461\) −24.1257 + 7.83891i −1.12365 + 0.365095i −0.811158 0.584827i \(-0.801162\pi\)
−0.312488 + 0.949922i \(0.601162\pi\)
\(462\) 0 0
\(463\) −26.2880 + 2.06891i −1.22171 + 0.0961505i −0.672859 0.739771i \(-0.734934\pi\)
−0.548849 + 0.835921i \(0.684934\pi\)
\(464\) 7.81830 + 4.79106i 0.362955 + 0.222419i
\(465\) 0 0
\(466\) −2.72694 2.32903i −0.126323 0.107890i
\(467\) 7.00444 9.64078i 0.324127 0.446122i −0.615595 0.788063i \(-0.711084\pi\)
0.939722 + 0.341941i \(0.111084\pi\)
\(468\) 0 0
\(469\) 3.91524 2.84459i 0.180789 0.131351i
\(470\) 2.19773 1.34677i 0.101374 0.0621218i
\(471\) 0 0
\(472\) 3.52542 0.558371i 0.162270 0.0257011i
\(473\) 3.45826 + 5.64337i 0.159011 + 0.259482i
\(474\) 0 0
\(475\) −17.3844 1.36818i −0.797649 0.0627763i
\(476\) 8.51540 + 6.18680i 0.390303 + 0.283572i
\(477\) 0 0
\(478\) 3.78911 9.14773i 0.173310 0.418407i
\(479\) 15.3463 25.0429i 0.701190 1.14424i −0.281604 0.959531i \(-0.590866\pi\)
0.982794 0.184707i \(-0.0591335\pi\)
\(480\) 0 0
\(481\) −18.7474 21.9503i −0.854806 1.00085i
\(482\) −8.09789 24.9228i −0.368849 1.13520i
\(483\) 0 0
\(484\) −4.38892 + 8.61373i −0.199496 + 0.391533i
\(485\) −6.57440 1.57837i −0.298528 0.0716703i
\(486\) 0 0
\(487\) 18.4688 9.41030i 0.836899 0.426421i 0.0176396 0.999844i \(-0.494385\pi\)
0.819259 + 0.573423i \(0.194385\pi\)
\(488\) −9.41071 3.05773i −0.426003 0.138417i
\(489\) 0 0
\(490\) 0.0436081 0.275331i 0.00197001 0.0124382i
\(491\) −31.0564 −1.40156 −0.700778 0.713379i \(-0.747164\pi\)
−0.700778 + 0.713379i \(0.747164\pi\)
\(492\) 0 0
\(493\) 37.9915 1.71105
\(494\) −2.20286 + 13.9083i −0.0991115 + 0.625766i
\(495\) 0 0
\(496\) −5.04650 1.63971i −0.226595 0.0736251i
\(497\) 23.8989 12.1771i 1.07201 0.546217i
\(498\) 0 0
\(499\) −15.2270 3.65567i −0.681653 0.163650i −0.122191 0.992507i \(-0.538992\pi\)
−0.559462 + 0.828856i \(0.688992\pi\)
\(500\) 2.25659 4.42882i 0.100918 0.198063i
\(501\) 0 0
\(502\) −6.69393 20.6018i −0.298765 0.919503i
\(503\) −10.1004 11.8261i −0.450356 0.527300i 0.488058 0.872811i \(-0.337705\pi\)
−0.938415 + 0.345512i \(0.887705\pi\)
\(504\) 0 0
\(505\) 1.53120 2.49868i 0.0681373 0.111190i
\(506\) −3.39411 + 8.19411i −0.150887 + 0.364273i
\(507\) 0 0
\(508\) −14.2187 10.3305i −0.630852 0.458341i
\(509\) −12.1727 0.958015i −0.539547 0.0424633i −0.194242 0.980954i \(-0.562225\pi\)
−0.345305 + 0.938490i \(0.612225\pi\)
\(510\) 0 0
\(511\) −16.2166 26.4630i −0.717378 1.17066i
\(512\) −0.987688 + 0.156434i −0.0436501 + 0.00691349i
\(513\) 0 0
\(514\) −7.31086 + 4.48010i −0.322468 + 0.197609i
\(515\) 0.716172 0.520329i 0.0315583 0.0229285i
\(516\) 0 0
\(517\) 3.42693 4.71676i 0.150716 0.207443i
\(518\) −14.5699 12.4439i −0.640164 0.546752i
\(519\) 0 0
\(520\) −1.66543 1.02058i −0.0730339 0.0447552i
\(521\) 4.91203 0.386585i 0.215200 0.0169366i 0.0295993 0.999562i \(-0.490577\pi\)
0.185601 + 0.982625i \(0.440577\pi\)
\(522\) 0 0
\(523\) −17.3135 + 5.62551i −0.757068 + 0.245986i −0.662020 0.749486i \(-0.730301\pi\)
−0.0950482 + 0.995473i \(0.530301\pi\)
\(524\) 5.20551 5.20551i 0.227404 0.227404i
\(525\) 0 0
\(526\) 0.433885 1.80726i 0.0189183 0.0788003i
\(527\) −21.3775 + 5.13227i −0.931217 + 0.223565i
\(528\) 0 0
\(529\) 11.1342 34.2675i 0.484095 1.48989i
\(530\) −3.07789 + 1.27490i −0.133695 + 0.0553783i
\(531\) 0 0
\(532\) 9.34695i 0.405242i
\(533\) 8.38785 23.0265i 0.363318 0.997389i
\(534\) 0 0
\(535\) −4.63152 0.733561i −0.200238 0.0317146i
\(536\) 0.729009 + 1.75998i 0.0314884 + 0.0760197i
\(537\) 0 0
\(538\) −1.02540 2.01246i −0.0442082 0.0867634i
\(539\) −0.147197 0.613119i −0.00634021 0.0264089i
\(540\) 0 0
\(541\) −30.9025 15.7456i −1.32860 0.676957i −0.361746 0.932277i \(-0.617819\pi\)
−0.966857 + 0.255320i \(0.917819\pi\)
\(542\) −18.1011 18.1011i −0.777510 0.777510i
\(543\) 0 0
\(544\) −3.15055 + 2.69082i −0.135079 + 0.115368i
\(545\) 0.0323394 + 0.410911i 0.00138527 + 0.0176015i
\(546\) 0 0
\(547\) 0.331168 + 0.137174i 0.0141597 + 0.00586514i 0.389752 0.920920i \(-0.372561\pi\)
−0.375592 + 0.926785i \(0.622561\pi\)
\(548\) 4.62274 5.41253i 0.197474 0.231212i
\(549\) 0 0
\(550\) 0.429266 5.45434i 0.0183040 0.232574i
\(551\) 19.8303 + 27.2940i 0.844797 + 1.16276i
\(552\) 0 0
\(553\) −0.446663 2.82012i −0.0189940 0.119924i
\(554\) 0.181330 + 1.14488i 0.00770399 + 0.0486411i
\(555\) 0 0
\(556\) 4.91404 + 6.76359i 0.208402 + 0.286840i
\(557\) −1.76153 + 22.3823i −0.0746383 + 0.948369i 0.839603 + 0.543200i \(0.182787\pi\)
−0.914242 + 0.405169i \(0.867213\pi\)
\(558\) 0 0
\(559\) 14.2516 16.6864i 0.602777 0.705761i
\(560\) −1.19782 0.496152i −0.0506170 0.0209663i
\(561\) 0 0
\(562\) 1.55938 + 19.8137i 0.0657783 + 0.835792i
\(563\) −29.4158 + 25.1234i −1.23973 + 1.05883i −0.243693 + 0.969853i \(0.578359\pi\)
−0.996034 + 0.0889741i \(0.971641\pi\)
\(564\) 0 0
\(565\) −2.11356 2.11356i −0.0889182 0.0889182i
\(566\) −8.41147 4.28586i −0.353560 0.180148i
\(567\) 0 0
\(568\) 2.46476 + 10.2665i 0.103419 + 0.430771i
\(569\) 3.71557 + 7.29221i 0.155765 + 0.305705i 0.955680 0.294408i \(-0.0951223\pi\)
−0.799915 + 0.600113i \(0.795122\pi\)
\(570\) 0 0
\(571\) 3.99515 + 9.64513i 0.167192 + 0.403636i 0.985163 0.171623i \(-0.0549011\pi\)
−0.817971 + 0.575259i \(0.804901\pi\)
\(572\) −4.36374 0.691148i −0.182457 0.0288984i
\(573\) 0 0
\(574\) 3.10804 15.9670i 0.129727 0.666450i
\(575\) 36.4147i 1.51860i
\(576\) 0 0
\(577\) 28.3362 11.7373i 1.17965 0.488628i 0.295281 0.955410i \(-0.404587\pi\)
0.884372 + 0.466782i \(0.154587\pi\)
\(578\) −0.0514389 + 0.158313i −0.00213957 + 0.00658493i
\(579\) 0 0
\(580\) −4.55037 + 1.09245i −0.188944 + 0.0453614i
\(581\) 1.54630 6.44080i 0.0641513 0.267210i
\(582\) 0 0
\(583\) −5.32845 + 5.32845i −0.220682 + 0.220682i
\(584\) 11.6191 3.77528i 0.480802 0.156222i
\(585\) 0 0
\(586\) −18.7437 + 1.47516i −0.774296 + 0.0609384i
\(587\) −30.3747 18.6136i −1.25370 0.768266i −0.272664 0.962109i \(-0.587905\pi\)
−0.981032 + 0.193843i \(0.937905\pi\)
\(588\) 0 0
\(589\) −14.8454 12.6792i −0.611695 0.522437i
\(590\) −1.07072 + 1.47372i −0.0440810 + 0.0606723i
\(591\) 0 0
\(592\) 6.10184 4.43325i 0.250784 0.182205i
\(593\) 18.5125 11.3445i 0.760218 0.465862i −0.0875958 0.996156i \(-0.527918\pi\)
0.847814 + 0.530294i \(0.177918\pi\)
\(594\) 0 0
\(595\) −5.30561 + 0.840327i −0.217509 + 0.0344500i
\(596\) 8.77582 + 14.3208i 0.359471 + 0.586604i
\(597\) 0 0
\(598\) 29.3151 + 2.30715i 1.19878 + 0.0943463i
\(599\) 26.4445 + 19.2130i 1.08049 + 0.785023i 0.977768 0.209687i \(-0.0672446\pi\)
0.102723 + 0.994710i \(0.467245\pi\)
\(600\) 0 0
\(601\) −2.96813 + 7.16570i −0.121073 + 0.292295i −0.972783 0.231718i \(-0.925566\pi\)
0.851711 + 0.524013i \(0.175566\pi\)
\(602\) 7.61059 12.4194i 0.310184 0.506175i
\(603\) 0 0
\(604\) 14.0238 + 16.4198i 0.570620 + 0.668110i
\(605\) −1.52462 4.69229i −0.0619846 0.190769i
\(606\) 0 0
\(607\) 11.9289 23.4117i 0.484178 0.950253i −0.511667 0.859184i \(-0.670972\pi\)
0.995845 0.0910687i \(-0.0290283\pi\)
\(608\) −3.57762 0.858911i −0.145092 0.0348334i
\(609\) 0 0
\(610\) 4.49951 2.29261i 0.182180 0.0928253i
\(611\) −18.3839 5.97330i −0.743734 0.241654i
\(612\) 0 0
\(613\) −1.51327 + 9.55439i −0.0611203 + 0.385898i 0.938098 + 0.346370i \(0.112586\pi\)
−0.999218 + 0.0395288i \(0.987414\pi\)
\(614\) −29.1431 −1.17612
\(615\) 0 0
\(616\) −2.93261 −0.118158
\(617\) −0.951809 + 6.00948i −0.0383184 + 0.241933i −0.999412 0.0342904i \(-0.989083\pi\)
0.961094 + 0.276223i \(0.0890829\pi\)
\(618\) 0 0
\(619\) −39.5299 12.8441i −1.58884 0.516246i −0.624527 0.781003i \(-0.714708\pi\)
−0.964315 + 0.264757i \(0.914708\pi\)
\(620\) 2.41287 1.22942i 0.0969030 0.0493746i
\(621\) 0 0
\(622\) −20.1680 4.84190i −0.808662 0.194143i
\(623\) 3.58269 7.03143i 0.143538 0.281708i
\(624\) 0 0
\(625\) −6.53910 20.1253i −0.261564 0.805012i
\(626\) 14.9511 + 17.5055i 0.597567 + 0.699661i
\(627\) 0 0
\(628\) 4.48614 7.32072i 0.179017 0.292129i
\(629\) 11.9587 28.8708i 0.476824 1.15115i
\(630\) 0 0
\(631\) −11.1550 8.10455i −0.444072 0.322637i 0.343179 0.939270i \(-0.388496\pi\)
−0.787251 + 0.616633i \(0.788496\pi\)
\(632\) 1.12047 + 0.0881827i 0.0445698 + 0.00350772i
\(633\) 0 0
\(634\) −9.87672 16.1173i −0.392255 0.640102i
\(635\) 8.85910 1.40314i 0.351563 0.0556821i
\(636\) 0 0
\(637\) −1.78248 + 1.09230i −0.0706244 + 0.0432787i
\(638\) −8.56349 + 6.22174i −0.339032 + 0.246321i
\(639\) 0 0
\(640\) 0.299976 0.412882i 0.0118576 0.0163206i
\(641\) −20.6119 17.6042i −0.814120 0.695324i 0.141496 0.989939i \(-0.454809\pi\)
−0.955616 + 0.294614i \(0.904809\pi\)
\(642\) 0 0
\(643\) −18.5580 11.3723i −0.731855 0.448481i 0.106006 0.994366i \(-0.466194\pi\)
−0.837861 + 0.545884i \(0.816194\pi\)
\(644\) 19.4584 1.53141i 0.766767 0.0603458i
\(645\) 0 0
\(646\) −14.4981 + 4.71070i −0.570418 + 0.185340i
\(647\) 6.44743 6.44743i 0.253475 0.253475i −0.568919 0.822394i \(-0.692638\pi\)
0.822394 + 0.568919i \(0.192638\pi\)
\(648\) 0 0
\(649\) −0.961883 + 4.00653i −0.0377572 + 0.157270i
\(650\) −17.6384 + 4.23461i −0.691837 + 0.166095i
\(651\) 0 0
\(652\) 1.45804 4.48739i 0.0571013 0.175740i
\(653\) −37.6990 + 15.6154i −1.47527 + 0.611078i −0.968055 0.250739i \(-0.919327\pi\)
−0.507219 + 0.861817i \(0.669327\pi\)
\(654\) 0 0
\(655\) 3.75704i 0.146800i
\(656\) 5.82589 + 2.65687i 0.227463 + 0.103733i
\(657\) 0 0
\(658\) −12.6726 2.00715i −0.494030 0.0782467i
\(659\) −0.837963 2.02302i −0.0326424 0.0788058i 0.906718 0.421738i \(-0.138580\pi\)
−0.939360 + 0.342932i \(0.888580\pi\)
\(660\) 0 0
\(661\) 3.89423 + 7.64285i 0.151468 + 0.297273i 0.954255 0.298993i \(-0.0966506\pi\)
−0.802787 + 0.596265i \(0.796651\pi\)
\(662\) 3.43123 + 14.2921i 0.133359 + 0.555478i
\(663\) 0 0
\(664\) 2.32318 + 1.18372i 0.0901567 + 0.0459372i
\(665\) −3.37305 3.37305i −0.130801 0.130801i
\(666\) 0 0
\(667\) 53.5713 45.7542i 2.07429 1.77161i
\(668\) −0.165246 2.09965i −0.00639355 0.0812377i
\(669\) 0 0
\(670\) −0.898208 0.372050i −0.0347008 0.0143735i
\(671\) 7.41835 8.68577i 0.286382 0.335310i
\(672\) 0 0
\(673\) −2.04734 + 26.0140i −0.0789193 + 1.00277i 0.822201 + 0.569197i \(0.192746\pi\)
−0.901121 + 0.433568i \(0.857254\pi\)
\(674\) −16.0915 22.1480i −0.619821 0.853110i
\(675\) 0 0
\(676\) 0.257836 + 1.62791i 0.00991677 + 0.0626120i
\(677\) −5.91025 37.3159i −0.227149 1.43416i −0.792781 0.609507i \(-0.791368\pi\)
0.565632 0.824658i \(-0.308632\pi\)
\(678\) 0 0
\(679\) 19.7826 + 27.2284i 0.759185 + 1.04493i
\(680\) 0.165902 2.10799i 0.00636205 0.0808376i
\(681\) 0 0
\(682\) 3.97810 4.65775i 0.152329 0.178355i
\(683\) −3.90119 1.61592i −0.149275 0.0618316i 0.306795 0.951776i \(-0.400743\pi\)
−0.456070 + 0.889944i \(0.650743\pi\)
\(684\) 0 0
\(685\) 0.285014 + 3.62145i 0.0108898 + 0.138368i
\(686\) −14.5775 + 12.4503i −0.556570 + 0.475356i
\(687\) 0 0
\(688\) 4.05425 + 4.05425i 0.154567 + 0.154567i
\(689\) 22.2609 + 11.3425i 0.848072 + 0.432114i
\(690\) 0 0
\(691\) −0.366642 1.52717i −0.0139477 0.0580965i 0.964962 0.262389i \(-0.0845105\pi\)
−0.978910 + 0.204293i \(0.934510\pi\)
\(692\) −3.34197 6.55898i −0.127043 0.249335i
\(693\) 0 0
\(694\) 10.0268 + 24.2069i 0.380613 + 0.918881i
\(695\) −4.21413 0.667452i −0.159851 0.0253179i
\(696\) 0 0
\(697\) 26.3328 3.22621i 0.997426 0.122201i
\(698\) 9.10024i 0.344449i
\(699\) 0 0
\(700\) −11.1239 + 4.60769i −0.420446 + 0.174154i
\(701\) −3.32985 + 10.2482i −0.125767 + 0.387071i −0.994040 0.109016i \(-0.965230\pi\)
0.868273 + 0.496086i \(0.165230\pi\)
\(702\) 0 0
\(703\) 26.9835 6.47816i 1.01770 0.244328i
\(704\) 0.269483 1.12248i 0.0101565 0.0423050i
\(705\) 0 0
\(706\) 10.7052 10.7052i 0.402897 0.402897i
\(707\) −13.8737 + 4.50782i −0.521772 + 0.169534i
\(708\) 0 0
\(709\) 2.00315 0.157651i 0.0752299 0.00592072i −0.0407883 0.999168i \(-0.512987\pi\)
0.116018 + 0.993247i \(0.462987\pi\)
\(710\) −4.59434 2.81542i −0.172423 0.105661i
\(711\) 0 0
\(712\) 2.36212 + 2.01744i 0.0885240 + 0.0756067i
\(713\) −23.9631 + 32.9824i −0.897424 + 1.23520i
\(714\) 0 0
\(715\) 1.82417 1.32534i 0.0682200 0.0495647i
\(716\) −14.7245 + 9.02319i −0.550281 + 0.337212i
\(717\) 0 0
\(718\) −7.34034 + 1.16259i −0.273939 + 0.0433877i
\(719\) −22.5364 36.7761i −0.840466 1.37152i −0.926919 0.375260i \(-0.877553\pi\)
0.0864533 0.996256i \(-0.472447\pi\)
\(720\) 0 0
\(721\) −4.39297 0.345734i −0.163603 0.0128758i
\(722\) 4.41957 + 3.21101i 0.164479 + 0.119501i
\(723\) 0 0
\(724\) −4.25258 + 10.2666i −0.158046 + 0.381557i
\(725\) −22.7074 + 37.0552i −0.843333 + 1.37619i
\(726\) 0 0
\(727\) 6.12920 + 7.17637i 0.227319 + 0.266157i 0.862330 0.506347i \(-0.169004\pi\)
−0.635011 + 0.772503i \(0.719004\pi\)
\(728\) 3.00457 + 9.24710i 0.111357 + 0.342720i
\(729\) 0 0
\(730\) −2.83062 + 5.55540i −0.104766 + 0.205615i
\(731\) 23.0993 + 5.54564i 0.854357 + 0.205113i
\(732\) 0 0
\(733\) −2.87391 + 1.46433i −0.106150 + 0.0540862i −0.506259 0.862381i \(-0.668972\pi\)
0.400109 + 0.916467i \(0.368972\pi\)
\(734\) −30.3253 9.85329i −1.11933 0.363692i
\(735\) 0 0
\(736\) −1.20191 + 7.58857i −0.0443030 + 0.279718i
\(737\) −2.19908 −0.0810040
\(738\) 0 0
\(739\) −29.6554 −1.09089 −0.545446 0.838146i \(-0.683640\pi\)
−0.545446 + 0.838146i \(0.683640\pi\)
\(740\) −0.602149 + 3.80182i −0.0221354 + 0.139758i
\(741\) 0 0
\(742\) 15.7719 + 5.12459i 0.579003 + 0.188130i
\(743\) 22.7775 11.6057i 0.835627 0.425773i 0.0168313 0.999858i \(-0.494642\pi\)
0.818796 + 0.574085i \(0.194642\pi\)
\(744\) 0 0
\(745\) −8.33493 2.00104i −0.305368 0.0733125i
\(746\) 14.1942 27.8576i 0.519685 1.01994i
\(747\) 0 0
\(748\) −1.47798 4.54876i −0.0540404 0.166319i
\(749\) 15.1596 + 17.7496i 0.553919 + 0.648556i
\(750\) 0 0
\(751\) 17.6875 28.8634i 0.645426 1.05324i −0.347859 0.937547i \(-0.613091\pi\)
0.993285 0.115693i \(-0.0369088\pi\)
\(752\) 1.93277 4.66611i 0.0704807 0.170155i
\(753\) 0 0
\(754\) 28.3920 + 20.6280i 1.03398 + 0.751228i
\(755\) −10.9862 0.864635i −0.399830 0.0314673i
\(756\) 0 0
\(757\) −18.1952 29.6919i −0.661317 1.07917i −0.990842 0.135024i \(-0.956889\pi\)
0.329526 0.944147i \(-0.393111\pi\)
\(758\) −28.6365 + 4.53557i −1.04012 + 0.164739i
\(759\) 0 0
\(760\) 1.60102 0.981107i 0.0580751 0.0355885i
\(761\) −33.1425 + 24.0795i −1.20142 + 0.872880i −0.994423 0.105463i \(-0.966368\pi\)
−0.206992 + 0.978343i \(0.566368\pi\)
\(762\) 0 0
\(763\) 1.20600 1.65991i 0.0436600 0.0600929i
\(764\) −9.67937 8.26697i −0.350187 0.299088i
\(765\) 0 0
\(766\) −8.12423 4.97853i −0.293540 0.179882i
\(767\) 13.6189 1.07183i 0.491750 0.0387015i
\(768\) 0 0
\(769\) −13.2236 + 4.29661i −0.476855 + 0.154940i −0.537576 0.843215i \(-0.680660\pi\)
0.0607210 + 0.998155i \(0.480660\pi\)
\(770\) 1.05830 1.05830i 0.0381383 0.0381383i
\(771\) 0 0
\(772\) −3.87032 + 16.1210i −0.139296 + 0.580208i
\(773\) −9.77944 + 2.34784i −0.351742 + 0.0844458i −0.405466 0.914110i \(-0.632891\pi\)
0.0537243 + 0.998556i \(0.482891\pi\)
\(774\) 0 0
\(775\) 7.77147 23.9181i 0.279159 0.859164i
\(776\) −12.2397 + 5.06986i −0.439381 + 0.181998i
\(777\) 0 0
\(778\) 27.3806i 0.981643i
\(779\) 16.0626 + 17.2341i 0.575502 + 0.617477i
\(780\) 0 0
\(781\) −12.0380 1.90664i −0.430755 0.0682249i
\(782\) 12.1820 + 29.4100i 0.435629 + 1.05170i
\(783\) 0 0
\(784\) −0.247978 0.486684i −0.00885636 0.0173816i
\(785\) 1.02292 + 4.26077i 0.0365096 + 0.152073i
\(786\) 0 0
\(787\) −20.7569 10.5762i −0.739903 0.376999i 0.0430564 0.999073i \(-0.486290\pi\)
−0.782959 + 0.622073i \(0.786290\pi\)
\(788\) −12.8134 12.8134i −0.456458 0.456458i
\(789\) 0 0
\(790\) −0.436168 + 0.372523i −0.0155182 + 0.0132538i
\(791\) 1.16738 + 14.8330i 0.0415072 + 0.527399i
\(792\) 0 0
\(793\) −34.9884 14.4927i −1.24247 0.514649i
\(794\) 0.634089 0.742423i 0.0225030 0.0263476i
\(795\) 0 0
\(796\) −0.809725 + 10.2885i −0.0286999 + 0.364667i
\(797\) −28.2843 38.9300i −1.00188 1.37897i −0.924164 0.381995i \(-0.875237\pi\)
−0.0777167 0.996975i \(-0.524763\pi\)
\(798\) 0 0
\(799\) −3.27350 20.6681i −0.115808 0.731184i
\(800\) −0.741428 4.68119i −0.0262134 0.165505i
\(801\) 0 0
\(802\) 3.23923 + 4.45842i 0.114381 + 0.157432i
\(803\) −1.10651 + 14.0596i −0.0390480 + 0.496152i
\(804\) 0 0
\(805\) −6.46933 + 7.57462i −0.228014 + 0.266970i
\(806\) −18.7625 7.77170i −0.660882 0.273746i
\(807\) 0 0
\(808\) −0.450527 5.72449i −0.0158495 0.201387i
\(809\) −9.65261 + 8.24411i −0.339368 + 0.289848i −0.802756 0.596308i \(-0.796634\pi\)
0.463388 + 0.886156i \(0.346634\pi\)
\(810\) 0 0
\(811\) −15.8759 15.8759i −0.557478 0.557478i 0.371110 0.928589i \(-0.378977\pi\)
−0.928589 + 0.371110i \(0.878977\pi\)
\(812\) 20.7556 + 10.5755i 0.728378 + 0.371127i
\(813\) 0 0
\(814\) 2.03252 + 8.46607i 0.0712399 + 0.296735i
\(815\) 1.09321 + 2.14554i 0.0382934 + 0.0751550i
\(816\) 0 0
\(817\) 8.07288 + 19.4897i 0.282434 + 0.681857i
\(818\) −12.6643 2.00583i −0.442797 0.0701322i
\(819\) 0 0
\(820\) −3.06119 + 1.14361i −0.106901 + 0.0399367i
\(821\) 26.2045i 0.914543i 0.889327 + 0.457271i \(0.151173\pi\)
−0.889327 + 0.457271i \(0.848827\pi\)
\(822\) 0 0
\(823\) 46.9062 19.4292i 1.63505 0.677259i 0.639265 0.768987i \(-0.279239\pi\)
0.995784 + 0.0917272i \(0.0292388\pi\)
\(824\) 0.536011 1.64967i 0.0186728 0.0574691i
\(825\) 0 0
\(826\) 8.81717 2.11681i 0.306789 0.0736534i
\(827\) −6.06196 + 25.2499i −0.210795 + 0.878024i 0.762227 + 0.647310i \(0.224106\pi\)
−0.973022 + 0.230714i \(0.925894\pi\)
\(828\) 0 0
\(829\) −32.6794 + 32.6794i −1.13500 + 1.13500i −0.145670 + 0.989333i \(0.546534\pi\)
−0.989333 + 0.145670i \(0.953466\pi\)
\(830\) −1.26554 + 0.411199i −0.0439275 + 0.0142729i
\(831\) 0 0
\(832\) −3.81550 + 0.300286i −0.132279 + 0.0104106i
\(833\) −1.92962 1.18247i −0.0668575 0.0409703i
\(834\) 0 0
\(835\) 0.817336 + 0.698071i 0.0282851 + 0.0241577i
\(836\) 2.49648 3.43611i 0.0863426 0.118840i
\(837\) 0 0
\(838\) 19.1995 13.9493i 0.663236 0.481869i
\(839\) 44.4330 27.2286i 1.53400 0.940035i 0.538770 0.842453i \(-0.318889\pi\)
0.995227 0.0975821i \(-0.0311109\pi\)
\(840\) 0 0
\(841\) 54.4020 8.61642i 1.87593 0.297118i
\(842\) −5.08651 8.30043i −0.175293 0.286052i
\(843\) 0 0
\(844\) 24.4186 + 1.92179i 0.840524 + 0.0661507i
\(845\) −0.680514 0.494422i −0.0234104 0.0170086i
\(846\) 0 0
\(847\) −9.39847 + 22.6899i −0.322935 + 0.779635i
\(848\) −3.41079 + 5.56590i −0.117127 + 0.191134i
\(849\) 0 0
\(850\) −12.7533 14.9321i −0.437433 0.512169i
\(851\) −17.9071 55.1124i −0.613848 1.88923i
\(852\) 0 0
\(853\) 11.6928 22.9485i 0.400355 0.785742i −0.599538 0.800346i \(-0.704649\pi\)
0.999893 + 0.0146047i \(0.00464897\pi\)
\(854\) −24.4430 5.86825i −0.836423 0.200807i
\(855\) 0 0
\(856\) −8.18684 + 4.17140i −0.279820 + 0.142576i
\(857\) 7.22479 + 2.34748i 0.246794 + 0.0801882i 0.429802 0.902923i \(-0.358583\pi\)
−0.183008 + 0.983111i \(0.558583\pi\)
\(858\) 0 0
\(859\) −2.24397 + 14.1679i −0.0765634 + 0.483402i 0.919376 + 0.393379i \(0.128694\pi\)
−0.995940 + 0.0900230i \(0.971306\pi\)
\(860\) −2.92613 −0.0997804
\(861\) 0 0
\(862\) −8.53750 −0.290788
\(863\) 8.10008 51.1419i 0.275730 1.74089i −0.328884 0.944370i \(-0.606672\pi\)
0.604614 0.796519i \(-0.293328\pi\)
\(864\) 0 0
\(865\) 3.57297 + 1.16093i 0.121485 + 0.0394728i
\(866\) −24.8550 + 12.6642i −0.844606 + 0.430348i
\(867\) 0 0
\(868\) −13.1076 3.14685i −0.444900 0.106811i
\(869\) −0.589025 + 1.15603i −0.0199813 + 0.0392155i
\(870\) 0 0
\(871\) 2.25304 + 6.93413i 0.0763412 + 0.234954i
\(872\) 0.524524 + 0.614138i 0.0177626 + 0.0207973i
\(873\) 0 0
\(874\) −14.7703 + 24.1029i −0.499611 + 0.815291i
\(875\) 4.83230 11.6662i 0.163361 0.394389i
\(876\) 0 0
\(877\) 16.4850 + 11.9770i 0.556658 + 0.404436i 0.830234 0.557414i \(-0.188207\pi\)
−0.273576 + 0.961850i \(0.588207\pi\)
\(878\) 29.2021 + 2.29826i 0.985524 + 0.0775624i
\(879\) 0 0
\(880\) 0.307822 + 0.502320i 0.0103767 + 0.0169332i
\(881\) 23.7510 3.76179i 0.800191 0.126738i 0.257070 0.966393i \(-0.417243\pi\)
0.543120 + 0.839655i \(0.317243\pi\)
\(882\) 0 0
\(883\) −1.25850 + 0.771207i −0.0423517 + 0.0259532i −0.543513 0.839401i \(-0.682906\pi\)
0.501162 + 0.865354i \(0.332906\pi\)
\(884\) −12.8289 + 9.32076i −0.431483 + 0.313491i
\(885\) 0 0
\(886\) −20.7539 + 28.5653i −0.697241 + 0.959670i
\(887\) 22.8593 + 19.5237i 0.767539 + 0.655540i 0.944438 0.328689i \(-0.106607\pi\)
−0.176899 + 0.984229i \(0.556607\pi\)
\(888\) 0 0
\(889\) −38.0693 23.3289i −1.27680 0.782425i
\(890\) −1.58046 + 0.124385i −0.0529771 + 0.00416939i
\(891\) 0 0
\(892\) 5.61291 1.82375i 0.187934 0.0610635i
\(893\) 13.1398 13.1398i 0.439705 0.439705i
\(894\) 0 0
\(895\) 2.05745 8.56988i 0.0687728 0.286459i
\(896\) −2.47024 + 0.593051i −0.0825248 + 0.0198125i
\(897\) 0 0
\(898\) −6.19294 + 19.0599i −0.206661 + 0.636038i
\(899\) −44.9517 + 18.6196i −1.49922 + 0.620998i
\(900\) 0 0
\(901\) 27.0464i 0.901047i
\(902\) −5.40721 + 5.03963i −0.180040 + 0.167801i
\(903\) 0 0
\(904\) −5.78471 0.916208i −0.192397 0.0304726i
\(905\) −2.17031 5.23958i −0.0721434 0.174170i
\(906\) 0 0
\(907\) 8.66949 + 17.0148i 0.287866 + 0.564968i 0.988974 0.148086i \(-0.0473113\pi\)
−0.701109 + 0.713054i \(0.747311\pi\)
\(908\) 3.46887 + 14.4489i 0.115119 + 0.479503i
\(909\) 0 0
\(910\) −4.42128 2.25276i −0.146564 0.0746782i
\(911\) 34.0498 + 34.0498i 1.12812 + 1.12812i 0.990482 + 0.137639i \(0.0439513\pi\)
0.137639 + 0.990482i \(0.456049\pi\)
\(912\) 0 0
\(913\) −2.28872 + 1.95476i −0.0757457 + 0.0646930i
\(914\) 1.46401 + 18.6021i 0.0484253 + 0.615301i
\(915\) 0 0
\(916\) −21.7264 8.99936i −0.717860 0.297347i
\(917\) 12.1459 14.2210i 0.401093 0.469619i
\(918\) 0 0
\(919\) 2.62961 33.4124i 0.0867428 1.10217i −0.787380 0.616468i \(-0.788563\pi\)
0.874123 0.485704i \(-0.161437\pi\)
\(920\) −2.30477 3.17224i −0.0759859 0.104586i
\(921\) 0 0
\(922\) −3.96831 25.0549i −0.130689 0.825141i
\(923\) 6.32141 + 39.9118i 0.208072 + 1.31371i
\(924\) 0 0
\(925\) 21.0116 + 28.9199i 0.690856 + 0.950882i
\(926\) 2.06891 26.2880i 0.0679887 0.863878i
\(927\) 0 0
\(928\) −5.95513 + 6.97256i −0.195487 + 0.228885i
\(929\) −40.3885 16.7295i −1.32510 0.548875i −0.395848 0.918316i \(-0.629549\pi\)
−0.929254 + 0.369440i \(0.879549\pi\)
\(930\) 0 0
\(931\) −0.157679 2.00350i −0.00516770 0.0656619i
\(932\) 2.72694 2.32903i 0.0893240 0.0762899i
\(933\) 0 0
\(934\) 8.42635 + 8.42635i 0.275719 + 0.275719i
\(935\) 2.17488 + 1.10816i 0.0711263 + 0.0362407i
\(936\) 0 0
\(937\) −2.76813 11.5301i −0.0904310 0.376672i 0.908741 0.417361i \(-0.137045\pi\)
−0.999172 + 0.0406886i \(0.987045\pi\)
\(938\) 2.19709 + 4.31203i 0.0717374 + 0.140793i
\(939\) 0 0
\(940\) 0.986387 + 2.38135i 0.0321724 + 0.0776711i
\(941\) −13.9834 2.21475i −0.455844 0.0721986i −0.0757098 0.997130i \(-0.524122\pi\)
−0.380134 + 0.924931i \(0.624122\pi\)
\(942\) 0 0
\(943\) 33.2461 36.2625i 1.08264 1.18087i
\(944\) 3.56936i 0.116173i
\(945\) 0 0
\(946\) −6.11488 + 2.53287i −0.198812 + 0.0823506i
\(947\) 2.20348 6.78161i 0.0716035 0.220373i −0.908850 0.417122i \(-0.863039\pi\)
0.980454 + 0.196750i \(0.0630386\pi\)
\(948\) 0 0
\(949\) 45.4664 10.9155i 1.47590 0.354332i
\(950\) 4.07085 16.9563i 0.132076 0.550135i
\(951\) 0 0
\(952\) −7.44273 + 7.44273i −0.241220 + 0.241220i
\(953\) 31.3380 10.1823i 1.01514 0.329838i 0.246240 0.969209i \(-0.420805\pi\)
0.768899 + 0.639370i \(0.220805\pi\)
\(954\) 0 0
\(955\) 6.47633 0.509698i 0.209569 0.0164935i
\(956\) 8.44236 + 5.17348i 0.273045 + 0.167322i
\(957\) 0 0
\(958\) 22.3339 + 19.0749i 0.721574 + 0.616282i
\(959\) 10.6287 14.6292i 0.343219 0.472401i
\(960\) 0 0
\(961\) −2.30099 + 1.67177i −0.0742255 + 0.0539280i
\(962\) 24.6128 15.0828i 0.793549 0.486288i
\(963\) 0 0
\(964\) 25.8827 4.09942i 0.833626 0.132033i
\(965\) −4.42094 7.21431i −0.142315 0.232237i
\(966\) 0 0
\(967\) −23.6786 1.86354i −0.761452 0.0599276i −0.308214 0.951317i \(-0.599731\pi\)
−0.453238 + 0.891390i \(0.649731\pi\)
\(968\) −7.82111 5.68237i −0.251380 0.182638i
\(969\) 0 0
\(970\) 2.58741 6.24655i 0.0830766 0.200565i
\(971\) −10.9701 + 17.9016i −0.352047 + 0.574489i −0.978822 0.204711i \(-0.934374\pi\)
0.626775 + 0.779200i \(0.284374\pi\)
\(972\) 0 0
\(973\) 13.7934 + 16.1500i 0.442196 + 0.517745i
\(974\) 6.40529 + 19.7135i 0.205239 + 0.631660i
\(975\) 0 0
\(976\) 4.49224 8.81652i 0.143793 0.282210i
\(977\) −4.48456 1.07665i −0.143474 0.0344450i 0.161072 0.986943i \(-0.448505\pi\)
−0.304546 + 0.952498i \(0.598505\pi\)
\(978\) 0 0
\(979\) −3.19509 + 1.62798i −0.102116 + 0.0520305i
\(980\) 0.265119 + 0.0861424i 0.00846892 + 0.00275172i
\(981\) 0 0
\(982\) 4.85830 30.6741i 0.155034 0.978849i
\(983\) 25.8309 0.823877 0.411938 0.911212i \(-0.364852\pi\)
0.411938 + 0.911212i \(0.364852\pi\)
\(984\) 0 0
\(985\) 9.24798 0.294665
\(986\) −5.94319 + 37.5238i −0.189270 + 1.19500i
\(987\) 0 0
\(988\) −13.3925 4.35149i −0.426072 0.138439i
\(989\) 39.2506 19.9992i 1.24810 0.635938i
\(990\) 0 0
\(991\) −34.6952 8.32958i −1.10213 0.264598i −0.358727 0.933443i \(-0.616789\pi\)
−0.743402 + 0.668845i \(0.766789\pi\)
\(992\) 2.40897 4.72786i 0.0764848 0.150110i
\(993\) 0 0
\(994\) 8.28855 + 25.5095i 0.262897 + 0.809114i
\(995\) −3.42064 4.00505i −0.108441 0.126969i
\(996\) 0 0
\(997\) −28.1382 + 45.9174i −0.891147 + 1.45422i −0.000257007 1.00000i \(0.500082\pi\)
−0.890890 + 0.454219i \(0.849918\pi\)
\(998\) 5.99269 14.4676i 0.189695 0.457965i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 738.2.ba.a.179.3 48
3.2 odd 2 738.2.ba.b.179.1 yes 48
41.11 odd 40 738.2.ba.b.503.1 yes 48
123.11 even 40 inner 738.2.ba.a.503.3 yes 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
738.2.ba.a.179.3 48 1.1 even 1 trivial
738.2.ba.a.503.3 yes 48 123.11 even 40 inner
738.2.ba.b.179.1 yes 48 3.2 odd 2
738.2.ba.b.503.1 yes 48 41.11 odd 40