Properties

Label 738.2.ba.b.179.1
Level $738$
Weight $2$
Character 738.179
Analytic conductor $5.893$
Analytic rank $0$
Dimension $48$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [738,2,Mod(17,738)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("738.17"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(738, base_ring=CyclotomicField(40)) chi = DirichletCharacter(H, H._module([20, 33])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 738 = 2 \cdot 3^{2} \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 738.ba (of order \(40\), degree \(16\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0,0,0,4,0,4,0,0,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.89295966917\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(3\) over \(\Q(\zeta_{40})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{40}]$

Embedding invariants

Embedding label 179.1
Character \(\chi\) \(=\) 738.179
Dual form 738.2.ba.b.503.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.156434 - 0.987688i) q^{2} +(-0.951057 - 0.309017i) q^{4} +(-0.454725 + 0.231694i) q^{5} +(-2.47024 - 0.593051i) q^{7} +(-0.453990 + 0.891007i) q^{8} +(0.157707 + 0.485372i) q^{10} +(-0.749706 - 0.877793i) q^{11} +(1.99976 - 3.26331i) q^{13} +(-0.972180 + 2.34705i) q^{14} +(0.809017 + 0.587785i) q^{16} +(-4.13047 - 0.325075i) q^{17} +(1.92242 + 3.13710i) q^{19} +(0.504067 - 0.0798363i) q^{20} +(-0.984266 + 0.603159i) q^{22} +(-6.21581 + 4.51605i) q^{23} +(-2.78583 + 3.83437i) q^{25} +(-2.91030 - 2.48563i) q^{26} +(2.16607 + 1.32737i) q^{28} +(-9.14125 + 0.719432i) q^{29} +(-5.04650 + 1.63971i) q^{31} +(0.707107 - 0.707107i) q^{32} +(-0.967221 + 4.02876i) q^{34} +(1.26069 - 0.302664i) q^{35} +(2.33070 - 7.17315i) q^{37} +(3.39921 - 1.40800i) q^{38} -0.510350i q^{40} +(-6.27492 + 1.27492i) q^{41} +(5.66299 + 0.896930i) q^{43} +(0.441760 + 1.06650i) q^{44} +(3.48808 + 6.84575i) q^{46} +(1.17903 + 4.91101i) q^{47} +(-0.486684 - 0.247978i) q^{49} +(3.35136 + 3.35136i) q^{50} +(-2.91030 + 2.48563i) q^{52} +(-0.512168 - 6.50772i) q^{53} +(0.544290 + 0.225452i) q^{55} +(1.64988 - 1.93176i) q^{56} +(-0.719432 + 9.14125i) q^{58} +(-2.09802 - 2.88767i) q^{59} +(-1.54792 - 9.77318i) q^{61} +(0.830073 + 5.24088i) q^{62} +(-0.587785 - 0.809017i) q^{64} +(-0.153251 + 1.94724i) q^{65} +(-1.23719 + 1.44857i) q^{67} +(3.82786 + 1.58555i) q^{68} +(-0.101723 - 1.29251i) q^{70} +(8.02851 - 6.85699i) q^{71} +(8.63876 + 8.63876i) q^{73} +(-6.72023 - 3.42413i) q^{74} +(-0.858911 - 3.57762i) q^{76} +(1.33138 + 2.61297i) q^{77} +(0.430110 + 1.03838i) q^{79} +(-0.504067 - 0.0798363i) q^{80} +(0.277612 + 6.39710i) q^{82} -2.60736i q^{83} +(1.95355 - 0.809186i) q^{85} +(1.77177 - 5.45296i) q^{86} +(1.12248 - 0.269483i) q^{88} +(0.725172 - 3.02056i) q^{89} +(-6.87518 + 6.87518i) q^{91} +(7.30712 - 2.37423i) q^{92} +(5.03499 - 0.396262i) q^{94} +(-1.60102 - 0.981107i) q^{95} +(-10.0740 - 8.60401i) q^{97} +(-0.321059 + 0.441900i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 4 q^{5} + 4 q^{7} + 8 q^{11} - 4 q^{13} - 4 q^{14} + 12 q^{16} + 16 q^{17} - 4 q^{19} - 16 q^{20} + 20 q^{22} - 40 q^{25} + 20 q^{26} - 4 q^{28} - 32 q^{29} - 40 q^{31} - 4 q^{34} + 52 q^{35} - 24 q^{37}+ \cdots + 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/738\mathbb{Z}\right)^\times\).

\(n\) \(83\) \(703\)
\(\chi(n)\) \(-1\) \(e\left(\frac{37}{40}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.156434 0.987688i 0.110616 0.698401i
\(3\) 0 0
\(4\) −0.951057 0.309017i −0.475528 0.154508i
\(5\) −0.454725 + 0.231694i −0.203359 + 0.103617i −0.552704 0.833377i \(-0.686404\pi\)
0.349345 + 0.936994i \(0.386404\pi\)
\(6\) 0 0
\(7\) −2.47024 0.593051i −0.933662 0.224152i −0.262049 0.965055i \(-0.584398\pi\)
−0.671613 + 0.740902i \(0.734398\pi\)
\(8\) −0.453990 + 0.891007i −0.160510 + 0.315018i
\(9\) 0 0
\(10\) 0.157707 + 0.485372i 0.0498713 + 0.153488i
\(11\) −0.749706 0.877793i −0.226045 0.264665i 0.635780 0.771870i \(-0.280678\pi\)
−0.861825 + 0.507206i \(0.830678\pi\)
\(12\) 0 0
\(13\) 1.99976 3.26331i 0.554633 0.905079i −0.445320 0.895371i \(-0.646910\pi\)
0.999953 0.00970714i \(-0.00308993\pi\)
\(14\) −0.972180 + 2.34705i −0.259826 + 0.627276i
\(15\) 0 0
\(16\) 0.809017 + 0.587785i 0.202254 + 0.146946i
\(17\) −4.13047 0.325075i −1.00179 0.0788423i −0.433057 0.901367i \(-0.642565\pi\)
−0.568730 + 0.822524i \(0.692565\pi\)
\(18\) 0 0
\(19\) 1.92242 + 3.13710i 0.441033 + 0.719701i 0.993500 0.113834i \(-0.0363133\pi\)
−0.552467 + 0.833535i \(0.686313\pi\)
\(20\) 0.504067 0.0798363i 0.112713 0.0178519i
\(21\) 0 0
\(22\) −0.984266 + 0.603159i −0.209846 + 0.128594i
\(23\) −6.21581 + 4.51605i −1.29609 + 0.941661i −0.999909 0.0134722i \(-0.995712\pi\)
−0.296176 + 0.955133i \(0.595712\pi\)
\(24\) 0 0
\(25\) −2.78583 + 3.83437i −0.557167 + 0.766874i
\(26\) −2.91030 2.48563i −0.570757 0.487472i
\(27\) 0 0
\(28\) 2.16607 + 1.32737i 0.409349 + 0.250849i
\(29\) −9.14125 + 0.719432i −1.69749 + 0.133595i −0.889901 0.456153i \(-0.849227\pi\)
−0.807587 + 0.589749i \(0.799227\pi\)
\(30\) 0 0
\(31\) −5.04650 + 1.63971i −0.906378 + 0.294500i −0.724867 0.688889i \(-0.758099\pi\)
−0.181511 + 0.983389i \(0.558099\pi\)
\(32\) 0.707107 0.707107i 0.125000 0.125000i
\(33\) 0 0
\(34\) −0.967221 + 4.02876i −0.165877 + 0.690927i
\(35\) 1.26069 0.302664i 0.213095 0.0511595i
\(36\) 0 0
\(37\) 2.33070 7.17315i 0.383164 1.17926i −0.554639 0.832091i \(-0.687144\pi\)
0.937803 0.347167i \(-0.112856\pi\)
\(38\) 3.39921 1.40800i 0.551425 0.228408i
\(39\) 0 0
\(40\) 0.510350i 0.0806934i
\(41\) −6.27492 + 1.27492i −0.979977 + 0.199109i
\(42\) 0 0
\(43\) 5.66299 + 0.896930i 0.863598 + 0.136781i 0.572492 0.819910i \(-0.305977\pi\)
0.291106 + 0.956691i \(0.405977\pi\)
\(44\) 0.441760 + 1.06650i 0.0665978 + 0.160781i
\(45\) 0 0
\(46\) 3.48808 + 6.84575i 0.514290 + 1.00935i
\(47\) 1.17903 + 4.91101i 0.171979 + 0.716345i 0.989989 + 0.141141i \(0.0450772\pi\)
−0.818010 + 0.575204i \(0.804923\pi\)
\(48\) 0 0
\(49\) −0.486684 0.247978i −0.0695263 0.0354254i
\(50\) 3.35136 + 3.35136i 0.473954 + 0.473954i
\(51\) 0 0
\(52\) −2.91030 + 2.48563i −0.403586 + 0.344695i
\(53\) −0.512168 6.50772i −0.0703517 0.893904i −0.926287 0.376820i \(-0.877018\pi\)
0.855935 0.517084i \(-0.172982\pi\)
\(54\) 0 0
\(55\) 0.544290 + 0.225452i 0.0733920 + 0.0304000i
\(56\) 1.64988 1.93176i 0.220474 0.258142i
\(57\) 0 0
\(58\) −0.719432 + 9.14125i −0.0944661 + 1.20031i
\(59\) −2.09802 2.88767i −0.273139 0.375943i 0.650308 0.759671i \(-0.274640\pi\)
−0.923446 + 0.383728i \(0.874640\pi\)
\(60\) 0 0
\(61\) −1.54792 9.77318i −0.198191 1.25133i −0.863342 0.504619i \(-0.831633\pi\)
0.665151 0.746709i \(-0.268367\pi\)
\(62\) 0.830073 + 5.24088i 0.105419 + 0.665592i
\(63\) 0 0
\(64\) −0.587785 0.809017i −0.0734732 0.101127i
\(65\) −0.153251 + 1.94724i −0.0190085 + 0.241525i
\(66\) 0 0
\(67\) −1.23719 + 1.44857i −0.151147 + 0.176971i −0.830814 0.556551i \(-0.812125\pi\)
0.679666 + 0.733521i \(0.262125\pi\)
\(68\) 3.82786 + 1.58555i 0.464196 + 0.192276i
\(69\) 0 0
\(70\) −0.101723 1.29251i −0.0121582 0.154485i
\(71\) 8.02851 6.85699i 0.952808 0.813775i −0.0297827 0.999556i \(-0.509482\pi\)
0.982591 + 0.185781i \(0.0594815\pi\)
\(72\) 0 0
\(73\) 8.63876 + 8.63876i 1.01109 + 1.01109i 0.999938 + 0.0111528i \(0.00355011\pi\)
0.0111528 + 0.999938i \(0.496450\pi\)
\(74\) −6.72023 3.42413i −0.781211 0.398047i
\(75\) 0 0
\(76\) −0.858911 3.57762i −0.0985239 0.410381i
\(77\) 1.33138 + 2.61297i 0.151724 + 0.297776i
\(78\) 0 0
\(79\) 0.430110 + 1.03838i 0.0483912 + 0.116827i 0.946227 0.323504i \(-0.104861\pi\)
−0.897835 + 0.440331i \(0.854861\pi\)
\(80\) −0.504067 0.0798363i −0.0563564 0.00892597i
\(81\) 0 0
\(82\) 0.277612 + 6.39710i 0.0306571 + 0.706442i
\(83\) 2.60736i 0.286195i −0.989709 0.143098i \(-0.954294\pi\)
0.989709 0.143098i \(-0.0457063\pi\)
\(84\) 0 0
\(85\) 1.95355 0.809186i 0.211892 0.0877685i
\(86\) 1.77177 5.45296i 0.191055 0.588008i
\(87\) 0 0
\(88\) 1.12248 0.269483i 0.119657 0.0287270i
\(89\) 0.725172 3.02056i 0.0768681 0.320179i −0.920667 0.390349i \(-0.872354\pi\)
0.997535 + 0.0701705i \(0.0223543\pi\)
\(90\) 0 0
\(91\) −6.87518 + 6.87518i −0.720715 + 0.720715i
\(92\) 7.30712 2.37423i 0.761820 0.247530i
\(93\) 0 0
\(94\) 5.03499 0.396262i 0.519320 0.0408713i
\(95\) −1.60102 0.981107i −0.164261 0.100659i
\(96\) 0 0
\(97\) −10.0740 8.60401i −1.02286 0.873605i −0.0308199 0.999525i \(-0.509812\pi\)
−0.992040 + 0.125920i \(0.959812\pi\)
\(98\) −0.321059 + 0.441900i −0.0324319 + 0.0446386i
\(99\) 0 0
\(100\) 3.83437 2.78583i 0.383437 0.278583i
\(101\) −4.89602 + 3.00028i −0.487172 + 0.298540i −0.744309 0.667836i \(-0.767221\pi\)
0.257137 + 0.966375i \(0.417221\pi\)
\(102\) 0 0
\(103\) 1.71321 0.271346i 0.168808 0.0267366i −0.0714582 0.997444i \(-0.522765\pi\)
0.240266 + 0.970707i \(0.422765\pi\)
\(104\) 1.99976 + 3.26331i 0.196092 + 0.319994i
\(105\) 0 0
\(106\) −6.50772 0.512168i −0.632085 0.0497462i
\(107\) 7.43350 + 5.40075i 0.718623 + 0.522110i 0.885944 0.463792i \(-0.153512\pi\)
−0.167321 + 0.985902i \(0.553512\pi\)
\(108\) 0 0
\(109\) −0.309072 + 0.746167i −0.0296038 + 0.0714698i −0.937990 0.346662i \(-0.887315\pi\)
0.908386 + 0.418132i \(0.137315\pi\)
\(110\) 0.307822 0.502320i 0.0293497 0.0478944i
\(111\) 0 0
\(112\) −1.64988 1.93176i −0.155899 0.182534i
\(113\) 1.80986 + 5.57016i 0.170257 + 0.523997i 0.999385 0.0350615i \(-0.0111627\pi\)
−0.829128 + 0.559058i \(0.811163\pi\)
\(114\) 0 0
\(115\) 1.78014 3.49373i 0.165999 0.325792i
\(116\) 8.91616 + 2.14058i 0.827845 + 0.198748i
\(117\) 0 0
\(118\) −3.18032 + 1.62046i −0.292773 + 0.149175i
\(119\) 10.0105 + 3.25259i 0.917657 + 0.298165i
\(120\) 0 0
\(121\) 1.51232 9.54840i 0.137483 0.868036i
\(122\) −9.89501 −0.895852
\(123\) 0 0
\(124\) 5.30621 0.476511
\(125\) 0.777569 4.90938i 0.0695479 0.439108i
\(126\) 0 0
\(127\) 16.7151 + 5.43105i 1.48322 + 0.481928i 0.935074 0.354454i \(-0.115333\pi\)
0.548148 + 0.836382i \(0.315333\pi\)
\(128\) −0.891007 + 0.453990i −0.0787546 + 0.0401275i
\(129\) 0 0
\(130\) 1.89929 + 0.455980i 0.166579 + 0.0399921i
\(131\) 3.34214 6.55932i 0.292004 0.573091i −0.697671 0.716418i \(-0.745780\pi\)
0.989675 + 0.143328i \(0.0457803\pi\)
\(132\) 0 0
\(133\) −2.88837 8.88948i −0.250453 0.770816i
\(134\) 1.23719 + 1.44857i 0.106877 + 0.125137i
\(135\) 0 0
\(136\) 2.16484 3.53270i 0.185633 0.302926i
\(137\) 2.72392 6.57613i 0.232720 0.561837i −0.763775 0.645482i \(-0.776656\pi\)
0.996496 + 0.0836457i \(0.0266564\pi\)
\(138\) 0 0
\(139\) −6.76359 4.91404i −0.573680 0.416803i 0.262760 0.964861i \(-0.415367\pi\)
−0.836440 + 0.548058i \(0.815367\pi\)
\(140\) −1.29251 0.101723i −0.109237 0.00859715i
\(141\) 0 0
\(142\) −5.51664 9.00233i −0.462946 0.755459i
\(143\) −4.36374 + 0.691148i −0.364914 + 0.0577967i
\(144\) 0 0
\(145\) 3.99007 2.44512i 0.331357 0.203056i
\(146\) 9.88380 7.18100i 0.817989 0.594304i
\(147\) 0 0
\(148\) −4.43325 + 6.10184i −0.364411 + 0.501568i
\(149\) 12.7717 + 10.9080i 1.04630 + 0.893622i 0.994469 0.105034i \(-0.0334952\pi\)
0.0518280 + 0.998656i \(0.483495\pi\)
\(150\) 0 0
\(151\) −18.4114 11.2825i −1.49830 0.918159i −0.998651 0.0519306i \(-0.983463\pi\)
−0.499648 0.866228i \(-0.666537\pi\)
\(152\) −3.66794 + 0.288673i −0.297509 + 0.0234145i
\(153\) 0 0
\(154\) 2.78907 0.906225i 0.224750 0.0730257i
\(155\) 1.91486 1.91486i 0.153805 0.153805i
\(156\) 0 0
\(157\) −2.00435 + 8.34871i −0.159964 + 0.666300i 0.833535 + 0.552466i \(0.186313\pi\)
−0.993500 + 0.113834i \(0.963687\pi\)
\(158\) 1.09288 0.262377i 0.0869447 0.0208736i
\(159\) 0 0
\(160\) −0.157707 + 0.485372i −0.0124678 + 0.0383720i
\(161\) 18.0328 7.46942i 1.42118 0.588672i
\(162\) 0 0
\(163\) 4.71832i 0.369567i 0.982779 + 0.184784i \(0.0591585\pi\)
−0.982779 + 0.184784i \(0.940842\pi\)
\(164\) 6.36177 + 0.726533i 0.496771 + 0.0567327i
\(165\) 0 0
\(166\) −2.57526 0.407881i −0.199879 0.0316577i
\(167\) −0.805984 1.94582i −0.0623689 0.150572i 0.889622 0.456697i \(-0.150968\pi\)
−0.951991 + 0.306125i \(0.900968\pi\)
\(168\) 0 0
\(169\) −0.748269 1.46856i −0.0575592 0.112966i
\(170\) −0.493621 2.05608i −0.0378590 0.157694i
\(171\) 0 0
\(172\) −5.10866 2.60299i −0.389532 0.198476i
\(173\) −5.20524 5.20524i −0.395747 0.395747i 0.480983 0.876730i \(-0.340280\pi\)
−0.876730 + 0.480983i \(0.840280\pi\)
\(174\) 0 0
\(175\) 9.15565 7.81966i 0.692102 0.591111i
\(176\) −0.0905712 1.15082i −0.00682706 0.0867460i
\(177\) 0 0
\(178\) −2.86993 1.18876i −0.215110 0.0891016i
\(179\) −11.2155 + 13.1317i −0.838287 + 0.981508i −0.999986 0.00533190i \(-0.998303\pi\)
0.161698 + 0.986840i \(0.448303\pi\)
\(180\) 0 0
\(181\) 0.871880 11.0783i 0.0648063 0.823442i −0.875523 0.483176i \(-0.839483\pi\)
0.940329 0.340266i \(-0.110517\pi\)
\(182\) 5.71502 + 7.86606i 0.423626 + 0.583071i
\(183\) 0 0
\(184\) −1.20191 7.58857i −0.0886061 0.559437i
\(185\) 0.602149 + 3.80182i 0.0442709 + 0.279515i
\(186\) 0 0
\(187\) 2.81129 + 3.86941i 0.205582 + 0.282959i
\(188\) 0.396262 5.03499i 0.0289004 0.367214i
\(189\) 0 0
\(190\) −1.21948 + 1.42783i −0.0884706 + 0.103586i
\(191\) −11.7603 4.87126i −0.850943 0.352472i −0.0857841 0.996314i \(-0.527340\pi\)
−0.765159 + 0.643842i \(0.777340\pi\)
\(192\) 0 0
\(193\) −1.30078 16.5280i −0.0936323 1.18971i −0.846810 0.531895i \(-0.821480\pi\)
0.753178 0.657817i \(-0.228520\pi\)
\(194\) −10.0740 + 8.60401i −0.723271 + 0.617732i
\(195\) 0 0
\(196\) 0.386235 + 0.386235i 0.0275882 + 0.0275882i
\(197\) −16.1458 8.22669i −1.15034 0.586128i −0.228441 0.973558i \(-0.573363\pi\)
−0.921899 + 0.387430i \(0.873363\pi\)
\(198\) 0 0
\(199\) −2.40924 10.0352i −0.170786 0.711376i −0.990373 0.138421i \(-0.955797\pi\)
0.819587 0.572955i \(-0.194203\pi\)
\(200\) −2.15171 4.22296i −0.152149 0.298609i
\(201\) 0 0
\(202\) 2.19744 + 5.30509i 0.154611 + 0.373265i
\(203\) 23.0077 + 3.64407i 1.61483 + 0.255763i
\(204\) 0 0
\(205\) 2.55797 2.03360i 0.178656 0.142033i
\(206\) 1.73457i 0.120853i
\(207\) 0 0
\(208\) 3.53596 1.46464i 0.245175 0.101555i
\(209\) 1.31248 4.03939i 0.0907860 0.279411i
\(210\) 0 0
\(211\) −23.8174 + 5.71805i −1.63966 + 0.393647i −0.945356 0.326040i \(-0.894286\pi\)
−0.694300 + 0.719686i \(0.744286\pi\)
\(212\) −1.52389 + 6.34747i −0.104661 + 0.435946i
\(213\) 0 0
\(214\) 6.49711 6.49711i 0.444134 0.444134i
\(215\) −2.78292 + 0.904225i −0.189794 + 0.0616676i
\(216\) 0 0
\(217\) 13.4385 1.05763i 0.912264 0.0717967i
\(218\) 0.688631 + 0.421993i 0.0466400 + 0.0285810i
\(219\) 0 0
\(220\) −0.447982 0.382613i −0.0302029 0.0257957i
\(221\) −9.32076 + 12.8289i −0.626982 + 0.862967i
\(222\) 0 0
\(223\) −4.77463 + 3.46897i −0.319733 + 0.232300i −0.736061 0.676915i \(-0.763317\pi\)
0.416329 + 0.909214i \(0.363317\pi\)
\(224\) −2.16607 + 1.32737i −0.144727 + 0.0886887i
\(225\) 0 0
\(226\) 5.78471 0.916208i 0.384793 0.0609453i
\(227\) 7.76404 + 12.6698i 0.515318 + 0.840922i 0.999419 0.0340901i \(-0.0108533\pi\)
−0.484101 + 0.875012i \(0.660853\pi\)
\(228\) 0 0
\(229\) 23.4440 + 1.84508i 1.54922 + 0.121926i 0.824000 0.566589i \(-0.191737\pi\)
0.725221 + 0.688516i \(0.241737\pi\)
\(230\) −3.17224 2.30477i −0.209171 0.151972i
\(231\) 0 0
\(232\) 3.50902 8.47153i 0.230379 0.556183i
\(233\) 1.87377 3.05771i 0.122755 0.200317i −0.785360 0.619040i \(-0.787522\pi\)
0.908114 + 0.418722i \(0.137522\pi\)
\(234\) 0 0
\(235\) −1.67399 1.95999i −0.109199 0.127855i
\(236\) 1.10299 + 3.39466i 0.0717987 + 0.220974i
\(237\) 0 0
\(238\) 4.77853 9.37839i 0.309746 0.607911i
\(239\) 9.62785 + 2.31144i 0.622774 + 0.149515i 0.532539 0.846406i \(-0.321238\pi\)
0.0902353 + 0.995920i \(0.471238\pi\)
\(240\) 0 0
\(241\) −23.3491 + 11.8970i −1.50405 + 0.766351i −0.995507 0.0946858i \(-0.969815\pi\)
−0.508542 + 0.861037i \(0.669815\pi\)
\(242\) −9.19426 2.98740i −0.591030 0.192037i
\(243\) 0 0
\(244\) −1.54792 + 9.77318i −0.0990954 + 0.625664i
\(245\) 0.278763 0.0178095
\(246\) 0 0
\(247\) 14.0817 0.895997
\(248\) 0.830073 5.24088i 0.0527097 0.332796i
\(249\) 0 0
\(250\) −4.72730 1.53599i −0.298981 0.0971447i
\(251\) 19.3010 9.83434i 1.21827 0.620738i 0.277806 0.960637i \(-0.410393\pi\)
0.940462 + 0.339899i \(0.110393\pi\)
\(252\) 0 0
\(253\) 8.62419 + 2.07048i 0.542198 + 0.130170i
\(254\) 7.97900 15.6597i 0.500647 0.982575i
\(255\) 0 0
\(256\) 0.309017 + 0.951057i 0.0193136 + 0.0594410i
\(257\) −5.56862 6.52001i −0.347361 0.406707i 0.559030 0.829147i \(-0.311174\pi\)
−0.906391 + 0.422440i \(0.861174\pi\)
\(258\) 0 0
\(259\) −10.0114 + 16.3372i −0.622079 + 1.01514i
\(260\) 0.747481 1.80458i 0.0463568 0.111915i
\(261\) 0 0
\(262\) −5.95574 4.32710i −0.367947 0.267329i
\(263\) 1.85288 + 0.145825i 0.114254 + 0.00899196i 0.135457 0.990783i \(-0.456750\pi\)
−0.0212033 + 0.999775i \(0.506750\pi\)
\(264\) 0 0
\(265\) 1.74070 + 2.84056i 0.106930 + 0.174494i
\(266\) −9.23188 + 1.46219i −0.566043 + 0.0896524i
\(267\) 0 0
\(268\) 1.62427 0.995356i 0.0992183 0.0608011i
\(269\) 1.82728 1.32759i 0.111411 0.0809449i −0.530685 0.847569i \(-0.678065\pi\)
0.642096 + 0.766624i \(0.278065\pi\)
\(270\) 0 0
\(271\) −15.0466 + 20.7099i −0.914018 + 1.25804i 0.0517576 + 0.998660i \(0.483518\pi\)
−0.965776 + 0.259378i \(0.916482\pi\)
\(272\) −3.15055 2.69082i −0.191030 0.163155i
\(273\) 0 0
\(274\) −6.06905 3.71912i −0.366645 0.224680i
\(275\) 5.45434 0.429266i 0.328909 0.0258857i
\(276\) 0 0
\(277\) 1.10241 0.358196i 0.0662376 0.0215219i −0.275711 0.961241i \(-0.588913\pi\)
0.341948 + 0.939719i \(0.388913\pi\)
\(278\) −5.91159 + 5.91159i −0.354554 + 0.354554i
\(279\) 0 0
\(280\) −0.302664 + 1.26069i −0.0180876 + 0.0753404i
\(281\) −19.3259 + 4.63973i −1.15288 + 0.276783i −0.764443 0.644691i \(-0.776986\pi\)
−0.388441 + 0.921474i \(0.626986\pi\)
\(282\) 0 0
\(283\) −2.91725 + 8.97836i −0.173412 + 0.533708i −0.999557 0.0297492i \(-0.990529\pi\)
0.826145 + 0.563458i \(0.190529\pi\)
\(284\) −9.75449 + 4.04044i −0.578823 + 0.239756i
\(285\) 0 0
\(286\) 4.41813i 0.261250i
\(287\) 16.2566 + 0.571990i 0.959598 + 0.0337635i
\(288\) 0 0
\(289\) 0.164410 + 0.0260400i 0.00967119 + 0.00153177i
\(290\) −1.79083 4.32345i −0.105161 0.253882i
\(291\) 0 0
\(292\) −5.54643 10.8855i −0.324580 0.637024i
\(293\) −4.38916 18.2822i −0.256418 1.06806i −0.940808 0.338941i \(-0.889931\pi\)
0.684390 0.729116i \(-0.260069\pi\)
\(294\) 0 0
\(295\) 1.62308 + 0.827000i 0.0944993 + 0.0481498i
\(296\) 5.33321 + 5.33321i 0.309986 + 0.309986i
\(297\) 0 0
\(298\) 12.7717 10.9080i 0.739843 0.631886i
\(299\) 2.30715 + 29.3151i 0.133426 + 1.69534i
\(300\) 0 0
\(301\) −13.4570 5.57408i −0.775649 0.321284i
\(302\) −14.0238 + 16.4198i −0.806979 + 0.944851i
\(303\) 0 0
\(304\) −0.288673 + 3.66794i −0.0165565 + 0.210371i
\(305\) 2.96827 + 4.08547i 0.169962 + 0.233933i
\(306\) 0 0
\(307\) 4.55899 + 28.7843i 0.260195 + 1.64281i 0.678572 + 0.734534i \(0.262599\pi\)
−0.418377 + 0.908273i \(0.637401\pi\)
\(308\) −0.458761 2.89650i −0.0261403 0.165043i
\(309\) 0 0
\(310\) −1.59174 2.19084i −0.0904045 0.124431i
\(311\) 1.62732 20.6771i 0.0922771 1.17249i −0.760187 0.649705i \(-0.774893\pi\)
0.852464 0.522786i \(-0.175107\pi\)
\(312\) 0 0
\(313\) 14.9511 17.5055i 0.845088 0.989471i −0.154911 0.987928i \(-0.549509\pi\)
0.999999 0.00154212i \(-0.000490872\pi\)
\(314\) 7.93238 + 3.28570i 0.447650 + 0.185423i
\(315\) 0 0
\(316\) −0.0881827 1.12047i −0.00496067 0.0630312i
\(317\) 14.3739 12.2764i 0.807316 0.689513i −0.146729 0.989177i \(-0.546874\pi\)
0.954045 + 0.299664i \(0.0968744\pi\)
\(318\) 0 0
\(319\) 7.48477 + 7.48477i 0.419066 + 0.419066i
\(320\) 0.454725 + 0.231694i 0.0254199 + 0.0129521i
\(321\) 0 0
\(322\) −4.55651 18.9792i −0.253924 1.05767i
\(323\) −6.92070 13.5826i −0.385078 0.755758i
\(324\) 0 0
\(325\) 6.94174 + 16.7588i 0.385058 + 0.929613i
\(326\) 4.66023 + 0.738108i 0.258106 + 0.0408800i
\(327\) 0 0
\(328\) 1.71279 6.16979i 0.0945730 0.340670i
\(329\) 12.8306i 0.707373i
\(330\) 0 0
\(331\) 13.5794 5.62476i 0.746390 0.309165i 0.0231223 0.999733i \(-0.492639\pi\)
0.723268 + 0.690568i \(0.242639\pi\)
\(332\) −0.805719 + 2.47975i −0.0442196 + 0.136094i
\(333\) 0 0
\(334\) −2.04795 + 0.491668i −0.112059 + 0.0269029i
\(335\) 0.226959 0.945351i 0.0124001 0.0516500i
\(336\) 0 0
\(337\) −19.3581 + 19.3581i −1.05450 + 1.05450i −0.0560754 + 0.998427i \(0.517859\pi\)
−0.998427 + 0.0560754i \(0.982141\pi\)
\(338\) −1.56754 + 0.509323i −0.0852627 + 0.0277035i
\(339\) 0 0
\(340\) −2.10799 + 0.165902i −0.114322 + 0.00899730i
\(341\) 5.22272 + 3.20049i 0.282826 + 0.173316i
\(342\) 0 0
\(343\) 14.5775 + 12.4503i 0.787109 + 0.672255i
\(344\) −3.37012 + 4.63857i −0.181704 + 0.250095i
\(345\) 0 0
\(346\) −5.95543 + 4.32687i −0.320166 + 0.232614i
\(347\) −22.3403 + 13.6902i −1.19929 + 0.734927i −0.971096 0.238689i \(-0.923282\pi\)
−0.228195 + 0.973615i \(0.573282\pi\)
\(348\) 0 0
\(349\) 8.98820 1.42359i 0.481127 0.0762031i 0.0888402 0.996046i \(-0.471684\pi\)
0.392287 + 0.919843i \(0.371684\pi\)
\(350\) −6.29113 10.2662i −0.336275 0.548751i
\(351\) 0 0
\(352\) −1.15082 0.0905712i −0.0613387 0.00482746i
\(353\) 12.2481 + 8.89877i 0.651901 + 0.473634i 0.863918 0.503632i \(-0.168003\pi\)
−0.212017 + 0.977266i \(0.568003\pi\)
\(354\) 0 0
\(355\) −2.06204 + 4.97821i −0.109442 + 0.264216i
\(356\) −1.62308 + 2.64863i −0.0860232 + 0.140377i
\(357\) 0 0
\(358\) 11.2155 + 13.1317i 0.592759 + 0.694031i
\(359\) −2.29656 7.06809i −0.121208 0.373040i 0.871983 0.489536i \(-0.162834\pi\)
−0.993191 + 0.116496i \(0.962834\pi\)
\(360\) 0 0
\(361\) 2.48010 4.86747i 0.130532 0.256183i
\(362\) −10.8055 2.59417i −0.567924 0.136347i
\(363\) 0 0
\(364\) 8.66324 4.41414i 0.454077 0.231364i
\(365\) −5.92981 1.92671i −0.310381 0.100849i
\(366\) 0 0
\(367\) −4.98806 + 31.4934i −0.260374 + 1.64394i 0.417438 + 0.908705i \(0.362928\pi\)
−0.677813 + 0.735235i \(0.737072\pi\)
\(368\) −7.68316 −0.400512
\(369\) 0 0
\(370\) 3.84921 0.200111
\(371\) −2.59423 + 16.3793i −0.134686 + 0.850373i
\(372\) 0 0
\(373\) −29.7351 9.66152i −1.53962 0.500254i −0.588352 0.808605i \(-0.700223\pi\)
−0.951273 + 0.308351i \(0.900223\pi\)
\(374\) 4.26155 2.17137i 0.220360 0.112279i
\(375\) 0 0
\(376\) −4.91101 1.17903i −0.253266 0.0608038i
\(377\) −15.9326 + 31.2694i −0.820569 + 1.61046i
\(378\) 0 0
\(379\) 8.95946 + 27.5744i 0.460217 + 1.41640i 0.864900 + 0.501945i \(0.167382\pi\)
−0.404683 + 0.914457i \(0.632618\pi\)
\(380\) 1.21948 + 1.42783i 0.0625581 + 0.0732462i
\(381\) 0 0
\(382\) −6.65100 + 10.8534i −0.340295 + 0.555310i
\(383\) 3.64633 8.80302i 0.186319 0.449813i −0.802927 0.596078i \(-0.796725\pi\)
0.989246 + 0.146264i \(0.0467250\pi\)
\(384\) 0 0
\(385\) −1.21082 0.879712i −0.0617091 0.0448343i
\(386\) −16.5280 1.30078i −0.841253 0.0662080i
\(387\) 0 0
\(388\) 6.92216 + 11.2959i 0.351420 + 0.573465i
\(389\) −27.0435 + 4.28327i −1.37116 + 0.217171i −0.798190 0.602405i \(-0.794209\pi\)
−0.572971 + 0.819576i \(0.694209\pi\)
\(390\) 0 0
\(391\) 27.1423 16.6328i 1.37264 0.841157i
\(392\) 0.441900 0.321059i 0.0223193 0.0162159i
\(393\) 0 0
\(394\) −10.6512 + 14.6601i −0.536598 + 0.738564i
\(395\) −0.436168 0.372523i −0.0219460 0.0187437i
\(396\) 0 0
\(397\) −0.832476 0.510142i −0.0417808 0.0256033i 0.501451 0.865186i \(-0.332800\pi\)
−0.543232 + 0.839583i \(0.682800\pi\)
\(398\) −10.2885 + 0.809725i −0.515717 + 0.0405878i
\(399\) 0 0
\(400\) −4.50757 + 1.46460i −0.225379 + 0.0732300i
\(401\) −3.89680 + 3.89680i −0.194597 + 0.194597i −0.797679 0.603082i \(-0.793939\pi\)
0.603082 + 0.797679i \(0.293939\pi\)
\(402\) 0 0
\(403\) −4.74091 + 19.7473i −0.236161 + 0.983683i
\(404\) 5.58353 1.34049i 0.277791 0.0666917i
\(405\) 0 0
\(406\) 7.19840 22.1544i 0.357251 1.09950i
\(407\) −8.04388 + 3.33188i −0.398720 + 0.165155i
\(408\) 0 0
\(409\) 12.8222i 0.634016i 0.948423 + 0.317008i \(0.102678\pi\)
−0.948423 + 0.317008i \(0.897322\pi\)
\(410\) −1.60841 2.84460i −0.0794336 0.140485i
\(411\) 0 0
\(412\) −1.71321 0.271346i −0.0844040 0.0133683i
\(413\) 3.47006 + 8.37747i 0.170751 + 0.412228i
\(414\) 0 0
\(415\) 0.604110 + 1.18563i 0.0296546 + 0.0582005i
\(416\) −0.893465 3.72155i −0.0438057 0.182464i
\(417\) 0 0
\(418\) −3.78434 1.92822i −0.185098 0.0943123i
\(419\) 16.7810 + 16.7810i 0.819805 + 0.819805i 0.986080 0.166274i \(-0.0531737\pi\)
−0.166274 + 0.986080i \(0.553174\pi\)
\(420\) 0 0
\(421\) −7.40253 + 6.32236i −0.360777 + 0.308133i −0.811298 0.584633i \(-0.801238\pi\)
0.450520 + 0.892766i \(0.351238\pi\)
\(422\) 1.92179 + 24.4186i 0.0935512 + 1.18868i
\(423\) 0 0
\(424\) 6.03094 + 2.49810i 0.292888 + 0.121318i
\(425\) 12.7533 14.9321i 0.618624 0.724316i
\(426\) 0 0
\(427\) −1.97227 + 25.0601i −0.0954449 + 1.21274i
\(428\) −5.40075 7.43350i −0.261055 0.359312i
\(429\) 0 0
\(430\) 0.457748 + 2.89011i 0.0220746 + 0.139373i
\(431\) −1.33556 8.43239i −0.0643316 0.406174i −0.998749 0.0499951i \(-0.984079\pi\)
0.934418 0.356179i \(-0.115921\pi\)
\(432\) 0 0
\(433\) 16.3965 + 22.5678i 0.787965 + 1.08454i 0.994358 + 0.106072i \(0.0338273\pi\)
−0.206394 + 0.978469i \(0.566173\pi\)
\(434\) 1.05763 13.4385i 0.0507680 0.645068i
\(435\) 0 0
\(436\) 0.524524 0.614138i 0.0251201 0.0294119i
\(437\) −26.1167 10.8179i −1.24933 0.517490i
\(438\) 0 0
\(439\) −2.29826 29.2021i −0.109690 1.39374i −0.767737 0.640765i \(-0.778617\pi\)
0.658047 0.752977i \(-0.271383\pi\)
\(440\) −0.447982 + 0.382613i −0.0213567 + 0.0182403i
\(441\) 0 0
\(442\) 11.2129 + 11.2129i 0.533343 + 0.533343i
\(443\) −31.4603 16.0298i −1.49472 0.761599i −0.500178 0.865922i \(-0.666732\pi\)
−0.994543 + 0.104324i \(0.966732\pi\)
\(444\) 0 0
\(445\) 0.370092 + 1.54154i 0.0175440 + 0.0730761i
\(446\) 2.67935 + 5.25851i 0.126871 + 0.248998i
\(447\) 0 0
\(448\) 0.972180 + 2.34705i 0.0459312 + 0.110888i
\(449\) −19.7941 3.13507i −0.934139 0.147953i −0.329232 0.944249i \(-0.606790\pi\)
−0.604907 + 0.796296i \(0.706790\pi\)
\(450\) 0 0
\(451\) 5.82346 + 4.55226i 0.274216 + 0.214358i
\(452\) 5.85682i 0.275482i
\(453\) 0 0
\(454\) 13.7283 5.68647i 0.644303 0.266879i
\(455\) 1.53338 4.71926i 0.0718860 0.221242i
\(456\) 0 0
\(457\) 18.1440 4.35599i 0.848741 0.203765i 0.214331 0.976761i \(-0.431243\pi\)
0.634410 + 0.772997i \(0.281243\pi\)
\(458\) 5.48981 22.8667i 0.256522 1.06849i
\(459\) 0 0
\(460\) −2.77264 + 2.77264i −0.129275 + 0.129275i
\(461\) 24.1257 7.83891i 1.12365 0.365095i 0.312488 0.949922i \(-0.398838\pi\)
0.811158 + 0.584827i \(0.198838\pi\)
\(462\) 0 0
\(463\) −26.2880 + 2.06891i −1.22171 + 0.0961505i −0.672859 0.739771i \(-0.734934\pi\)
−0.548849 + 0.835921i \(0.684934\pi\)
\(464\) −7.81830 4.79106i −0.362955 0.222419i
\(465\) 0 0
\(466\) −2.72694 2.32903i −0.126323 0.107890i
\(467\) −7.00444 + 9.64078i −0.324127 + 0.446122i −0.939722 0.341941i \(-0.888916\pi\)
0.615595 + 0.788063i \(0.288916\pi\)
\(468\) 0 0
\(469\) 3.91524 2.84459i 0.180789 0.131351i
\(470\) −2.19773 + 1.34677i −0.101374 + 0.0621218i
\(471\) 0 0
\(472\) 3.52542 0.558371i 0.162270 0.0257011i
\(473\) −3.45826 5.64337i −0.159011 0.259482i
\(474\) 0 0
\(475\) −17.3844 1.36818i −0.797649 0.0627763i
\(476\) −8.51540 6.18680i −0.390303 0.283572i
\(477\) 0 0
\(478\) 3.78911 9.14773i 0.173310 0.418407i
\(479\) −15.3463 + 25.0429i −0.701190 + 1.14424i 0.281604 + 0.959531i \(0.409134\pi\)
−0.982794 + 0.184707i \(0.940866\pi\)
\(480\) 0 0
\(481\) −18.7474 21.9503i −0.854806 1.00085i
\(482\) 8.09789 + 24.9228i 0.368849 + 1.13520i
\(483\) 0 0
\(484\) −4.38892 + 8.61373i −0.199496 + 0.391533i
\(485\) 6.57440 + 1.57837i 0.298528 + 0.0716703i
\(486\) 0 0
\(487\) 18.4688 9.41030i 0.836899 0.426421i 0.0176396 0.999844i \(-0.494385\pi\)
0.819259 + 0.573423i \(0.194385\pi\)
\(488\) 9.41071 + 3.05773i 0.426003 + 0.138417i
\(489\) 0 0
\(490\) 0.0436081 0.275331i 0.00197001 0.0124382i
\(491\) 31.0564 1.40156 0.700778 0.713379i \(-0.252836\pi\)
0.700778 + 0.713379i \(0.252836\pi\)
\(492\) 0 0
\(493\) 37.9915 1.71105
\(494\) 2.20286 13.9083i 0.0991115 0.625766i
\(495\) 0 0
\(496\) −5.04650 1.63971i −0.226595 0.0736251i
\(497\) −23.8989 + 12.1771i −1.07201 + 0.546217i
\(498\) 0 0
\(499\) −15.2270 3.65567i −0.681653 0.163650i −0.122191 0.992507i \(-0.538992\pi\)
−0.559462 + 0.828856i \(0.688992\pi\)
\(500\) −2.25659 + 4.42882i −0.100918 + 0.198063i
\(501\) 0 0
\(502\) −6.69393 20.6018i −0.298765 0.919503i
\(503\) 10.1004 + 11.8261i 0.450356 + 0.527300i 0.938415 0.345512i \(-0.112295\pi\)
−0.488058 + 0.872811i \(0.662295\pi\)
\(504\) 0 0
\(505\) 1.53120 2.49868i 0.0681373 0.111190i
\(506\) 3.39411 8.19411i 0.150887 0.364273i
\(507\) 0 0
\(508\) −14.2187 10.3305i −0.630852 0.458341i
\(509\) 12.1727 + 0.958015i 0.539547 + 0.0424633i 0.345305 0.938490i \(-0.387775\pi\)
0.194242 + 0.980954i \(0.437775\pi\)
\(510\) 0 0
\(511\) −16.2166 26.4630i −0.717378 1.17066i
\(512\) 0.987688 0.156434i 0.0436501 0.00691349i
\(513\) 0 0
\(514\) −7.31086 + 4.48010i −0.322468 + 0.197609i
\(515\) −0.716172 + 0.520329i −0.0315583 + 0.0229285i
\(516\) 0 0
\(517\) 3.42693 4.71676i 0.150716 0.207443i
\(518\) 14.5699 + 12.4439i 0.640164 + 0.546752i
\(519\) 0 0
\(520\) −1.66543 1.02058i −0.0730339 0.0447552i
\(521\) −4.91203 + 0.386585i −0.215200 + 0.0169366i −0.185601 0.982625i \(-0.559423\pi\)
−0.0295993 + 0.999562i \(0.509423\pi\)
\(522\) 0 0
\(523\) −17.3135 + 5.62551i −0.757068 + 0.245986i −0.662020 0.749486i \(-0.730301\pi\)
−0.0950482 + 0.995473i \(0.530301\pi\)
\(524\) −5.20551 + 5.20551i −0.227404 + 0.227404i
\(525\) 0 0
\(526\) 0.433885 1.80726i 0.0189183 0.0788003i
\(527\) 21.3775 5.13227i 0.931217 0.223565i
\(528\) 0 0
\(529\) 11.1342 34.2675i 0.484095 1.48989i
\(530\) 3.07789 1.27490i 0.133695 0.0553783i
\(531\) 0 0
\(532\) 9.34695i 0.405242i
\(533\) −8.38785 + 23.0265i −0.363318 + 0.997389i
\(534\) 0 0
\(535\) −4.63152 0.733561i −0.200238 0.0317146i
\(536\) −0.729009 1.75998i −0.0314884 0.0760197i
\(537\) 0 0
\(538\) −1.02540 2.01246i −0.0442082 0.0867634i
\(539\) 0.147197 + 0.613119i 0.00634021 + 0.0264089i
\(540\) 0 0
\(541\) −30.9025 15.7456i −1.32860 0.676957i −0.361746 0.932277i \(-0.617819\pi\)
−0.966857 + 0.255320i \(0.917819\pi\)
\(542\) 18.1011 + 18.1011i 0.777510 + 0.777510i
\(543\) 0 0
\(544\) −3.15055 + 2.69082i −0.135079 + 0.115368i
\(545\) −0.0323394 0.410911i −0.00138527 0.0176015i
\(546\) 0 0
\(547\) 0.331168 + 0.137174i 0.0141597 + 0.00586514i 0.389752 0.920920i \(-0.372561\pi\)
−0.375592 + 0.926785i \(0.622561\pi\)
\(548\) −4.62274 + 5.41253i −0.197474 + 0.231212i
\(549\) 0 0
\(550\) 0.429266 5.45434i 0.0183040 0.232574i
\(551\) −19.8303 27.2940i −0.844797 1.16276i
\(552\) 0 0
\(553\) −0.446663 2.82012i −0.0189940 0.119924i
\(554\) −0.181330 1.14488i −0.00770399 0.0486411i
\(555\) 0 0
\(556\) 4.91404 + 6.76359i 0.208402 + 0.286840i
\(557\) 1.76153 22.3823i 0.0746383 0.948369i −0.839603 0.543200i \(-0.817213\pi\)
0.914242 0.405169i \(-0.132787\pi\)
\(558\) 0 0
\(559\) 14.2516 16.6864i 0.602777 0.705761i
\(560\) 1.19782 + 0.496152i 0.0506170 + 0.0209663i
\(561\) 0 0
\(562\) 1.55938 + 19.8137i 0.0657783 + 0.835792i
\(563\) 29.4158 25.1234i 1.23973 1.05883i 0.243693 0.969853i \(-0.421641\pi\)
0.996034 0.0889741i \(-0.0283588\pi\)
\(564\) 0 0
\(565\) −2.11356 2.11356i −0.0889182 0.0889182i
\(566\) 8.41147 + 4.28586i 0.353560 + 0.180148i
\(567\) 0 0
\(568\) 2.46476 + 10.2665i 0.103419 + 0.430771i
\(569\) −3.71557 7.29221i −0.155765 0.305705i 0.799915 0.600113i \(-0.204878\pi\)
−0.955680 + 0.294408i \(0.904878\pi\)
\(570\) 0 0
\(571\) 3.99515 + 9.64513i 0.167192 + 0.403636i 0.985163 0.171623i \(-0.0549011\pi\)
−0.817971 + 0.575259i \(0.804901\pi\)
\(572\) 4.36374 + 0.691148i 0.182457 + 0.0288984i
\(573\) 0 0
\(574\) 3.10804 15.9670i 0.129727 0.666450i
\(575\) 36.4147i 1.51860i
\(576\) 0 0
\(577\) 28.3362 11.7373i 1.17965 0.488628i 0.295281 0.955410i \(-0.404587\pi\)
0.884372 + 0.466782i \(0.154587\pi\)
\(578\) 0.0514389 0.158313i 0.00213957 0.00658493i
\(579\) 0 0
\(580\) −4.55037 + 1.09245i −0.188944 + 0.0453614i
\(581\) −1.54630 + 6.44080i −0.0641513 + 0.267210i
\(582\) 0 0
\(583\) −5.32845 + 5.32845i −0.220682 + 0.220682i
\(584\) −11.6191 + 3.77528i −0.480802 + 0.156222i
\(585\) 0 0
\(586\) −18.7437 + 1.47516i −0.774296 + 0.0609384i
\(587\) 30.3747 + 18.6136i 1.25370 + 0.768266i 0.981032 0.193843i \(-0.0620954\pi\)
0.272664 + 0.962109i \(0.412095\pi\)
\(588\) 0 0
\(589\) −14.8454 12.6792i −0.611695 0.522437i
\(590\) 1.07072 1.47372i 0.0440810 0.0606723i
\(591\) 0 0
\(592\) 6.10184 4.43325i 0.250784 0.182205i
\(593\) −18.5125 + 11.3445i −0.760218 + 0.465862i −0.847814 0.530294i \(-0.822082\pi\)
0.0875958 + 0.996156i \(0.472082\pi\)
\(594\) 0 0
\(595\) −5.30561 + 0.840327i −0.217509 + 0.0344500i
\(596\) −8.77582 14.3208i −0.359471 0.586604i
\(597\) 0 0
\(598\) 29.3151 + 2.30715i 1.19878 + 0.0943463i
\(599\) −26.4445 19.2130i −1.08049 0.785023i −0.102723 0.994710i \(-0.532755\pi\)
−0.977768 + 0.209687i \(0.932755\pi\)
\(600\) 0 0
\(601\) −2.96813 + 7.16570i −0.121073 + 0.292295i −0.972783 0.231718i \(-0.925566\pi\)
0.851711 + 0.524013i \(0.175566\pi\)
\(602\) −7.61059 + 12.4194i −0.310184 + 0.506175i
\(603\) 0 0
\(604\) 14.0238 + 16.4198i 0.570620 + 0.668110i
\(605\) 1.52462 + 4.69229i 0.0619846 + 0.190769i
\(606\) 0 0
\(607\) 11.9289 23.4117i 0.484178 0.950253i −0.511667 0.859184i \(-0.670972\pi\)
0.995845 0.0910687i \(-0.0290283\pi\)
\(608\) 3.57762 + 0.858911i 0.145092 + 0.0348334i
\(609\) 0 0
\(610\) 4.49951 2.29261i 0.182180 0.0928253i
\(611\) 18.3839 + 5.97330i 0.743734 + 0.241654i
\(612\) 0 0
\(613\) −1.51327 + 9.55439i −0.0611203 + 0.385898i 0.938098 + 0.346370i \(0.112586\pi\)
−0.999218 + 0.0395288i \(0.987414\pi\)
\(614\) 29.1431 1.17612
\(615\) 0 0
\(616\) −2.93261 −0.118158
\(617\) 0.951809 6.00948i 0.0383184 0.241933i −0.961094 0.276223i \(-0.910917\pi\)
0.999412 + 0.0342904i \(0.0109171\pi\)
\(618\) 0 0
\(619\) −39.5299 12.8441i −1.58884 0.516246i −0.624527 0.781003i \(-0.714708\pi\)
−0.964315 + 0.264757i \(0.914708\pi\)
\(620\) −2.41287 + 1.22942i −0.0969030 + 0.0493746i
\(621\) 0 0
\(622\) −20.1680 4.84190i −0.808662 0.194143i
\(623\) −3.58269 + 7.03143i −0.143538 + 0.281708i
\(624\) 0 0
\(625\) −6.53910 20.1253i −0.261564 0.805012i
\(626\) −14.9511 17.5055i −0.597567 0.699661i
\(627\) 0 0
\(628\) 4.48614 7.32072i 0.179017 0.292129i
\(629\) −11.9587 + 28.8708i −0.476824 + 1.15115i
\(630\) 0 0
\(631\) −11.1550 8.10455i −0.444072 0.322637i 0.343179 0.939270i \(-0.388496\pi\)
−0.787251 + 0.616633i \(0.788496\pi\)
\(632\) −1.12047 0.0881827i −0.0445698 0.00350772i
\(633\) 0 0
\(634\) −9.87672 16.1173i −0.392255 0.640102i
\(635\) −8.85910 + 1.40314i −0.351563 + 0.0556821i
\(636\) 0 0
\(637\) −1.78248 + 1.09230i −0.0706244 + 0.0432787i
\(638\) 8.56349 6.22174i 0.339032 0.246321i
\(639\) 0 0
\(640\) 0.299976 0.412882i 0.0118576 0.0163206i
\(641\) 20.6119 + 17.6042i 0.814120 + 0.695324i 0.955616 0.294614i \(-0.0951912\pi\)
−0.141496 + 0.989939i \(0.545191\pi\)
\(642\) 0 0
\(643\) −18.5580 11.3723i −0.731855 0.448481i 0.106006 0.994366i \(-0.466194\pi\)
−0.837861 + 0.545884i \(0.816194\pi\)
\(644\) −19.4584 + 1.53141i −0.766767 + 0.0603458i
\(645\) 0 0
\(646\) −14.4981 + 4.71070i −0.570418 + 0.185340i
\(647\) −6.44743 + 6.44743i −0.253475 + 0.253475i −0.822394 0.568919i \(-0.807362\pi\)
0.568919 + 0.822394i \(0.307362\pi\)
\(648\) 0 0
\(649\) −0.961883 + 4.00653i −0.0377572 + 0.157270i
\(650\) 17.6384 4.23461i 0.691837 0.166095i
\(651\) 0 0
\(652\) 1.45804 4.48739i 0.0571013 0.175740i
\(653\) 37.6990 15.6154i 1.47527 0.611078i 0.507219 0.861817i \(-0.330673\pi\)
0.968055 + 0.250739i \(0.0806735\pi\)
\(654\) 0 0
\(655\) 3.75704i 0.146800i
\(656\) −5.82589 2.65687i −0.227463 0.103733i
\(657\) 0 0
\(658\) −12.6726 2.00715i −0.494030 0.0782467i
\(659\) 0.837963 + 2.02302i 0.0326424 + 0.0788058i 0.939360 0.342932i \(-0.111420\pi\)
−0.906718 + 0.421738i \(0.861420\pi\)
\(660\) 0 0
\(661\) 3.89423 + 7.64285i 0.151468 + 0.297273i 0.954255 0.298993i \(-0.0966506\pi\)
−0.802787 + 0.596265i \(0.796651\pi\)
\(662\) −3.43123 14.2921i −0.133359 0.555478i
\(663\) 0 0
\(664\) 2.32318 + 1.18372i 0.0901567 + 0.0459372i
\(665\) 3.37305 + 3.37305i 0.130801 + 0.130801i
\(666\) 0 0
\(667\) 53.5713 45.7542i 2.07429 1.77161i
\(668\) 0.165246 + 2.09965i 0.00639355 + 0.0812377i
\(669\) 0 0
\(670\) −0.898208 0.372050i −0.0347008 0.0143735i
\(671\) −7.41835 + 8.68577i −0.286382 + 0.335310i
\(672\) 0 0
\(673\) −2.04734 + 26.0140i −0.0789193 + 1.00277i 0.822201 + 0.569197i \(0.192746\pi\)
−0.901121 + 0.433568i \(0.857254\pi\)
\(674\) 16.0915 + 22.1480i 0.619821 + 0.853110i
\(675\) 0 0
\(676\) 0.257836 + 1.62791i 0.00991677 + 0.0626120i
\(677\) 5.91025 + 37.3159i 0.227149 + 1.43416i 0.792781 + 0.609507i \(0.208632\pi\)
−0.565632 + 0.824658i \(0.691368\pi\)
\(678\) 0 0
\(679\) 19.7826 + 27.2284i 0.759185 + 1.04493i
\(680\) −0.165902 + 2.10799i −0.00636205 + 0.0808376i
\(681\) 0 0
\(682\) 3.97810 4.65775i 0.152329 0.178355i
\(683\) 3.90119 + 1.61592i 0.149275 + 0.0618316i 0.456070 0.889944i \(-0.349257\pi\)
−0.306795 + 0.951776i \(0.599257\pi\)
\(684\) 0 0
\(685\) 0.285014 + 3.62145i 0.0108898 + 0.138368i
\(686\) 14.5775 12.4503i 0.556570 0.475356i
\(687\) 0 0
\(688\) 4.05425 + 4.05425i 0.154567 + 0.154567i
\(689\) −22.2609 11.3425i −0.848072 0.432114i
\(690\) 0 0
\(691\) −0.366642 1.52717i −0.0139477 0.0580965i 0.964962 0.262389i \(-0.0845105\pi\)
−0.978910 + 0.204293i \(0.934510\pi\)
\(692\) 3.34197 + 6.55898i 0.127043 + 0.249335i
\(693\) 0 0
\(694\) 10.0268 + 24.2069i 0.380613 + 0.918881i
\(695\) 4.21413 + 0.667452i 0.159851 + 0.0253179i
\(696\) 0 0
\(697\) 26.3328 3.22621i 0.997426 0.122201i
\(698\) 9.10024i 0.344449i
\(699\) 0 0
\(700\) −11.1239 + 4.60769i −0.420446 + 0.174154i
\(701\) 3.32985 10.2482i 0.125767 0.387071i −0.868273 0.496086i \(-0.834770\pi\)
0.994040 + 0.109016i \(0.0347699\pi\)
\(702\) 0 0
\(703\) 26.9835 6.47816i 1.01770 0.244328i
\(704\) −0.269483 + 1.12248i −0.0101565 + 0.0423050i
\(705\) 0 0
\(706\) 10.7052 10.7052i 0.402897 0.402897i
\(707\) 13.8737 4.50782i 0.521772 0.169534i
\(708\) 0 0
\(709\) 2.00315 0.157651i 0.0752299 0.00592072i −0.0407883 0.999168i \(-0.512987\pi\)
0.116018 + 0.993247i \(0.462987\pi\)
\(710\) 4.59434 + 2.81542i 0.172423 + 0.105661i
\(711\) 0 0
\(712\) 2.36212 + 2.01744i 0.0885240 + 0.0756067i
\(713\) 23.9631 32.9824i 0.897424 1.23520i
\(714\) 0 0
\(715\) 1.82417 1.32534i 0.0682200 0.0495647i
\(716\) 14.7245 9.02319i 0.550281 0.337212i
\(717\) 0 0
\(718\) −7.34034 + 1.16259i −0.273939 + 0.0433877i
\(719\) 22.5364 + 36.7761i 0.840466 + 1.37152i 0.926919 + 0.375260i \(0.122447\pi\)
−0.0864533 + 0.996256i \(0.527553\pi\)
\(720\) 0 0
\(721\) −4.39297 0.345734i −0.163603 0.0128758i
\(722\) −4.41957 3.21101i −0.164479 0.119501i
\(723\) 0 0
\(724\) −4.25258 + 10.2666i −0.158046 + 0.381557i
\(725\) 22.7074 37.0552i 0.843333 1.37619i
\(726\) 0 0
\(727\) 6.12920 + 7.17637i 0.227319 + 0.266157i 0.862330 0.506347i \(-0.169004\pi\)
−0.635011 + 0.772503i \(0.719004\pi\)
\(728\) −3.00457 9.24710i −0.111357 0.342720i
\(729\) 0 0
\(730\) −2.83062 + 5.55540i −0.104766 + 0.205615i
\(731\) −23.0993 5.54564i −0.854357 0.205113i
\(732\) 0 0
\(733\) −2.87391 + 1.46433i −0.106150 + 0.0540862i −0.506259 0.862381i \(-0.668972\pi\)
0.400109 + 0.916467i \(0.368972\pi\)
\(734\) 30.3253 + 9.85329i 1.11933 + 0.363692i
\(735\) 0 0
\(736\) −1.20191 + 7.58857i −0.0443030 + 0.279718i
\(737\) 2.19908 0.0810040
\(738\) 0 0
\(739\) −29.6554 −1.09089 −0.545446 0.838146i \(-0.683640\pi\)
−0.545446 + 0.838146i \(0.683640\pi\)
\(740\) 0.602149 3.80182i 0.0221354 0.139758i
\(741\) 0 0
\(742\) 15.7719 + 5.12459i 0.579003 + 0.188130i
\(743\) −22.7775 + 11.6057i −0.835627 + 0.425773i −0.818796 0.574085i \(-0.805358\pi\)
−0.0168313 + 0.999858i \(0.505358\pi\)
\(744\) 0 0
\(745\) −8.33493 2.00104i −0.305368 0.0733125i
\(746\) −14.1942 + 27.8576i −0.519685 + 1.01994i
\(747\) 0 0
\(748\) −1.47798 4.54876i −0.0540404 0.166319i
\(749\) −15.1596 17.7496i −0.553919 0.648556i
\(750\) 0 0
\(751\) 17.6875 28.8634i 0.645426 1.05324i −0.347859 0.937547i \(-0.613091\pi\)
0.993285 0.115693i \(-0.0369088\pi\)
\(752\) −1.93277 + 4.66611i −0.0704807 + 0.170155i
\(753\) 0 0
\(754\) 28.3920 + 20.6280i 1.03398 + 0.751228i
\(755\) 10.9862 + 0.864635i 0.399830 + 0.0314673i
\(756\) 0 0
\(757\) −18.1952 29.6919i −0.661317 1.07917i −0.990842 0.135024i \(-0.956889\pi\)
0.329526 0.944147i \(-0.393111\pi\)
\(758\) 28.6365 4.53557i 1.04012 0.164739i
\(759\) 0 0
\(760\) 1.60102 0.981107i 0.0580751 0.0355885i
\(761\) 33.1425 24.0795i 1.20142 0.872880i 0.206992 0.978343i \(-0.433632\pi\)
0.994423 + 0.105463i \(0.0336325\pi\)
\(762\) 0 0
\(763\) 1.20600 1.65991i 0.0436600 0.0600929i
\(764\) 9.67937 + 8.26697i 0.350187 + 0.299088i
\(765\) 0 0
\(766\) −8.12423 4.97853i −0.293540 0.179882i
\(767\) −13.6189 + 1.07183i −0.491750 + 0.0387015i
\(768\) 0 0
\(769\) −13.2236 + 4.29661i −0.476855 + 0.154940i −0.537576 0.843215i \(-0.680660\pi\)
0.0607210 + 0.998155i \(0.480660\pi\)
\(770\) −1.05830 + 1.05830i −0.0381383 + 0.0381383i
\(771\) 0 0
\(772\) −3.87032 + 16.1210i −0.139296 + 0.580208i
\(773\) 9.77944 2.34784i 0.351742 0.0844458i −0.0537243 0.998556i \(-0.517109\pi\)
0.405466 + 0.914110i \(0.367109\pi\)
\(774\) 0 0
\(775\) 7.77147 23.9181i 0.279159 0.859164i
\(776\) 12.2397 5.06986i 0.439381 0.181998i
\(777\) 0 0
\(778\) 27.3806i 0.981643i
\(779\) −16.0626 17.2341i −0.575502 0.617477i
\(780\) 0 0
\(781\) −12.0380 1.90664i −0.430755 0.0682249i
\(782\) −12.1820 29.4100i −0.435629 1.05170i
\(783\) 0 0
\(784\) −0.247978 0.486684i −0.00885636 0.0173816i
\(785\) −1.02292 4.26077i −0.0365096 0.152073i
\(786\) 0 0
\(787\) −20.7569 10.5762i −0.739903 0.376999i 0.0430564 0.999073i \(-0.486290\pi\)
−0.782959 + 0.622073i \(0.786290\pi\)
\(788\) 12.8134 + 12.8134i 0.456458 + 0.456458i
\(789\) 0 0
\(790\) −0.436168 + 0.372523i −0.0155182 + 0.0132538i
\(791\) −1.16738 14.8330i −0.0415072 0.527399i
\(792\) 0 0
\(793\) −34.9884 14.4927i −1.24247 0.514649i
\(794\) −0.634089 + 0.742423i −0.0225030 + 0.0263476i
\(795\) 0 0
\(796\) −0.809725 + 10.2885i −0.0286999 + 0.364667i
\(797\) 28.2843 + 38.9300i 1.00188 + 1.37897i 0.924164 + 0.381995i \(0.124763\pi\)
0.0777167 + 0.996975i \(0.475237\pi\)
\(798\) 0 0
\(799\) −3.27350 20.6681i −0.115808 0.731184i
\(800\) 0.741428 + 4.68119i 0.0262134 + 0.165505i
\(801\) 0 0
\(802\) 3.23923 + 4.45842i 0.114381 + 0.157432i
\(803\) 1.10651 14.0596i 0.0390480 0.496152i
\(804\) 0 0
\(805\) −6.46933 + 7.57462i −0.228014 + 0.266970i
\(806\) 18.7625 + 7.77170i 0.660882 + 0.273746i
\(807\) 0 0
\(808\) −0.450527 5.72449i −0.0158495 0.201387i
\(809\) 9.65261 8.24411i 0.339368 0.289848i −0.463388 0.886156i \(-0.653366\pi\)
0.802756 + 0.596308i \(0.203366\pi\)
\(810\) 0 0
\(811\) −15.8759 15.8759i −0.557478 0.557478i 0.371110 0.928589i \(-0.378977\pi\)
−0.928589 + 0.371110i \(0.878977\pi\)
\(812\) −20.7556 10.5755i −0.728378 0.371127i
\(813\) 0 0
\(814\) 2.03252 + 8.46607i 0.0712399 + 0.296735i
\(815\) −1.09321 2.14554i −0.0382934 0.0751550i
\(816\) 0 0
\(817\) 8.07288 + 19.4897i 0.282434 + 0.681857i
\(818\) 12.6643 + 2.00583i 0.442797 + 0.0701322i
\(819\) 0 0
\(820\) −3.06119 + 1.14361i −0.106901 + 0.0399367i
\(821\) 26.2045i 0.914543i −0.889327 0.457271i \(-0.848827\pi\)
0.889327 0.457271i \(-0.151173\pi\)
\(822\) 0 0
\(823\) 46.9062 19.4292i 1.63505 0.677259i 0.639265 0.768987i \(-0.279239\pi\)
0.995784 + 0.0917272i \(0.0292388\pi\)
\(824\) −0.536011 + 1.64967i −0.0186728 + 0.0574691i
\(825\) 0 0
\(826\) 8.81717 2.11681i 0.306789 0.0736534i
\(827\) 6.06196 25.2499i 0.210795 0.878024i −0.762227 0.647310i \(-0.775894\pi\)
0.973022 0.230714i \(-0.0741061\pi\)
\(828\) 0 0
\(829\) −32.6794 + 32.6794i −1.13500 + 1.13500i −0.145670 + 0.989333i \(0.546534\pi\)
−0.989333 + 0.145670i \(0.953466\pi\)
\(830\) 1.26554 0.411199i 0.0439275 0.0142729i
\(831\) 0 0
\(832\) −3.81550 + 0.300286i −0.132279 + 0.0104106i
\(833\) 1.92962 + 1.18247i 0.0668575 + 0.0409703i
\(834\) 0 0
\(835\) 0.817336 + 0.698071i 0.0282851 + 0.0241577i
\(836\) −2.49648 + 3.43611i −0.0863426 + 0.118840i
\(837\) 0 0
\(838\) 19.1995 13.9493i 0.663236 0.481869i
\(839\) −44.4330 + 27.2286i −1.53400 + 0.940035i −0.538770 + 0.842453i \(0.681111\pi\)
−0.995227 + 0.0975821i \(0.968889\pi\)
\(840\) 0 0
\(841\) 54.4020 8.61642i 1.87593 0.297118i
\(842\) 5.08651 + 8.30043i 0.175293 + 0.286052i
\(843\) 0 0
\(844\) 24.4186 + 1.92179i 0.840524 + 0.0661507i
\(845\) 0.680514 + 0.494422i 0.0234104 + 0.0170086i
\(846\) 0 0
\(847\) −9.39847 + 22.6899i −0.322935 + 0.779635i
\(848\) 3.41079 5.56590i 0.117127 0.191134i
\(849\) 0 0
\(850\) −12.7533 14.9321i −0.437433 0.512169i
\(851\) 17.9071 + 55.1124i 0.613848 + 1.88923i
\(852\) 0 0
\(853\) 11.6928 22.9485i 0.400355 0.785742i −0.599538 0.800346i \(-0.704649\pi\)
0.999893 + 0.0146047i \(0.00464897\pi\)
\(854\) 24.4430 + 5.86825i 0.836423 + 0.200807i
\(855\) 0 0
\(856\) −8.18684 + 4.17140i −0.279820 + 0.142576i
\(857\) −7.22479 2.34748i −0.246794 0.0801882i 0.183008 0.983111i \(-0.441417\pi\)
−0.429802 + 0.902923i \(0.641417\pi\)
\(858\) 0 0
\(859\) −2.24397 + 14.1679i −0.0765634 + 0.483402i 0.919376 + 0.393379i \(0.128694\pi\)
−0.995940 + 0.0900230i \(0.971306\pi\)
\(860\) 2.92613 0.0997804
\(861\) 0 0
\(862\) −8.53750 −0.290788
\(863\) −8.10008 + 51.1419i −0.275730 + 1.74089i 0.328884 + 0.944370i \(0.393328\pi\)
−0.604614 + 0.796519i \(0.706672\pi\)
\(864\) 0 0
\(865\) 3.57297 + 1.16093i 0.121485 + 0.0394728i
\(866\) 24.8550 12.6642i 0.844606 0.430348i
\(867\) 0 0
\(868\) −13.1076 3.14685i −0.444900 0.106811i
\(869\) 0.589025 1.15603i 0.0199813 0.0392155i
\(870\) 0 0
\(871\) 2.25304 + 6.93413i 0.0763412 + 0.234954i
\(872\) −0.524524 0.614138i −0.0177626 0.0207973i
\(873\) 0 0
\(874\) −14.7703 + 24.1029i −0.499611 + 0.815291i
\(875\) −4.83230 + 11.6662i −0.163361 + 0.394389i
\(876\) 0 0
\(877\) 16.4850 + 11.9770i 0.556658 + 0.404436i 0.830234 0.557414i \(-0.188207\pi\)
−0.273576 + 0.961850i \(0.588207\pi\)
\(878\) −29.2021 2.29826i −0.985524 0.0775624i
\(879\) 0 0
\(880\) 0.307822 + 0.502320i 0.0103767 + 0.0169332i
\(881\) −23.7510 + 3.76179i −0.800191 + 0.126738i −0.543120 0.839655i \(-0.682757\pi\)
−0.257070 + 0.966393i \(0.582757\pi\)
\(882\) 0 0
\(883\) −1.25850 + 0.771207i −0.0423517 + 0.0259532i −0.543513 0.839401i \(-0.682906\pi\)
0.501162 + 0.865354i \(0.332906\pi\)
\(884\) 12.8289 9.32076i 0.431483 0.313491i
\(885\) 0 0
\(886\) −20.7539 + 28.5653i −0.697241 + 0.959670i
\(887\) −22.8593 19.5237i −0.767539 0.655540i 0.176899 0.984229i \(-0.443393\pi\)
−0.944438 + 0.328689i \(0.893393\pi\)
\(888\) 0 0
\(889\) −38.0693 23.3289i −1.27680 0.782425i
\(890\) 1.58046 0.124385i 0.0529771 0.00416939i
\(891\) 0 0
\(892\) 5.61291 1.82375i 0.187934 0.0610635i
\(893\) −13.1398 + 13.1398i −0.439705 + 0.439705i
\(894\) 0 0
\(895\) 2.05745 8.56988i 0.0687728 0.286459i
\(896\) 2.47024 0.593051i 0.0825248 0.0198125i
\(897\) 0 0
\(898\) −6.19294 + 19.0599i −0.206661 + 0.636038i
\(899\) 44.9517 18.6196i 1.49922 0.620998i
\(900\) 0 0
\(901\) 27.0464i 0.901047i
\(902\) 5.40721 5.03963i 0.180040 0.167801i
\(903\) 0 0
\(904\) −5.78471 0.916208i −0.192397 0.0304726i
\(905\) 2.17031 + 5.23958i 0.0721434 + 0.174170i
\(906\) 0 0
\(907\) 8.66949 + 17.0148i 0.287866 + 0.564968i 0.988974 0.148086i \(-0.0473113\pi\)
−0.701109 + 0.713054i \(0.747311\pi\)
\(908\) −3.46887 14.4489i −0.115119 0.479503i
\(909\) 0 0
\(910\) −4.42128 2.25276i −0.146564 0.0746782i
\(911\) −34.0498 34.0498i −1.12812 1.12812i −0.990482 0.137639i \(-0.956049\pi\)
−0.137639 0.990482i \(-0.543951\pi\)
\(912\) 0 0
\(913\) −2.28872 + 1.95476i −0.0757457 + 0.0646930i
\(914\) −1.46401 18.6021i −0.0484253 0.615301i
\(915\) 0 0
\(916\) −21.7264 8.99936i −0.717860 0.297347i
\(917\) −12.1459 + 14.2210i −0.401093 + 0.469619i
\(918\) 0 0
\(919\) 2.62961 33.4124i 0.0867428 1.10217i −0.787380 0.616468i \(-0.788563\pi\)
0.874123 0.485704i \(-0.161437\pi\)
\(920\) 2.30477 + 3.17224i 0.0759859 + 0.104586i
\(921\) 0 0
\(922\) −3.96831 25.0549i −0.130689 0.825141i
\(923\) −6.32141 39.9118i −0.208072 1.31371i
\(924\) 0 0
\(925\) 21.0116 + 28.9199i 0.690856 + 0.950882i
\(926\) −2.06891 + 26.2880i −0.0679887 + 0.863878i
\(927\) 0 0
\(928\) −5.95513 + 6.97256i −0.195487 + 0.228885i
\(929\) 40.3885 + 16.7295i 1.32510 + 0.548875i 0.929254 0.369440i \(-0.120451\pi\)
0.395848 + 0.918316i \(0.370451\pi\)
\(930\) 0 0
\(931\) −0.157679 2.00350i −0.00516770 0.0656619i
\(932\) −2.72694 + 2.32903i −0.0893240 + 0.0762899i
\(933\) 0 0
\(934\) 8.42635 + 8.42635i 0.275719 + 0.275719i
\(935\) −2.17488 1.10816i −0.0711263 0.0362407i
\(936\) 0 0
\(937\) −2.76813 11.5301i −0.0904310 0.376672i 0.908741 0.417361i \(-0.137045\pi\)
−0.999172 + 0.0406886i \(0.987045\pi\)
\(938\) −2.19709 4.31203i −0.0717374 0.140793i
\(939\) 0 0
\(940\) 0.986387 + 2.38135i 0.0321724 + 0.0776711i
\(941\) 13.9834 + 2.21475i 0.455844 + 0.0721986i 0.380134 0.924931i \(-0.375878\pi\)
0.0757098 + 0.997130i \(0.475878\pi\)
\(942\) 0 0
\(943\) 33.2461 36.2625i 1.08264 1.18087i
\(944\) 3.56936i 0.116173i
\(945\) 0 0
\(946\) −6.11488 + 2.53287i −0.198812 + 0.0823506i
\(947\) −2.20348 + 6.78161i −0.0716035 + 0.220373i −0.980454 0.196750i \(-0.936961\pi\)
0.908850 + 0.417122i \(0.136961\pi\)
\(948\) 0 0
\(949\) 45.4664 10.9155i 1.47590 0.354332i
\(950\) −4.07085 + 16.9563i −0.132076 + 0.550135i
\(951\) 0 0
\(952\) −7.44273 + 7.44273i −0.241220 + 0.241220i
\(953\) −31.3380 + 10.1823i −1.01514 + 0.329838i −0.768899 0.639370i \(-0.779195\pi\)
−0.246240 + 0.969209i \(0.579195\pi\)
\(954\) 0 0
\(955\) 6.47633 0.509698i 0.209569 0.0164935i
\(956\) −8.44236 5.17348i −0.273045 0.167322i
\(957\) 0 0
\(958\) 22.3339 + 19.0749i 0.721574 + 0.616282i
\(959\) −10.6287 + 14.6292i −0.343219 + 0.472401i
\(960\) 0 0
\(961\) −2.30099 + 1.67177i −0.0742255 + 0.0539280i
\(962\) −24.6128 + 15.0828i −0.793549 + 0.486288i
\(963\) 0 0
\(964\) 25.8827 4.09942i 0.833626 0.132033i
\(965\) 4.42094 + 7.21431i 0.142315 + 0.232237i
\(966\) 0 0
\(967\) −23.6786 1.86354i −0.761452 0.0599276i −0.308214 0.951317i \(-0.599731\pi\)
−0.453238 + 0.891390i \(0.649731\pi\)
\(968\) 7.82111 + 5.68237i 0.251380 + 0.182638i
\(969\) 0 0
\(970\) 2.58741 6.24655i 0.0830766 0.200565i
\(971\) 10.9701 17.9016i 0.352047 0.574489i −0.626775 0.779200i \(-0.715626\pi\)
0.978822 + 0.204711i \(0.0656256\pi\)
\(972\) 0 0
\(973\) 13.7934 + 16.1500i 0.442196 + 0.517745i
\(974\) −6.40529 19.7135i −0.205239 0.631660i
\(975\) 0 0
\(976\) 4.49224 8.81652i 0.143793 0.282210i
\(977\) 4.48456 + 1.07665i 0.143474 + 0.0344450i 0.304546 0.952498i \(-0.401495\pi\)
−0.161072 + 0.986943i \(0.551495\pi\)
\(978\) 0 0
\(979\) −3.19509 + 1.62798i −0.102116 + 0.0520305i
\(980\) −0.265119 0.0861424i −0.00846892 0.00275172i
\(981\) 0 0
\(982\) 4.85830 30.6741i 0.155034 0.978849i
\(983\) −25.8309 −0.823877 −0.411938 0.911212i \(-0.635148\pi\)
−0.411938 + 0.911212i \(0.635148\pi\)
\(984\) 0 0
\(985\) 9.24798 0.294665
\(986\) 5.94319 37.5238i 0.189270 1.19500i
\(987\) 0 0
\(988\) −13.3925 4.35149i −0.426072 0.138439i
\(989\) −39.2506 + 19.9992i −1.24810 + 0.635938i
\(990\) 0 0
\(991\) −34.6952 8.32958i −1.10213 0.264598i −0.358727 0.933443i \(-0.616789\pi\)
−0.743402 + 0.668845i \(0.766789\pi\)
\(992\) −2.40897 + 4.72786i −0.0764848 + 0.150110i
\(993\) 0 0
\(994\) 8.28855 + 25.5095i 0.262897 + 0.809114i
\(995\) 3.42064 + 4.00505i 0.108441 + 0.126969i
\(996\) 0 0
\(997\) −28.1382 + 45.9174i −0.891147 + 1.45422i −0.000257007 1.00000i \(0.500082\pi\)
−0.890890 + 0.454219i \(0.849918\pi\)
\(998\) −5.99269 + 14.4676i −0.189695 + 0.457965i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 738.2.ba.b.179.1 yes 48
3.2 odd 2 738.2.ba.a.179.3 48
41.11 odd 40 738.2.ba.a.503.3 yes 48
123.11 even 40 inner 738.2.ba.b.503.1 yes 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
738.2.ba.a.179.3 48 3.2 odd 2
738.2.ba.a.503.3 yes 48 41.11 odd 40
738.2.ba.b.179.1 yes 48 1.1 even 1 trivial
738.2.ba.b.503.1 yes 48 123.11 even 40 inner