Properties

Label 2-738-123.95-c1-0-13
Degree $2$
Conductor $738$
Sign $-0.921 - 0.388i$
Analytic cond. $5.89295$
Root an. cond. $2.42754$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.453 − 0.891i)2-s + (−0.587 − 0.809i)4-s + (0.394 − 2.49i)5-s + (−1.88 − 1.61i)7-s + (−0.987 + 0.156i)8-s + (−2.04 − 1.48i)10-s + (−3.63 + 2.22i)11-s + (−5.05 − 0.398i)13-s + (−2.29 + 0.949i)14-s + (−0.309 + 0.951i)16-s + (5.49 + 1.32i)17-s + (−4.35 + 0.342i)19-s + (−2.24 + 1.14i)20-s + (0.334 + 4.24i)22-s + (0.132 + 0.408i)23-s + ⋯
L(s)  = 1  + (0.321 − 0.630i)2-s + (−0.293 − 0.404i)4-s + (0.176 − 1.11i)5-s + (−0.713 − 0.609i)7-s + (−0.349 + 0.0553i)8-s + (−0.645 − 0.469i)10-s + (−1.09 + 0.670i)11-s + (−1.40 − 0.110i)13-s + (−0.612 + 0.253i)14-s + (−0.0772 + 0.237i)16-s + (1.33 + 0.320i)17-s + (−0.999 + 0.0786i)19-s + (−0.502 + 0.256i)20-s + (0.0712 + 0.905i)22-s + (0.0277 + 0.0852i)23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 738 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.921 - 0.388i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 738 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.921 - 0.388i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(738\)    =    \(2 \cdot 3^{2} \cdot 41\)
Sign: $-0.921 - 0.388i$
Analytic conductor: \(5.89295\)
Root analytic conductor: \(2.42754\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{738} (341, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 738,\ (\ :1/2),\ -0.921 - 0.388i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.154958 + 0.765656i\)
\(L(\frac12)\) \(\approx\) \(0.154958 + 0.765656i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.453 + 0.891i)T \)
3 \( 1 \)
41 \( 1 + (-4.12 - 4.89i)T \)
good5 \( 1 + (-0.394 + 2.49i)T + (-4.75 - 1.54i)T^{2} \)
7 \( 1 + (1.88 + 1.61i)T + (1.09 + 6.91i)T^{2} \)
11 \( 1 + (3.63 - 2.22i)T + (4.99 - 9.80i)T^{2} \)
13 \( 1 + (5.05 + 0.398i)T + (12.8 + 2.03i)T^{2} \)
17 \( 1 + (-5.49 - 1.32i)T + (15.1 + 7.71i)T^{2} \)
19 \( 1 + (4.35 - 0.342i)T + (18.7 - 2.97i)T^{2} \)
23 \( 1 + (-0.132 - 0.408i)T + (-18.6 + 13.5i)T^{2} \)
29 \( 1 + (0.956 - 0.229i)T + (25.8 - 13.1i)T^{2} \)
31 \( 1 + (-4.34 + 5.97i)T + (-9.57 - 29.4i)T^{2} \)
37 \( 1 + (-2.54 + 1.84i)T + (11.4 - 35.1i)T^{2} \)
43 \( 1 + (8.36 + 4.26i)T + (25.2 + 34.7i)T^{2} \)
47 \( 1 + (2.89 + 3.39i)T + (-7.35 + 46.4i)T^{2} \)
53 \( 1 + (0.618 + 2.57i)T + (-47.2 + 24.0i)T^{2} \)
59 \( 1 + (4.30 - 1.39i)T + (47.7 - 34.6i)T^{2} \)
61 \( 1 + (6.84 + 13.4i)T + (-35.8 + 49.3i)T^{2} \)
67 \( 1 + (11.1 + 6.81i)T + (30.4 + 59.6i)T^{2} \)
71 \( 1 + (0.933 + 1.52i)T + (-32.2 + 63.2i)T^{2} \)
73 \( 1 + (5.64 - 5.64i)T - 73iT^{2} \)
79 \( 1 + (-4.05 - 1.68i)T + (55.8 + 55.8i)T^{2} \)
83 \( 1 + 8.64iT - 83T^{2} \)
89 \( 1 + (-11.7 + 13.7i)T + (-13.9 - 87.9i)T^{2} \)
97 \( 1 + (1.38 - 2.25i)T + (-44.0 - 86.4i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.986946464349366392480367850759, −9.393056294946020588286120304275, −8.166477433997555807333374862221, −7.42629358680637575446916507894, −6.12231788227078150508137684751, −5.06575561230862834088646731142, −4.50161108126467461208332576277, −3.20244012668964241812177484200, −1.96711518019326376355182504917, −0.33605028120003504096889670571, 2.70070040688516010059156468942, 3.08654780518188777974497331883, 4.72021111033730694818981237998, 5.69522822671108130790801375870, 6.41838242702618239997206439596, 7.29884803650870130512461776628, 8.038009311086714560792099007606, 9.136889772644661128519347295178, 10.09329729197301245251225369328, 10.61369837029663891563473475346

Graph of the $Z$-function along the critical line