Properties

Label 735.2.y.f.557.5
Level $735$
Weight $2$
Character 735.557
Analytic conductor $5.869$
Analytic rank $0$
Dimension $32$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [735,2,Mod(128,735)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("735.128"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(735, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([6, 9, 4])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 735 = 3 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 735.y (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,4,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.86900454856\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(8\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 557.5
Character \(\chi\) \(=\) 735.557
Dual form 735.2.y.f.128.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.632011 + 0.169347i) q^{2} +(-1.40294 + 1.01575i) q^{3} +(-1.36129 - 0.785942i) q^{4} +(0.893095 - 2.04997i) q^{5} +(-1.05869 + 0.404383i) q^{6} +(-1.65258 - 1.65258i) q^{8} +(0.936492 - 2.85008i) q^{9} +(0.911602 - 1.14436i) q^{10} +(0.139773 + 0.0806980i) q^{11} +(2.70814 - 0.280105i) q^{12} +(-4.65555 + 4.65555i) q^{13} +(0.829304 + 3.78315i) q^{15} +(0.807294 + 1.39827i) q^{16} +(1.18329 + 4.41610i) q^{17} +(1.07453 - 1.64269i) q^{18} +(-3.11497 + 1.79843i) q^{19} +(-2.82692 + 2.08869i) q^{20} +(0.0746721 + 0.0746721i) q^{22} +(0.619573 - 2.31228i) q^{23} +(3.99709 + 0.639861i) q^{24} +(-3.40476 - 3.66164i) q^{25} +(-3.73076 + 2.15395i) q^{26} +(1.58114 + 4.94975i) q^{27} -2.00000 q^{29} +(-0.116536 + 2.53143i) q^{30} +(-3.73115 + 6.46254i) q^{31} +(1.48320 + 5.53538i) q^{32} +(-0.278063 + 0.0287603i) q^{33} +2.99141i q^{34} +(-3.51484 + 3.14377i) q^{36} +(-0.513548 + 1.91659i) q^{37} +(-2.27325 + 0.609116i) q^{38} +(1.80258 - 11.2603i) q^{39} +(-4.86366 + 1.91183i) q^{40} -12.0388i q^{41} +(-5.56631 + 5.56631i) q^{43} +(-0.126848 - 0.219707i) q^{44} +(-5.00622 - 4.46518i) q^{45} +(0.783154 - 1.35646i) q^{46} +(-5.87394 - 1.57392i) q^{47} +(-2.55289 - 1.14169i) q^{48} +(-1.53176 - 2.89078i) q^{50} +(-6.14576 - 4.99360i) q^{51} +(9.99654 - 2.67857i) q^{52} +(-3.80695 + 1.02007i) q^{53} +(0.161073 + 3.39605i) q^{54} +(0.290259 - 0.214460i) q^{55} +(2.54336 - 5.68713i) q^{57} +(-1.26402 - 0.338694i) q^{58} +(-1.24335 + 2.15354i) q^{59} +(1.84442 - 5.80176i) q^{60} +(0.997366 + 1.72749i) q^{61} +(-3.45254 + 3.45254i) q^{62} +0.520416i q^{64} +(5.38589 + 13.7016i) q^{65} +(-0.180609 - 0.0289122i) q^{66} +(-2.52804 + 0.677387i) q^{67} +(1.86000 - 6.94160i) q^{68} +(1.47948 + 3.87333i) q^{69} +9.39746i q^{71} +(-6.25763 + 3.16237i) q^{72} +(1.00634 + 3.75571i) q^{73} +(-0.649136 + 1.12434i) q^{74} +(8.49600 + 1.67867i) q^{75} +5.65384 q^{76} +(3.04615 - 6.81140i) q^{78} +(4.68478 - 2.70476i) q^{79} +(3.58741 - 0.406138i) q^{80} +(-7.24597 - 5.33816i) q^{81} +(2.03873 - 7.60864i) q^{82} +(6.75913 + 6.75913i) q^{83} +(10.1097 + 1.51829i) q^{85} +(-4.46060 + 2.57533i) q^{86} +(2.80588 - 2.03151i) q^{87} +(-0.0976263 - 0.364346i) q^{88} +(-5.43562 - 9.41477i) q^{89} +(-2.40782 - 3.66983i) q^{90} +(-2.66074 + 2.66074i) q^{92} +(-1.32976 - 12.8565i) q^{93} +(-3.44585 - 1.98946i) q^{94} +(0.904763 + 7.99176i) q^{95} +(-7.70342 - 6.25925i) q^{96} +(-9.70695 - 9.70695i) q^{97} +(0.360892 - 0.322792i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 4 q^{2} + 56 q^{8} - 32 q^{9} - 56 q^{15} + 48 q^{16} - 12 q^{18} + 16 q^{22} - 16 q^{23} - 8 q^{25} - 64 q^{29} - 8 q^{30} - 52 q^{32} - 80 q^{36} + 24 q^{37} + 8 q^{39} + 48 q^{43} + 8 q^{44} - 88 q^{46}+ \cdots + 80 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/735\mathbb{Z}\right)^\times\).

\(n\) \(346\) \(442\) \(491\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.632011 + 0.169347i 0.446899 + 0.119746i 0.475248 0.879852i \(-0.342358\pi\)
−0.0283490 + 0.999598i \(0.509025\pi\)
\(3\) −1.40294 + 1.01575i −0.809989 + 0.586445i
\(4\) −1.36129 0.785942i −0.680646 0.392971i
\(5\) 0.893095 2.04997i 0.399404 0.916775i
\(6\) −1.05869 + 0.404383i −0.432208 + 0.165089i
\(7\) 0 0
\(8\) −1.65258 1.65258i −0.584276 0.584276i
\(9\) 0.936492 2.85008i 0.312164 0.950028i
\(10\) 0.911602 1.14436i 0.288274 0.361879i
\(11\) 0.139773 + 0.0806980i 0.0421431 + 0.0243313i 0.520924 0.853603i \(-0.325588\pi\)
−0.478780 + 0.877935i \(0.658921\pi\)
\(12\) 2.70814 0.280105i 0.781772 0.0808593i
\(13\) −4.65555 + 4.65555i −1.29122 + 1.29122i −0.357181 + 0.934035i \(0.616262\pi\)
−0.934035 + 0.357181i \(0.883738\pi\)
\(14\) 0 0
\(15\) 0.829304 + 3.78315i 0.214125 + 0.976806i
\(16\) 0.807294 + 1.39827i 0.201823 + 0.349569i
\(17\) 1.18329 + 4.41610i 0.286990 + 1.07106i 0.947373 + 0.320133i \(0.103727\pi\)
−0.660383 + 0.750929i \(0.729606\pi\)
\(18\) 1.07453 1.64269i 0.253268 0.387186i
\(19\) −3.11497 + 1.79843i −0.714623 + 0.412588i −0.812770 0.582584i \(-0.802042\pi\)
0.0981474 + 0.995172i \(0.468708\pi\)
\(20\) −2.82692 + 2.08869i −0.632119 + 0.467045i
\(21\) 0 0
\(22\) 0.0746721 + 0.0746721i 0.0159201 + 0.0159201i
\(23\) 0.619573 2.31228i 0.129190 0.482144i −0.870764 0.491701i \(-0.836375\pi\)
0.999954 + 0.00955698i \(0.00304213\pi\)
\(24\) 3.99709 + 0.639861i 0.815903 + 0.130611i
\(25\) −3.40476 3.66164i −0.680953 0.732328i
\(26\) −3.73076 + 2.15395i −0.731662 + 0.422425i
\(27\) 1.58114 + 4.94975i 0.304290 + 0.952579i
\(28\) 0 0
\(29\) −2.00000 −0.371391 −0.185695 0.982607i \(-0.559454\pi\)
−0.185695 + 0.982607i \(0.559454\pi\)
\(30\) −0.116536 + 2.53143i −0.0212764 + 0.462174i
\(31\) −3.73115 + 6.46254i −0.670134 + 1.16071i 0.307732 + 0.951473i \(0.400430\pi\)
−0.977866 + 0.209233i \(0.932903\pi\)
\(32\) 1.48320 + 5.53538i 0.262195 + 0.978525i
\(33\) −0.278063 + 0.0287603i −0.0484045 + 0.00500652i
\(34\) 2.99141i 0.513023i
\(35\) 0 0
\(36\) −3.51484 + 3.14377i −0.585807 + 0.523961i
\(37\) −0.513548 + 1.91659i −0.0844268 + 0.315085i −0.995205 0.0978108i \(-0.968816\pi\)
0.910778 + 0.412896i \(0.135483\pi\)
\(38\) −2.27325 + 0.609116i −0.368770 + 0.0988117i
\(39\) 1.80258 11.2603i 0.288643 1.80310i
\(40\) −4.86366 + 1.91183i −0.769012 + 0.302287i
\(41\) 12.0388i 1.88014i −0.340977 0.940072i \(-0.610758\pi\)
0.340977 0.940072i \(-0.389242\pi\)
\(42\) 0 0
\(43\) −5.56631 + 5.56631i −0.848854 + 0.848854i −0.989990 0.141136i \(-0.954924\pi\)
0.141136 + 0.989990i \(0.454924\pi\)
\(44\) −0.126848 0.219707i −0.0191230 0.0331221i
\(45\) −5.00622 4.46518i −0.746283 0.665629i
\(46\) 0.783154 1.35646i 0.115470 0.200000i
\(47\) −5.87394 1.57392i −0.856802 0.229579i −0.196430 0.980518i \(-0.562935\pi\)
−0.660372 + 0.750939i \(0.729601\pi\)
\(48\) −2.55289 1.14169i −0.368478 0.164788i
\(49\) 0 0
\(50\) −1.53176 2.89078i −0.216624 0.408818i
\(51\) −6.14576 4.99360i −0.860578 0.699244i
\(52\) 9.99654 2.67857i 1.38627 0.371450i
\(53\) −3.80695 + 1.02007i −0.522924 + 0.140117i −0.510619 0.859807i \(-0.670584\pi\)
−0.0123054 + 0.999924i \(0.503917\pi\)
\(54\) 0.161073 + 3.39605i 0.0219193 + 0.462144i
\(55\) 0.290259 0.214460i 0.0391385 0.0289177i
\(56\) 0 0
\(57\) 2.54336 5.68713i 0.336877 0.753279i
\(58\) −1.26402 0.338694i −0.165974 0.0444726i
\(59\) −1.24335 + 2.15354i −0.161870 + 0.280367i −0.935539 0.353223i \(-0.885086\pi\)
0.773669 + 0.633589i \(0.218419\pi\)
\(60\) 1.84442 5.80176i 0.238113 0.749004i
\(61\) 0.997366 + 1.72749i 0.127700 + 0.221182i 0.922785 0.385315i \(-0.125907\pi\)
−0.795085 + 0.606498i \(0.792574\pi\)
\(62\) −3.45254 + 3.45254i −0.438473 + 0.438473i
\(63\) 0 0
\(64\) 0.520416i 0.0650520i
\(65\) 5.38589 + 13.7016i 0.668037 + 1.69947i
\(66\) −0.180609 0.0289122i −0.0222314 0.00355884i
\(67\) −2.52804 + 0.677387i −0.308850 + 0.0827560i −0.409915 0.912124i \(-0.634442\pi\)
0.101065 + 0.994880i \(0.467775\pi\)
\(68\) 1.86000 6.94160i 0.225558 0.841793i
\(69\) 1.47948 + 3.87333i 0.178108 + 0.466294i
\(70\) 0 0
\(71\) 9.39746i 1.11527i 0.830085 + 0.557637i \(0.188292\pi\)
−0.830085 + 0.557637i \(0.811708\pi\)
\(72\) −6.25763 + 3.16237i −0.737469 + 0.372689i
\(73\) 1.00634 + 3.75571i 0.117783 + 0.439573i 0.999480 0.0322434i \(-0.0102652\pi\)
−0.881697 + 0.471816i \(0.843599\pi\)
\(74\) −0.649136 + 1.12434i −0.0754605 + 0.130701i
\(75\) 8.49600 + 1.67867i 0.981034 + 0.193836i
\(76\) 5.65384 0.648540
\(77\) 0 0
\(78\) 3.04615 6.81140i 0.344909 0.771239i
\(79\) 4.68478 2.70476i 0.527079 0.304309i −0.212747 0.977107i \(-0.568241\pi\)
0.739826 + 0.672798i \(0.234908\pi\)
\(80\) 3.58741 0.406138i 0.401085 0.0454076i
\(81\) −7.24597 5.33816i −0.805107 0.593129i
\(82\) 2.03873 7.60864i 0.225140 0.840234i
\(83\) 6.75913 + 6.75913i 0.741911 + 0.741911i 0.972946 0.231034i \(-0.0742109\pi\)
−0.231034 + 0.972946i \(0.574211\pi\)
\(84\) 0 0
\(85\) 10.1097 + 1.51829i 1.09655 + 0.164681i
\(86\) −4.46060 + 2.57533i −0.480999 + 0.277705i
\(87\) 2.80588 2.03151i 0.300822 0.217800i
\(88\) −0.0976263 0.364346i −0.0104070 0.0388394i
\(89\) −5.43562 9.41477i −0.576175 0.997964i −0.995913 0.0903187i \(-0.971211\pi\)
0.419738 0.907645i \(-0.362122\pi\)
\(90\) −2.40782 3.66983i −0.253806 0.386834i
\(91\) 0 0
\(92\) −2.66074 + 2.66074i −0.277401 + 0.277401i
\(93\) −1.32976 12.8565i −0.137890 1.33316i
\(94\) −3.44585 1.98946i −0.355413 0.205198i
\(95\) 0.904763 + 7.99176i 0.0928267 + 0.819938i
\(96\) −7.70342 6.25925i −0.786227 0.638832i
\(97\) −9.70695 9.70695i −0.985592 0.985592i 0.0143059 0.999898i \(-0.495446\pi\)
−0.999898 + 0.0143059i \(0.995446\pi\)
\(98\) 0 0
\(99\) 0.360892 0.322792i 0.0362710 0.0324418i
\(100\) 1.75704 + 7.66050i 0.175704 + 0.766050i
\(101\) −4.02217 2.32220i −0.400221 0.231068i 0.286358 0.958123i \(-0.407555\pi\)
−0.686579 + 0.727055i \(0.740889\pi\)
\(102\) −3.03853 4.19677i −0.300860 0.415543i
\(103\) 9.60004 + 2.57232i 0.945920 + 0.253459i 0.698630 0.715483i \(-0.253793\pi\)
0.247290 + 0.968941i \(0.420460\pi\)
\(104\) 15.3873 1.50885
\(105\) 0 0
\(106\) −2.57878 −0.250473
\(107\) 13.9963 + 3.75029i 1.35307 + 0.362554i 0.861268 0.508151i \(-0.169671\pi\)
0.491804 + 0.870706i \(0.336338\pi\)
\(108\) 1.73782 7.98073i 0.167222 0.767946i
\(109\) 7.99867 + 4.61803i 0.766134 + 0.442327i 0.831494 0.555534i \(-0.187486\pi\)
−0.0653600 + 0.997862i \(0.520820\pi\)
\(110\) 0.219765 0.0863863i 0.0209538 0.00823661i
\(111\) −1.22630 3.21050i −0.116395 0.304727i
\(112\) 0 0
\(113\) −4.87918 4.87918i −0.458994 0.458994i 0.439331 0.898325i \(-0.355216\pi\)
−0.898325 + 0.439331i \(0.855216\pi\)
\(114\) 2.57053 3.16362i 0.240752 0.296300i
\(115\) −4.18677 3.33519i −0.390418 0.311008i
\(116\) 2.72258 + 1.57188i 0.252785 + 0.145946i
\(117\) 8.90882 + 17.6286i 0.823621 + 1.62976i
\(118\) −1.15050 + 1.15050i −0.105912 + 0.105912i
\(119\) 0 0
\(120\) 4.88148 7.62247i 0.445616 0.695833i
\(121\) −5.48698 9.50372i −0.498816 0.863975i
\(122\) 0.337801 + 1.26069i 0.0305831 + 0.114138i
\(123\) 12.2284 + 16.8897i 1.10260 + 1.52289i
\(124\) 10.1584 5.86493i 0.912248 0.526687i
\(125\) −10.5470 + 3.70948i −0.943355 + 0.331786i
\(126\) 0 0
\(127\) −0.192048 0.192048i −0.0170415 0.0170415i 0.698535 0.715576i \(-0.253836\pi\)
−0.715576 + 0.698535i \(0.753836\pi\)
\(128\) 2.87827 10.7418i 0.254405 0.949454i
\(129\) 2.15521 13.4632i 0.189756 1.18537i
\(130\) 1.08362 + 9.57163i 0.0950399 + 0.839487i
\(131\) −11.9048 + 6.87326i −1.04013 + 0.600519i −0.919870 0.392223i \(-0.871706\pi\)
−0.120260 + 0.992742i \(0.538373\pi\)
\(132\) 0.401128 + 0.179390i 0.0349137 + 0.0156139i
\(133\) 0 0
\(134\) −1.71246 −0.147934
\(135\) 11.5589 + 1.17931i 0.994836 + 0.101498i
\(136\) 5.34248 9.25345i 0.458114 0.793477i
\(137\) 2.04989 + 7.65030i 0.175134 + 0.653609i 0.996529 + 0.0832489i \(0.0265297\pi\)
−0.821395 + 0.570360i \(0.806804\pi\)
\(138\) 0.279111 + 2.69853i 0.0237595 + 0.229714i
\(139\) 16.6862i 1.41531i −0.706560 0.707653i \(-0.749754\pi\)
0.706560 0.707653i \(-0.250246\pi\)
\(140\) 0 0
\(141\) 9.83950 3.75836i 0.828636 0.316511i
\(142\) −1.59143 + 5.93930i −0.133550 + 0.498415i
\(143\) −1.02641 + 0.275026i −0.0858329 + 0.0229989i
\(144\) 4.74122 0.991384i 0.395102 0.0826153i
\(145\) −1.78619 + 4.09994i −0.148335 + 0.340482i
\(146\) 2.54407i 0.210549i
\(147\) 0 0
\(148\) 2.20542 2.20542i 0.181284 0.181284i
\(149\) −7.80795 13.5238i −0.639652 1.10791i −0.985509 0.169623i \(-0.945745\pi\)
0.345857 0.938287i \(-0.387588\pi\)
\(150\) 5.08529 + 2.49971i 0.415212 + 0.204100i
\(151\) −3.63753 + 6.30039i −0.296018 + 0.512719i −0.975221 0.221232i \(-0.928992\pi\)
0.679203 + 0.733951i \(0.262326\pi\)
\(152\) 8.11979 + 2.17569i 0.658602 + 0.176472i
\(153\) 13.6944 + 0.763163i 1.10713 + 0.0616981i
\(154\) 0 0
\(155\) 9.91575 + 13.4204i 0.796452 + 1.07795i
\(156\) −11.3038 + 13.9119i −0.905029 + 1.11384i
\(157\) −15.2876 + 4.09630i −1.22008 + 0.326921i −0.810711 0.585447i \(-0.800919\pi\)
−0.409373 + 0.912367i \(0.634253\pi\)
\(158\) 3.41887 0.916084i 0.271991 0.0728797i
\(159\) 4.30479 5.29801i 0.341392 0.420160i
\(160\) 12.6720 + 1.90310i 1.00181 + 0.150453i
\(161\) 0 0
\(162\) −3.67553 4.60086i −0.288777 0.361477i
\(163\) 13.9649 + 3.74189i 1.09382 + 0.293088i 0.760245 0.649636i \(-0.225079\pi\)
0.333573 + 0.942724i \(0.391746\pi\)
\(164\) −9.46179 + 16.3883i −0.738842 + 1.27971i
\(165\) −0.189379 + 0.595706i −0.0147431 + 0.0463756i
\(166\) 3.12721 + 5.41648i 0.242718 + 0.420401i
\(167\) 2.52703 2.52703i 0.195547 0.195547i −0.602541 0.798088i \(-0.705845\pi\)
0.798088 + 0.602541i \(0.205845\pi\)
\(168\) 0 0
\(169\) 30.3482i 2.33448i
\(170\) 6.13230 + 2.67161i 0.470326 + 0.204903i
\(171\) 2.20853 + 10.5621i 0.168891 + 0.807707i
\(172\) 11.9522 3.20257i 0.911344 0.244194i
\(173\) 0.527588 1.96899i 0.0401118 0.149699i −0.942966 0.332890i \(-0.891976\pi\)
0.983077 + 0.183191i \(0.0586427\pi\)
\(174\) 2.11738 0.808766i 0.160518 0.0613124i
\(175\) 0 0
\(176\) 0.260588i 0.0196426i
\(177\) −0.443121 4.28422i −0.0333070 0.322022i
\(178\) −1.84101 6.87074i −0.137990 0.514984i
\(179\) −10.0466 + 17.4012i −0.750918 + 1.30063i 0.196460 + 0.980512i \(0.437055\pi\)
−0.947378 + 0.320117i \(0.896278\pi\)
\(180\) 3.30555 + 10.0130i 0.246381 + 0.746325i
\(181\) 16.6805 1.23986 0.619928 0.784659i \(-0.287162\pi\)
0.619928 + 0.784659i \(0.287162\pi\)
\(182\) 0 0
\(183\) −3.15395 1.41049i −0.233147 0.104266i
\(184\) −4.84513 + 2.79734i −0.357188 + 0.206222i
\(185\) 3.47030 + 2.76445i 0.255142 + 0.203247i
\(186\) 1.33678 8.35063i 0.0980177 0.612298i
\(187\) −0.190978 + 0.712741i −0.0139657 + 0.0521208i
\(188\) 6.75913 + 6.75913i 0.492961 + 0.492961i
\(189\) 0 0
\(190\) −0.781560 + 5.20410i −0.0567003 + 0.377545i
\(191\) −18.7304 + 10.8140i −1.35528 + 0.782472i −0.988984 0.148026i \(-0.952708\pi\)
−0.366298 + 0.930498i \(0.619375\pi\)
\(192\) −0.528614 0.730113i −0.0381494 0.0526914i
\(193\) −1.50265 5.60798i −0.108163 0.403671i 0.890521 0.454941i \(-0.150340\pi\)
−0.998685 + 0.0512701i \(0.983673\pi\)
\(194\) −4.49106 7.77874i −0.322439 0.558481i
\(195\) −21.4735 13.7518i −1.53775 0.984786i
\(196\) 0 0
\(197\) 9.12082 9.12082i 0.649832 0.649832i −0.303121 0.952952i \(-0.598028\pi\)
0.952952 + 0.303121i \(0.0980285\pi\)
\(198\) 0.282752 0.142892i 0.0200943 0.0101549i
\(199\) −0.552436 0.318949i −0.0391612 0.0226097i 0.480292 0.877109i \(-0.340531\pi\)
−0.519453 + 0.854499i \(0.673864\pi\)
\(200\) −0.424507 + 11.6778i −0.0300172 + 0.825746i
\(201\) 2.85864 3.51820i 0.201633 0.248155i
\(202\) −2.14880 2.14880i −0.151189 0.151189i
\(203\) 0 0
\(204\) 4.44148 + 11.6280i 0.310966 + 0.814120i
\(205\) −24.6792 10.7518i −1.72367 0.750937i
\(206\) 5.63172 + 3.25147i 0.392380 + 0.226541i
\(207\) −6.00997 3.93127i −0.417722 0.273242i
\(208\) −10.2681 2.75134i −0.711966 0.190771i
\(209\) −0.580518 −0.0401553
\(210\) 0 0
\(211\) −6.69574 −0.460953 −0.230477 0.973078i \(-0.574029\pi\)
−0.230477 + 0.973078i \(0.574029\pi\)
\(212\) 5.98408 + 1.60343i 0.410988 + 0.110124i
\(213\) −9.54550 13.1841i −0.654047 0.903359i
\(214\) 8.21070 + 4.74045i 0.561272 + 0.324051i
\(215\) 6.43953 + 16.3820i 0.439172 + 1.11724i
\(216\) 5.56690 10.7928i 0.378780 0.734359i
\(217\) 0 0
\(218\) 4.27320 + 4.27320i 0.289417 + 0.289417i
\(219\) −5.22671 4.24685i −0.353189 0.286976i
\(220\) −0.563680 + 0.0638153i −0.0380033 + 0.00430242i
\(221\) −26.0682 15.0505i −1.75354 1.01241i
\(222\) −0.231348 2.23674i −0.0155271 0.150120i
\(223\) −0.382073 + 0.382073i −0.0255855 + 0.0255855i −0.719784 0.694198i \(-0.755759\pi\)
0.694198 + 0.719784i \(0.255759\pi\)
\(224\) 0 0
\(225\) −13.6245 + 6.27477i −0.908301 + 0.418318i
\(226\) −2.25742 3.90997i −0.150161 0.260087i
\(227\) −4.57855 17.0874i −0.303889 1.13413i −0.933897 0.357541i \(-0.883615\pi\)
0.630008 0.776588i \(-0.283051\pi\)
\(228\) −7.93201 + 5.74291i −0.525310 + 0.380333i
\(229\) −2.00978 + 1.16035i −0.132810 + 0.0766780i −0.564933 0.825137i \(-0.691098\pi\)
0.432123 + 0.901815i \(0.357765\pi\)
\(230\) −2.08128 2.81689i −0.137235 0.185740i
\(231\) 0 0
\(232\) 3.30516 + 3.30516i 0.216995 + 0.216995i
\(233\) −2.22018 + 8.28583i −0.145449 + 0.542823i 0.854286 + 0.519803i \(0.173995\pi\)
−0.999735 + 0.0230197i \(0.992672\pi\)
\(234\) 2.64513 + 12.6501i 0.172917 + 0.826965i
\(235\) −8.47247 + 10.6357i −0.552683 + 0.693800i
\(236\) 3.38511 1.95440i 0.220352 0.127220i
\(237\) −3.82511 + 8.55320i −0.248467 + 0.555590i
\(238\) 0 0
\(239\) −21.5667 −1.39503 −0.697515 0.716570i \(-0.745711\pi\)
−0.697515 + 0.716570i \(0.745711\pi\)
\(240\) −4.62039 + 4.21371i −0.298245 + 0.271994i
\(241\) 3.24527 5.62098i 0.209047 0.362079i −0.742368 0.669992i \(-0.766297\pi\)
0.951414 + 0.307913i \(0.0996307\pi\)
\(242\) −1.85840 6.93566i −0.119463 0.445841i
\(243\) 15.5879 + 0.129018i 0.999966 + 0.00827648i
\(244\) 3.13549i 0.200729i
\(245\) 0 0
\(246\) 4.86828 + 12.7453i 0.310390 + 0.812613i
\(247\) 6.12922 22.8745i 0.389993 1.45547i
\(248\) 16.8459 4.51385i 1.06972 0.286630i
\(249\) −16.3483 2.61706i −1.03603 0.165850i
\(250\) −7.29402 + 0.558323i −0.461314 + 0.0353114i
\(251\) 25.3594i 1.60067i −0.599552 0.800336i \(-0.704655\pi\)
0.599552 0.800336i \(-0.295345\pi\)
\(252\) 0 0
\(253\) 0.273196 0.273196i 0.0171757 0.0171757i
\(254\) −0.0888536 0.153899i −0.00557517 0.00965648i
\(255\) −15.7255 + 8.13886i −0.984768 + 0.509675i
\(256\) 4.15861 7.20292i 0.259913 0.450183i
\(257\) −11.1381 2.98446i −0.694778 0.186165i −0.105888 0.994378i \(-0.533768\pi\)
−0.588890 + 0.808213i \(0.700435\pi\)
\(258\) 3.64207 8.14391i 0.226745 0.507018i
\(259\) 0 0
\(260\) 3.43688 22.8848i 0.213146 1.41926i
\(261\) −1.87298 + 5.70017i −0.115935 + 0.352832i
\(262\) −8.68795 + 2.32793i −0.536743 + 0.143820i
\(263\) 19.0359 5.10066i 1.17380 0.314520i 0.381338 0.924436i \(-0.375463\pi\)
0.792466 + 0.609916i \(0.208797\pi\)
\(264\) 0.507050 + 0.411992i 0.0312068 + 0.0253564i
\(265\) −1.30885 + 8.71515i −0.0804023 + 0.535367i
\(266\) 0 0
\(267\) 17.1889 + 7.68713i 1.05195 + 0.470445i
\(268\) 3.97379 + 1.06477i 0.242738 + 0.0650414i
\(269\) 1.68918 2.92574i 0.102991 0.178386i −0.809925 0.586534i \(-0.800492\pi\)
0.912916 + 0.408148i \(0.133825\pi\)
\(270\) 7.10567 + 2.70280i 0.432437 + 0.164487i
\(271\) −8.04393 13.9325i −0.488634 0.846339i 0.511281 0.859414i \(-0.329171\pi\)
−0.999915 + 0.0130751i \(0.995838\pi\)
\(272\) −5.21966 + 5.21966i −0.316488 + 0.316488i
\(273\) 0 0
\(274\) 5.18221i 0.313069i
\(275\) −0.180407 0.786555i −0.0108790 0.0474311i
\(276\) 1.03021 6.43551i 0.0620112 0.387372i
\(277\) 6.44170 1.72605i 0.387044 0.103708i −0.0600492 0.998195i \(-0.519126\pi\)
0.447094 + 0.894487i \(0.352459\pi\)
\(278\) 2.82576 10.5459i 0.169478 0.632499i
\(279\) 14.9246 + 16.6862i 0.893512 + 0.998977i
\(280\) 0 0
\(281\) 12.5965i 0.751447i 0.926732 + 0.375723i \(0.122606\pi\)
−0.926732 + 0.375723i \(0.877394\pi\)
\(282\) 6.85514 0.709033i 0.408218 0.0422223i
\(283\) 4.72849 + 17.6470i 0.281080 + 1.04900i 0.951657 + 0.307164i \(0.0993799\pi\)
−0.670577 + 0.741840i \(0.733953\pi\)
\(284\) 7.38586 12.7927i 0.438270 0.759106i
\(285\) −9.38699 10.2930i −0.556037 0.609703i
\(286\) −0.695278 −0.0411127
\(287\) 0 0
\(288\) 17.1653 + 0.956589i 1.01147 + 0.0563675i
\(289\) −3.37934 + 1.95106i −0.198785 + 0.114768i
\(290\) −1.82320 + 2.28872i −0.107062 + 0.134398i
\(291\) 23.4782 + 3.75842i 1.37631 + 0.220323i
\(292\) 1.58185 5.90355i 0.0925708 0.345479i
\(293\) −2.06389 2.06389i −0.120574 0.120574i 0.644245 0.764819i \(-0.277172\pi\)
−0.764819 + 0.644245i \(0.777172\pi\)
\(294\) 0 0
\(295\) 3.30426 + 4.47214i 0.192382 + 0.260378i
\(296\) 4.01600 2.31864i 0.233425 0.134768i
\(297\) −0.178434 + 0.819436i −0.0103538 + 0.0475485i
\(298\) −2.64450 9.86942i −0.153192 0.571720i
\(299\) 7.88047 + 13.6494i 0.455739 + 0.789364i
\(300\) −10.2462 8.96252i −0.591565 0.517451i
\(301\) 0 0
\(302\) −3.36591 + 3.36591i −0.193686 + 0.193686i
\(303\) 8.00166 0.827619i 0.459683 0.0475455i
\(304\) −5.02939 2.90372i −0.288455 0.166540i
\(305\) 4.43204 0.501760i 0.253778 0.0287307i
\(306\) 8.52577 + 2.80143i 0.487386 + 0.160147i
\(307\) −0.640910 0.640910i −0.0365787 0.0365787i 0.688581 0.725160i \(-0.258234\pi\)
−0.725160 + 0.688581i \(0.758234\pi\)
\(308\) 0 0
\(309\) −16.0811 + 6.14245i −0.914825 + 0.349432i
\(310\) 3.99416 + 10.1610i 0.226853 + 0.577108i
\(311\) 18.0536 + 10.4233i 1.02373 + 0.591049i 0.915181 0.403042i \(-0.132047\pi\)
0.108546 + 0.994091i \(0.465381\pi\)
\(312\) −21.5875 + 15.6297i −1.22215 + 0.884860i
\(313\) −16.9346 4.53760i −0.957198 0.256481i −0.253784 0.967261i \(-0.581675\pi\)
−0.703414 + 0.710780i \(0.748342\pi\)
\(314\) −10.3556 −0.584402
\(315\) 0 0
\(316\) −8.50313 −0.478339
\(317\) 3.99061 + 1.06928i 0.224135 + 0.0600567i 0.369139 0.929374i \(-0.379653\pi\)
−0.145004 + 0.989431i \(0.546319\pi\)
\(318\) 3.61787 2.61940i 0.202880 0.146889i
\(319\) −0.279546 0.161396i −0.0156516 0.00903644i
\(320\) 1.06684 + 0.464781i 0.0596380 + 0.0259820i
\(321\) −23.4453 + 8.95532i −1.30859 + 0.499837i
\(322\) 0 0
\(323\) −11.6280 11.6280i −0.646997 0.646997i
\(324\) 5.66839 + 12.9617i 0.314910 + 0.720095i
\(325\) 32.8980 + 1.19589i 1.82485 + 0.0663362i
\(326\) 8.19231 + 4.72983i 0.453730 + 0.261961i
\(327\) −15.9125 + 1.64584i −0.879961 + 0.0910151i
\(328\) −19.8951 + 19.8951i −1.09852 + 1.09852i
\(329\) 0 0
\(330\) −0.220570 + 0.344422i −0.0121420 + 0.0189598i
\(331\) 8.74533 + 15.1474i 0.480687 + 0.832574i 0.999754 0.0221591i \(-0.00705403\pi\)
−0.519068 + 0.854733i \(0.673721\pi\)
\(332\) −3.88886 14.5134i −0.213429 0.796529i
\(333\) 4.98150 + 3.25852i 0.272985 + 0.178566i
\(334\) 2.02505 1.16916i 0.110806 0.0639738i
\(335\) −0.869159 + 5.78739i −0.0474872 + 0.316199i
\(336\) 0 0
\(337\) −1.65213 1.65213i −0.0899974 0.0899974i 0.660675 0.750672i \(-0.270270\pi\)
−0.750672 + 0.660675i \(0.770270\pi\)
\(338\) 5.13937 19.1804i 0.279545 1.04328i
\(339\) 11.8012 + 1.88916i 0.640956 + 0.102605i
\(340\) −12.5689 10.0124i −0.681646 0.543001i
\(341\) −1.04303 + 0.602192i −0.0564831 + 0.0326105i
\(342\) −0.392849 + 7.04939i −0.0212429 + 0.381188i
\(343\) 0 0
\(344\) 18.3976 0.991930
\(345\) 9.26152 + 0.426359i 0.498624 + 0.0229544i
\(346\) 0.666883 1.15507i 0.0358518 0.0620972i
\(347\) −6.72623 25.1026i −0.361083 1.34758i −0.872654 0.488338i \(-0.837603\pi\)
0.511572 0.859241i \(-0.329063\pi\)
\(348\) −5.41627 + 0.560210i −0.290343 + 0.0300304i
\(349\) 28.1366i 1.50612i 0.657953 + 0.753059i \(0.271422\pi\)
−0.657953 + 0.753059i \(0.728578\pi\)
\(350\) 0 0
\(351\) −30.4048 15.6827i −1.62289 0.837081i
\(352\) −0.239382 + 0.893387i −0.0127591 + 0.0476177i
\(353\) −14.8324 + 3.97434i −0.789451 + 0.211533i −0.630947 0.775826i \(-0.717334\pi\)
−0.158503 + 0.987358i \(0.550667\pi\)
\(354\) 0.445462 2.78271i 0.0236760 0.147900i
\(355\) 19.2645 + 8.39283i 1.02246 + 0.445445i
\(356\) 17.0883i 0.905680i
\(357\) 0 0
\(358\) −9.29640 + 9.29640i −0.491330 + 0.491330i
\(359\) −6.73373 11.6632i −0.355393 0.615558i 0.631792 0.775138i \(-0.282320\pi\)
−0.987185 + 0.159579i \(0.948986\pi\)
\(360\) 0.894110 + 15.6523i 0.0471237 + 0.824946i
\(361\) −3.03131 + 5.25038i −0.159543 + 0.276336i
\(362\) 10.5423 + 2.82480i 0.554090 + 0.148468i
\(363\) 17.3513 + 7.75976i 0.910709 + 0.407282i
\(364\) 0 0
\(365\) 8.59786 + 1.29124i 0.450033 + 0.0675866i
\(366\) −1.75447 1.42555i −0.0917075 0.0745149i
\(367\) −3.80860 + 1.02051i −0.198807 + 0.0532703i −0.356849 0.934162i \(-0.616149\pi\)
0.158041 + 0.987433i \(0.449482\pi\)
\(368\) 3.73338 1.00036i 0.194616 0.0521471i
\(369\) −34.3116 11.2742i −1.78619 0.586913i
\(370\) 1.72512 + 2.33485i 0.0896846 + 0.121383i
\(371\) 0 0
\(372\) −8.29427 + 18.5466i −0.430038 + 0.961594i
\(373\) 5.78658 + 1.55051i 0.299618 + 0.0802823i 0.405496 0.914097i \(-0.367099\pi\)
−0.105878 + 0.994379i \(0.533765\pi\)
\(374\) −0.241401 + 0.418118i −0.0124825 + 0.0216204i
\(375\) 11.0290 15.9174i 0.569533 0.821969i
\(376\) 7.10614 + 12.3082i 0.366471 + 0.634746i
\(377\) 9.31109 9.31109i 0.479546 0.479546i
\(378\) 0 0
\(379\) 25.1498i 1.29186i 0.763397 + 0.645930i \(0.223530\pi\)
−0.763397 + 0.645930i \(0.776470\pi\)
\(380\) 5.04942 11.5902i 0.259030 0.594565i
\(381\) 0.464505 + 0.0743588i 0.0237973 + 0.00380952i
\(382\) −13.6691 + 3.66262i −0.699372 + 0.187396i
\(383\) −1.61079 + 6.01154i −0.0823073 + 0.307175i −0.994791 0.101939i \(-0.967495\pi\)
0.912483 + 0.409114i \(0.134162\pi\)
\(384\) 6.87302 + 17.9938i 0.350737 + 0.918242i
\(385\) 0 0
\(386\) 3.79877i 0.193352i
\(387\) 10.6516 + 21.0773i 0.541454 + 1.07142i
\(388\) 5.58489 + 20.8431i 0.283530 + 1.05815i
\(389\) 13.0350 22.5773i 0.660901 1.14471i −0.319479 0.947593i \(-0.603508\pi\)
0.980379 0.197120i \(-0.0631589\pi\)
\(390\) −11.2427 12.3277i −0.569295 0.624240i
\(391\) 10.9444 0.553482
\(392\) 0 0
\(393\) 9.72026 21.7352i 0.490322 1.09639i
\(394\) 7.30904 4.21988i 0.368224 0.212594i
\(395\) −1.36072 12.0193i −0.0684654 0.604755i
\(396\) −0.744975 + 0.155773i −0.0374364 + 0.00782791i
\(397\) −5.49222 + 20.4972i −0.275647 + 1.02873i 0.679760 + 0.733435i \(0.262084\pi\)
−0.955407 + 0.295293i \(0.904583\pi\)
\(398\) −0.295133 0.295133i −0.0147937 0.0147937i
\(399\) 0 0
\(400\) 2.37133 7.71681i 0.118566 0.385840i
\(401\) 3.15603 1.82213i 0.157605 0.0909930i −0.419124 0.907929i \(-0.637663\pi\)
0.576728 + 0.816936i \(0.304329\pi\)
\(402\) 2.40249 1.73944i 0.119825 0.0867554i
\(403\) −12.7161 47.4572i −0.633435 2.36401i
\(404\) 3.65023 + 6.32239i 0.181606 + 0.314551i
\(405\) −17.4144 + 10.0865i −0.865329 + 0.501204i
\(406\) 0 0
\(407\) −0.226445 + 0.226445i −0.0112245 + 0.0112245i
\(408\) 1.90403 + 18.4087i 0.0942635 + 0.911367i
\(409\) −7.47293 4.31450i −0.369513 0.213338i 0.303733 0.952757i \(-0.401767\pi\)
−0.673245 + 0.739419i \(0.735100\pi\)
\(410\) −13.7767 10.9746i −0.680384 0.541996i
\(411\) −10.6467 8.65074i −0.525163 0.426710i
\(412\) −11.0468 11.0468i −0.544235 0.544235i
\(413\) 0 0
\(414\) −3.13262 3.50237i −0.153960 0.172132i
\(415\) 19.8926 7.81948i 0.976488 0.383843i
\(416\) −32.6753 18.8651i −1.60204 0.924937i
\(417\) 16.9491 + 23.4098i 0.829999 + 1.14638i
\(418\) −0.366894 0.0983088i −0.0179454 0.00480844i
\(419\) −27.9057 −1.36328 −0.681641 0.731687i \(-0.738733\pi\)
−0.681641 + 0.731687i \(0.738733\pi\)
\(420\) 0 0
\(421\) 22.2684 1.08529 0.542647 0.839961i \(-0.317422\pi\)
0.542647 + 0.839961i \(0.317422\pi\)
\(422\) −4.23178 1.13390i −0.206000 0.0551974i
\(423\) −9.98669 + 15.2673i −0.485570 + 0.742320i
\(424\) 7.97704 + 4.60555i 0.387399 + 0.223665i
\(425\) 12.1413 19.3686i 0.588941 0.939513i
\(426\) −3.80018 9.94899i −0.184119 0.482030i
\(427\) 0 0
\(428\) −16.1055 16.1055i −0.778489 0.778489i
\(429\) 1.16064 1.42843i 0.0560361 0.0689651i
\(430\) 1.29561 + 11.4441i 0.0624799 + 0.551885i
\(431\) 1.70274 + 0.983080i 0.0820183 + 0.0473533i 0.540448 0.841377i \(-0.318255\pi\)
−0.458430 + 0.888731i \(0.651588\pi\)
\(432\) −5.64466 + 6.20677i −0.271579 + 0.298623i
\(433\) −18.7649 + 18.7649i −0.901782 + 0.901782i −0.995590 0.0938083i \(-0.970096\pi\)
0.0938083 + 0.995590i \(0.470096\pi\)
\(434\) 0 0
\(435\) −1.65861 7.56631i −0.0795242 0.362777i
\(436\) −7.25901 12.5730i −0.347644 0.602137i
\(437\) 2.22852 + 8.31694i 0.106604 + 0.397853i
\(438\) −2.58415 3.56918i −0.123475 0.170542i
\(439\) 22.4711 12.9737i 1.07249 0.619202i 0.143629 0.989632i \(-0.454123\pi\)
0.928860 + 0.370430i \(0.120790\pi\)
\(440\) −0.834089 0.125265i −0.0397636 0.00597176i
\(441\) 0 0
\(442\) −13.9266 13.9266i −0.662423 0.662423i
\(443\) −9.17002 + 34.2230i −0.435681 + 1.62598i 0.303751 + 0.952752i \(0.401761\pi\)
−0.739431 + 0.673232i \(0.764906\pi\)
\(444\) −0.853912 + 5.33423i −0.0405249 + 0.253151i
\(445\) −24.1545 + 2.73458i −1.14503 + 0.129632i
\(446\) −0.306177 + 0.176771i −0.0144979 + 0.00837036i
\(447\) 24.6909 + 11.0421i 1.16784 + 0.522274i
\(448\) 0 0
\(449\) 17.4443 0.823245 0.411623 0.911354i \(-0.364962\pi\)
0.411623 + 0.911354i \(0.364962\pi\)
\(450\) −9.67345 + 1.65845i −0.456011 + 0.0781803i
\(451\) 0.971506 1.68270i 0.0457464 0.0792351i
\(452\) 2.80723 + 10.4767i 0.132041 + 0.492784i
\(453\) −1.29640 12.5339i −0.0609100 0.588895i
\(454\) 11.5748i 0.543231i
\(455\) 0 0
\(456\) −13.6016 + 5.19533i −0.636952 + 0.243294i
\(457\) −9.10323 + 33.9737i −0.425831 + 1.58922i 0.336269 + 0.941766i \(0.390835\pi\)
−0.762101 + 0.647458i \(0.775832\pi\)
\(458\) −1.46671 + 0.393002i −0.0685346 + 0.0183638i
\(459\) −19.9876 + 12.8395i −0.932943 + 0.599295i
\(460\) 3.07814 + 7.83073i 0.143519 + 0.365110i
\(461\) 7.52593i 0.350517i 0.984522 + 0.175259i \(0.0560762\pi\)
−0.984522 + 0.175259i \(0.943924\pi\)
\(462\) 0 0
\(463\) −16.6029 + 16.6029i −0.771601 + 0.771601i −0.978386 0.206785i \(-0.933700\pi\)
0.206785 + 0.978386i \(0.433700\pi\)
\(464\) −1.61459 2.79655i −0.0749554 0.129826i
\(465\) −27.5430 8.75610i −1.27728 0.406055i
\(466\) −2.80636 + 4.86075i −0.130002 + 0.225170i
\(467\) 10.5373 + 2.82346i 0.487608 + 0.130654i 0.494243 0.869324i \(-0.335445\pi\)
−0.00663489 + 0.999978i \(0.502112\pi\)
\(468\) 1.72754 30.9995i 0.0798556 1.43295i
\(469\) 0 0
\(470\) −7.15582 + 5.28712i −0.330073 + 0.243877i
\(471\) 17.2868 21.2753i 0.796533 0.980314i
\(472\) 5.61363 1.50417i 0.258388 0.0692349i
\(473\) −1.22721 + 0.328830i −0.0564271 + 0.0151196i
\(474\) −3.86596 + 4.75794i −0.177570 + 0.218540i
\(475\) 17.1909 + 5.28267i 0.788774 + 0.242385i
\(476\) 0 0
\(477\) −0.657893 + 11.8054i −0.0301228 + 0.540532i
\(478\) −13.6304 3.65224i −0.623438 0.167050i
\(479\) 8.56960 14.8430i 0.391555 0.678193i −0.601100 0.799174i \(-0.705271\pi\)
0.992655 + 0.120981i \(0.0386039\pi\)
\(480\) −19.7112 + 10.2017i −0.899687 + 0.465641i
\(481\) −6.53192 11.3136i −0.297830 0.515856i
\(482\) 3.00294 3.00294i 0.136780 0.136780i
\(483\) 0 0
\(484\) 17.2498i 0.784081i
\(485\) −28.5682 + 11.2297i −1.29722 + 0.509916i
\(486\) 9.82989 + 2.72130i 0.445893 + 0.123441i
\(487\) 19.3562 5.18649i 0.877115 0.235022i 0.207953 0.978139i \(-0.433320\pi\)
0.669162 + 0.743117i \(0.266653\pi\)
\(488\) 1.20659 4.50304i 0.0546196 0.203843i
\(489\) −23.3928 + 8.93527i −1.05786 + 0.404067i
\(490\) 0 0
\(491\) 25.4502i 1.14855i −0.818661 0.574277i \(-0.805283\pi\)
0.818661 0.574277i \(-0.194717\pi\)
\(492\) −3.37213 32.6027i −0.152027 1.46984i
\(493\) −2.36658 8.83220i −0.106585 0.397782i
\(494\) 7.74746 13.4190i 0.348575 0.603749i
\(495\) −0.339403 1.02810i −0.0152550 0.0462098i
\(496\) −12.0485 −0.540995
\(497\) 0 0
\(498\) −9.88910 4.42254i −0.443141 0.198179i
\(499\) −13.2157 + 7.63009i −0.591616 + 0.341570i −0.765736 0.643155i \(-0.777625\pi\)
0.174120 + 0.984724i \(0.444292\pi\)
\(500\) 17.2730 + 3.23968i 0.772473 + 0.144883i
\(501\) −0.978437 + 6.11211i −0.0437133 + 0.273069i
\(502\) 4.29453 16.0274i 0.191674 0.715338i
\(503\) −7.55387 7.55387i −0.336810 0.336810i 0.518355 0.855165i \(-0.326545\pi\)
−0.855165 + 0.518355i \(0.826545\pi\)
\(504\) 0 0
\(505\) −8.35263 + 6.17139i −0.371687 + 0.274623i
\(506\) 0.218928 0.126398i 0.00973252 0.00561907i
\(507\) 30.8263 + 42.5768i 1.36904 + 1.89090i
\(508\) 0.110495 + 0.412372i 0.00490241 + 0.0182960i
\(509\) 19.6787 + 34.0846i 0.872244 + 1.51077i 0.859670 + 0.510851i \(0.170669\pi\)
0.0125748 + 0.999921i \(0.495997\pi\)
\(510\) −11.3170 + 2.48079i −0.501124 + 0.109851i
\(511\) 0 0
\(512\) −11.8791 + 11.8791i −0.524986 + 0.524986i
\(513\) −13.8270 12.5747i −0.610475 0.555189i
\(514\) −6.53402 3.77242i −0.288203 0.166394i
\(515\) 13.8469 17.3825i 0.610169 0.765964i
\(516\) −13.5152 + 16.6335i −0.594972 + 0.732248i
\(517\) −0.694006 0.694006i −0.0305223 0.0305223i
\(518\) 0 0
\(519\) 1.25983 + 3.29827i 0.0553003 + 0.144778i
\(520\) 13.7424 31.5436i 0.602642 1.38328i
\(521\) 13.2100 + 7.62679i 0.578740 + 0.334136i 0.760632 0.649183i \(-0.224889\pi\)
−0.181893 + 0.983318i \(0.558222\pi\)
\(522\) −2.14905 + 3.28538i −0.0940614 + 0.143797i
\(523\) −17.9637 4.81336i −0.785497 0.210473i −0.156290 0.987711i \(-0.549954\pi\)
−0.629207 + 0.777238i \(0.716620\pi\)
\(524\) 21.6079 0.943947
\(525\) 0 0
\(526\) 12.8947 0.562235
\(527\) −32.9543 8.83007i −1.43551 0.384644i
\(528\) −0.264693 0.365590i −0.0115193 0.0159102i
\(529\) 14.9558 + 8.63475i 0.650253 + 0.375424i
\(530\) −2.30309 + 5.28642i −0.100040 + 0.229627i
\(531\) 4.97338 + 5.56041i 0.215826 + 0.241301i
\(532\) 0 0
\(533\) 56.0471 + 56.0471i 2.42767 + 2.42767i
\(534\) 9.56181 + 7.76924i 0.413780 + 0.336208i
\(535\) 20.1880 25.3426i 0.872803 1.09566i
\(536\) 5.29724 + 3.05836i 0.228806 + 0.132101i
\(537\) −3.58055 34.6178i −0.154512 1.49387i
\(538\) 1.56304 1.56304i 0.0673876 0.0673876i
\(539\) 0 0
\(540\) −14.8082 10.6900i −0.637245 0.460026i
\(541\) 0.951978 + 1.64887i 0.0409287 + 0.0708906i 0.885764 0.464136i \(-0.153635\pi\)
−0.844835 + 0.535026i \(0.820302\pi\)
\(542\) −2.72443 10.1677i −0.117024 0.436740i
\(543\) −23.4018 + 16.9433i −1.00427 + 0.727107i
\(544\) −22.6897 + 13.0999i −0.972814 + 0.561654i
\(545\) 16.6104 12.2727i 0.711512 0.525705i
\(546\) 0 0
\(547\) 4.09919 + 4.09919i 0.175269 + 0.175269i 0.789290 0.614021i \(-0.210449\pi\)
−0.614021 + 0.789290i \(0.710449\pi\)
\(548\) 3.22219 12.0254i 0.137645 0.513699i
\(549\) 5.85751 1.22480i 0.249993 0.0522731i
\(550\) 0.0191814 0.527663i 0.000817897 0.0224996i
\(551\) 6.22994 3.59686i 0.265404 0.153231i
\(552\) 3.95603 8.84595i 0.168380 0.376509i
\(553\) 0 0
\(554\) 4.36352 0.185388
\(555\) −7.67664 0.353398i −0.325855 0.0150009i
\(556\) −13.1144 + 22.7148i −0.556174 + 0.963322i
\(557\) −2.38619 8.90537i −0.101106 0.377333i 0.896768 0.442500i \(-0.145908\pi\)
−0.997874 + 0.0651676i \(0.979242\pi\)
\(558\) 6.60675 + 13.0733i 0.279686 + 0.553437i
\(559\) 51.8284i 2.19211i
\(560\) 0 0
\(561\) −0.456037 1.19392i −0.0192539 0.0504074i
\(562\) −2.13318 + 7.96115i −0.0899829 + 0.335821i
\(563\) −1.10118 + 0.295060i −0.0464091 + 0.0124353i −0.281949 0.959429i \(-0.590981\pi\)
0.235540 + 0.971865i \(0.424314\pi\)
\(564\) −16.3483 2.61706i −0.688387 0.110198i
\(565\) −14.3597 + 5.64460i −0.604119 + 0.237470i
\(566\) 11.9538i 0.502457i
\(567\) 0 0
\(568\) 15.5301 15.5301i 0.651628 0.651628i
\(569\) 1.29985 + 2.25140i 0.0544924 + 0.0943835i 0.891985 0.452065i \(-0.149313\pi\)
−0.837492 + 0.546449i \(0.815979\pi\)
\(570\) −4.18960 8.09492i −0.175483 0.339059i
\(571\) −1.39746 + 2.42048i −0.0584820 + 0.101294i −0.893784 0.448497i \(-0.851959\pi\)
0.835302 + 0.549791i \(0.185293\pi\)
\(572\) 1.61340 + 0.432310i 0.0674597 + 0.0180758i
\(573\) 15.2933 34.1968i 0.638886 1.42859i
\(574\) 0 0
\(575\) −10.5762 + 5.60411i −0.441059 + 0.233708i
\(576\) 1.48323 + 0.487365i 0.0618012 + 0.0203069i
\(577\) −17.2446 + 4.62068i −0.717903 + 0.192362i −0.599236 0.800573i \(-0.704529\pi\)
−0.118667 + 0.992934i \(0.537862\pi\)
\(578\) −2.46618 + 0.660812i −0.102580 + 0.0274862i
\(579\) 7.80445 + 6.34134i 0.324342 + 0.263537i
\(580\) 5.65384 4.17737i 0.234763 0.173456i
\(581\) 0 0
\(582\) 14.2020 + 6.35131i 0.588691 + 0.263270i
\(583\) −0.614426 0.164635i −0.0254469 0.00681848i
\(584\) 4.54356 7.86968i 0.188014 0.325650i
\(585\) 44.0945 2.51883i 1.82308 0.104141i
\(586\) −0.954887 1.65391i −0.0394460 0.0683225i
\(587\) −19.4664 + 19.4664i −0.803465 + 0.803465i −0.983635 0.180171i \(-0.942335\pi\)
0.180171 + 0.983635i \(0.442335\pi\)
\(588\) 0 0
\(589\) 26.8408i 1.10596i
\(590\) 1.33099 + 3.38600i 0.0547959 + 0.139400i
\(591\) −3.53148 + 22.0605i −0.145266 + 0.907447i
\(592\) −3.09450 + 0.829169i −0.127183 + 0.0340786i
\(593\) −8.07115 + 30.1219i −0.331442 + 1.23696i 0.576233 + 0.817286i \(0.304522\pi\)
−0.907675 + 0.419674i \(0.862144\pi\)
\(594\) −0.251541 + 0.487675i −0.0103209 + 0.0200095i
\(595\) 0 0
\(596\) 24.5464i 1.00546i
\(597\) 1.09901 0.113672i 0.0449795 0.00465227i
\(598\) 2.66906 + 9.96108i 0.109146 + 0.407339i
\(599\) −9.26661 + 16.0502i −0.378624 + 0.655795i −0.990862 0.134878i \(-0.956936\pi\)
0.612239 + 0.790673i \(0.290269\pi\)
\(600\) −11.2662 16.8145i −0.459941 0.686448i
\(601\) −5.32951 −0.217395 −0.108698 0.994075i \(-0.534668\pi\)
−0.108698 + 0.994075i \(0.534668\pi\)
\(602\) 0 0
\(603\) −0.436881 + 7.83950i −0.0177912 + 0.319249i
\(604\) 9.90349 5.71778i 0.402967 0.232653i
\(605\) −24.3827 + 2.76042i −0.991299 + 0.112227i
\(606\) 5.19729 + 0.831991i 0.211125 + 0.0337973i
\(607\) 4.07471 15.2070i 0.165387 0.617234i −0.832603 0.553870i \(-0.813150\pi\)
0.997990 0.0633638i \(-0.0201828\pi\)
\(608\) −14.5751 14.5751i −0.591098 0.591098i
\(609\) 0 0
\(610\) 2.88607 + 0.433434i 0.116854 + 0.0175492i
\(611\) 34.6738 20.0189i 1.40275 0.809880i
\(612\) −18.0423 11.8019i −0.729316 0.477063i
\(613\) 9.15958 + 34.1840i 0.369952 + 1.38068i 0.860582 + 0.509312i \(0.170100\pi\)
−0.490630 + 0.871368i \(0.663233\pi\)
\(614\) −0.296526 0.513598i −0.0119668 0.0207271i
\(615\) 45.5446 9.98382i 1.83654 0.402586i
\(616\) 0 0
\(617\) 25.1412 25.1412i 1.01215 1.01215i 0.0122222 0.999925i \(-0.496109\pi\)
0.999925 0.0122222i \(-0.00389054\pi\)
\(618\) −11.2037 + 1.15881i −0.450677 + 0.0466140i
\(619\) 3.49101 + 2.01554i 0.140316 + 0.0810112i 0.568514 0.822673i \(-0.307518\pi\)
−0.428199 + 0.903685i \(0.640852\pi\)
\(620\) −2.95056 26.0623i −0.118497 1.04669i
\(621\) 12.4248 0.589303i 0.498591 0.0236479i
\(622\) 9.64494 + 9.64494i 0.386727 + 0.386727i
\(623\) 0 0
\(624\) 17.2003 6.56991i 0.688561 0.263007i
\(625\) −1.81518 + 24.9340i −0.0726072 + 0.997361i
\(626\) −9.93440 5.73563i −0.397058 0.229242i
\(627\) 0.814433 0.589663i 0.0325253 0.0235489i
\(628\) 24.0303 + 6.43891i 0.958915 + 0.256941i
\(629\) −9.07152 −0.361705
\(630\) 0 0
\(631\) 25.6331 1.02044 0.510219 0.860044i \(-0.329564\pi\)
0.510219 + 0.860044i \(0.329564\pi\)
\(632\) −12.2118 3.27215i −0.485760 0.130159i
\(633\) 9.39373 6.80121i 0.373367 0.270324i
\(634\) 2.34103 + 1.35159i 0.0929740 + 0.0536786i
\(635\) −0.565210 + 0.222176i −0.0224297 + 0.00881677i
\(636\) −10.0240 + 3.82883i −0.397478 + 0.151823i
\(637\) 0 0
\(638\) −0.149344 0.149344i −0.00591259 0.00591259i
\(639\) 26.7836 + 8.80065i 1.05954 + 0.348148i
\(640\) −19.4499 15.4939i −0.768825 0.612448i
\(641\) 5.18974 + 2.99630i 0.204982 + 0.118347i 0.598977 0.800766i \(-0.295574\pi\)
−0.393995 + 0.919113i \(0.628907\pi\)
\(642\) −16.3343 + 1.68947i −0.644662 + 0.0666780i
\(643\) 0.533933 0.533933i 0.0210562 0.0210562i −0.696500 0.717557i \(-0.745261\pi\)
0.717557 + 0.696500i \(0.245261\pi\)
\(644\) 0 0
\(645\) −25.6744 16.4420i −1.01093 0.647405i
\(646\) −5.37984 9.31815i −0.211667 0.366618i
\(647\) 9.09189 + 33.9314i 0.357439 + 1.33398i 0.877387 + 0.479783i \(0.159285\pi\)
−0.519948 + 0.854198i \(0.674049\pi\)
\(648\) 3.15280 + 20.7963i 0.123854 + 0.816956i
\(649\) −0.347572 + 0.200671i −0.0136434 + 0.00787702i
\(650\) 20.5893 + 6.32698i 0.807580 + 0.248165i
\(651\) 0 0
\(652\) −16.0694 16.0694i −0.629328 0.629328i
\(653\) 0.0900386 0.336028i 0.00352348 0.0131498i −0.964142 0.265388i \(-0.914500\pi\)
0.967665 + 0.252238i \(0.0811666\pi\)
\(654\) −10.3356 1.65453i −0.404152 0.0646974i
\(655\) 3.45783 + 30.5430i 0.135109 + 1.19342i
\(656\) 16.8335 9.71884i 0.657239 0.379457i
\(657\) 11.6465 + 0.649039i 0.454374 + 0.0253214i
\(658\) 0 0
\(659\) −14.9402 −0.581989 −0.290994 0.956725i \(-0.593986\pi\)
−0.290994 + 0.956725i \(0.593986\pi\)
\(660\) 0.725990 0.662089i 0.0282591 0.0257718i
\(661\) 21.4079 37.0797i 0.832673 1.44223i −0.0632386 0.997998i \(-0.520143\pi\)
0.895911 0.444233i \(-0.146524\pi\)
\(662\) 2.96199 + 11.0543i 0.115121 + 0.429637i
\(663\) 51.8598 5.36391i 2.01407 0.208317i
\(664\) 22.3400i 0.866962i
\(665\) 0 0
\(666\) 2.59654 + 2.90302i 0.100614 + 0.112490i
\(667\) −1.23915 + 4.62456i −0.0479800 + 0.179064i
\(668\) −5.42612 + 1.45392i −0.209943 + 0.0562540i
\(669\) 0.147934 0.924117i 0.00571947 0.0357284i
\(670\) −1.52939 + 3.51050i −0.0590856 + 0.135622i
\(671\) 0.321942i 0.0124284i
\(672\) 0 0
\(673\) 5.09320 5.09320i 0.196328 0.196328i −0.602096 0.798424i \(-0.705667\pi\)
0.798424 + 0.602096i \(0.205667\pi\)
\(674\) −0.764382 1.32395i −0.0294429 0.0509966i
\(675\) 12.7408 22.6423i 0.490393 0.871502i
\(676\) −23.8519 + 41.3128i −0.917382 + 1.58895i
\(677\) −1.68713 0.452066i −0.0648418 0.0173743i 0.226252 0.974069i \(-0.427353\pi\)
−0.291094 + 0.956694i \(0.594019\pi\)
\(678\) 7.13859 + 3.19247i 0.274156 + 0.122606i
\(679\) 0 0
\(680\) −14.1980 19.2162i −0.544467 0.736906i
\(681\) 23.7800 + 19.3219i 0.911252 + 0.740418i
\(682\) −0.761184 + 0.203959i −0.0291472 + 0.00780998i
\(683\) −34.4803 + 9.23896i −1.31935 + 0.353519i −0.848735 0.528819i \(-0.822635\pi\)
−0.470616 + 0.882338i \(0.655968\pi\)
\(684\) 5.29478 16.1139i 0.202451 0.616132i
\(685\) 17.5136 + 2.63022i 0.669162 + 0.100496i
\(686\) 0 0
\(687\) 1.64098 3.66934i 0.0626073 0.139994i
\(688\) −12.2769 3.28958i −0.468051 0.125414i
\(689\) 12.9744 22.4724i 0.494287 0.856130i
\(690\) 5.78118 + 1.83787i 0.220086 + 0.0699666i
\(691\) 22.5895 + 39.1261i 0.859344 + 1.48843i 0.872556 + 0.488514i \(0.162461\pi\)
−0.0132121 + 0.999913i \(0.504206\pi\)
\(692\) −2.26571 + 2.26571i −0.0861294 + 0.0861294i
\(693\) 0 0
\(694\) 17.0042i 0.645470i
\(695\) −34.2062 14.9024i −1.29752 0.565279i
\(696\) −7.99418 1.27972i −0.303019 0.0485078i
\(697\) 53.1645 14.2454i 2.01375 0.539583i
\(698\) −4.76484 + 17.7826i −0.180352 + 0.673082i
\(699\) −5.30157 13.8797i −0.200524 0.524978i
\(700\) 0 0
\(701\) 44.4108i 1.67737i −0.544614 0.838687i \(-0.683324\pi\)
0.544614 0.838687i \(-0.316676\pi\)
\(702\) −16.5604 15.0606i −0.625031 0.568426i
\(703\) −1.84716 6.89369i −0.0696669 0.260001i
\(704\) −0.0419965 + 0.0727400i −0.00158280 + 0.00274149i
\(705\) 1.08309 23.5273i 0.0407915 0.886088i
\(706\) −10.0473 −0.378135
\(707\) 0 0
\(708\) −2.76393 + 6.18034i −0.103875 + 0.232271i
\(709\) −15.7821 + 9.11180i −0.592709 + 0.342201i −0.766168 0.642640i \(-0.777839\pi\)
0.173459 + 0.984841i \(0.444506\pi\)
\(710\) 10.7541 + 8.56674i 0.403594 + 0.321504i
\(711\) −3.32153 15.8850i −0.124567 0.595734i
\(712\) −6.57587 + 24.5415i −0.246441 + 0.919731i
\(713\) 12.6315 + 12.6315i 0.473053 + 0.473053i
\(714\) 0 0
\(715\) −0.352888 + 2.34974i −0.0131972 + 0.0878753i
\(716\) 27.3527 15.7921i 1.02222 0.590178i
\(717\) 30.2568 21.9064i 1.12996 0.818109i
\(718\) −2.28067 8.51158i −0.0851139 0.317649i
\(719\) −7.20912 12.4866i −0.268855 0.465670i 0.699712 0.714425i \(-0.253312\pi\)
−0.968566 + 0.248755i \(0.919979\pi\)
\(720\) 2.20205 10.6048i 0.0820657 0.395217i
\(721\) 0 0
\(722\) −2.80496 + 2.80496i −0.104390 + 0.104390i
\(723\) 1.15660 + 11.1823i 0.0430143 + 0.415874i
\(724\) −22.7071 13.1099i −0.843902 0.487227i
\(725\) 6.80953 + 7.32328i 0.252899 + 0.271980i
\(726\) 9.65214 + 7.84264i 0.358225 + 0.291068i
\(727\) 1.34757 + 1.34757i 0.0499787 + 0.0499787i 0.731654 0.681676i \(-0.238748\pi\)
−0.681676 + 0.731654i \(0.738748\pi\)
\(728\) 0 0
\(729\) −22.0000 + 15.6525i −0.814815 + 0.579721i
\(730\) 5.21527 + 2.27210i 0.193026 + 0.0840941i
\(731\) −31.1679 17.9948i −1.15279 0.665562i
\(732\) 3.18488 + 4.39891i 0.117717 + 0.162588i
\(733\) −18.4641 4.94744i −0.681987 0.182738i −0.0988384 0.995104i \(-0.531513\pi\)
−0.583148 + 0.812366i \(0.698179\pi\)
\(734\) −2.57990 −0.0952258
\(735\) 0 0
\(736\) 13.7183 0.505663
\(737\) −0.408016 0.109327i −0.0150295 0.00402713i
\(738\) −19.7760 12.9360i −0.727966 0.476180i
\(739\) −1.11818 0.645584i −0.0411331 0.0237482i 0.479292 0.877655i \(-0.340893\pi\)
−0.520426 + 0.853907i \(0.674227\pi\)
\(740\) −2.55139 6.49068i −0.0937911 0.238602i
\(741\) 14.6360 + 38.3174i 0.537665 + 1.40763i
\(742\) 0 0
\(743\) −11.5021 11.5021i −0.421972 0.421972i 0.463910 0.885882i \(-0.346446\pi\)
−0.885882 + 0.463910i \(0.846446\pi\)
\(744\) −19.0489 + 23.4439i −0.698366 + 0.859497i
\(745\) −34.6966 + 3.92807i −1.27118 + 0.143913i
\(746\) 3.39460 + 1.95988i 0.124285 + 0.0717562i
\(747\) 25.5940 12.9342i 0.936435 0.473239i
\(748\) 0.820150 0.820150i 0.0299877 0.0299877i
\(749\) 0 0
\(750\) 9.66597 8.19222i 0.352951 0.299138i
\(751\) 21.5667 + 37.3545i 0.786978 + 1.36309i 0.927810 + 0.373053i \(0.121689\pi\)
−0.140832 + 0.990034i \(0.544978\pi\)
\(752\) −2.54123 9.48399i −0.0926690 0.345845i
\(753\) 25.7589 + 35.5778i 0.938706 + 1.29653i
\(754\) 7.46151 4.30791i 0.271732 0.156885i
\(755\) 9.66696 + 13.0837i 0.351817 + 0.476164i
\(756\) 0 0
\(757\) −21.6057 21.6057i −0.785273 0.785273i 0.195442 0.980715i \(-0.437386\pi\)
−0.980715 + 0.195442i \(0.937386\pi\)
\(758\) −4.25904 + 15.8950i −0.154695 + 0.577331i
\(759\) −0.105778 + 0.660777i −0.00383951 + 0.0239847i
\(760\) 11.7119 14.7022i 0.424834 0.533306i
\(761\) 23.7452 13.7093i 0.860763 0.496962i −0.00350451 0.999994i \(-0.501116\pi\)
0.864268 + 0.503032i \(0.167782\pi\)
\(762\) 0.280980 + 0.125658i 0.0101788 + 0.00455211i
\(763\) 0 0
\(764\) 33.9966 1.22996
\(765\) 13.7949 27.3916i 0.498754 0.990344i
\(766\) −2.03607 + 3.52657i −0.0735661 + 0.127420i
\(767\) −4.23744 15.8143i −0.153005 0.571023i
\(768\) 1.48210 + 14.3294i 0.0534808 + 0.517068i
\(769\) 17.1148i 0.617174i −0.951196 0.308587i \(-0.900144\pi\)
0.951196 0.308587i \(-0.0998561\pi\)
\(770\) 0 0
\(771\) 18.6576 7.12658i 0.671938 0.256658i
\(772\) −2.36200 + 8.81509i −0.0850101 + 0.317262i
\(773\) 40.2165 10.7760i 1.44649 0.387585i 0.551687 0.834051i \(-0.313984\pi\)
0.894800 + 0.446466i \(0.147318\pi\)
\(774\) 3.16259 + 15.1249i 0.113677 + 0.543652i
\(775\) 36.3672 8.34130i 1.30635 0.299628i
\(776\) 32.0831i 1.15172i
\(777\) 0 0
\(778\) 12.0616 12.0616i 0.432431 0.432431i
\(779\) 21.6509 + 37.5005i 0.775724 + 1.34359i
\(780\) 18.4236 + 35.5971i 0.659671 + 1.27458i
\(781\) −0.758356 + 1.31351i −0.0271361 + 0.0470011i
\(782\) 6.91698 + 1.85340i 0.247351 + 0.0662774i
\(783\) −3.16228 9.89949i −0.113011 0.353779i
\(784\) 0 0
\(785\) −5.25598 + 34.9975i −0.187594 + 1.24912i
\(786\) 9.82408 12.0908i 0.350413 0.431263i
\(787\) 13.2943 3.56220i 0.473892 0.126979i −0.0139653 0.999902i \(-0.504445\pi\)
0.487857 + 0.872924i \(0.337779\pi\)
\(788\) −19.5845 + 5.24766i −0.697670 + 0.186940i
\(789\) −21.5253 + 26.4917i −0.766320 + 0.943130i
\(790\) 1.17543 7.82674i 0.0418200 0.278463i
\(791\) 0 0
\(792\) −1.12984 0.0629640i −0.0401473 0.00223733i
\(793\) −12.6857 3.39912i −0.450482 0.120706i
\(794\) −6.94229 + 12.0244i −0.246372 + 0.426730i
\(795\) −7.01619 13.5563i −0.248839 0.480793i
\(796\) 0.501351 + 0.868365i 0.0177699 + 0.0307784i
\(797\) 31.7624 31.7624i 1.12508 1.12508i 0.134115 0.990966i \(-0.457181\pi\)
0.990966 0.134115i \(-0.0428192\pi\)
\(798\) 0 0
\(799\) 27.8023i 0.983575i
\(800\) 15.2186 24.2776i 0.538059 0.858342i
\(801\) −31.9233 + 6.67513i −1.12795 + 0.235854i
\(802\) 2.30322 0.617145i 0.0813294 0.0217921i
\(803\) −0.162419 + 0.606157i −0.00573165 + 0.0213908i
\(804\) −6.65654 + 2.54257i −0.234758 + 0.0896697i
\(805\) 0 0
\(806\) 32.1469i 1.13233i
\(807\) 0.602013 + 5.82043i 0.0211919 + 0.204889i
\(808\) 2.80934 + 10.4846i 0.0988322 + 0.368847i
\(809\) −10.6115 + 18.3796i −0.373080 + 0.646193i −0.990038 0.140803i \(-0.955032\pi\)
0.616958 + 0.786996i \(0.288365\pi\)
\(810\) −12.7142 + 3.42573i −0.446732 + 0.120368i
\(811\) −17.1374 −0.601776 −0.300888 0.953660i \(-0.597283\pi\)
−0.300888 + 0.953660i \(0.597283\pi\)
\(812\) 0 0
\(813\) 25.4371 + 11.3758i 0.892119 + 0.398968i
\(814\) −0.181463 + 0.104768i −0.00636029 + 0.00367211i
\(815\) 20.1428 25.2859i 0.705571 0.885725i
\(816\) 2.02099 12.6248i 0.0707489 0.441955i
\(817\) 7.32827 27.3495i 0.256384 0.956837i
\(818\) −3.99232 3.99232i −0.139588 0.139588i
\(819\) 0 0
\(820\) 25.1453 + 34.0327i 0.878111 + 1.18847i
\(821\) 3.05795 1.76551i 0.106723 0.0616166i −0.445688 0.895188i \(-0.647041\pi\)
0.552411 + 0.833572i \(0.313708\pi\)
\(822\) −5.26385 7.27034i −0.183598 0.253582i
\(823\) −4.73521 17.6720i −0.165059 0.616008i −0.998033 0.0626958i \(-0.980030\pi\)
0.832974 0.553312i \(-0.186636\pi\)
\(824\) −11.6139 20.1158i −0.404589 0.700768i
\(825\) 1.05205 + 0.920242i 0.0366276 + 0.0320387i
\(826\) 0 0
\(827\) −28.9027 + 28.9027i −1.00505 + 1.00505i −0.00505903 + 0.999987i \(0.501610\pi\)
−0.999987 + 0.00505903i \(0.998390\pi\)
\(828\) 5.09157 + 10.0751i 0.176944 + 0.350133i
\(829\) 15.1933 + 8.77184i 0.527684 + 0.304659i 0.740073 0.672527i \(-0.234791\pi\)
−0.212389 + 0.977185i \(0.568124\pi\)
\(830\) 13.8965 1.57325i 0.482356 0.0546084i
\(831\) −7.28409 + 8.96472i −0.252682 + 0.310983i
\(832\) −2.42282 2.42282i −0.0839961 0.0839961i
\(833\) 0 0
\(834\) 6.74762 + 17.6655i 0.233651 + 0.611706i
\(835\) −2.92346 7.43721i −0.101170 0.257375i
\(836\) 0.790254 + 0.456253i 0.0273315 + 0.0157799i
\(837\) −37.8874 8.25007i −1.30958 0.285164i
\(838\) −17.6367 4.72574i −0.609250 0.163248i
\(839\) 15.4350 0.532875 0.266437 0.963852i \(-0.414153\pi\)
0.266437 + 0.963852i \(0.414153\pi\)
\(840\) 0 0
\(841\) −25.0000 −0.862069
\(842\) 14.0739 + 3.77108i 0.485017 + 0.129960i
\(843\) −12.7950 17.6722i −0.440682 0.608664i
\(844\) 9.11485 + 5.26246i 0.313746 + 0.181141i
\(845\) −62.2130 27.1038i −2.14019 0.932400i
\(846\) −8.89716 + 7.95786i −0.305891 + 0.273597i
\(847\) 0 0
\(848\) −4.49966 4.49966i −0.154519 0.154519i
\(849\) −24.5588 19.9547i −0.842855 0.684843i
\(850\) 10.9535 10.1850i 0.375701 0.349344i
\(851\) 4.11351 + 2.37493i 0.141009 + 0.0814117i
\(852\) 2.63228 + 25.4496i 0.0901803 + 0.871889i
\(853\) 5.62301 5.62301i 0.192528 0.192528i −0.604259 0.796788i \(-0.706531\pi\)
0.796788 + 0.604259i \(0.206531\pi\)
\(854\) 0 0
\(855\) 23.6245 + 4.90557i 0.807941 + 0.167767i
\(856\) −16.9323 29.3277i −0.578735 1.00240i
\(857\) 5.59795 + 20.8918i 0.191222 + 0.713651i 0.993212 + 0.116314i \(0.0371079\pi\)
−0.801990 + 0.597337i \(0.796225\pi\)
\(858\) 0.975435 0.706231i 0.0333008 0.0241103i
\(859\) 39.2936 22.6862i 1.34068 0.774042i 0.353772 0.935332i \(-0.384899\pi\)
0.986907 + 0.161290i \(0.0515655\pi\)
\(860\) 4.10924 27.3618i 0.140124 0.933029i
\(861\) 0 0
\(862\) 0.909671 + 0.909671i 0.0309835 + 0.0309835i
\(863\) −2.20435 + 8.22674i −0.0750369 + 0.280041i −0.993242 0.116065i \(-0.962972\pi\)
0.918205 + 0.396106i \(0.129639\pi\)
\(864\) −25.0536 + 16.0937i −0.852340 + 0.547517i
\(865\) −3.56518 2.84003i −0.121220 0.0965640i
\(866\) −15.0374 + 8.68183i −0.510991 + 0.295021i
\(867\) 2.75922 6.16980i 0.0937080 0.209537i
\(868\) 0 0
\(869\) 0.873074 0.0296170
\(870\) 0.233072 5.06287i 0.00790187 0.171647i
\(871\) 8.61581 14.9230i 0.291936 0.505647i
\(872\) −5.58678 20.8501i −0.189192 0.706075i
\(873\) −36.7561 + 18.5752i −1.24401 + 0.628674i
\(874\) 5.63379i 0.190566i
\(875\) 0 0
\(876\) 3.77730 + 9.88910i 0.127623 + 0.334122i
\(877\) 6.31256 23.5588i 0.213160 0.795525i −0.773646 0.633618i \(-0.781569\pi\)
0.986806 0.161906i \(-0.0517643\pi\)
\(878\) 16.3991 4.39411i 0.553441 0.148294i
\(879\) 4.99192 + 0.799115i 0.168373 + 0.0269535i
\(880\) 0.534198 + 0.232730i 0.0180078 + 0.00784532i
\(881\) 0.538909i 0.0181563i 0.999959 + 0.00907815i \(0.00288970\pi\)
−0.999959 + 0.00907815i \(0.997110\pi\)
\(882\) 0 0
\(883\) −25.2230 + 25.2230i −0.848821 + 0.848821i −0.989986 0.141165i \(-0.954915\pi\)
0.141165 + 0.989986i \(0.454915\pi\)
\(884\) 23.6576 + 40.9762i 0.795692 + 1.37818i
\(885\) −9.17828 2.91783i −0.308524 0.0980818i
\(886\) −11.5911 + 20.0764i −0.389411 + 0.674479i
\(887\) 9.48573 + 2.54169i 0.318500 + 0.0853417i 0.414527 0.910037i \(-0.363947\pi\)
−0.0960275 + 0.995379i \(0.530614\pi\)
\(888\) −3.27905 + 7.33218i −0.110038 + 0.246052i
\(889\) 0 0
\(890\) −15.7290 2.36221i −0.527238 0.0791814i
\(891\) −0.582011 1.33087i −0.0194981 0.0445857i
\(892\) 0.820399 0.219825i 0.0274690 0.00736029i
\(893\) 21.1277 5.66115i 0.707012 0.189443i
\(894\) 13.7350 + 11.1601i 0.459366 + 0.373248i
\(895\) 26.6994 + 36.1362i 0.892464 + 1.20790i
\(896\) 0 0
\(897\) −24.9202 11.1447i −0.832062 0.372110i
\(898\) 11.0250 + 2.95413i 0.367908 + 0.0985805i
\(899\) 7.46230 12.9251i 0.248882 0.431076i
\(900\) 23.4785 + 2.16628i 0.782618 + 0.0722095i
\(901\) −9.00945 15.6048i −0.300148 0.519872i
\(902\) 0.898961 0.898961i 0.0299321 0.0299321i
\(903\) 0 0
\(904\) 16.1265i 0.536359i
\(905\) 14.8973 34.1946i 0.495203 1.13667i
\(906\) 1.30324 8.14111i 0.0432974 0.270470i
\(907\) −11.8457 + 3.17404i −0.393329 + 0.105392i −0.450062 0.892997i \(-0.648598\pi\)
0.0567332 + 0.998389i \(0.481932\pi\)
\(908\) −7.19695 + 26.8594i −0.238839 + 0.891360i
\(909\) −10.3852 + 9.28881i −0.344456 + 0.308090i
\(910\) 0 0
\(911\) 27.0102i 0.894889i 0.894312 + 0.447444i \(0.147666\pi\)
−0.894312 + 0.447444i \(0.852334\pi\)
\(912\) 10.0054 1.03487i 0.331312 0.0342679i
\(913\) 0.399296 + 1.49019i 0.0132148 + 0.0493182i
\(914\) −11.5067 + 19.9302i −0.380607 + 0.659231i
\(915\) −5.70823 + 5.20580i −0.188708 + 0.172098i
\(916\) 3.64787 0.120529
\(917\) 0 0
\(918\) −14.8067 + 4.72983i −0.488695 + 0.156108i
\(919\) 10.7836 6.22589i 0.355717 0.205373i −0.311484 0.950252i \(-0.600826\pi\)
0.667200 + 0.744878i \(0.267493\pi\)
\(920\) 1.40730 + 12.4307i 0.0463972 + 0.409827i
\(921\) 1.55017 + 0.248153i 0.0510797 + 0.00817693i
\(922\) −1.27449 + 4.75647i −0.0419731 + 0.156646i
\(923\) −43.7503 43.7503i −1.44006 1.44006i
\(924\) 0 0
\(925\) 8.76636 4.64510i 0.288236 0.152730i
\(926\) −13.3048 + 7.68155i −0.437224 + 0.252432i
\(927\) 16.3217 24.9520i 0.536075 0.819530i
\(928\) −2.96640 11.0708i −0.0973768 0.363415i
\(929\) 7.49824 + 12.9873i 0.246009 + 0.426100i 0.962415 0.271584i \(-0.0875473\pi\)
−0.716406 + 0.697684i \(0.754214\pi\)
\(930\) −15.9247 10.1983i −0.522191 0.334415i
\(931\) 0 0
\(932\) 9.53450 9.53450i 0.312313 0.312313i
\(933\) −35.9157 + 3.71479i −1.17583 + 0.121617i
\(934\) 6.18154 + 3.56892i 0.202266 + 0.116778i
\(935\) 1.29054 + 1.02804i 0.0422050 + 0.0336207i
\(936\) 14.4101 43.8552i 0.471009 1.43345i
\(937\) −17.8137 17.8137i −0.581947 0.581947i 0.353491 0.935438i \(-0.384994\pi\)
−0.935438 + 0.353491i \(0.884994\pi\)
\(938\) 0 0
\(939\) 28.3673 10.8353i 0.925732 0.353598i
\(940\) 19.8926 7.81948i 0.648824 0.255043i
\(941\) 44.3404 + 25.5999i 1.44546 + 0.834534i 0.998206 0.0598755i \(-0.0190704\pi\)
0.447249 + 0.894409i \(0.352404\pi\)
\(942\) 14.5283 10.5188i 0.473359 0.342720i
\(943\) −27.8370 7.45891i −0.906499 0.242896i
\(944\) −4.01498 −0.130677
\(945\) 0 0
\(946\) −0.831296 −0.0270277
\(947\) −37.7699 10.1204i −1.22736 0.328870i −0.413808 0.910364i \(-0.635801\pi\)
−0.813550 + 0.581495i \(0.802468\pi\)
\(948\) 11.9294 8.63708i 0.387449 0.280519i
\(949\) −22.1700 12.7998i −0.719667 0.415500i
\(950\) 9.97025 + 6.24993i 0.323478 + 0.202775i
\(951\) −6.68471 + 2.55333i −0.216767 + 0.0827975i
\(952\) 0 0
\(953\) −6.39589 6.39589i −0.207183 0.207183i 0.595886 0.803069i \(-0.296801\pi\)
−0.803069 + 0.595886i \(0.796801\pi\)
\(954\) −2.41500 + 7.34973i −0.0781886 + 0.237956i
\(955\) 5.44035 + 48.0546i 0.176046 + 1.55501i
\(956\) 29.3585 + 16.9501i 0.949522 + 0.548207i
\(957\) 0.556125 0.0575205i 0.0179770 0.00185937i
\(958\) 7.92969 7.92969i 0.256197 0.256197i
\(959\) 0 0
\(960\) −1.96881 + 0.431583i −0.0635432 + 0.0139293i
\(961\) −12.3430 21.3786i −0.398160 0.689633i
\(962\) −2.21232 8.25648i −0.0713280 0.266200i
\(963\) 23.7961 36.3785i 0.766817 1.17228i
\(964\) −8.83553 + 5.10120i −0.284573 + 0.164298i
\(965\) −12.8382 1.92806i −0.413276 0.0620665i
\(966\) 0 0
\(967\) 24.4108 + 24.4108i 0.784999 + 0.784999i 0.980670 0.195670i \(-0.0626882\pi\)
−0.195670 + 0.980670i \(0.562688\pi\)
\(968\) −6.63800 + 24.7734i −0.213353 + 0.796246i
\(969\) 28.1245 + 4.50221i 0.903488 + 0.144632i
\(970\) −19.9571 + 2.25938i −0.640785 + 0.0725445i
\(971\) 27.2512 15.7335i 0.874534 0.504912i 0.00568176 0.999984i \(-0.498191\pi\)
0.868852 + 0.495071i \(0.164858\pi\)
\(972\) −21.1183 12.4268i −0.677370 0.398591i
\(973\) 0 0
\(974\) 13.1117 0.420125
\(975\) −47.3686 + 31.7384i −1.51701 + 1.01644i
\(976\) −1.61033 + 2.78918i −0.0515456 + 0.0892795i
\(977\) 5.90313 + 22.0308i 0.188858 + 0.704827i 0.993772 + 0.111435i \(0.0355447\pi\)
−0.804914 + 0.593392i \(0.797789\pi\)
\(978\) −16.2977 + 1.68568i −0.521142 + 0.0539022i
\(979\) 1.75457i 0.0560764i
\(980\) 0 0
\(981\) 20.6525 18.4721i 0.659383 0.589770i
\(982\) 4.30992 16.0848i 0.137535 0.513288i
\(983\) −56.1919 + 15.0566i −1.79224 + 0.480230i −0.992724 0.120411i \(-0.961579\pi\)
−0.799519 + 0.600641i \(0.794912\pi\)
\(984\) 7.70316 48.1201i 0.245568 1.53401i
\(985\) −10.5517 26.8432i −0.336204 0.855295i
\(986\) 5.98282i 0.190532i
\(987\) 0 0
\(988\) −26.3217 + 26.3217i −0.837405 + 0.837405i
\(989\) 9.42212 + 16.3196i 0.299606 + 0.518933i
\(990\) −0.0404004 0.707248i −0.00128401 0.0224778i
\(991\) 27.1762 47.0706i 0.863281 1.49525i −0.00546280 0.999985i \(-0.501739\pi\)
0.868744 0.495262i \(-0.164928\pi\)
\(992\) −41.3066 11.0681i −1.31149 0.351412i
\(993\) −27.6552 12.3678i −0.877610 0.392479i
\(994\) 0 0
\(995\) −1.14721 + 0.847626i −0.0363691 + 0.0268716i
\(996\) 20.1979 + 16.4114i 0.639996 + 0.520015i
\(997\) −8.41769 + 2.25551i −0.266591 + 0.0714329i −0.389638 0.920968i \(-0.627400\pi\)
0.123047 + 0.992401i \(0.460733\pi\)
\(998\) −9.64459 + 2.58426i −0.305294 + 0.0818033i
\(999\) −10.2986 + 0.488458i −0.325834 + 0.0154541i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 735.2.y.f.557.5 32
3.2 odd 2 735.2.y.e.557.4 32
5.3 odd 4 735.2.y.e.263.5 32
7.2 even 3 inner 735.2.y.f.422.3 32
7.3 odd 6 735.2.j.c.197.3 16
7.4 even 3 735.2.j.c.197.4 yes 16
7.5 odd 6 inner 735.2.y.f.422.4 32
7.6 odd 2 inner 735.2.y.f.557.6 32
15.8 even 4 inner 735.2.y.f.263.3 32
21.2 odd 6 735.2.y.e.422.5 32
21.5 even 6 735.2.y.e.422.6 32
21.11 odd 6 735.2.j.d.197.5 yes 16
21.17 even 6 735.2.j.d.197.6 yes 16
21.20 even 2 735.2.y.e.557.3 32
35.3 even 12 735.2.j.d.638.6 yes 16
35.13 even 4 735.2.y.e.263.6 32
35.18 odd 12 735.2.j.d.638.5 yes 16
35.23 odd 12 735.2.y.e.128.4 32
35.33 even 12 735.2.y.e.128.3 32
105.23 even 12 inner 735.2.y.f.128.5 32
105.38 odd 12 735.2.j.c.638.3 yes 16
105.53 even 12 735.2.j.c.638.4 yes 16
105.68 odd 12 inner 735.2.y.f.128.6 32
105.83 odd 4 inner 735.2.y.f.263.4 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
735.2.j.c.197.3 16 7.3 odd 6
735.2.j.c.197.4 yes 16 7.4 even 3
735.2.j.c.638.3 yes 16 105.38 odd 12
735.2.j.c.638.4 yes 16 105.53 even 12
735.2.j.d.197.5 yes 16 21.11 odd 6
735.2.j.d.197.6 yes 16 21.17 even 6
735.2.j.d.638.5 yes 16 35.18 odd 12
735.2.j.d.638.6 yes 16 35.3 even 12
735.2.y.e.128.3 32 35.33 even 12
735.2.y.e.128.4 32 35.23 odd 12
735.2.y.e.263.5 32 5.3 odd 4
735.2.y.e.263.6 32 35.13 even 4
735.2.y.e.422.5 32 21.2 odd 6
735.2.y.e.422.6 32 21.5 even 6
735.2.y.e.557.3 32 21.20 even 2
735.2.y.e.557.4 32 3.2 odd 2
735.2.y.f.128.5 32 105.23 even 12 inner
735.2.y.f.128.6 32 105.68 odd 12 inner
735.2.y.f.263.3 32 15.8 even 4 inner
735.2.y.f.263.4 32 105.83 odd 4 inner
735.2.y.f.422.3 32 7.2 even 3 inner
735.2.y.f.422.4 32 7.5 odd 6 inner
735.2.y.f.557.5 32 1.1 even 1 trivial
735.2.y.f.557.6 32 7.6 odd 2 inner