Properties

Label 735.2.y.e.422.6
Level $735$
Weight $2$
Character 735.422
Analytic conductor $5.869$
Analytic rank $0$
Dimension $32$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [735,2,Mod(128,735)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("735.128"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(735, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([6, 9, 4])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 735 = 3 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 735.y (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,-4,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.86900454856\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(8\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 422.6
Character \(\chi\) \(=\) 735.422
Dual form 735.2.y.e.263.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.169347 + 0.632011i) q^{2} +(1.01575 - 1.40294i) q^{3} +(1.36129 - 0.785942i) q^{4} +(-2.22187 + 0.251543i) q^{5} +(1.05869 + 0.404383i) q^{6} +(1.65258 + 1.65258i) q^{8} +(-0.936492 - 2.85008i) q^{9} +(-0.535245 - 1.36165i) q^{10} +(0.139773 - 0.0806980i) q^{11} +(0.280105 - 2.70814i) q^{12} +(4.65555 - 4.65555i) q^{13} +(-1.90398 + 3.37267i) q^{15} +(0.807294 - 1.39827i) q^{16} +(-4.41610 - 1.18329i) q^{17} +(1.64269 - 1.07453i) q^{18} +(-3.11497 - 1.79843i) q^{19} +(-2.82692 + 2.08869i) q^{20} +(0.0746721 + 0.0746721i) q^{22} +(2.31228 - 0.619573i) q^{23} +(3.99709 - 0.639861i) q^{24} +(4.87345 - 1.11779i) q^{25} +(3.73076 + 2.15395i) q^{26} +(-4.94975 - 1.58114i) q^{27} +2.00000 q^{29} +(-2.45399 - 0.632183i) q^{30} +(3.73115 + 6.46254i) q^{31} +(5.53538 + 1.48320i) q^{32} +(0.0287603 - 0.278063i) q^{33} -2.99141i q^{34} +(-3.51484 - 3.14377i) q^{36} +(1.91659 - 0.513548i) q^{37} +(0.609116 - 2.27325i) q^{38} +(-1.80258 - 11.2603i) q^{39} +(-4.08752 - 3.25614i) q^{40} -12.0388i q^{41} +(-5.56631 + 5.56631i) q^{43} +(0.126848 - 0.219707i) q^{44} +(2.79768 + 6.09696i) q^{45} +(0.783154 + 1.35646i) q^{46} +(1.57392 + 5.87394i) q^{47} +(-1.14169 - 2.55289i) q^{48} +(1.53176 + 2.89078i) q^{50} +(-6.14576 + 4.99360i) q^{51} +(2.67857 - 9.99654i) q^{52} +(-1.02007 + 3.80695i) q^{53} +(0.161073 - 3.39605i) q^{54} +(-0.290259 + 0.214460i) q^{55} +(-5.68713 + 2.54336i) q^{57} +(0.338694 + 1.26402i) q^{58} +(-1.24335 - 2.15354i) q^{59} +(0.0588534 + 6.08760i) q^{60} +(-0.997366 + 1.72749i) q^{61} +(-3.45254 + 3.45254i) q^{62} +0.520416i q^{64} +(-9.17297 + 11.5151i) q^{65} +(0.180609 - 0.0289122i) q^{66} +(0.677387 - 2.52804i) q^{67} +(-6.94160 + 1.86000i) q^{68} +(1.47948 - 3.87333i) q^{69} -9.39746i q^{71} +(3.16237 - 6.25763i) q^{72} +(3.75571 + 1.00634i) q^{73} +(0.649136 + 1.12434i) q^{74} +(3.38203 - 7.97257i) q^{75} -5.65384 q^{76} +(6.81140 - 3.04615i) q^{78} +(-4.68478 - 2.70476i) q^{79} +(-1.44198 + 3.30986i) q^{80} +(-7.24597 + 5.33816i) q^{81} +(7.60864 - 2.03873i) q^{82} +(6.75913 + 6.75913i) q^{83} +(10.1097 + 1.51829i) q^{85} +(-4.46060 - 2.57533i) q^{86} +(2.03151 - 2.80588i) q^{87} +(0.364346 + 0.0976263i) q^{88} +(-5.43562 + 9.41477i) q^{89} +(-3.37957 + 2.80067i) q^{90} +(2.66074 - 2.66074i) q^{92} +(12.8565 + 1.32976i) q^{93} +(-3.44585 + 1.98946i) q^{94} +(7.37345 + 3.21233i) q^{95} +(7.70342 - 6.25925i) q^{96} +(9.70695 + 9.70695i) q^{97} +(-0.360892 - 0.322792i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 4 q^{2} - 56 q^{8} + 32 q^{9} + 8 q^{15} + 48 q^{16} + 28 q^{18} + 16 q^{22} + 16 q^{23} - 8 q^{25} + 64 q^{29} - 64 q^{30} + 52 q^{32} - 80 q^{36} + 24 q^{37} - 8 q^{39} + 48 q^{43} - 8 q^{44} - 88 q^{46}+ \cdots - 80 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/735\mathbb{Z}\right)^\times\).

\(n\) \(346\) \(442\) \(491\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.169347 + 0.632011i 0.119746 + 0.446899i 0.999598 0.0283490i \(-0.00902498\pi\)
−0.879852 + 0.475248i \(0.842358\pi\)
\(3\) 1.01575 1.40294i 0.586445 0.809989i
\(4\) 1.36129 0.785942i 0.680646 0.392971i
\(5\) −2.22187 + 0.251543i −0.993652 + 0.112493i
\(6\) 1.05869 + 0.404383i 0.432208 + 0.165089i
\(7\) 0 0
\(8\) 1.65258 + 1.65258i 0.584276 + 0.584276i
\(9\) −0.936492 2.85008i −0.312164 0.950028i
\(10\) −0.535245 1.36165i −0.169259 0.430592i
\(11\) 0.139773 0.0806980i 0.0421431 0.0243313i −0.478780 0.877935i \(-0.658921\pi\)
0.520924 + 0.853603i \(0.325588\pi\)
\(12\) 0.280105 2.70814i 0.0808593 0.781772i
\(13\) 4.65555 4.65555i 1.29122 1.29122i 0.357181 0.934035i \(-0.383738\pi\)
0.934035 0.357181i \(-0.116262\pi\)
\(14\) 0 0
\(15\) −1.90398 + 3.37267i −0.491605 + 0.870819i
\(16\) 0.807294 1.39827i 0.201823 0.349569i
\(17\) −4.41610 1.18329i −1.07106 0.286990i −0.320133 0.947373i \(-0.603727\pi\)
−0.750929 + 0.660383i \(0.770394\pi\)
\(18\) 1.64269 1.07453i 0.387186 0.253268i
\(19\) −3.11497 1.79843i −0.714623 0.412588i 0.0981474 0.995172i \(-0.468708\pi\)
−0.812770 + 0.582584i \(0.802042\pi\)
\(20\) −2.82692 + 2.08869i −0.632119 + 0.467045i
\(21\) 0 0
\(22\) 0.0746721 + 0.0746721i 0.0159201 + 0.0159201i
\(23\) 2.31228 0.619573i 0.482144 0.129190i −0.00955698 0.999954i \(-0.503042\pi\)
0.491701 + 0.870764i \(0.336375\pi\)
\(24\) 3.99709 0.639861i 0.815903 0.130611i
\(25\) 4.87345 1.11779i 0.974691 0.223558i
\(26\) 3.73076 + 2.15395i 0.731662 + 0.422425i
\(27\) −4.94975 1.58114i −0.952579 0.304290i
\(28\) 0 0
\(29\) 2.00000 0.371391 0.185695 0.982607i \(-0.440546\pi\)
0.185695 + 0.982607i \(0.440546\pi\)
\(30\) −2.45399 0.632183i −0.448036 0.115420i
\(31\) 3.73115 + 6.46254i 0.670134 + 1.16071i 0.977866 + 0.209233i \(0.0670968\pi\)
−0.307732 + 0.951473i \(0.599570\pi\)
\(32\) 5.53538 + 1.48320i 0.978525 + 0.262195i
\(33\) 0.0287603 0.278063i 0.00500652 0.0484045i
\(34\) 2.99141i 0.513023i
\(35\) 0 0
\(36\) −3.51484 3.14377i −0.585807 0.523961i
\(37\) 1.91659 0.513548i 0.315085 0.0844268i −0.0978108 0.995205i \(-0.531184\pi\)
0.412896 + 0.910778i \(0.364517\pi\)
\(38\) 0.609116 2.27325i 0.0988117 0.368770i
\(39\) −1.80258 11.2603i −0.288643 1.80310i
\(40\) −4.08752 3.25614i −0.646294 0.514840i
\(41\) 12.0388i 1.88014i −0.340977 0.940072i \(-0.610758\pi\)
0.340977 0.940072i \(-0.389242\pi\)
\(42\) 0 0
\(43\) −5.56631 + 5.56631i −0.848854 + 0.848854i −0.989990 0.141136i \(-0.954924\pi\)
0.141136 + 0.989990i \(0.454924\pi\)
\(44\) 0.126848 0.219707i 0.0191230 0.0331221i
\(45\) 2.79768 + 6.09696i 0.417054 + 0.908882i
\(46\) 0.783154 + 1.35646i 0.115470 + 0.200000i
\(47\) 1.57392 + 5.87394i 0.229579 + 0.856802i 0.980518 + 0.196430i \(0.0629348\pi\)
−0.750939 + 0.660372i \(0.770399\pi\)
\(48\) −1.14169 2.55289i −0.164788 0.368478i
\(49\) 0 0
\(50\) 1.53176 + 2.89078i 0.216624 + 0.408818i
\(51\) −6.14576 + 4.99360i −0.860578 + 0.699244i
\(52\) 2.67857 9.99654i 0.371450 1.38627i
\(53\) −1.02007 + 3.80695i −0.140117 + 0.522924i 0.859807 + 0.510619i \(0.170584\pi\)
−0.999924 + 0.0123054i \(0.996083\pi\)
\(54\) 0.161073 3.39605i 0.0219193 0.462144i
\(55\) −0.290259 + 0.214460i −0.0391385 + 0.0289177i
\(56\) 0 0
\(57\) −5.68713 + 2.54336i −0.753279 + 0.336877i
\(58\) 0.338694 + 1.26402i 0.0444726 + 0.165974i
\(59\) −1.24335 2.15354i −0.161870 0.280367i 0.773669 0.633589i \(-0.218419\pi\)
−0.935539 + 0.353223i \(0.885086\pi\)
\(60\) 0.0588534 + 6.08760i 0.00759794 + 0.785905i
\(61\) −0.997366 + 1.72749i −0.127700 + 0.221182i −0.922785 0.385315i \(-0.874093\pi\)
0.795085 + 0.606498i \(0.207426\pi\)
\(62\) −3.45254 + 3.45254i −0.438473 + 0.438473i
\(63\) 0 0
\(64\) 0.520416i 0.0650520i
\(65\) −9.17297 + 11.5151i −1.13777 + 1.42827i
\(66\) 0.180609 0.0289122i 0.0222314 0.00355884i
\(67\) 0.677387 2.52804i 0.0827560 0.308850i −0.912124 0.409915i \(-0.865558\pi\)
0.994880 + 0.101065i \(0.0322251\pi\)
\(68\) −6.94160 + 1.86000i −0.841793 + 0.225558i
\(69\) 1.47948 3.87333i 0.178108 0.466294i
\(70\) 0 0
\(71\) 9.39746i 1.11527i −0.830085 0.557637i \(-0.811708\pi\)
0.830085 0.557637i \(-0.188292\pi\)
\(72\) 3.16237 6.25763i 0.372689 0.737469i
\(73\) 3.75571 + 1.00634i 0.439573 + 0.117783i 0.471816 0.881697i \(-0.343599\pi\)
−0.0322434 + 0.999480i \(0.510265\pi\)
\(74\) 0.649136 + 1.12434i 0.0754605 + 0.130701i
\(75\) 3.38203 7.97257i 0.390523 0.920593i
\(76\) −5.65384 −0.648540
\(77\) 0 0
\(78\) 6.81140 3.04615i 0.771239 0.344909i
\(79\) −4.68478 2.70476i −0.527079 0.304309i 0.212747 0.977107i \(-0.431759\pi\)
−0.739826 + 0.672798i \(0.765092\pi\)
\(80\) −1.44198 + 3.30986i −0.161218 + 0.370053i
\(81\) −7.24597 + 5.33816i −0.805107 + 0.593129i
\(82\) 7.60864 2.03873i 0.840234 0.225140i
\(83\) 6.75913 + 6.75913i 0.741911 + 0.741911i 0.972946 0.231034i \(-0.0742109\pi\)
−0.231034 + 0.972946i \(0.574211\pi\)
\(84\) 0 0
\(85\) 10.1097 + 1.51829i 1.09655 + 0.164681i
\(86\) −4.46060 2.57533i −0.480999 0.277705i
\(87\) 2.03151 2.80588i 0.217800 0.300822i
\(88\) 0.364346 + 0.0976263i 0.0388394 + 0.0104070i
\(89\) −5.43562 + 9.41477i −0.576175 + 0.997964i 0.419738 + 0.907645i \(0.362122\pi\)
−0.995913 + 0.0903187i \(0.971211\pi\)
\(90\) −3.37957 + 2.80067i −0.356238 + 0.295216i
\(91\) 0 0
\(92\) 2.66074 2.66074i 0.277401 0.277401i
\(93\) 12.8565 + 1.32976i 1.33316 + 0.137890i
\(94\) −3.44585 + 1.98946i −0.355413 + 0.205198i
\(95\) 7.37345 + 3.21233i 0.756500 + 0.329579i
\(96\) 7.70342 6.25925i 0.786227 0.638832i
\(97\) 9.70695 + 9.70695i 0.985592 + 0.985592i 0.999898 0.0143059i \(-0.00455388\pi\)
−0.0143059 + 0.999898i \(0.504554\pi\)
\(98\) 0 0
\(99\) −0.360892 0.322792i −0.0362710 0.0324418i
\(100\) 5.75567 5.35189i 0.575567 0.535189i
\(101\) 4.02217 2.32220i 0.400221 0.231068i −0.286358 0.958123i \(-0.592445\pi\)
0.686579 + 0.727055i \(0.259111\pi\)
\(102\) −4.19677 3.03853i −0.415543 0.300860i
\(103\) 2.57232 + 9.60004i 0.253459 + 0.945920i 0.968941 + 0.247290i \(0.0795401\pi\)
−0.715483 + 0.698630i \(0.753793\pi\)
\(104\) 15.3873 1.50885
\(105\) 0 0
\(106\) −2.57878 −0.250473
\(107\) 3.75029 + 13.9963i 0.362554 + 1.35307i 0.870706 + 0.491804i \(0.163662\pi\)
−0.508151 + 0.861268i \(0.669671\pi\)
\(108\) −7.98073 + 1.73782i −0.767946 + 0.167222i
\(109\) −7.99867 + 4.61803i −0.766134 + 0.442327i −0.831494 0.555534i \(-0.812514\pi\)
0.0653600 + 0.997862i \(0.479180\pi\)
\(110\) −0.184695 0.147129i −0.0176100 0.0140282i
\(111\) 1.22630 3.21050i 0.116395 0.304727i
\(112\) 0 0
\(113\) 4.87918 + 4.87918i 0.458994 + 0.458994i 0.898325 0.439331i \(-0.144784\pi\)
−0.439331 + 0.898325i \(0.644784\pi\)
\(114\) −2.57053 3.16362i −0.240752 0.296300i
\(115\) −4.98175 + 1.95825i −0.464550 + 0.182608i
\(116\) 2.72258 1.57188i 0.252785 0.145946i
\(117\) −17.6286 8.90882i −1.62976 0.823621i
\(118\) 1.15050 1.15050i 0.105912 0.105912i
\(119\) 0 0
\(120\) −8.72008 + 2.42713i −0.796031 + 0.221566i
\(121\) −5.48698 + 9.50372i −0.498816 + 0.863975i
\(122\) −1.26069 0.337801i −0.114138 0.0305831i
\(123\) −16.8897 12.2284i −1.52289 1.10260i
\(124\) 10.1584 + 5.86493i 0.912248 + 0.526687i
\(125\) −10.5470 + 3.70948i −0.943355 + 0.331786i
\(126\) 0 0
\(127\) −0.192048 0.192048i −0.0170415 0.0170415i 0.698535 0.715576i \(-0.253836\pi\)
−0.715576 + 0.698535i \(0.753836\pi\)
\(128\) 10.7418 2.87827i 0.949454 0.254405i
\(129\) 2.15521 + 13.4632i 0.189756 + 1.18537i
\(130\) −8.83108 3.84737i −0.774537 0.337437i
\(131\) 11.9048 + 6.87326i 1.04013 + 0.600519i 0.919870 0.392223i \(-0.128294\pi\)
0.120260 + 0.992742i \(0.461627\pi\)
\(132\) −0.179390 0.401128i −0.0156139 0.0349137i
\(133\) 0 0
\(134\) 1.71246 0.147934
\(135\) 11.3954 + 2.26802i 0.980763 + 0.195200i
\(136\) −5.34248 9.25345i −0.458114 0.793477i
\(137\) 7.65030 + 2.04989i 0.653609 + 0.175134i 0.570360 0.821395i \(-0.306804\pi\)
0.0832489 + 0.996529i \(0.473470\pi\)
\(138\) 2.69853 + 0.279111i 0.229714 + 0.0237595i
\(139\) 16.6862i 1.41531i 0.706560 + 0.707653i \(0.250246\pi\)
−0.706560 + 0.707653i \(0.749754\pi\)
\(140\) 0 0
\(141\) 9.83950 + 3.75836i 0.828636 + 0.316511i
\(142\) 5.93930 1.59143i 0.498415 0.133550i
\(143\) 0.275026 1.02641i 0.0229989 0.0858329i
\(144\) −4.74122 0.991384i −0.395102 0.0826153i
\(145\) −4.44375 + 0.503085i −0.369033 + 0.0417790i
\(146\) 2.54407i 0.210549i
\(147\) 0 0
\(148\) 2.20542 2.20542i 0.181284 0.181284i
\(149\) 7.80795 13.5238i 0.639652 1.10791i −0.345857 0.938287i \(-0.612412\pi\)
0.985509 0.169623i \(-0.0542550\pi\)
\(150\) 5.61149 + 0.787348i 0.458176 + 0.0642867i
\(151\) −3.63753 6.30039i −0.296018 0.512719i 0.679203 0.733951i \(-0.262326\pi\)
−0.975221 + 0.221232i \(0.928992\pi\)
\(152\) −2.17569 8.11979i −0.176472 0.658602i
\(153\) 0.763163 + 13.6944i 0.0616981 + 1.10713i
\(154\) 0 0
\(155\) −9.91575 13.4204i −0.796452 1.07795i
\(156\) −11.3038 13.9119i −0.905029 1.11384i
\(157\) −4.09630 + 15.2876i −0.326921 + 1.22008i 0.585447 + 0.810711i \(0.300919\pi\)
−0.912367 + 0.409373i \(0.865747\pi\)
\(158\) 0.916084 3.41887i 0.0728797 0.271991i
\(159\) 4.30479 + 5.29801i 0.341392 + 0.420160i
\(160\) −12.6720 1.90310i −1.00181 0.150453i
\(161\) 0 0
\(162\) −4.60086 3.67553i −0.361477 0.288777i
\(163\) −3.74189 13.9649i −0.293088 1.09382i −0.942724 0.333573i \(-0.891746\pi\)
0.649636 0.760245i \(-0.274921\pi\)
\(164\) −9.46179 16.3883i −0.738842 1.27971i
\(165\) 0.00604288 + 0.625054i 0.000470437 + 0.0486604i
\(166\) −3.12721 + 5.41648i −0.242718 + 0.420401i
\(167\) 2.52703 2.52703i 0.195547 0.195547i −0.602541 0.798088i \(-0.705845\pi\)
0.798088 + 0.602541i \(0.205845\pi\)
\(168\) 0 0
\(169\) 30.3482i 2.33448i
\(170\) 0.752467 + 6.64654i 0.0577116 + 0.509766i
\(171\) −2.20853 + 10.5621i −0.168891 + 0.807707i
\(172\) −3.20257 + 11.9522i −0.244194 + 0.911344i
\(173\) −1.96899 + 0.527588i −0.149699 + 0.0401118i −0.332890 0.942966i \(-0.608024\pi\)
0.183191 + 0.983077i \(0.441357\pi\)
\(174\) 2.11738 + 0.808766i 0.160518 + 0.0613124i
\(175\) 0 0
\(176\) 0.260588i 0.0196426i
\(177\) −4.28422 0.443121i −0.322022 0.0333070i
\(178\) −6.87074 1.84101i −0.514984 0.137990i
\(179\) 10.0466 + 17.4012i 0.750918 + 1.30063i 0.947378 + 0.320117i \(0.103722\pi\)
−0.196460 + 0.980512i \(0.562945\pi\)
\(180\) 8.60032 + 6.10093i 0.641030 + 0.454736i
\(181\) −16.6805 −1.23986 −0.619928 0.784659i \(-0.712838\pi\)
−0.619928 + 0.784659i \(0.712838\pi\)
\(182\) 0 0
\(183\) 1.41049 + 3.15395i 0.104266 + 0.233147i
\(184\) 4.84513 + 2.79734i 0.357188 + 0.206222i
\(185\) −4.12924 + 1.62314i −0.303588 + 0.119336i
\(186\) 1.33678 + 8.35063i 0.0980177 + 0.612298i
\(187\) −0.712741 + 0.190978i −0.0521208 + 0.0139657i
\(188\) 6.75913 + 6.75913i 0.492961 + 0.492961i
\(189\) 0 0
\(190\) −0.781560 + 5.20410i −0.0567003 + 0.377545i
\(191\) −18.7304 10.8140i −1.35528 0.782472i −0.366298 0.930498i \(-0.619375\pi\)
−0.988984 + 0.148026i \(0.952708\pi\)
\(192\) 0.730113 + 0.528614i 0.0526914 + 0.0381494i
\(193\) 5.60798 + 1.50265i 0.403671 + 0.108163i 0.454941 0.890521i \(-0.349660\pi\)
−0.0512701 + 0.998685i \(0.516327\pi\)
\(194\) −4.49106 + 7.77874i −0.322439 + 0.558481i
\(195\) 6.83755 + 24.5656i 0.489647 + 1.75918i
\(196\) 0 0
\(197\) −9.12082 + 9.12082i −0.649832 + 0.649832i −0.952952 0.303121i \(-0.901972\pi\)
0.303121 + 0.952952i \(0.401972\pi\)
\(198\) 0.142892 0.282752i 0.0101549 0.0200943i
\(199\) −0.552436 + 0.318949i −0.0391612 + 0.0226097i −0.519453 0.854499i \(-0.673864\pi\)
0.480292 + 0.877109i \(0.340531\pi\)
\(200\) 9.90102 + 6.20654i 0.700108 + 0.438868i
\(201\) −2.85864 3.51820i −0.201633 0.248155i
\(202\) 2.14880 + 2.14880i 0.151189 + 0.151189i
\(203\) 0 0
\(204\) −4.44148 + 11.6280i −0.310966 + 0.814120i
\(205\) 3.02827 + 26.7487i 0.211503 + 1.86821i
\(206\) −5.63172 + 3.25147i −0.392380 + 0.226541i
\(207\) −3.93127 6.00997i −0.273242 0.417722i
\(208\) −2.75134 10.2681i −0.190771 0.711966i
\(209\) −0.580518 −0.0401553
\(210\) 0 0
\(211\) −6.69574 −0.460953 −0.230477 0.973078i \(-0.574029\pi\)
−0.230477 + 0.973078i \(0.574029\pi\)
\(212\) 1.60343 + 5.98408i 0.110124 + 0.410988i
\(213\) −13.1841 9.54550i −0.903359 0.654047i
\(214\) −8.21070 + 4.74045i −0.561272 + 0.324051i
\(215\) 10.9675 13.7678i 0.747976 0.938956i
\(216\) −5.56690 10.7928i −0.378780 0.734359i
\(217\) 0 0
\(218\) −4.27320 4.27320i −0.289417 0.289417i
\(219\) 5.22671 4.24685i 0.353189 0.286976i
\(220\) −0.226574 + 0.520069i −0.0152756 + 0.0350630i
\(221\) −26.0682 + 15.0505i −1.75354 + 1.01241i
\(222\) 2.23674 + 0.231348i 0.150120 + 0.0155271i
\(223\) 0.382073 0.382073i 0.0255855 0.0255855i −0.694198 0.719784i \(-0.744241\pi\)
0.719784 + 0.694198i \(0.244241\pi\)
\(224\) 0 0
\(225\) −7.74975 12.8430i −0.516650 0.856197i
\(226\) −2.25742 + 3.90997i −0.150161 + 0.260087i
\(227\) 17.0874 + 4.57855i 1.13413 + 0.303889i 0.776588 0.630008i \(-0.216949\pi\)
0.357541 + 0.933897i \(0.383615\pi\)
\(228\) −5.74291 + 7.93201i −0.380333 + 0.525310i
\(229\) −2.00978 1.16035i −0.132810 0.0766780i 0.432123 0.901815i \(-0.357765\pi\)
−0.564933 + 0.825137i \(0.691098\pi\)
\(230\) −2.08128 2.81689i −0.137235 0.185740i
\(231\) 0 0
\(232\) 3.30516 + 3.30516i 0.216995 + 0.216995i
\(233\) −8.28583 + 2.22018i −0.542823 + 0.145449i −0.519803 0.854286i \(-0.673995\pi\)
−0.0230197 + 0.999735i \(0.507328\pi\)
\(234\) 2.64513 12.6501i 0.172917 0.826965i
\(235\) −4.97459 12.6552i −0.324507 0.825537i
\(236\) −3.38511 1.95440i −0.220352 0.127220i
\(237\) −8.55320 + 3.82511i −0.555590 + 0.248467i
\(238\) 0 0
\(239\) 21.5667 1.39503 0.697515 0.716570i \(-0.254289\pi\)
0.697515 + 0.716570i \(0.254289\pi\)
\(240\) 3.17884 + 5.38501i 0.205193 + 0.347601i
\(241\) −3.24527 5.62098i −0.209047 0.362079i 0.742368 0.669992i \(-0.233703\pi\)
−0.951414 + 0.307913i \(0.900369\pi\)
\(242\) −6.93566 1.85840i −0.445841 0.119463i
\(243\) 0.129018 + 15.5879i 0.00827648 + 0.999966i
\(244\) 3.13549i 0.200729i
\(245\) 0 0
\(246\) 4.86828 12.7453i 0.310390 0.812613i
\(247\) −22.8745 + 6.12922i −1.45547 + 0.389993i
\(248\) −4.51385 + 16.8459i −0.286630 + 1.06972i
\(249\) 16.3483 2.61706i 1.03603 0.165850i
\(250\) −4.13053 6.03765i −0.261238 0.381854i
\(251\) 25.3594i 1.60067i −0.599552 0.800336i \(-0.704655\pi\)
0.599552 0.800336i \(-0.295345\pi\)
\(252\) 0 0
\(253\) 0.273196 0.273196i 0.0171757 0.0171757i
\(254\) 0.0888536 0.153899i 0.00557517 0.00965648i
\(255\) 12.3990 12.6411i 0.776455 0.791615i
\(256\) 4.15861 + 7.20292i 0.259913 + 0.450183i
\(257\) 2.98446 + 11.1381i 0.186165 + 0.694778i 0.994378 + 0.105888i \(0.0337684\pi\)
−0.808213 + 0.588890i \(0.799565\pi\)
\(258\) −8.14391 + 3.64207i −0.507018 + 0.226745i
\(259\) 0 0
\(260\) −3.43688 + 22.8848i −0.213146 + 1.41926i
\(261\) −1.87298 5.70017i −0.115935 0.352832i
\(262\) −2.32793 + 8.68795i −0.143820 + 0.536743i
\(263\) 5.10066 19.0359i 0.314520 1.17380i −0.609916 0.792466i \(-0.708797\pi\)
0.924436 0.381338i \(-0.124537\pi\)
\(264\) 0.507050 0.411992i 0.0312068 0.0253564i
\(265\) 1.30885 8.71515i 0.0804023 0.535367i
\(266\) 0 0
\(267\) 7.68713 + 17.1889i 0.470445 + 1.05195i
\(268\) −1.06477 3.97379i −0.0650414 0.242738i
\(269\) 1.68918 + 2.92574i 0.102991 + 0.178386i 0.912916 0.408148i \(-0.133825\pi\)
−0.809925 + 0.586534i \(0.800492\pi\)
\(270\) 0.496368 + 7.58612i 0.0302080 + 0.461677i
\(271\) 8.04393 13.9325i 0.488634 0.846339i −0.511281 0.859414i \(-0.670829\pi\)
0.999915 + 0.0130751i \(0.00416205\pi\)
\(272\) −5.21966 + 5.21966i −0.316488 + 0.316488i
\(273\) 0 0
\(274\) 5.18221i 0.313069i
\(275\) 0.590973 0.549515i 0.0356370 0.0331370i
\(276\) −1.03021 6.43551i −0.0620112 0.387372i
\(277\) −1.72605 + 6.44170i −0.103708 + 0.387044i −0.998195 0.0600492i \(-0.980874\pi\)
0.894487 + 0.447094i \(0.147541\pi\)
\(278\) −10.5459 + 2.82576i −0.632499 + 0.169478i
\(279\) 14.9246 16.6862i 0.893512 0.998977i
\(280\) 0 0
\(281\) 12.5965i 0.751447i −0.926732 0.375723i \(-0.877394\pi\)
0.926732 0.375723i \(-0.122606\pi\)
\(282\) −0.709033 + 6.85514i −0.0422223 + 0.408218i
\(283\) 17.6470 + 4.72849i 1.04900 + 0.281080i 0.741840 0.670577i \(-0.233953\pi\)
0.307164 + 0.951657i \(0.400620\pi\)
\(284\) −7.38586 12.7927i −0.438270 0.759106i
\(285\) 11.9963 7.08159i 0.710601 0.419477i
\(286\) 0.695278 0.0411127
\(287\) 0 0
\(288\) −0.956589 17.1653i −0.0563675 1.01147i
\(289\) 3.37934 + 1.95106i 0.198785 + 0.114768i
\(290\) −1.07049 2.72330i −0.0628613 0.159918i
\(291\) 23.4782 3.75842i 1.37631 0.220323i
\(292\) 5.90355 1.58185i 0.345479 0.0925708i
\(293\) −2.06389 2.06389i −0.120574 0.120574i 0.644245 0.764819i \(-0.277172\pi\)
−0.764819 + 0.644245i \(0.777172\pi\)
\(294\) 0 0
\(295\) 3.30426 + 4.47214i 0.192382 + 0.260378i
\(296\) 4.01600 + 2.31864i 0.233425 + 0.134768i
\(297\) −0.819436 + 0.178434i −0.0475485 + 0.0103538i
\(298\) 9.86942 + 2.64450i 0.571720 + 0.153192i
\(299\) 7.88047 13.6494i 0.455739 0.789364i
\(300\) −1.66205 13.5111i −0.0959588 0.780062i
\(301\) 0 0
\(302\) 3.36591 3.36591i 0.193686 0.193686i
\(303\) 0.827619 8.00166i 0.0475455 0.459683i
\(304\) −5.02939 + 2.90372i −0.288455 + 0.166540i
\(305\) 1.78148 4.08914i 0.102008 0.234144i
\(306\) −8.52577 + 2.80143i −0.487386 + 0.160147i
\(307\) 0.640910 + 0.640910i 0.0365787 + 0.0365787i 0.725160 0.688581i \(-0.241766\pi\)
−0.688581 + 0.725160i \(0.741766\pi\)
\(308\) 0 0
\(309\) 16.0811 + 6.14245i 0.914825 + 0.349432i
\(310\) 6.80264 8.53956i 0.386364 0.485015i
\(311\) −18.0536 + 10.4233i −1.02373 + 0.591049i −0.915181 0.403042i \(-0.867953\pi\)
−0.108546 + 0.994091i \(0.534619\pi\)
\(312\) 15.6297 21.5875i 0.884860 1.22215i
\(313\) −4.53760 16.9346i −0.256481 0.957198i −0.967261 0.253784i \(-0.918325\pi\)
0.710780 0.703414i \(-0.248342\pi\)
\(314\) −10.3556 −0.584402
\(315\) 0 0
\(316\) −8.50313 −0.478339
\(317\) 1.06928 + 3.99061i 0.0600567 + 0.224135i 0.989431 0.145004i \(-0.0463195\pi\)
−0.929374 + 0.369139i \(0.879653\pi\)
\(318\) −2.61940 + 3.61787i −0.146889 + 0.202880i
\(319\) 0.279546 0.161396i 0.0156516 0.00903644i
\(320\) −0.130907 1.15630i −0.00731791 0.0646390i
\(321\) 23.4453 + 8.95532i 1.30859 + 0.499837i
\(322\) 0 0
\(323\) 11.6280 + 11.6280i 0.646997 + 0.646997i
\(324\) −5.66839 + 12.9617i −0.314910 + 0.720095i
\(325\) 17.4846 27.8925i 0.969874 1.54720i
\(326\) 8.19231 4.72983i 0.453730 0.261961i
\(327\) −1.64584 + 15.9125i −0.0910151 + 0.879961i
\(328\) 19.8951 19.8951i 1.09852 1.09852i
\(329\) 0 0
\(330\) −0.394018 + 0.109670i −0.0216900 + 0.00603714i
\(331\) 8.74533 15.1474i 0.480687 0.832574i −0.519068 0.854733i \(-0.673721\pi\)
0.999754 + 0.0221591i \(0.00705403\pi\)
\(332\) 14.5134 + 3.88886i 0.796529 + 0.213429i
\(333\) −3.25852 4.98150i −0.178566 0.272985i
\(334\) 2.02505 + 1.16916i 0.110806 + 0.0639738i
\(335\) −0.869159 + 5.78739i −0.0474872 + 0.316199i
\(336\) 0 0
\(337\) −1.65213 1.65213i −0.0899974 0.0899974i 0.660675 0.750672i \(-0.270270\pi\)
−0.750672 + 0.660675i \(0.770270\pi\)
\(338\) 19.1804 5.13937i 1.04328 0.279545i
\(339\) 11.8012 1.88916i 0.640956 0.102605i
\(340\) 14.9555 5.87879i 0.811076 0.318822i
\(341\) 1.04303 + 0.602192i 0.0564831 + 0.0326105i
\(342\) −7.04939 + 0.392849i −0.381188 + 0.0212429i
\(343\) 0 0
\(344\) −18.3976 −0.991930
\(345\) −2.31291 + 8.97820i −0.124523 + 0.483370i
\(346\) −0.666883 1.15507i −0.0358518 0.0620972i
\(347\) −25.1026 6.72623i −1.34758 0.361083i −0.488338 0.872654i \(-0.662397\pi\)
−0.859241 + 0.511572i \(0.829063\pi\)
\(348\) 0.560210 5.41627i 0.0300304 0.290343i
\(349\) 28.1366i 1.50612i −0.657953 0.753059i \(-0.728578\pi\)
0.657953 0.753059i \(-0.271422\pi\)
\(350\) 0 0
\(351\) −30.4048 + 15.6827i −1.62289 + 0.837081i
\(352\) 0.893387 0.239382i 0.0476177 0.0127591i
\(353\) 3.97434 14.8324i 0.211533 0.789451i −0.775826 0.630947i \(-0.782666\pi\)
0.987358 0.158503i \(-0.0506669\pi\)
\(354\) −0.445462 2.78271i −0.0236760 0.147900i
\(355\) 2.36386 + 20.8800i 0.125461 + 1.10819i
\(356\) 17.0883i 0.905680i
\(357\) 0 0
\(358\) −9.29640 + 9.29640i −0.491330 + 0.491330i
\(359\) 6.73373 11.6632i 0.355393 0.615558i −0.631792 0.775138i \(-0.717680\pi\)
0.987185 + 0.159579i \(0.0510138\pi\)
\(360\) −5.45233 + 14.6991i −0.287363 + 0.774712i
\(361\) −3.03131 5.25038i −0.159543 0.276336i
\(362\) −2.82480 10.5423i −0.148468 0.554090i
\(363\) 7.75976 + 17.3513i 0.407282 + 0.910709i
\(364\) 0 0
\(365\) −8.59786 1.29124i −0.450033 0.0675866i
\(366\) −1.75447 + 1.42555i −0.0917075 + 0.0745149i
\(367\) −1.02051 + 3.80860i −0.0532703 + 0.198807i −0.987433 0.158041i \(-0.949482\pi\)
0.934162 + 0.356849i \(0.116149\pi\)
\(368\) 1.00036 3.73338i 0.0521471 0.194616i
\(369\) −34.3116 + 11.2742i −1.78619 + 0.586913i
\(370\) −1.72512 2.33485i −0.0896846 0.121383i
\(371\) 0 0
\(372\) 18.5466 8.29427i 0.961594 0.430038i
\(373\) −1.55051 5.78658i −0.0802823 0.299618i 0.914097 0.405496i \(-0.132901\pi\)
−0.994379 + 0.105878i \(0.966235\pi\)
\(374\) −0.241401 0.418118i −0.0124825 0.0216204i
\(375\) −5.50900 + 18.5648i −0.284483 + 0.958681i
\(376\) −7.10614 + 12.3082i −0.366471 + 0.634746i
\(377\) 9.31109 9.31109i 0.479546 0.479546i
\(378\) 0 0
\(379\) 25.1498i 1.29186i 0.763397 + 0.645930i \(0.223530\pi\)
−0.763397 + 0.645930i \(0.776470\pi\)
\(380\) 12.5621 1.42218i 0.644424 0.0729564i
\(381\) −0.464505 + 0.0743588i −0.0237973 + 0.00380952i
\(382\) 3.66262 13.6691i 0.187396 0.699372i
\(383\) 6.01154 1.61079i 0.307175 0.0823073i −0.101939 0.994791i \(-0.532505\pi\)
0.409114 + 0.912483i \(0.365838\pi\)
\(384\) 6.87302 17.9938i 0.350737 0.918242i
\(385\) 0 0
\(386\) 3.79877i 0.193352i
\(387\) 21.0773 + 10.6516i 1.07142 + 0.541454i
\(388\) 20.8431 + 5.58489i 1.05815 + 0.283530i
\(389\) −13.0350 22.5773i −0.660901 1.14471i −0.980379 0.197120i \(-0.936841\pi\)
0.319479 0.947593i \(-0.396492\pi\)
\(390\) −14.3678 + 8.48152i −0.727544 + 0.429478i
\(391\) −10.9444 −0.553482
\(392\) 0 0
\(393\) 21.7352 9.72026i 1.09639 0.490322i
\(394\) −7.30904 4.21988i −0.368224 0.212594i
\(395\) 11.0894 + 4.83121i 0.557966 + 0.243085i
\(396\) −0.744975 0.155773i −0.0374364 0.00782791i
\(397\) −20.4972 + 5.49222i −1.02873 + 0.275647i −0.733435 0.679760i \(-0.762084\pi\)
−0.295293 + 0.955407i \(0.595417\pi\)
\(398\) −0.295133 0.295133i −0.0147937 0.0147937i
\(399\) 0 0
\(400\) 2.37133 7.71681i 0.118566 0.385840i
\(401\) 3.15603 + 1.82213i 0.157605 + 0.0909930i 0.576728 0.816936i \(-0.304329\pi\)
−0.419124 + 0.907929i \(0.637663\pi\)
\(402\) 1.73944 2.40249i 0.0867554 0.119825i
\(403\) 47.4572 + 12.7161i 2.36401 + 0.633435i
\(404\) 3.65023 6.32239i 0.181606 0.314551i
\(405\) 14.7569 13.6834i 0.733274 0.679933i
\(406\) 0 0
\(407\) 0.226445 0.226445i 0.0112245 0.0112245i
\(408\) −18.4087 1.90403i −0.911367 0.0942635i
\(409\) −7.47293 + 4.31450i −0.369513 + 0.213338i −0.673245 0.739419i \(-0.735100\pi\)
0.303733 + 0.952757i \(0.401767\pi\)
\(410\) −16.3926 + 6.44370i −0.809574 + 0.318232i
\(411\) 10.6467 8.65074i 0.525163 0.426710i
\(412\) 11.0468 + 11.0468i 0.544235 + 0.544235i
\(413\) 0 0
\(414\) 3.13262 3.50237i 0.153960 0.172132i
\(415\) −16.7182 13.3177i −0.820662 0.653742i
\(416\) 32.6753 18.8651i 1.60204 0.924937i
\(417\) 23.4098 + 16.9491i 1.14638 + 0.829999i
\(418\) −0.0983088 0.366894i −0.00480844 0.0179454i
\(419\) −27.9057 −1.36328 −0.681641 0.731687i \(-0.738733\pi\)
−0.681641 + 0.731687i \(0.738733\pi\)
\(420\) 0 0
\(421\) 22.2684 1.08529 0.542647 0.839961i \(-0.317422\pi\)
0.542647 + 0.839961i \(0.317422\pi\)
\(422\) −1.13390 4.23178i −0.0551974 0.206000i
\(423\) 15.2673 9.98669i 0.742320 0.485570i
\(424\) −7.97704 + 4.60555i −0.387399 + 0.223665i
\(425\) −22.8443 0.830428i −1.10811 0.0402817i
\(426\) 3.80018 9.94899i 0.184119 0.482030i
\(427\) 0 0
\(428\) 16.1055 + 16.1055i 0.778489 + 0.778489i
\(429\) −1.16064 1.42843i −0.0560361 0.0689651i
\(430\) 10.5587 + 4.60003i 0.509186 + 0.221833i
\(431\) 1.70274 0.983080i 0.0820183 0.0473533i −0.458430 0.888731i \(-0.651588\pi\)
0.540448 + 0.841377i \(0.318255\pi\)
\(432\) −6.20677 + 5.64466i −0.298623 + 0.271579i
\(433\) 18.7649 18.7649i 0.901782 0.901782i −0.0938083 0.995590i \(-0.529904\pi\)
0.995590 + 0.0938083i \(0.0299041\pi\)
\(434\) 0 0
\(435\) −3.80795 + 6.74533i −0.182577 + 0.323414i
\(436\) −7.25901 + 12.5730i −0.347644 + 0.602137i
\(437\) −8.31694 2.22852i −0.397853 0.106604i
\(438\) 3.56918 + 2.58415i 0.170542 + 0.123475i
\(439\) 22.4711 + 12.9737i 1.07249 + 0.619202i 0.928860 0.370430i \(-0.120790\pi\)
0.143629 + 0.989632i \(0.454123\pi\)
\(440\) −0.834089 0.125265i −0.0397636 0.00597176i
\(441\) 0 0
\(442\) −13.9266 13.9266i −0.662423 0.662423i
\(443\) −34.2230 + 9.17002i −1.62598 + 0.435681i −0.952752 0.303751i \(-0.901761\pi\)
−0.673232 + 0.739431i \(0.735094\pi\)
\(444\) −0.853912 5.33423i −0.0405249 0.253151i
\(445\) 9.70905 22.2857i 0.460253 1.05645i
\(446\) 0.306177 + 0.176771i 0.0144979 + 0.00837036i
\(447\) −11.0421 24.6909i −0.522274 1.16784i
\(448\) 0 0
\(449\) −17.4443 −0.823245 −0.411623 0.911354i \(-0.635038\pi\)
−0.411623 + 0.911354i \(0.635038\pi\)
\(450\) 6.80449 7.07284i 0.320767 0.333417i
\(451\) −0.971506 1.68270i −0.0457464 0.0792351i
\(452\) 10.4767 + 2.80723i 0.492784 + 0.132041i
\(453\) −12.5339 1.29640i −0.588895 0.0609100i
\(454\) 11.5748i 0.543231i
\(455\) 0 0
\(456\) −13.6016 5.19533i −0.636952 0.243294i
\(457\) 33.9737 9.10323i 1.58922 0.425831i 0.647458 0.762101i \(-0.275832\pi\)
0.941766 + 0.336269i \(0.109165\pi\)
\(458\) 0.393002 1.46671i 0.0183638 0.0685346i
\(459\) 19.9876 + 12.8395i 0.932943 + 0.599295i
\(460\) −5.24254 + 6.58111i −0.244435 + 0.306846i
\(461\) 7.52593i 0.350517i 0.984522 + 0.175259i \(0.0560762\pi\)
−0.984522 + 0.175259i \(0.943924\pi\)
\(462\) 0 0
\(463\) −16.6029 + 16.6029i −0.771601 + 0.771601i −0.978386 0.206785i \(-0.933700\pi\)
0.206785 + 0.978386i \(0.433700\pi\)
\(464\) 1.61459 2.79655i 0.0749554 0.129826i
\(465\) −28.9000 + 0.279398i −1.34021 + 0.0129568i
\(466\) −2.80636 4.86075i −0.130002 0.225170i
\(467\) −2.82346 10.5373i −0.130654 0.487608i 0.869324 0.494243i \(-0.164555\pi\)
−0.999978 + 0.00663489i \(0.997888\pi\)
\(468\) −30.9995 + 1.72754i −1.43295 + 0.0798556i
\(469\) 0 0
\(470\) 7.15582 5.28712i 0.330073 0.243877i
\(471\) 17.2868 + 21.2753i 0.796533 + 0.980314i
\(472\) 1.50417 5.61363i 0.0692349 0.258388i
\(473\) −0.328830 + 1.22721i −0.0151196 + 0.0564271i
\(474\) −3.86596 4.75794i −0.177570 0.218540i
\(475\) −17.1909 5.28267i −0.788774 0.242385i
\(476\) 0 0
\(477\) 11.8054 0.657893i 0.540532 0.0301228i
\(478\) 3.65224 + 13.6304i 0.167050 + 0.623438i
\(479\) 8.56960 + 14.8430i 0.391555 + 0.678193i 0.992655 0.120981i \(-0.0386039\pi\)
−0.601100 + 0.799174i \(0.705271\pi\)
\(480\) −15.5416 + 15.8450i −0.709372 + 0.723222i
\(481\) 6.53192 11.3136i 0.297830 0.515856i
\(482\) 3.00294 3.00294i 0.136780 0.136780i
\(483\) 0 0
\(484\) 17.2498i 0.784081i
\(485\) −24.0093 19.1259i −1.09021 0.868463i
\(486\) −9.82989 + 2.72130i −0.445893 + 0.123441i
\(487\) −5.18649 + 19.3562i −0.235022 + 0.877115i 0.743117 + 0.669162i \(0.233347\pi\)
−0.978139 + 0.207953i \(0.933320\pi\)
\(488\) −4.50304 + 1.20659i −0.203843 + 0.0546196i
\(489\) −23.3928 8.93527i −1.05786 0.404067i
\(490\) 0 0
\(491\) 25.4502i 1.14855i 0.818661 + 0.574277i \(0.194717\pi\)
−0.818661 + 0.574277i \(0.805283\pi\)
\(492\) −32.6027 3.37213i −1.46984 0.152027i
\(493\) −8.83220 2.36658i −0.397782 0.106585i
\(494\) −7.74746 13.4190i −0.348575 0.603749i
\(495\) 0.883053 + 0.626423i 0.0396903 + 0.0281556i
\(496\) 12.0485 0.540995
\(497\) 0 0
\(498\) 4.42254 + 9.88910i 0.198179 + 0.443141i
\(499\) 13.2157 + 7.63009i 0.591616 + 0.341570i 0.765736 0.643155i \(-0.222375\pi\)
−0.174120 + 0.984724i \(0.555708\pi\)
\(500\) −11.4421 + 13.3390i −0.511708 + 0.596540i
\(501\) −0.978437 6.11211i −0.0437133 0.273069i
\(502\) 16.0274 4.29453i 0.715338 0.191674i
\(503\) −7.55387 7.55387i −0.336810 0.336810i 0.518355 0.855165i \(-0.326545\pi\)
−0.855165 + 0.518355i \(0.826545\pi\)
\(504\) 0 0
\(505\) −8.35263 + 6.17139i −0.371687 + 0.274623i
\(506\) 0.218928 + 0.126398i 0.00973252 + 0.00561907i
\(507\) −42.5768 30.8263i −1.89090 1.36904i
\(508\) −0.412372 0.110495i −0.0182960 0.00490241i
\(509\) 19.6787 34.0846i 0.872244 1.51077i 0.0125748 0.999921i \(-0.495997\pi\)
0.859670 0.510851i \(-0.170669\pi\)
\(510\) 10.0890 + 5.69557i 0.446750 + 0.252204i
\(511\) 0 0
\(512\) 11.8791 11.8791i 0.524986 0.524986i
\(513\) 12.5747 + 13.8270i 0.555189 + 0.610475i
\(514\) −6.53402 + 3.77242i −0.288203 + 0.166394i
\(515\) −8.13020 20.6830i −0.358259 0.911404i
\(516\) 13.5152 + 16.6335i 0.594972 + 0.732248i
\(517\) 0.694006 + 0.694006i 0.0305223 + 0.0305223i
\(518\) 0 0
\(519\) −1.25983 + 3.29827i −0.0553003 + 0.144778i
\(520\) −34.1887 + 3.87057i −1.49928 + 0.169736i
\(521\) −13.2100 + 7.62679i −0.578740 + 0.334136i −0.760632 0.649183i \(-0.775111\pi\)
0.181893 + 0.983318i \(0.441778\pi\)
\(522\) 3.28538 2.14905i 0.143797 0.0940614i
\(523\) −4.81336 17.9637i −0.210473 0.785497i −0.987711 0.156290i \(-0.950046\pi\)
0.777238 0.629207i \(-0.216620\pi\)
\(524\) 21.6079 0.943947
\(525\) 0 0
\(526\) 12.8947 0.562235
\(527\) −8.83007 32.9543i −0.384644 1.43551i
\(528\) −0.365590 0.264693i −0.0159102 0.0115193i
\(529\) −14.9558 + 8.63475i −0.650253 + 0.375424i
\(530\) 5.72972 0.648672i 0.248883 0.0281765i
\(531\) −4.97338 + 5.56041i −0.215826 + 0.241301i
\(532\) 0 0
\(533\) −56.0471 56.0471i −2.42767 2.42767i
\(534\) −9.56181 + 7.76924i −0.413780 + 0.336208i
\(535\) −11.8533 30.1546i −0.512465 1.30370i
\(536\) 5.29724 3.05836i 0.228806 0.132101i
\(537\) 34.6178 + 3.58055i 1.49387 + 0.154512i
\(538\) −1.56304 + 1.56304i −0.0673876 + 0.0673876i
\(539\) 0 0
\(540\) 17.2951 5.86872i 0.744260 0.252550i
\(541\) 0.951978 1.64887i 0.0409287 0.0708906i −0.844835 0.535026i \(-0.820302\pi\)
0.885764 + 0.464136i \(0.153635\pi\)
\(542\) 10.1677 + 2.72443i 0.436740 + 0.117024i
\(543\) −16.9433 + 23.4018i −0.727107 + 1.00427i
\(544\) −22.6897 13.0999i −0.972814 0.561654i
\(545\) 16.6104 12.2727i 0.711512 0.525705i
\(546\) 0 0
\(547\) 4.09919 + 4.09919i 0.175269 + 0.175269i 0.789290 0.614021i \(-0.210449\pi\)
−0.614021 + 0.789290i \(0.710449\pi\)
\(548\) 12.0254 3.22219i 0.513699 0.137645i
\(549\) 5.85751 + 1.22480i 0.249993 + 0.0522731i
\(550\) 0.447379 + 0.280443i 0.0190763 + 0.0119581i
\(551\) −6.22994 3.59686i −0.265404 0.153231i
\(552\) 8.84595 3.95603i 0.376509 0.168380i
\(553\) 0 0
\(554\) −4.36352 −0.185388
\(555\) −1.91711 + 7.44179i −0.0813768 + 0.315887i
\(556\) 13.1144 + 22.7148i 0.556174 + 0.963322i
\(557\) −8.90537 2.38619i −0.377333 0.101106i 0.0651676 0.997874i \(-0.479242\pi\)
−0.442500 + 0.896768i \(0.645908\pi\)
\(558\) 13.0733 + 6.60675i 0.553437 + 0.279686i
\(559\) 51.8284i 2.19211i
\(560\) 0 0
\(561\) −0.456037 + 1.19392i −0.0192539 + 0.0504074i
\(562\) 7.96115 2.13318i 0.335821 0.0899829i
\(563\) 0.295060 1.10118i 0.0124353 0.0464091i −0.959429 0.281949i \(-0.909019\pi\)
0.971865 + 0.235540i \(0.0756858\pi\)
\(564\) 16.3483 2.61706i 0.688387 0.110198i
\(565\) −12.0682 9.61360i −0.507715 0.404447i
\(566\) 11.9538i 0.502457i
\(567\) 0 0
\(568\) 15.5301 15.5301i 0.651628 0.651628i
\(569\) −1.29985 + 2.25140i −0.0544924 + 0.0943835i −0.891985 0.452065i \(-0.850687\pi\)
0.837492 + 0.546449i \(0.184021\pi\)
\(570\) 6.50718 + 6.38256i 0.272556 + 0.267336i
\(571\) −1.39746 2.42048i −0.0584820 0.101294i 0.835302 0.549791i \(-0.185293\pi\)
−0.893784 + 0.448497i \(0.851959\pi\)
\(572\) −0.432310 1.61340i −0.0180758 0.0674597i
\(573\) −34.1968 + 15.2933i −1.42859 + 0.638886i
\(574\) 0 0
\(575\) 10.5762 5.60411i 0.441059 0.233708i
\(576\) 1.48323 0.487365i 0.0618012 0.0203069i
\(577\) −4.62068 + 17.2446i −0.192362 + 0.717903i 0.800573 + 0.599236i \(0.204529\pi\)
−0.992934 + 0.118667i \(0.962138\pi\)
\(578\) −0.660812 + 2.46618i −0.0274862 + 0.102580i
\(579\) 7.80445 6.34134i 0.324342 0.263537i
\(580\) −5.65384 + 4.17737i −0.234763 + 0.173456i
\(581\) 0 0
\(582\) 6.35131 + 14.2020i 0.263270 + 0.588691i
\(583\) 0.164635 + 0.614426i 0.00681848 + 0.0254469i
\(584\) 4.54356 + 7.86968i 0.188014 + 0.325650i
\(585\) 41.4094 + 15.3599i 1.71207 + 0.635055i
\(586\) 0.954887 1.65391i 0.0394460 0.0683225i
\(587\) −19.4664 + 19.4664i −0.803465 + 0.803465i −0.983635 0.180171i \(-0.942335\pi\)
0.180171 + 0.983635i \(0.442335\pi\)
\(588\) 0 0
\(589\) 26.8408i 1.10596i
\(590\) −2.26687 + 2.84567i −0.0933256 + 0.117154i
\(591\) 3.53148 + 22.0605i 0.145266 + 0.907447i
\(592\) 0.829169 3.09450i 0.0340786 0.127183i
\(593\) 30.1219 8.07115i 1.23696 0.331442i 0.419674 0.907675i \(-0.362144\pi\)
0.817286 + 0.576233i \(0.195478\pi\)
\(594\) −0.251541 0.487675i −0.0103209 0.0200095i
\(595\) 0 0
\(596\) 24.5464i 1.00546i
\(597\) −0.113672 + 1.09901i −0.00465227 + 0.0449795i
\(598\) 9.96108 + 2.66906i 0.407339 + 0.109146i
\(599\) 9.26661 + 16.0502i 0.378624 + 0.655795i 0.990862 0.134878i \(-0.0430642\pi\)
−0.612239 + 0.790673i \(0.709731\pi\)
\(600\) 18.7644 7.58625i 0.766054 0.309707i
\(601\) 5.32951 0.217395 0.108698 0.994075i \(-0.465332\pi\)
0.108698 + 0.994075i \(0.465332\pi\)
\(602\) 0 0
\(603\) −7.83950 + 0.436881i −0.319249 + 0.0177912i
\(604\) −9.90349 5.71778i −0.402967 0.232653i
\(605\) 9.80078 22.4963i 0.398458 0.914604i
\(606\) 5.19729 0.831991i 0.211125 0.0337973i
\(607\) 15.2070 4.07471i 0.617234 0.165387i 0.0633638 0.997990i \(-0.479817\pi\)
0.553870 + 0.832603i \(0.313150\pi\)
\(608\) −14.5751 14.5751i −0.591098 0.591098i
\(609\) 0 0
\(610\) 2.88607 + 0.433434i 0.116854 + 0.0175492i
\(611\) 34.6738 + 20.0189i 1.40275 + 0.809880i
\(612\) 11.8019 + 18.0423i 0.477063 + 0.729316i
\(613\) −34.1840 9.15958i −1.38068 0.369952i −0.509312 0.860582i \(-0.670100\pi\)
−0.871368 + 0.490630i \(0.836767\pi\)
\(614\) −0.296526 + 0.513598i −0.0119668 + 0.0207271i
\(615\) 40.6028 + 22.9216i 1.63726 + 0.924287i
\(616\) 0 0
\(617\) −25.1412 + 25.1412i −1.01215 + 1.01215i −0.0122222 + 0.999925i \(0.503891\pi\)
−0.999925 + 0.0122222i \(0.996109\pi\)
\(618\) −1.15881 + 11.2037i −0.0466140 + 0.450677i
\(619\) 3.49101 2.01554i 0.140316 0.0810112i −0.428199 0.903685i \(-0.640852\pi\)
0.568514 + 0.822673i \(0.307518\pi\)
\(620\) −24.0459 10.4759i −0.965706 0.420722i
\(621\) −12.4248 0.589303i −0.498591 0.0236479i
\(622\) −9.64494 9.64494i −0.386727 0.386727i
\(623\) 0 0
\(624\) −17.2003 6.56991i −0.688561 0.263007i
\(625\) 22.5011 10.8950i 0.900043 0.435801i
\(626\) 9.93440 5.73563i 0.397058 0.229242i
\(627\) −0.589663 + 0.814433i −0.0235489 + 0.0325253i
\(628\) 6.43891 + 24.0303i 0.256941 + 0.958915i
\(629\) −9.07152 −0.361705
\(630\) 0 0
\(631\) 25.6331 1.02044 0.510219 0.860044i \(-0.329564\pi\)
0.510219 + 0.860044i \(0.329564\pi\)
\(632\) −3.27215 12.2118i −0.130159 0.485760i
\(633\) −6.80121 + 9.39373i −0.270324 + 0.373367i
\(634\) −2.34103 + 1.35159i −0.0929740 + 0.0536786i
\(635\) 0.475015 + 0.378398i 0.0188504 + 0.0150163i
\(636\) 10.0240 + 3.82883i 0.397478 + 0.151823i
\(637\) 0 0
\(638\) 0.149344 + 0.149344i 0.00591259 + 0.00591259i
\(639\) −26.7836 + 8.80065i −1.05954 + 0.348148i
\(640\) −23.1430 + 9.09718i −0.914808 + 0.359598i
\(641\) 5.18974 2.99630i 0.204982 0.118347i −0.393995 0.919113i \(-0.628907\pi\)
0.598977 + 0.800766i \(0.295574\pi\)
\(642\) −1.68947 + 16.3343i −0.0666780 + 0.644662i
\(643\) −0.533933 + 0.533933i −0.0210562 + 0.0210562i −0.717557 0.696500i \(-0.754739\pi\)
0.696500 + 0.717557i \(0.254739\pi\)
\(644\) 0 0
\(645\) −8.17518 29.3714i −0.321897 1.15650i
\(646\) −5.37984 + 9.31815i −0.211667 + 0.366618i
\(647\) −33.9314 9.09189i −1.33398 0.357439i −0.479783 0.877387i \(-0.659285\pi\)
−0.854198 + 0.519948i \(0.825951\pi\)
\(648\) −20.7963 3.15280i −0.816956 0.123854i
\(649\) −0.347572 0.200671i −0.0136434 0.00787702i
\(650\) 20.5893 + 6.32698i 0.807580 + 0.248165i
\(651\) 0 0
\(652\) −16.0694 16.0694i −0.629328 0.629328i
\(653\) 0.336028 0.0900386i 0.0131498 0.00352348i −0.252238 0.967665i \(-0.581167\pi\)
0.265388 + 0.964142i \(0.414500\pi\)
\(654\) −10.3356 + 1.65453i −0.404152 + 0.0646974i
\(655\) −28.1800 12.2769i −1.10108 0.479700i
\(656\) −16.8335 9.71884i −0.657239 0.379457i
\(657\) −0.649039 11.6465i −0.0253214 0.454374i
\(658\) 0 0
\(659\) 14.9402 0.581989 0.290994 0.956725i \(-0.406014\pi\)
0.290994 + 0.956725i \(0.406014\pi\)
\(660\) 0.499483 + 0.846132i 0.0194423 + 0.0329356i
\(661\) −21.4079 37.0797i −0.832673 1.44223i −0.895911 0.444233i \(-0.853476\pi\)
0.0632386 0.997998i \(-0.479857\pi\)
\(662\) 11.0543 + 2.96199i 0.429637 + 0.115121i
\(663\) −5.36391 + 51.8598i −0.208317 + 2.01407i
\(664\) 22.3400i 0.866962i
\(665\) 0 0
\(666\) 2.59654 2.90302i 0.100614 0.112490i
\(667\) 4.62456 1.23915i 0.179064 0.0479800i
\(668\) 1.45392 5.42612i 0.0562540 0.209943i
\(669\) −0.147934 0.924117i −0.00571947 0.0357284i
\(670\) −3.80488 + 0.430758i −0.146995 + 0.0166416i
\(671\) 0.321942i 0.0124284i
\(672\) 0 0
\(673\) 5.09320 5.09320i 0.196328 0.196328i −0.602096 0.798424i \(-0.705667\pi\)
0.798424 + 0.602096i \(0.205667\pi\)
\(674\) 0.764382 1.32395i 0.0294429 0.0509966i
\(675\) −25.8897 2.17282i −0.996497 0.0836317i
\(676\) −23.8519 41.3128i −0.917382 1.58895i
\(677\) 0.452066 + 1.68713i 0.0173743 + 0.0648418i 0.974069 0.226252i \(-0.0726474\pi\)
−0.956694 + 0.291094i \(0.905981\pi\)
\(678\) 3.19247 + 7.13859i 0.122606 + 0.274156i
\(679\) 0 0
\(680\) 14.1980 + 19.2162i 0.544467 + 0.736906i
\(681\) 23.7800 19.3219i 0.911252 0.740418i
\(682\) −0.203959 + 0.761184i −0.00780998 + 0.0291472i
\(683\) −9.23896 + 34.4803i −0.353519 + 1.31935i 0.528819 + 0.848735i \(0.322635\pi\)
−0.882338 + 0.470616i \(0.844032\pi\)
\(684\) 5.29478 + 16.1139i 0.202451 + 0.616132i
\(685\) −17.5136 2.63022i −0.669162 0.100496i
\(686\) 0 0
\(687\) −3.66934 + 1.64098i −0.139994 + 0.0626073i
\(688\) 3.28958 + 12.2769i 0.125414 + 0.468051i
\(689\) 12.9744 + 22.4724i 0.494287 + 0.856130i
\(690\) −6.06600 + 0.0586447i −0.230929 + 0.00223256i
\(691\) −22.5895 + 39.1261i −0.859344 + 1.48843i 0.0132121 + 0.999913i \(0.495794\pi\)
−0.872556 + 0.488514i \(0.837539\pi\)
\(692\) −2.26571 + 2.26571i −0.0861294 + 0.0861294i
\(693\) 0 0
\(694\) 17.0042i 0.645470i
\(695\) −4.19729 37.0747i −0.159212 1.40632i
\(696\) 7.99418 1.27972i 0.303019 0.0485078i
\(697\) −14.2454 + 53.1645i −0.539583 + 2.01375i
\(698\) 17.7826 4.76484i 0.673082 0.180352i
\(699\) −5.30157 + 13.8797i −0.200524 + 0.524978i
\(700\) 0 0
\(701\) 44.4108i 1.67737i 0.544614 + 0.838687i \(0.316676\pi\)
−0.544614 + 0.838687i \(0.683324\pi\)
\(702\) −15.0606 16.5604i −0.568426 0.625031i
\(703\) −6.89369 1.84716i −0.260001 0.0696669i
\(704\) 0.0419965 + 0.0727400i 0.00158280 + 0.00274149i
\(705\) −22.8075 5.87554i −0.858981 0.221286i
\(706\) 10.0473 0.378135
\(707\) 0 0
\(708\) −6.18034 + 2.76393i −0.232271 + 0.103875i
\(709\) 15.7821 + 9.11180i 0.592709 + 0.342201i 0.766168 0.642640i \(-0.222161\pi\)
−0.173459 + 0.984841i \(0.555494\pi\)
\(710\) −12.7961 + 5.02994i −0.480228 + 0.188770i
\(711\) −3.32153 + 15.8850i −0.124567 + 0.595734i
\(712\) −24.5415 + 6.57587i −0.919731 + 0.246441i
\(713\) 12.6315 + 12.6315i 0.473053 + 0.473053i
\(714\) 0 0
\(715\) −0.352888 + 2.34974i −0.0131972 + 0.0878753i
\(716\) 27.3527 + 15.7921i 1.02222 + 0.590178i
\(717\) 21.9064 30.2568i 0.818109 1.12996i
\(718\) 8.51158 + 2.28067i 0.317649 + 0.0851139i
\(719\) −7.20912 + 12.4866i −0.268855 + 0.465670i −0.968566 0.248755i \(-0.919979\pi\)
0.699712 + 0.714425i \(0.253312\pi\)
\(720\) 10.7838 + 1.01011i 0.401888 + 0.0376446i
\(721\) 0 0
\(722\) 2.80496 2.80496i 0.104390 0.104390i
\(723\) −11.1823 1.15660i −0.415874 0.0430143i
\(724\) −22.7071 + 13.1099i −0.843902 + 0.487227i
\(725\) 9.74691 2.23558i 0.361991 0.0830275i
\(726\) −9.65214 + 7.84264i −0.358225 + 0.291068i
\(727\) −1.34757 1.34757i −0.0499787 0.0499787i 0.681676 0.731654i \(-0.261252\pi\)
−0.731654 + 0.681676i \(0.761252\pi\)
\(728\) 0 0
\(729\) 22.0000 + 15.6525i 0.814815 + 0.579721i
\(730\) −0.639942 5.65261i −0.0236853 0.209212i
\(731\) 31.1679 17.9948i 1.15279 0.665562i
\(732\) 4.39891 + 3.18488i 0.162588 + 0.117717i
\(733\) −4.94744 18.4641i −0.182738 0.681987i −0.995104 0.0988384i \(-0.968487\pi\)
0.812366 0.583148i \(-0.198179\pi\)
\(734\) −2.57990 −0.0952258
\(735\) 0 0
\(736\) 13.7183 0.505663
\(737\) −0.109327 0.408016i −0.00402713 0.0150295i
\(738\) −12.9360 19.7760i −0.476180 0.727966i
\(739\) 1.11818 0.645584i 0.0411331 0.0237482i −0.479292 0.877655i \(-0.659107\pi\)
0.520426 + 0.853907i \(0.325773\pi\)
\(740\) −4.34540 + 5.45491i −0.159740 + 0.200527i
\(741\) −14.6360 + 38.3174i −0.537665 + 1.40763i
\(742\) 0 0
\(743\) 11.5021 + 11.5021i 0.421972 + 0.421972i 0.885882 0.463910i \(-0.153554\pi\)
−0.463910 + 0.885882i \(0.653554\pi\)
\(744\) 19.0489 + 23.4439i 0.698366 + 0.859497i
\(745\) −13.9465 + 32.0122i −0.510960 + 1.17283i
\(746\) 3.39460 1.95988i 0.124285 0.0717562i
\(747\) 12.9342 25.5940i 0.473239 0.936435i
\(748\) −0.820150 + 0.820150i −0.0299877 + 0.0299877i
\(749\) 0 0
\(750\) −12.6661 0.337860i −0.462499 0.0123369i
\(751\) 21.5667 37.3545i 0.786978 1.36309i −0.140832 0.990034i \(-0.544978\pi\)
0.927810 0.373053i \(-0.121689\pi\)
\(752\) 9.48399 + 2.54123i 0.345845 + 0.0926690i
\(753\) −35.5778 25.7589i −1.29653 0.938706i
\(754\) 7.46151 + 4.30791i 0.271732 + 0.156885i
\(755\) 9.66696 + 13.0837i 0.351817 + 0.476164i
\(756\) 0 0
\(757\) −21.6057 21.6057i −0.785273 0.785273i 0.195442 0.980715i \(-0.437386\pi\)
−0.980715 + 0.195442i \(0.937386\pi\)
\(758\) −15.8950 + 4.25904i −0.577331 + 0.154695i
\(759\) −0.105778 0.660777i −0.00383951 0.0239847i
\(760\) 6.87659 + 17.4939i 0.249440 + 0.634570i
\(761\) −23.7452 13.7093i −0.860763 0.496962i 0.00350451 0.999994i \(-0.498884\pi\)
−0.864268 + 0.503032i \(0.832218\pi\)
\(762\) −0.125658 0.280980i −0.00455211 0.0101788i
\(763\) 0 0
\(764\) −33.9966 −1.22996
\(765\) −5.14038 30.2353i −0.185851 1.09316i
\(766\) 2.03607 + 3.52657i 0.0735661 + 0.127420i
\(767\) −15.8143 4.23744i −0.571023 0.153005i
\(768\) 14.3294 + 1.48210i 0.517068 + 0.0534808i
\(769\) 17.1148i 0.617174i 0.951196 + 0.308587i \(0.0998561\pi\)
−0.951196 + 0.308587i \(0.900144\pi\)
\(770\) 0 0
\(771\) 18.6576 + 7.12658i 0.671938 + 0.256658i
\(772\) 8.81509 2.36200i 0.317262 0.0850101i
\(773\) −10.7760 + 40.2165i −0.387585 + 1.44649i 0.446466 + 0.894800i \(0.352682\pi\)
−0.834051 + 0.551687i \(0.813984\pi\)
\(774\) −3.16259 + 15.1249i −0.113677 + 0.543652i
\(775\) 25.4074 + 27.3242i 0.912659 + 0.981515i
\(776\) 32.0831i 1.15172i
\(777\) 0 0
\(778\) 12.0616 12.0616i 0.432431 0.432431i
\(779\) −21.6509 + 37.5005i −0.775724 + 1.34359i
\(780\) 28.6151 + 28.0671i 1.02458 + 1.00496i
\(781\) −0.758356 1.31351i −0.0271361 0.0470011i
\(782\) −1.85340 6.91698i −0.0662774 0.247351i
\(783\) −9.89949 3.16228i −0.353779 0.113011i
\(784\) 0 0
\(785\) 5.25598 34.9975i 0.187594 1.24912i
\(786\) 9.82408 + 12.0908i 0.350413 + 0.431263i
\(787\) 3.56220 13.2943i 0.126979 0.473892i −0.872924 0.487857i \(-0.837779\pi\)
0.999902 + 0.0139653i \(0.00444543\pi\)
\(788\) −5.24766 + 19.5845i −0.186940 + 0.697670i
\(789\) −21.5253 26.4917i −0.766320 0.943130i
\(790\) −1.17543 + 7.82674i −0.0418200 + 0.278463i
\(791\) 0 0
\(792\) −0.0629640 1.12984i −0.00223733 0.0401473i
\(793\) 3.39912 + 12.6857i 0.120706 + 0.450482i
\(794\) −6.94229 12.0244i −0.246372 0.426730i
\(795\) −10.8974 10.6887i −0.386490 0.379089i
\(796\) −0.501351 + 0.868365i −0.0177699 + 0.0307784i
\(797\) 31.7624 31.7624i 1.12508 1.12508i 0.134115 0.990966i \(-0.457181\pi\)
0.990966 0.134115i \(-0.0428192\pi\)
\(798\) 0 0
\(799\) 27.8023i 0.983575i
\(800\) 28.6343 + 1.04090i 1.01238 + 0.0368014i
\(801\) 31.9233 + 6.67513i 1.12795 + 0.235854i
\(802\) −0.617145 + 2.30322i −0.0217921 + 0.0813294i
\(803\) 0.606157 0.162419i 0.0213908 0.00573165i
\(804\) −6.65654 2.54257i −0.234758 0.0896697i
\(805\) 0 0
\(806\) 32.1469i 1.13233i
\(807\) 5.82043 + 0.602013i 0.204889 + 0.0211919i
\(808\) 10.4846 + 2.80934i 0.368847 + 0.0988322i
\(809\) 10.6115 + 18.3796i 0.373080 + 0.646193i 0.990038 0.140803i \(-0.0449684\pi\)
−0.616958 + 0.786996i \(0.711635\pi\)
\(810\) 11.1471 + 7.00925i 0.391668 + 0.246280i
\(811\) 17.1374 0.601776 0.300888 0.953660i \(-0.402717\pi\)
0.300888 + 0.953660i \(0.402717\pi\)
\(812\) 0 0
\(813\) −11.3758 25.4371i −0.398968 0.892119i
\(814\) 0.181463 + 0.104768i 0.00636029 + 0.00367211i
\(815\) 11.8268 + 30.0871i 0.414275 + 1.05390i
\(816\) 2.02099 + 12.6248i 0.0707489 + 0.441955i
\(817\) 27.3495 7.32827i 0.956837 0.256384i
\(818\) −3.99232 3.99232i −0.139588 0.139588i
\(819\) 0 0
\(820\) 25.1453 + 34.0327i 0.878111 + 1.18847i
\(821\) 3.05795 + 1.76551i 0.106723 + 0.0616166i 0.552411 0.833572i \(-0.313708\pi\)
−0.445688 + 0.895188i \(0.647041\pi\)
\(822\) 7.27034 + 5.26385i 0.253582 + 0.183598i
\(823\) 17.6720 + 4.73521i 0.616008 + 0.165059i 0.553312 0.832974i \(-0.313364\pi\)
0.0626958 + 0.998033i \(0.480030\pi\)
\(824\) −11.6139 + 20.1158i −0.404589 + 0.700768i
\(825\) −0.170654 1.38727i −0.00594142 0.0482986i
\(826\) 0 0
\(827\) 28.9027 28.9027i 1.00505 1.00505i 0.00505903 0.999987i \(-0.498390\pi\)
0.999987 0.00505903i \(-0.00161035\pi\)
\(828\) −10.0751 5.09157i −0.350133 0.176944i
\(829\) 15.1933 8.77184i 0.527684 0.304659i −0.212389 0.977185i \(-0.568124\pi\)
0.740073 + 0.672527i \(0.234791\pi\)
\(830\) 5.58579 12.8214i 0.193886 0.445036i
\(831\) 7.28409 + 8.96472i 0.252682 + 0.310983i
\(832\) 2.42282 + 2.42282i 0.0839961 + 0.0839961i
\(833\) 0 0
\(834\) −6.74762 + 17.6655i −0.233651 + 0.611706i
\(835\) −4.97908 + 6.25039i −0.172308 + 0.216304i
\(836\) −0.790254 + 0.456253i −0.0273315 + 0.0157799i
\(837\) −8.25007 37.8874i −0.285164 1.30958i
\(838\) −4.72574 17.6367i −0.163248 0.609250i
\(839\) 15.4350 0.532875 0.266437 0.963852i \(-0.414153\pi\)
0.266437 + 0.963852i \(0.414153\pi\)
\(840\) 0 0
\(841\) −25.0000 −0.862069
\(842\) 3.77108 + 14.0739i 0.129960 + 0.485017i
\(843\) −17.6722 12.7950i −0.608664 0.440682i
\(844\) −9.11485 + 5.26246i −0.313746 + 0.181141i
\(845\) 7.63387 + 67.4299i 0.262613 + 2.31966i
\(846\) 8.89716 + 7.95786i 0.305891 + 0.273597i
\(847\) 0 0
\(848\) 4.49966 + 4.49966i 0.154519 + 0.154519i
\(849\) 24.5588 19.9547i 0.842855 0.684843i
\(850\) −3.34377 14.5785i −0.114691 0.500038i
\(851\) 4.11351 2.37493i 0.141009 0.0814117i
\(852\) −25.4496 2.63228i −0.871889 0.0901803i
\(853\) −5.62301 + 5.62301i −0.192528 + 0.192528i −0.796788 0.604259i \(-0.793469\pi\)
0.604259 + 0.796788i \(0.293469\pi\)
\(854\) 0 0
\(855\) 2.25025 24.0233i 0.0769569 0.821579i
\(856\) −16.9323 + 29.3277i −0.578735 + 1.00240i
\(857\) −20.8918 5.59795i −0.713651 0.191222i −0.116314 0.993212i \(-0.537108\pi\)
−0.597337 + 0.801990i \(0.703775\pi\)
\(858\) 0.706231 0.975435i 0.0241103 0.0333008i
\(859\) 39.2936 + 22.6862i 1.34068 + 0.774042i 0.986907 0.161290i \(-0.0515655\pi\)
0.353772 + 0.935332i \(0.384899\pi\)
\(860\) 4.10924 27.3618i 0.140124 0.933029i
\(861\) 0 0
\(862\) 0.909671 + 0.909671i 0.0309835 + 0.0309835i
\(863\) −8.22674 + 2.20435i −0.280041 + 0.0750369i −0.396106 0.918205i \(-0.629639\pi\)
0.116065 + 0.993242i \(0.462972\pi\)
\(864\) −25.0536 16.0937i −0.852340 0.547517i
\(865\) 4.24213 1.66752i 0.144237 0.0566973i
\(866\) 15.0374 + 8.68183i 0.510991 + 0.295021i
\(867\) 6.16980 2.75922i 0.209537 0.0937080i
\(868\) 0 0
\(869\) −0.873074 −0.0296170
\(870\) −4.90799 1.26437i −0.166396 0.0428660i
\(871\) −8.61581 14.9230i −0.291936 0.505647i
\(872\) −20.8501 5.58678i −0.706075 0.189192i
\(873\) 18.5752 36.7561i 0.628674 1.24401i
\(874\) 5.63379i 0.190566i
\(875\) 0 0
\(876\) 3.77730 9.88910i 0.127623 0.334122i
\(877\) −23.5588 + 6.31256i −0.795525 + 0.213160i −0.633618 0.773646i \(-0.718431\pi\)
−0.161906 + 0.986806i \(0.551764\pi\)
\(878\) −4.39411 + 16.3991i −0.148294 + 0.553441i
\(879\) −4.99192 + 0.799115i −0.168373 + 0.0269535i
\(880\) 0.0655490 + 0.578994i 0.00220965 + 0.0195179i
\(881\) 0.538909i 0.0181563i 0.999959 + 0.00907815i \(0.00288970\pi\)
−0.999959 + 0.00907815i \(0.997110\pi\)
\(882\) 0 0
\(883\) −25.2230 + 25.2230i −0.848821 + 0.848821i −0.989986 0.141165i \(-0.954915\pi\)
0.141165 + 0.989986i \(0.454915\pi\)
\(884\) −23.6576 + 40.9762i −0.795692 + 1.37818i
\(885\) 9.63046 0.0931050i 0.323724 0.00312969i
\(886\) −11.5911 20.0764i −0.389411 0.674479i
\(887\) −2.54169 9.48573i −0.0853417 0.318500i 0.910037 0.414527i \(-0.136053\pi\)
−0.995379 + 0.0960275i \(0.969386\pi\)
\(888\) 7.33218 3.27905i 0.246052 0.110038i
\(889\) 0 0
\(890\) 15.7290 + 2.36221i 0.527238 + 0.0791814i
\(891\) −0.582011 + 1.33087i −0.0194981 + 0.0445857i
\(892\) 0.219825 0.820399i 0.00736029 0.0274690i
\(893\) 5.66115 21.1277i 0.189443 0.707012i
\(894\) 13.7350 11.1601i 0.459366 0.373248i
\(895\) −26.6994 36.1362i −0.892464 1.20790i
\(896\) 0 0
\(897\) −11.1447 24.9202i −0.372110 0.832062i
\(898\) −2.95413 11.0250i −0.0985805 0.367908i
\(899\) 7.46230 + 12.9251i 0.248882 + 0.431076i
\(900\) −20.6435 11.3921i −0.688116 0.379738i
\(901\) 9.00945 15.6048i 0.300148 0.519872i
\(902\) 0.898961 0.898961i 0.0299321 0.0299321i
\(903\) 0 0
\(904\) 16.1265i 0.536359i
\(905\) 37.0621 4.19587i 1.23199 0.139475i
\(906\) −1.30324 8.14111i −0.0432974 0.270470i
\(907\) 3.17404 11.8457i 0.105392 0.393329i −0.892997 0.450062i \(-0.851402\pi\)
0.998389 + 0.0567332i \(0.0180685\pi\)
\(908\) 26.8594 7.19695i 0.891360 0.238839i
\(909\) −10.3852 9.28881i −0.344456 0.308090i
\(910\) 0 0
\(911\) 27.0102i 0.894889i −0.894312 0.447444i \(-0.852334\pi\)
0.894312 0.447444i \(-0.147666\pi\)
\(912\) −1.03487 + 10.0054i −0.0342679 + 0.331312i
\(913\) 1.49019 + 0.399296i 0.0493182 + 0.0132148i
\(914\) 11.5067 + 19.9302i 0.380607 + 0.659231i
\(915\) −3.92728 6.65288i −0.129832 0.219937i
\(916\) −3.64787 −0.120529
\(917\) 0 0
\(918\) −4.72983 + 14.8067i −0.156108 + 0.488695i
\(919\) −10.7836 6.22589i −0.355717 0.205373i 0.311484 0.950252i \(-0.399174\pi\)
−0.667200 + 0.744878i \(0.732507\pi\)
\(920\) −11.4689 4.99657i −0.378119 0.164732i
\(921\) 1.55017 0.248153i 0.0510797 0.00817693i
\(922\) −4.75647 + 1.27449i −0.156646 + 0.0419731i
\(923\) −43.7503 43.7503i −1.44006 1.44006i
\(924\) 0 0
\(925\) 8.76636 4.64510i 0.288236 0.152730i
\(926\) −13.3048 7.68155i −0.437224 0.252432i
\(927\) 24.9520 16.3217i 0.819530 0.536075i
\(928\) 11.0708 + 2.96640i 0.363415 + 0.0973768i
\(929\) 7.49824 12.9873i 0.246009 0.426100i −0.716406 0.697684i \(-0.754214\pi\)
0.962415 + 0.271584i \(0.0875473\pi\)
\(930\) −5.07071 18.2178i −0.166275 0.597385i
\(931\) 0 0
\(932\) −9.53450 + 9.53450i −0.312313 + 0.312313i
\(933\) −3.71479 + 35.9157i −0.121617 + 1.17583i
\(934\) 6.18154 3.56892i 0.202266 0.116778i
\(935\) 1.53558 0.603614i 0.0502189 0.0197403i
\(936\) −14.4101 43.8552i −0.471009 1.43345i
\(937\) 17.8137 + 17.8137i 0.581947 + 0.581947i 0.935438 0.353491i \(-0.115006\pi\)
−0.353491 + 0.935438i \(0.615006\pi\)
\(938\) 0 0
\(939\) −28.3673 10.8353i −0.925732 0.353598i
\(940\) −16.7182 13.3177i −0.545286 0.434377i
\(941\) −44.3404 + 25.5999i −1.44546 + 0.834534i −0.998206 0.0598755i \(-0.980930\pi\)
−0.447249 + 0.894409i \(0.647596\pi\)
\(942\) −10.5188 + 14.5283i −0.342720 + 0.473359i
\(943\) −7.45891 27.8370i −0.242896 0.906499i
\(944\) −4.01498 −0.130677
\(945\) 0 0
\(946\) −0.831296 −0.0270277
\(947\) −10.1204 37.7699i −0.328870 1.22736i −0.910364 0.413808i \(-0.864199\pi\)
0.581495 0.813550i \(-0.302468\pi\)
\(948\) −8.63708 + 11.9294i −0.280519 + 0.387449i
\(949\) 22.1700 12.7998i 0.719667 0.415500i
\(950\) 0.427475 11.7595i 0.0138691 0.381527i
\(951\) 6.68471 + 2.55333i 0.216767 + 0.0827975i
\(952\) 0 0
\(953\) 6.39589 + 6.39589i 0.207183 + 0.207183i 0.803069 0.595886i \(-0.203199\pi\)
−0.595886 + 0.803069i \(0.703199\pi\)
\(954\) 2.41500 + 7.34973i 0.0781886 + 0.237956i
\(955\) 44.3367 + 19.3158i 1.43470 + 0.625045i
\(956\) 29.3585 16.9501i 0.949522 0.548207i
\(957\) 0.0575205 0.556125i 0.00185937 0.0179770i
\(958\) −7.92969 + 7.92969i −0.256197 + 0.256197i
\(959\) 0 0
\(960\) −1.75519 0.990859i −0.0566485 0.0319798i
\(961\) −12.3430 + 21.3786i −0.398160 + 0.689633i
\(962\) 8.25648 + 2.21232i 0.266200 + 0.0713280i
\(963\) 36.3785 23.7961i 1.17228 0.766817i
\(964\) −8.83553 5.10120i −0.284573 0.164298i
\(965\) −12.8382 1.92806i −0.413276 0.0620665i
\(966\) 0 0
\(967\) 24.4108 + 24.4108i 0.784999 + 0.784999i 0.980670 0.195670i \(-0.0626882\pi\)
−0.195670 + 0.980670i \(0.562688\pi\)
\(968\) −24.7734 + 6.63800i −0.796246 + 0.213353i
\(969\) 28.1245 4.50221i 0.903488 0.144632i
\(970\) 8.02188 18.4131i 0.257567 0.591208i
\(971\) −27.2512 15.7335i −0.874534 0.504912i −0.00568176 0.999984i \(-0.501809\pi\)
−0.868852 + 0.495071i \(0.835142\pi\)
\(972\) 12.4268 + 21.1183i 0.398591 + 0.677370i
\(973\) 0 0
\(974\) −13.1117 −0.420125
\(975\) −21.3715 52.8619i −0.684435 1.69293i
\(976\) 1.61033 + 2.78918i 0.0515456 + 0.0892795i
\(977\) 22.0308 + 5.90313i 0.704827 + 0.188858i 0.593392 0.804914i \(-0.297789\pi\)
0.111435 + 0.993772i \(0.464455\pi\)
\(978\) 1.68568 16.2977i 0.0539022 0.521142i
\(979\) 1.75457i 0.0560764i
\(980\) 0 0
\(981\) 20.6525 + 18.4721i 0.659383 + 0.589770i
\(982\) −16.0848 + 4.30992i −0.513288 + 0.137535i
\(983\) 15.0566 56.1919i 0.480230 1.79224i −0.120411 0.992724i \(-0.538421\pi\)
0.600641 0.799519i \(-0.294912\pi\)
\(984\) −7.70316 48.1201i −0.245568 1.53401i
\(985\) 17.9710 22.5596i 0.572605 0.718809i
\(986\) 5.98282i 0.190532i
\(987\) 0 0
\(988\) −26.3217 + 26.3217i −0.837405 + 0.837405i
\(989\) −9.42212 + 16.3196i −0.299606 + 0.518933i
\(990\) −0.246364 + 0.664182i −0.00782996 + 0.0211091i
\(991\) 27.1762 + 47.0706i 0.863281 + 1.49525i 0.868744 + 0.495262i \(0.164928\pi\)
−0.00546280 + 0.999985i \(0.501739\pi\)
\(992\) 11.0681 + 41.3066i 0.351412 + 1.31149i
\(993\) −12.3678 27.6552i −0.392479 0.877610i
\(994\) 0 0
\(995\) 1.14721 0.847626i 0.0363691 0.0268716i
\(996\) 20.1979 16.4114i 0.639996 0.520015i
\(997\) −2.25551 + 8.41769i −0.0714329 + 0.266591i −0.992401 0.123047i \(-0.960733\pi\)
0.920968 + 0.389638i \(0.127400\pi\)
\(998\) −2.58426 + 9.64459i −0.0818033 + 0.305294i
\(999\) −10.2986 0.488458i −0.325834 0.0154541i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 735.2.y.e.422.6 32
3.2 odd 2 735.2.y.f.422.4 32
5.3 odd 4 735.2.y.f.128.6 32
7.2 even 3 735.2.j.d.197.6 yes 16
7.3 odd 6 inner 735.2.y.e.557.4 32
7.4 even 3 inner 735.2.y.e.557.3 32
7.5 odd 6 735.2.j.d.197.5 yes 16
7.6 odd 2 inner 735.2.y.e.422.5 32
15.8 even 4 inner 735.2.y.e.128.3 32
21.2 odd 6 735.2.j.c.197.3 16
21.5 even 6 735.2.j.c.197.4 yes 16
21.11 odd 6 735.2.y.f.557.6 32
21.17 even 6 735.2.y.f.557.5 32
21.20 even 2 735.2.y.f.422.3 32
35.3 even 12 735.2.y.f.263.3 32
35.13 even 4 735.2.y.f.128.5 32
35.18 odd 12 735.2.y.f.263.4 32
35.23 odd 12 735.2.j.c.638.3 yes 16
35.33 even 12 735.2.j.c.638.4 yes 16
105.23 even 12 735.2.j.d.638.6 yes 16
105.38 odd 12 inner 735.2.y.e.263.5 32
105.53 even 12 inner 735.2.y.e.263.6 32
105.68 odd 12 735.2.j.d.638.5 yes 16
105.83 odd 4 inner 735.2.y.e.128.4 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
735.2.j.c.197.3 16 21.2 odd 6
735.2.j.c.197.4 yes 16 21.5 even 6
735.2.j.c.638.3 yes 16 35.23 odd 12
735.2.j.c.638.4 yes 16 35.33 even 12
735.2.j.d.197.5 yes 16 7.5 odd 6
735.2.j.d.197.6 yes 16 7.2 even 3
735.2.j.d.638.5 yes 16 105.68 odd 12
735.2.j.d.638.6 yes 16 105.23 even 12
735.2.y.e.128.3 32 15.8 even 4 inner
735.2.y.e.128.4 32 105.83 odd 4 inner
735.2.y.e.263.5 32 105.38 odd 12 inner
735.2.y.e.263.6 32 105.53 even 12 inner
735.2.y.e.422.5 32 7.6 odd 2 inner
735.2.y.e.422.6 32 1.1 even 1 trivial
735.2.y.e.557.3 32 7.4 even 3 inner
735.2.y.e.557.4 32 7.3 odd 6 inner
735.2.y.f.128.5 32 35.13 even 4
735.2.y.f.128.6 32 5.3 odd 4
735.2.y.f.263.3 32 35.3 even 12
735.2.y.f.263.4 32 35.18 odd 12
735.2.y.f.422.3 32 21.20 even 2
735.2.y.f.422.4 32 3.2 odd 2
735.2.y.f.557.5 32 21.17 even 6
735.2.y.f.557.6 32 21.11 odd 6