Newspace parameters
Level: | \( N \) | \(=\) | \( 738 = 2 \cdot 3^{2} \cdot 41 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 738.ba (of order \(40\), degree \(16\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(5.89295966917\) |
Analytic rank: | \(0\) |
Dimension: | \(48\) |
Relative dimension: | \(3\) over \(\Q(\zeta_{40})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{40}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
17.1 | 0.987688 | − | 0.156434i | 0 | 0.951057 | − | 0.309017i | −1.48149 | + | 2.90758i | 0 | 2.16613 | + | 1.32741i | 0.891007 | − | 0.453990i | 0 | −1.00840 | + | 3.10354i | ||||||
17.2 | 0.987688 | − | 0.156434i | 0 | 0.951057 | − | 0.309017i | −0.172522 | + | 0.338593i | 0 | −0.262313 | − | 0.160746i | 0.891007 | − | 0.453990i | 0 | −0.117430 | + | 0.361413i | ||||||
17.3 | 0.987688 | − | 0.156434i | 0 | 0.951057 | − | 0.309017i | 1.79605 | − | 3.52494i | 0 | −0.0699988 | − | 0.0428953i | 0.891007 | − | 0.453990i | 0 | 1.22251 | − | 3.76251i | ||||||
35.1 | 0.891007 | + | 0.453990i | 0 | 0.587785 | + | 0.809017i | −3.14624 | − | 0.498316i | 0 | 0.0181761 | + | 0.230950i | 0.156434 | + | 0.987688i | 0 | −2.57709 | − | 1.87237i | ||||||
35.2 | 0.891007 | + | 0.453990i | 0 | 0.587785 | + | 0.809017i | 1.00092 | + | 0.158531i | 0 | 0.204016 | + | 2.59227i | 0.156434 | + | 0.987688i | 0 | 0.819859 | + | 0.595662i | ||||||
35.3 | 0.891007 | + | 0.453990i | 0 | 0.587785 | + | 0.809017i | 3.04212 | + | 0.481824i | 0 | −0.338143 | − | 4.29651i | 0.156434 | + | 0.987688i | 0 | 2.49180 | + | 1.81040i | ||||||
53.1 | −0.987688 | − | 0.156434i | 0 | 0.951057 | + | 0.309017i | −1.70058 | − | 3.33758i | 0 | −0.496661 | − | 0.810478i | −0.891007 | − | 0.453990i | 0 | 1.15753 | + | 3.56252i | ||||||
53.2 | −0.987688 | − | 0.156434i | 0 | 0.951057 | + | 0.309017i | 0.329149 | + | 0.645992i | 0 | −0.847255 | − | 1.38259i | −0.891007 | − | 0.453990i | 0 | −0.224042 | − | 0.689529i | ||||||
53.3 | −0.987688 | − | 0.156434i | 0 | 0.951057 | + | 0.309017i | 1.51347 | + | 2.97036i | 0 | 2.30370 | + | 3.75930i | −0.891007 | − | 0.453990i | 0 | −1.03017 | − | 3.17055i | ||||||
71.1 | 0.156434 | + | 0.987688i | 0 | −0.951057 | + | 0.309017i | −2.46374 | − | 1.25534i | 0 | 0.486233 | + | 2.02531i | −0.453990 | − | 0.891007i | 0 | 0.854470 | − | 2.62979i | ||||||
71.2 | 0.156434 | + | 0.987688i | 0 | −0.951057 | + | 0.309017i | −0.973712 | − | 0.496131i | 0 | −0.502389 | − | 2.09260i | −0.453990 | − | 0.891007i | 0 | 0.337701 | − | 1.03934i | ||||||
71.3 | 0.156434 | + | 0.987688i | 0 | −0.951057 | + | 0.309017i | 1.67738 | + | 0.854668i | 0 | 0.674403 | + | 2.80909i | −0.453990 | − | 0.891007i | 0 | −0.581745 | + | 1.79043i | ||||||
89.1 | −0.891007 | + | 0.453990i | 0 | 0.587785 | − | 0.809017i | −2.53900 | + | 0.402138i | 0 | 1.91317 | + | 0.150570i | −0.156434 | + | 0.987688i | 0 | 2.07970 | − | 1.51099i | ||||||
89.2 | −0.891007 | + | 0.453990i | 0 | 0.587785 | − | 0.809017i | 0.699688 | − | 0.110820i | 0 | −2.26358 | − | 0.178148i | −0.156434 | + | 0.987688i | 0 | −0.573115 | + | 0.416393i | ||||||
89.3 | −0.891007 | + | 0.453990i | 0 | 0.587785 | − | 0.809017i | 2.73611 | − | 0.433358i | 0 | −2.05379 | − | 0.161637i | −0.156434 | + | 0.987688i | 0 | −2.24116 | + | 1.62829i | ||||||
179.1 | −0.156434 | + | 0.987688i | 0 | −0.951057 | − | 0.309017i | −2.39103 | + | 1.21829i | 0 | 2.33211 | + | 0.559890i | 0.453990 | − | 0.891007i | 0 | −0.829251 | − | 2.55217i | ||||||
179.2 | −0.156434 | + | 0.987688i | 0 | −0.951057 | − | 0.309017i | 0.176229 | − | 0.0897932i | 0 | −0.0776566 | − | 0.0186437i | 0.453990 | − | 0.891007i | 0 | 0.0611194 | + | 0.188106i | ||||||
179.3 | −0.156434 | + | 0.987688i | 0 | −0.951057 | − | 0.309017i | 0.454725 | − | 0.231694i | 0 | −2.47024 | − | 0.593051i | 0.453990 | − | 0.891007i | 0 | 0.157707 | + | 0.485372i | ||||||
233.1 | −0.453990 | + | 0.891007i | 0 | −0.587785 | − | 0.809017i | −0.524441 | + | 3.31119i | 0 | 2.69206 | − | 3.15200i | 0.987688 | − | 0.156434i | 0 | −2.71220 | − | 1.97053i | ||||||
233.2 | −0.453990 | + | 0.891007i | 0 | −0.587785 | − | 0.809017i | 0.101091 | − | 0.638263i | 0 | −0.804009 | + | 0.941374i | 0.987688 | − | 0.156434i | 0 | 0.522802 | + | 0.379838i | ||||||
See all 48 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
123.o | even | 40 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 738.2.ba.a | ✓ | 48 |
3.b | odd | 2 | 1 | 738.2.ba.b | yes | 48 | |
41.h | odd | 40 | 1 | 738.2.ba.b | yes | 48 | |
123.o | even | 40 | 1 | inner | 738.2.ba.a | ✓ | 48 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
738.2.ba.a | ✓ | 48 | 1.a | even | 1 | 1 | trivial |
738.2.ba.a | ✓ | 48 | 123.o | even | 40 | 1 | inner |
738.2.ba.b | yes | 48 | 3.b | odd | 2 | 1 | |
738.2.ba.b | yes | 48 | 41.h | odd | 40 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5}^{48} + 4 T_{5}^{47} + 28 T_{5}^{46} + 72 T_{5}^{45} + 106 T_{5}^{44} + 44 T_{5}^{43} + \cdots + 57138481 \)
acting on \(S_{2}^{\mathrm{new}}(738, [\chi])\).