Properties

Label 735.2.y.e.128.3
Level $735$
Weight $2$
Character 735.128
Analytic conductor $5.869$
Analytic rank $0$
Dimension $32$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [735,2,Mod(128,735)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("735.128"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(735, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([6, 9, 4])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 735 = 3 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 735.y (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,-4,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.86900454856\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(8\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 128.3
Character \(\chi\) \(=\) 735.128
Dual form 735.2.y.e.557.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.632011 + 0.169347i) q^{2} +(-1.72286 + 0.178197i) q^{3} +(-1.36129 + 0.785942i) q^{4} +(0.893095 + 2.04997i) q^{5} +(1.05869 - 0.404383i) q^{6} +(1.65258 - 1.65258i) q^{8} +(2.93649 - 0.614017i) q^{9} +(-0.911602 - 1.14436i) q^{10} +(-0.139773 + 0.0806980i) q^{11} +(2.20526 - 1.59665i) q^{12} +(4.65555 + 4.65555i) q^{13} +(-1.90398 - 3.37267i) q^{15} +(0.807294 - 1.39827i) q^{16} +(1.18329 - 4.41610i) q^{17} +(-1.75191 + 0.885351i) q^{18} +(3.11497 + 1.79843i) q^{19} +(-2.82692 - 2.08869i) q^{20} +(0.0746721 - 0.0746721i) q^{22} +(-0.619573 - 2.31228i) q^{23} +(-2.55268 + 3.14165i) q^{24} +(-3.40476 + 3.66164i) q^{25} +(-3.73076 - 2.15395i) q^{26} +(-4.94975 + 1.58114i) q^{27} +2.00000 q^{29} +(1.77448 + 1.80913i) q^{30} +(3.73115 + 6.46254i) q^{31} +(-1.48320 + 5.53538i) q^{32} +(0.226429 - 0.163938i) q^{33} +2.99141i q^{34} +(-3.51484 + 3.14377i) q^{36} +(-0.513548 - 1.91659i) q^{37} +(-2.27325 - 0.609116i) q^{38} +(-8.85046 - 7.19125i) q^{39} +(4.86366 + 1.91183i) q^{40} +12.0388i q^{41} +(-5.56631 - 5.56631i) q^{43} +(0.126848 - 0.219707i) q^{44} +(3.88128 + 5.47135i) q^{45} +(0.783154 + 1.35646i) q^{46} +(-5.87394 + 1.57392i) q^{47} +(-1.14169 + 2.55289i) q^{48} +(1.53176 - 2.89078i) q^{50} +(-1.25171 + 7.81918i) q^{51} +(-9.99654 - 2.67857i) q^{52} +(3.80695 + 1.02007i) q^{53} +(2.86053 - 1.83752i) q^{54} +(-0.290259 - 0.214460i) q^{55} +(-5.68713 - 2.54336i) q^{57} +(-1.26402 + 0.338694i) q^{58} +(-1.24335 - 2.15354i) q^{59} +(5.24259 + 3.09477i) q^{60} +(-0.997366 + 1.72749i) q^{61} +(-3.45254 - 3.45254i) q^{62} -0.520416i q^{64} +(-5.38589 + 13.7016i) q^{65} +(-0.115343 + 0.141956i) q^{66} +(-2.52804 - 0.677387i) q^{67} +(1.86000 + 6.94160i) q^{68} +(1.47948 + 3.87333i) q^{69} +9.39746i q^{71} +(3.83808 - 5.86751i) q^{72} +(-1.00634 + 3.75571i) q^{73} +(0.649136 + 1.12434i) q^{74} +(5.21344 - 6.91521i) q^{75} -5.65384 q^{76} +(6.81140 + 3.04615i) q^{78} +(4.68478 + 2.70476i) q^{79} +(3.58741 + 0.406138i) q^{80} +(8.24597 - 3.60611i) q^{81} +(-2.03873 - 7.60864i) q^{82} +(6.75913 - 6.75913i) q^{83} +(10.1097 - 1.51829i) q^{85} +(4.46060 + 2.57533i) q^{86} +(-3.44572 + 0.356394i) q^{87} +(-0.0976263 + 0.364346i) q^{88} +(-5.43562 + 9.41477i) q^{89} +(-3.37957 - 2.80067i) q^{90} +(2.66074 + 2.66074i) q^{92} +(-7.57985 - 10.4692i) q^{93} +(3.44585 - 1.98946i) q^{94} +(-0.904763 + 7.99176i) q^{95} +(1.56896 - 9.80098i) q^{96} +(9.70695 - 9.70695i) q^{97} +(-0.360892 + 0.322792i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 4 q^{2} - 56 q^{8} + 32 q^{9} + 8 q^{15} + 48 q^{16} + 28 q^{18} + 16 q^{22} + 16 q^{23} - 8 q^{25} + 64 q^{29} - 64 q^{30} + 52 q^{32} - 80 q^{36} + 24 q^{37} - 8 q^{39} + 48 q^{43} - 8 q^{44} - 88 q^{46}+ \cdots - 80 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/735\mathbb{Z}\right)^\times\).

\(n\) \(346\) \(442\) \(491\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{3}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.632011 + 0.169347i −0.446899 + 0.119746i −0.475248 0.879852i \(-0.657642\pi\)
0.0283490 + 0.999598i \(0.490975\pi\)
\(3\) −1.72286 + 0.178197i −0.994694 + 0.102882i
\(4\) −1.36129 + 0.785942i −0.680646 + 0.392971i
\(5\) 0.893095 + 2.04997i 0.399404 + 0.916775i
\(6\) 1.05869 0.404383i 0.432208 0.165089i
\(7\) 0 0
\(8\) 1.65258 1.65258i 0.584276 0.584276i
\(9\) 2.93649 0.614017i 0.978831 0.204672i
\(10\) −0.911602 1.14436i −0.288274 0.361879i
\(11\) −0.139773 + 0.0806980i −0.0421431 + 0.0243313i −0.520924 0.853603i \(-0.674412\pi\)
0.478780 + 0.877935i \(0.341079\pi\)
\(12\) 2.20526 1.59665i 0.636604 0.460912i
\(13\) 4.65555 + 4.65555i 1.29122 + 1.29122i 0.934035 + 0.357181i \(0.116262\pi\)
0.357181 + 0.934035i \(0.383738\pi\)
\(14\) 0 0
\(15\) −1.90398 3.37267i −0.491605 0.870819i
\(16\) 0.807294 1.39827i 0.201823 0.349569i
\(17\) 1.18329 4.41610i 0.286990 1.07106i −0.660383 0.750929i \(-0.729606\pi\)
0.947373 0.320133i \(-0.103727\pi\)
\(18\) −1.75191 + 0.885351i −0.412930 + 0.208679i
\(19\) 3.11497 + 1.79843i 0.714623 + 0.412588i 0.812770 0.582584i \(-0.197958\pi\)
−0.0981474 + 0.995172i \(0.531292\pi\)
\(20\) −2.82692 2.08869i −0.632119 0.467045i
\(21\) 0 0
\(22\) 0.0746721 0.0746721i 0.0159201 0.0159201i
\(23\) −0.619573 2.31228i −0.129190 0.482144i 0.870764 0.491701i \(-0.163625\pi\)
−0.999954 + 0.00955698i \(0.996958\pi\)
\(24\) −2.55268 + 3.14165i −0.521064 + 0.641287i
\(25\) −3.40476 + 3.66164i −0.680953 + 0.732328i
\(26\) −3.73076 2.15395i −0.731662 0.422425i
\(27\) −4.94975 + 1.58114i −0.952579 + 0.304290i
\(28\) 0 0
\(29\) 2.00000 0.371391 0.185695 0.982607i \(-0.440546\pi\)
0.185695 + 0.982607i \(0.440546\pi\)
\(30\) 1.77448 + 1.80913i 0.323975 + 0.330300i
\(31\) 3.73115 + 6.46254i 0.670134 + 1.16071i 0.977866 + 0.209233i \(0.0670968\pi\)
−0.307732 + 0.951473i \(0.599570\pi\)
\(32\) −1.48320 + 5.53538i −0.262195 + 0.978525i
\(33\) 0.226429 0.163938i 0.0394162 0.0285380i
\(34\) 2.99141i 0.513023i
\(35\) 0 0
\(36\) −3.51484 + 3.14377i −0.585807 + 0.523961i
\(37\) −0.513548 1.91659i −0.0844268 0.315085i 0.910778 0.412896i \(-0.135483\pi\)
−0.995205 + 0.0978108i \(0.968816\pi\)
\(38\) −2.27325 0.609116i −0.368770 0.0988117i
\(39\) −8.85046 7.19125i −1.41721 1.15152i
\(40\) 4.86366 + 1.91183i 0.769012 + 0.302287i
\(41\) 12.0388i 1.88014i 0.340977 + 0.940072i \(0.389242\pi\)
−0.340977 + 0.940072i \(0.610758\pi\)
\(42\) 0 0
\(43\) −5.56631 5.56631i −0.848854 0.848854i 0.141136 0.989990i \(-0.454924\pi\)
−0.989990 + 0.141136i \(0.954924\pi\)
\(44\) 0.126848 0.219707i 0.0191230 0.0331221i
\(45\) 3.88128 + 5.47135i 0.578587 + 0.815620i
\(46\) 0.783154 + 1.35646i 0.115470 + 0.200000i
\(47\) −5.87394 + 1.57392i −0.856802 + 0.229579i −0.660372 0.750939i \(-0.729601\pi\)
−0.196430 + 0.980518i \(0.562935\pi\)
\(48\) −1.14169 + 2.55289i −0.164788 + 0.368478i
\(49\) 0 0
\(50\) 1.53176 2.89078i 0.216624 0.408818i
\(51\) −1.25171 + 7.81918i −0.175274 + 1.09490i
\(52\) −9.99654 2.67857i −1.38627 0.371450i
\(53\) 3.80695 + 1.02007i 0.522924 + 0.140117i 0.510619 0.859807i \(-0.329416\pi\)
0.0123054 + 0.999924i \(0.496083\pi\)
\(54\) 2.86053 1.83752i 0.389269 0.250055i
\(55\) −0.290259 0.214460i −0.0391385 0.0289177i
\(56\) 0 0
\(57\) −5.68713 2.54336i −0.753279 0.336877i
\(58\) −1.26402 + 0.338694i −0.165974 + 0.0444726i
\(59\) −1.24335 2.15354i −0.161870 0.280367i 0.773669 0.633589i \(-0.218419\pi\)
−0.935539 + 0.353223i \(0.885086\pi\)
\(60\) 5.24259 + 3.09477i 0.676815 + 0.399533i
\(61\) −0.997366 + 1.72749i −0.127700 + 0.221182i −0.922785 0.385315i \(-0.874093\pi\)
0.795085 + 0.606498i \(0.207426\pi\)
\(62\) −3.45254 3.45254i −0.438473 0.438473i
\(63\) 0 0
\(64\) 0.520416i 0.0650520i
\(65\) −5.38589 + 13.7016i −0.668037 + 1.69947i
\(66\) −0.115343 + 0.141956i −0.0141978 + 0.0174736i
\(67\) −2.52804 0.677387i −0.308850 0.0827560i 0.101065 0.994880i \(-0.467775\pi\)
−0.409915 + 0.912124i \(0.634442\pi\)
\(68\) 1.86000 + 6.94160i 0.225558 + 0.841793i
\(69\) 1.47948 + 3.87333i 0.178108 + 0.466294i
\(70\) 0 0
\(71\) 9.39746i 1.11527i 0.830085 + 0.557637i \(0.188292\pi\)
−0.830085 + 0.557637i \(0.811708\pi\)
\(72\) 3.83808 5.86751i 0.452322 0.691492i
\(73\) −1.00634 + 3.75571i −0.117783 + 0.439573i −0.999480 0.0322434i \(-0.989735\pi\)
0.881697 + 0.471816i \(0.156401\pi\)
\(74\) 0.649136 + 1.12434i 0.0754605 + 0.130701i
\(75\) 5.21344 6.91521i 0.601996 0.798499i
\(76\) −5.65384 −0.648540
\(77\) 0 0
\(78\) 6.81140 + 3.04615i 0.771239 + 0.344909i
\(79\) 4.68478 + 2.70476i 0.527079 + 0.304309i 0.739826 0.672798i \(-0.234908\pi\)
−0.212747 + 0.977107i \(0.568241\pi\)
\(80\) 3.58741 + 0.406138i 0.401085 + 0.0454076i
\(81\) 8.24597 3.60611i 0.916219 0.400679i
\(82\) −2.03873 7.60864i −0.225140 0.840234i
\(83\) 6.75913 6.75913i 0.741911 0.741911i −0.231034 0.972946i \(-0.574211\pi\)
0.972946 + 0.231034i \(0.0742109\pi\)
\(84\) 0 0
\(85\) 10.1097 1.51829i 1.09655 0.164681i
\(86\) 4.46060 + 2.57533i 0.480999 + 0.277705i
\(87\) −3.44572 + 0.356394i −0.369420 + 0.0382094i
\(88\) −0.0976263 + 0.364346i −0.0104070 + 0.0388394i
\(89\) −5.43562 + 9.41477i −0.576175 + 0.997964i 0.419738 + 0.907645i \(0.362122\pi\)
−0.995913 + 0.0903187i \(0.971211\pi\)
\(90\) −3.37957 2.80067i −0.356238 0.295216i
\(91\) 0 0
\(92\) 2.66074 + 2.66074i 0.277401 + 0.277401i
\(93\) −7.57985 10.4692i −0.785994 1.08560i
\(94\) 3.44585 1.98946i 0.355413 0.205198i
\(95\) −0.904763 + 7.99176i −0.0928267 + 0.819938i
\(96\) 1.56896 9.80098i 0.160131 1.00031i
\(97\) 9.70695 9.70695i 0.985592 0.985592i −0.0143059 0.999898i \(-0.504554\pi\)
0.999898 + 0.0143059i \(0.00455388\pi\)
\(98\) 0 0
\(99\) −0.360892 + 0.322792i −0.0362710 + 0.0324418i
\(100\) 1.75704 7.66050i 0.175704 0.766050i
\(101\) −4.02217 + 2.32220i −0.400221 + 0.231068i −0.686579 0.727055i \(-0.740889\pi\)
0.286358 + 0.958123i \(0.407555\pi\)
\(102\) −0.533060 5.15378i −0.0527808 0.510300i
\(103\) −9.60004 + 2.57232i −0.945920 + 0.253459i −0.698630 0.715483i \(-0.746207\pi\)
−0.247290 + 0.968941i \(0.579540\pi\)
\(104\) 15.3873 1.50885
\(105\) 0 0
\(106\) −2.57878 −0.250473
\(107\) −13.9963 + 3.75029i −1.35307 + 0.362554i −0.861268 0.508151i \(-0.830329\pi\)
−0.491804 + 0.870706i \(0.663662\pi\)
\(108\) 5.49537 6.04261i 0.528792 0.581450i
\(109\) 7.99867 4.61803i 0.766134 0.442327i −0.0653600 0.997862i \(-0.520820\pi\)
0.831494 + 0.555534i \(0.187486\pi\)
\(110\) 0.219765 + 0.0863863i 0.0209538 + 0.00823661i
\(111\) 1.22630 + 3.21050i 0.116395 + 0.304727i
\(112\) 0 0
\(113\) 4.87918 4.87918i 0.458994 0.458994i −0.439331 0.898325i \(-0.644784\pi\)
0.898325 + 0.439331i \(0.144784\pi\)
\(114\) 4.02504 + 0.644335i 0.376979 + 0.0603475i
\(115\) 4.18677 3.33519i 0.390418 0.311008i
\(116\) −2.72258 + 1.57188i −0.252785 + 0.145946i
\(117\) 16.5296 + 10.8124i 1.52816 + 0.999606i
\(118\) 1.15050 + 1.15050i 0.105912 + 0.105912i
\(119\) 0 0
\(120\) −8.72008 2.42713i −0.796031 0.221566i
\(121\) −5.48698 + 9.50372i −0.498816 + 0.863975i
\(122\) 0.337801 1.26069i 0.0305831 0.114138i
\(123\) −2.14528 20.7411i −0.193433 1.87017i
\(124\) −10.1584 5.86493i −0.912248 0.526687i
\(125\) −10.5470 3.70948i −0.943355 0.331786i
\(126\) 0 0
\(127\) −0.192048 + 0.192048i −0.0170415 + 0.0170415i −0.715576 0.698535i \(-0.753836\pi\)
0.698535 + 0.715576i \(0.253836\pi\)
\(128\) −2.87827 10.7418i −0.254405 0.949454i
\(129\) 10.5819 + 8.59807i 0.931682 + 0.757018i
\(130\) 1.08362 9.57163i 0.0950399 0.839487i
\(131\) −11.9048 6.87326i −1.04013 0.600519i −0.120260 0.992742i \(-0.538373\pi\)
−0.919870 + 0.392223i \(0.871706\pi\)
\(132\) −0.179390 + 0.401128i −0.0156139 + 0.0349137i
\(133\) 0 0
\(134\) 1.71246 0.147934
\(135\) −7.66188 8.73473i −0.659430 0.751766i
\(136\) −5.34248 9.25345i −0.458114 0.793477i
\(137\) −2.04989 + 7.65030i −0.175134 + 0.653609i 0.821395 + 0.570360i \(0.193196\pi\)
−0.996529 + 0.0832489i \(0.973470\pi\)
\(138\) −1.59098 2.19744i −0.135433 0.187058i
\(139\) 16.6862i 1.41531i −0.706560 0.707653i \(-0.749754\pi\)
0.706560 0.707653i \(-0.250246\pi\)
\(140\) 0 0
\(141\) 9.83950 3.75836i 0.828636 0.316511i
\(142\) −1.59143 5.93930i −0.133550 0.498415i
\(143\) −1.02641 0.275026i −0.0858329 0.0229989i
\(144\) 1.51205 4.60171i 0.126004 0.383476i
\(145\) 1.78619 + 4.09994i 0.148335 + 0.340482i
\(146\) 2.54407i 0.210549i
\(147\) 0 0
\(148\) 2.20542 + 2.20542i 0.181284 + 0.181284i
\(149\) 7.80795 13.5238i 0.639652 1.10791i −0.345857 0.938287i \(-0.612412\pi\)
0.985509 0.169623i \(-0.0542550\pi\)
\(150\) −2.12388 + 5.25336i −0.173414 + 0.428935i
\(151\) −3.63753 6.30039i −0.296018 0.512719i 0.679203 0.733951i \(-0.262326\pi\)
−0.975221 + 0.221232i \(0.928992\pi\)
\(152\) 8.11979 2.17569i 0.658602 0.176472i
\(153\) 0.763163 13.6944i 0.0616981 1.10713i
\(154\) 0 0
\(155\) −9.91575 + 13.4204i −0.796452 + 1.07795i
\(156\) 17.7000 + 2.83344i 1.41713 + 0.226857i
\(157\) 15.2876 + 4.09630i 1.22008 + 0.326921i 0.810711 0.585447i \(-0.199081\pi\)
0.409373 + 0.912367i \(0.365747\pi\)
\(158\) −3.41887 0.916084i −0.271991 0.0728797i
\(159\) −6.74061 1.07905i −0.534565 0.0855741i
\(160\) −12.6720 + 1.90310i −1.00181 + 0.150453i
\(161\) 0 0
\(162\) −4.60086 + 3.67553i −0.361477 + 0.288777i
\(163\) 13.9649 3.74189i 1.09382 0.293088i 0.333573 0.942724i \(-0.391746\pi\)
0.760245 + 0.649636i \(0.225079\pi\)
\(164\) −9.46179 16.3883i −0.738842 1.27971i
\(165\) 0.538292 + 0.317761i 0.0419059 + 0.0247376i
\(166\) −3.12721 + 5.41648i −0.242718 + 0.420401i
\(167\) 2.52703 + 2.52703i 0.195547 + 0.195547i 0.798088 0.602541i \(-0.205845\pi\)
−0.602541 + 0.798088i \(0.705845\pi\)
\(168\) 0 0
\(169\) 30.3482i 2.33448i
\(170\) −6.13230 + 2.67161i −0.470326 + 0.204903i
\(171\) 10.2513 + 3.36843i 0.783940 + 0.257590i
\(172\) 11.9522 + 3.20257i 0.911344 + 0.244194i
\(173\) 0.527588 + 1.96899i 0.0401118 + 0.149699i 0.983077 0.183191i \(-0.0586427\pi\)
−0.942966 + 0.332890i \(0.891976\pi\)
\(174\) 2.11738 0.808766i 0.160518 0.0613124i
\(175\) 0 0
\(176\) 0.260588i 0.0196426i
\(177\) 2.52586 + 3.48868i 0.189856 + 0.262225i
\(178\) 1.84101 6.87074i 0.137990 0.514984i
\(179\) 10.0466 + 17.4012i 0.750918 + 1.30063i 0.947378 + 0.320117i \(0.103722\pi\)
−0.196460 + 0.980512i \(0.562945\pi\)
\(180\) −9.58372 4.39764i −0.714328 0.327780i
\(181\) −16.6805 −1.23986 −0.619928 0.784659i \(-0.712838\pi\)
−0.619928 + 0.784659i \(0.712838\pi\)
\(182\) 0 0
\(183\) 1.41049 3.15395i 0.104266 0.233147i
\(184\) −4.84513 2.79734i −0.357188 0.206222i
\(185\) 3.47030 2.76445i 0.255142 0.203247i
\(186\) 6.56347 + 5.33300i 0.481257 + 0.391035i
\(187\) 0.190978 + 0.712741i 0.0139657 + 0.0521208i
\(188\) 6.75913 6.75913i 0.492961 0.492961i
\(189\) 0 0
\(190\) −0.781560 5.20410i −0.0567003 0.377545i
\(191\) 18.7304 + 10.8140i 1.35528 + 0.782472i 0.988984 0.148026i \(-0.0472918\pi\)
0.366298 + 0.930498i \(0.380625\pi\)
\(192\) 0.0927365 + 0.896603i 0.00669268 + 0.0647068i
\(193\) −1.50265 + 5.60798i −0.108163 + 0.403671i −0.998685 0.0512701i \(-0.983673\pi\)
0.890521 + 0.454941i \(0.150340\pi\)
\(194\) −4.49106 + 7.77874i −0.322439 + 0.558481i
\(195\) 6.83755 24.5656i 0.489647 1.75918i
\(196\) 0 0
\(197\) −9.12082 9.12082i −0.649832 0.649832i 0.303121 0.952952i \(-0.401972\pi\)
−0.952952 + 0.303121i \(0.901972\pi\)
\(198\) 0.173424 0.265124i 0.0123247 0.0188415i
\(199\) 0.552436 0.318949i 0.0391612 0.0226097i −0.480292 0.877109i \(-0.659469\pi\)
0.519453 + 0.854499i \(0.326136\pi\)
\(200\) 0.424507 + 11.6778i 0.0300172 + 0.825746i
\(201\) 4.47617 + 0.716553i 0.315725 + 0.0505418i
\(202\) 2.14880 2.14880i 0.151189 0.151189i
\(203\) 0 0
\(204\) −4.44148 11.6280i −0.310966 0.814120i
\(205\) −24.6792 + 10.7518i −1.72367 + 0.750937i
\(206\) 5.63172 3.25147i 0.392380 0.226541i
\(207\) −3.23915 6.40956i −0.225137 0.445495i
\(208\) 10.2681 2.75134i 0.711966 0.190771i
\(209\) −0.580518 −0.0401553
\(210\) 0 0
\(211\) −6.69574 −0.460953 −0.230477 0.973078i \(-0.574029\pi\)
−0.230477 + 0.973078i \(0.574029\pi\)
\(212\) −5.98408 + 1.60343i −0.410988 + 0.110124i
\(213\) −1.67460 16.1905i −0.114742 1.10936i
\(214\) 8.21070 4.74045i 0.561272 0.324051i
\(215\) 6.43953 16.3820i 0.439172 1.11724i
\(216\) −5.56690 + 10.7928i −0.378780 + 0.734359i
\(217\) 0 0
\(218\) −4.27320 + 4.27320i −0.289417 + 0.289417i
\(219\) 1.06453 6.64989i 0.0719340 0.449358i
\(220\) 0.563680 + 0.0638153i 0.0380033 + 0.00430242i
\(221\) 26.0682 15.0505i 1.75354 1.01241i
\(222\) −1.31872 1.82140i −0.0885069 0.122244i
\(223\) 0.382073 + 0.382073i 0.0255855 + 0.0255855i 0.719784 0.694198i \(-0.244241\pi\)
−0.694198 + 0.719784i \(0.744241\pi\)
\(224\) 0 0
\(225\) −7.74975 + 12.8430i −0.516650 + 0.856197i
\(226\) −2.25742 + 3.90997i −0.150161 + 0.260087i
\(227\) −4.57855 + 17.0874i −0.303889 + 1.13413i 0.630008 + 0.776588i \(0.283051\pi\)
−0.933897 + 0.357541i \(0.883615\pi\)
\(228\) 9.74078 1.00750i 0.645099 0.0667232i
\(229\) 2.00978 + 1.16035i 0.132810 + 0.0766780i 0.564933 0.825137i \(-0.308902\pi\)
−0.432123 + 0.901815i \(0.642235\pi\)
\(230\) −2.08128 + 2.81689i −0.137235 + 0.185740i
\(231\) 0 0
\(232\) 3.30516 3.30516i 0.216995 0.216995i
\(233\) 2.22018 + 8.28583i 0.145449 + 0.542823i 0.999735 + 0.0230197i \(0.00732805\pi\)
−0.854286 + 0.519803i \(0.826005\pi\)
\(234\) −12.2779 4.03432i −0.802631 0.263732i
\(235\) −8.47247 10.6357i −0.552683 0.693800i
\(236\) 3.38511 + 1.95440i 0.220352 + 0.127220i
\(237\) −8.55320 3.82511i −0.555590 0.248467i
\(238\) 0 0
\(239\) 21.5667 1.39503 0.697515 0.716570i \(-0.254289\pi\)
0.697515 + 0.716570i \(0.254289\pi\)
\(240\) −6.25298 0.0604523i −0.403628 0.00390218i
\(241\) −3.24527 5.62098i −0.209047 0.362079i 0.742368 0.669992i \(-0.233703\pi\)
−0.951414 + 0.307913i \(0.900369\pi\)
\(242\) 1.85840 6.93566i 0.119463 0.445841i
\(243\) −13.5640 + 7.68223i −0.870134 + 0.492815i
\(244\) 3.13549i 0.200729i
\(245\) 0 0
\(246\) 4.86828 + 12.7453i 0.310390 + 0.812613i
\(247\) 6.12922 + 22.8745i 0.389993 + 1.45547i
\(248\) 16.8459 + 4.51385i 1.06972 + 0.286630i
\(249\) −10.4406 + 12.8495i −0.661645 + 0.814304i
\(250\) 7.29402 + 0.558323i 0.461314 + 0.0353114i
\(251\) 25.3594i 1.60067i 0.599552 + 0.800336i \(0.295345\pi\)
−0.599552 + 0.800336i \(0.704655\pi\)
\(252\) 0 0
\(253\) 0.273196 + 0.273196i 0.0171757 + 0.0171757i
\(254\) 0.0888536 0.153899i 0.00557517 0.00965648i
\(255\) −17.1470 + 4.41731i −1.07379 + 0.276622i
\(256\) 4.15861 + 7.20292i 0.259913 + 0.450183i
\(257\) −11.1381 + 2.98446i −0.694778 + 0.186165i −0.588890 0.808213i \(-0.700435\pi\)
−0.105888 + 0.994378i \(0.533768\pi\)
\(258\) −8.14391 3.64207i −0.507018 0.226745i
\(259\) 0 0
\(260\) −3.43688 22.8848i −0.213146 1.41926i
\(261\) 5.87298 1.22803i 0.363529 0.0760134i
\(262\) 8.68795 + 2.32793i 0.536743 + 0.143820i
\(263\) −19.0359 5.10066i −1.17380 0.314520i −0.381338 0.924436i \(-0.624537\pi\)
−0.792466 + 0.609916i \(0.791203\pi\)
\(264\) 0.103271 0.645114i 0.00635589 0.0397040i
\(265\) 1.30885 + 8.71515i 0.0804023 + 0.535367i
\(266\) 0 0
\(267\) 7.68713 17.1889i 0.470445 1.05195i
\(268\) 3.97379 1.06477i 0.242738 0.0650414i
\(269\) 1.68918 + 2.92574i 0.102991 + 0.178386i 0.912916 0.408148i \(-0.133825\pi\)
−0.809925 + 0.586534i \(0.800492\pi\)
\(270\) 6.32159 + 4.22293i 0.384720 + 0.256999i
\(271\) 8.04393 13.9325i 0.488634 0.846339i −0.511281 0.859414i \(-0.670829\pi\)
0.999915 + 0.0130751i \(0.00416205\pi\)
\(272\) −5.21966 5.21966i −0.316488 0.316488i
\(273\) 0 0
\(274\) 5.18221i 0.313069i
\(275\) 0.180407 0.786555i 0.0108790 0.0474311i
\(276\) −5.05821 4.10994i −0.304469 0.247389i
\(277\) 6.44170 + 1.72605i 0.387044 + 0.103708i 0.447094 0.894487i \(-0.352459\pi\)
−0.0600492 + 0.998195i \(0.519126\pi\)
\(278\) 2.82576 + 10.5459i 0.169478 + 0.632499i
\(279\) 14.9246 + 16.6862i 0.893512 + 0.998977i
\(280\) 0 0
\(281\) 12.5965i 0.751447i 0.926732 + 0.375723i \(0.122606\pi\)
−0.926732 + 0.375723i \(0.877394\pi\)
\(282\) −5.58221 + 4.04161i −0.332416 + 0.240674i
\(283\) −4.72849 + 17.6470i −0.281080 + 1.04900i 0.670577 + 0.741840i \(0.266047\pi\)
−0.951657 + 0.307164i \(0.900620\pi\)
\(284\) −7.38586 12.7927i −0.438270 0.759106i
\(285\) 0.134671 13.9299i 0.00797723 0.825137i
\(286\) 0.695278 0.0411127
\(287\) 0 0
\(288\) −0.956589 + 17.1653i −0.0563675 + 1.01147i
\(289\) −3.37934 1.95106i −0.198785 0.114768i
\(290\) −1.82320 2.28872i −0.107062 0.134398i
\(291\) −14.9940 + 18.4535i −0.878962 + 1.08176i
\(292\) −1.58185 5.90355i −0.0925708 0.345479i
\(293\) −2.06389 + 2.06389i −0.120574 + 0.120574i −0.764819 0.644245i \(-0.777172\pi\)
0.644245 + 0.764819i \(0.277172\pi\)
\(294\) 0 0
\(295\) 3.30426 4.47214i 0.192382 0.260378i
\(296\) −4.01600 2.31864i −0.233425 0.134768i
\(297\) 0.564246 0.620435i 0.0327409 0.0360013i
\(298\) −2.64450 + 9.86942i −0.153192 + 0.571720i
\(299\) 7.88047 13.6494i 0.455739 0.789364i
\(300\) −1.66205 + 13.5111i −0.0959588 + 0.780062i
\(301\) 0 0
\(302\) 3.36591 + 3.36591i 0.193686 + 0.193686i
\(303\) 6.51583 4.71757i 0.374325 0.271017i
\(304\) 5.02939 2.90372i 0.288455 0.166540i
\(305\) −4.43204 0.501760i −0.253778 0.0287307i
\(306\) 1.83678 + 8.78425i 0.105001 + 0.502162i
\(307\) 0.640910 0.640910i 0.0365787 0.0365787i −0.688581 0.725160i \(-0.741766\pi\)
0.725160 + 0.688581i \(0.241766\pi\)
\(308\) 0 0
\(309\) 16.0811 6.14245i 0.914825 0.349432i
\(310\) 3.99416 10.1610i 0.226853 0.577108i
\(311\) 18.0536 10.4233i 1.02373 0.591049i 0.108546 0.994091i \(-0.465381\pi\)
0.915181 + 0.403042i \(0.132047\pi\)
\(312\) −26.5102 + 2.74198i −1.50085 + 0.155234i
\(313\) 16.9346 4.53760i 0.957198 0.256481i 0.253784 0.967261i \(-0.418325\pi\)
0.703414 + 0.710780i \(0.251658\pi\)
\(314\) −10.3556 −0.584402
\(315\) 0 0
\(316\) −8.50313 −0.478339
\(317\) −3.99061 + 1.06928i −0.224135 + 0.0600567i −0.369139 0.929374i \(-0.620347\pi\)
0.145004 + 0.989431i \(0.453681\pi\)
\(318\) 4.44287 0.459530i 0.249144 0.0257692i
\(319\) −0.279546 + 0.161396i −0.0156516 + 0.00903644i
\(320\) 1.06684 0.464781i 0.0596380 0.0259820i
\(321\) 23.4453 8.95532i 1.30859 0.499837i
\(322\) 0 0
\(323\) 11.6280 11.6280i 0.646997 0.646997i
\(324\) −8.39097 + 11.3898i −0.466165 + 0.632768i
\(325\) −32.8980 + 1.19589i −1.82485 + 0.0663362i
\(326\) −8.19231 + 4.72983i −0.453730 + 0.261961i
\(327\) −12.9577 + 9.38156i −0.716561 + 0.518802i
\(328\) 19.8951 + 19.8951i 1.09852 + 1.09852i
\(329\) 0 0
\(330\) −0.394018 0.109670i −0.0216900 0.00603714i
\(331\) 8.74533 15.1474i 0.480687 0.832574i −0.519068 0.854733i \(-0.673721\pi\)
0.999754 + 0.0221591i \(0.00705403\pi\)
\(332\) −3.88886 + 14.5134i −0.213429 + 0.796529i
\(333\) −2.68485 5.31272i −0.147129 0.291135i
\(334\) −2.02505 1.16916i −0.110806 0.0639738i
\(335\) −0.869159 5.78739i −0.0474872 0.316199i
\(336\) 0 0
\(337\) −1.65213 + 1.65213i −0.0899974 + 0.0899974i −0.750672 0.660675i \(-0.770270\pi\)
0.660675 + 0.750672i \(0.270270\pi\)
\(338\) −5.13937 19.1804i −0.279545 1.04328i
\(339\) −7.53668 + 9.27559i −0.409337 + 0.503781i
\(340\) −12.5689 + 10.0124i −0.681646 + 0.543001i
\(341\) −1.04303 0.602192i −0.0564831 0.0326105i
\(342\) −7.04939 0.392849i −0.381188 0.0212429i
\(343\) 0 0
\(344\) −18.3976 −0.991930
\(345\) −6.61889 + 6.49214i −0.356349 + 0.349525i
\(346\) −0.666883 1.15507i −0.0358518 0.0620972i
\(347\) 6.72623 25.1026i 0.361083 1.34758i −0.511572 0.859241i \(-0.670937\pi\)
0.872654 0.488338i \(-0.162397\pi\)
\(348\) 4.41052 3.19329i 0.236429 0.171178i
\(349\) 28.1366i 1.50612i 0.657953 + 0.753059i \(0.271422\pi\)
−0.657953 + 0.753059i \(0.728578\pi\)
\(350\) 0 0
\(351\) −30.4048 15.6827i −1.62289 0.837081i
\(352\) −0.239382 0.893387i −0.0127591 0.0476177i
\(353\) −14.8324 3.97434i −0.789451 0.211533i −0.158503 0.987358i \(-0.550667\pi\)
−0.630947 + 0.775826i \(0.717334\pi\)
\(354\) −2.18717 1.77714i −0.116247 0.0944538i
\(355\) −19.2645 + 8.39283i −1.02246 + 0.445445i
\(356\) 17.0883i 0.905680i
\(357\) 0 0
\(358\) −9.29640 9.29640i −0.491330 0.491330i
\(359\) 6.73373 11.6632i 0.355393 0.615558i −0.631792 0.775138i \(-0.717680\pi\)
0.987185 + 0.159579i \(0.0510138\pi\)
\(360\) 15.4560 + 2.62771i 0.814602 + 0.138493i
\(361\) −3.03131 5.25038i −0.159543 0.276336i
\(362\) 10.5423 2.82480i 0.554090 0.148468i
\(363\) 7.75976 17.3513i 0.407282 0.910709i
\(364\) 0 0
\(365\) −8.59786 + 1.29124i −0.450033 + 0.0675866i
\(366\) −0.357333 + 2.23219i −0.0186781 + 0.116678i
\(367\) 3.80860 + 1.02051i 0.198807 + 0.0532703i 0.356849 0.934162i \(-0.383851\pi\)
−0.158041 + 0.987433i \(0.550518\pi\)
\(368\) −3.73338 1.00036i −0.194616 0.0521471i
\(369\) 7.39202 + 35.3518i 0.384813 + 1.84034i
\(370\) −1.72512 + 2.33485i −0.0896846 + 0.121383i
\(371\) 0 0
\(372\) 18.5466 + 8.29427i 0.961594 + 0.430038i
\(373\) 5.78658 1.55051i 0.299618 0.0802823i −0.105878 0.994379i \(-0.533765\pi\)
0.405496 + 0.914097i \(0.367099\pi\)
\(374\) −0.241401 0.418118i −0.0124825 0.0216204i
\(375\) 18.8321 + 4.51146i 0.972484 + 0.232971i
\(376\) −7.10614 + 12.3082i −0.366471 + 0.634746i
\(377\) 9.31109 + 9.31109i 0.479546 + 0.479546i
\(378\) 0 0
\(379\) 25.1498i 1.29186i −0.763397 0.645930i \(-0.776470\pi\)
0.763397 0.645930i \(-0.223530\pi\)
\(380\) −5.04942 11.5902i −0.259030 0.594565i
\(381\) 0.296649 0.365094i 0.0151978 0.0187043i
\(382\) −13.6691 3.66262i −0.699372 0.187396i
\(383\) −1.61079 6.01154i −0.0823073 0.307175i 0.912483 0.409114i \(-0.134162\pi\)
−0.994791 + 0.101939i \(0.967495\pi\)
\(384\) 6.87302 + 17.9938i 0.350737 + 0.918242i
\(385\) 0 0
\(386\) 3.79877i 0.193352i
\(387\) −19.7632 12.9276i −1.00462 0.657147i
\(388\) −5.58489 + 20.8431i −0.283530 + 1.05815i
\(389\) −13.0350 22.5773i −0.660901 1.14471i −0.980379 0.197120i \(-0.936841\pi\)
0.319479 0.947593i \(-0.396492\pi\)
\(390\) −0.161294 + 16.6837i −0.00816743 + 0.844810i
\(391\) −10.9444 −0.553482
\(392\) 0 0
\(393\) 21.7352 + 9.72026i 1.09639 + 0.490322i
\(394\) 7.30904 + 4.21988i 0.368224 + 0.212594i
\(395\) −1.36072 + 12.0193i −0.0684654 + 0.604755i
\(396\) 0.237584 0.723054i 0.0119390 0.0363348i
\(397\) 5.49222 + 20.4972i 0.275647 + 1.02873i 0.955407 + 0.295293i \(0.0954172\pi\)
−0.679760 + 0.733435i \(0.737916\pi\)
\(398\) −0.295133 + 0.295133i −0.0147937 + 0.0147937i
\(399\) 0 0
\(400\) 2.37133 + 7.71681i 0.118566 + 0.385840i
\(401\) −3.15603 1.82213i −0.157605 0.0909930i 0.419124 0.907929i \(-0.362337\pi\)
−0.576728 + 0.816936i \(0.695671\pi\)
\(402\) −2.95033 + 0.305156i −0.147149 + 0.0152198i
\(403\) −12.7161 + 47.4572i −0.633435 + 2.36401i
\(404\) 3.65023 6.32239i 0.181606 0.314551i
\(405\) 14.7569 + 13.6834i 0.733274 + 0.679933i
\(406\) 0 0
\(407\) 0.226445 + 0.226445i 0.0112245 + 0.0112245i
\(408\) 10.8533 + 14.9904i 0.537318 + 0.742135i
\(409\) 7.47293 4.31450i 0.369513 0.213338i −0.303733 0.952757i \(-0.598233\pi\)
0.673245 + 0.739419i \(0.264900\pi\)
\(410\) 13.7767 10.9746i 0.680384 0.541996i
\(411\) 2.16841 13.5457i 0.106960 0.668159i
\(412\) 11.0468 11.0468i 0.544235 0.544235i
\(413\) 0 0
\(414\) 3.13262 + 3.50237i 0.153960 + 0.172132i
\(415\) 19.8926 + 7.81948i 0.976488 + 0.383843i
\(416\) −32.6753 + 18.8651i −1.60204 + 0.924937i
\(417\) 2.97343 + 28.7480i 0.145610 + 1.40780i
\(418\) 0.366894 0.0983088i 0.0179454 0.00480844i
\(419\) −27.9057 −1.36328 −0.681641 0.731687i \(-0.738733\pi\)
−0.681641 + 0.731687i \(0.738733\pi\)
\(420\) 0 0
\(421\) 22.2684 1.08529 0.542647 0.839961i \(-0.317422\pi\)
0.542647 + 0.839961i \(0.317422\pi\)
\(422\) 4.23178 1.13390i 0.206000 0.0551974i
\(423\) −16.2824 + 8.22849i −0.791675 + 0.400083i
\(424\) 7.97704 4.60555i 0.387399 0.223665i
\(425\) 12.1413 + 19.3686i 0.588941 + 0.939513i
\(426\) 3.80018 + 9.94899i 0.184119 + 0.482030i
\(427\) 0 0
\(428\) 16.1055 16.1055i 0.778489 0.778489i
\(429\) 1.81737 + 0.290928i 0.0877436 + 0.0140462i
\(430\) −1.29561 + 11.4441i −0.0624799 + 0.551885i
\(431\) −1.70274 + 0.983080i −0.0820183 + 0.0473533i −0.540448 0.841377i \(-0.681745\pi\)
0.458430 + 0.888731i \(0.348412\pi\)
\(432\) −1.78504 + 8.19755i −0.0858826 + 0.394405i
\(433\) 18.7649 + 18.7649i 0.901782 + 0.901782i 0.995590 0.0938083i \(-0.0299041\pi\)
−0.0938083 + 0.995590i \(0.529904\pi\)
\(434\) 0 0
\(435\) −3.80795 6.74533i −0.182577 0.323414i
\(436\) −7.25901 + 12.5730i −0.347644 + 0.602137i
\(437\) 2.22852 8.31694i 0.106604 0.397853i
\(438\) 0.453346 + 4.38308i 0.0216617 + 0.209432i
\(439\) −22.4711 12.9737i −1.07249 0.619202i −0.143629 0.989632i \(-0.545877\pi\)
−0.928860 + 0.370430i \(0.879210\pi\)
\(440\) −0.834089 + 0.125265i −0.0397636 + 0.00597176i
\(441\) 0 0
\(442\) −13.9266 + 13.9266i −0.662423 + 0.662423i
\(443\) 9.17002 + 34.2230i 0.435681 + 1.62598i 0.739431 + 0.673232i \(0.235094\pi\)
−0.303751 + 0.952752i \(0.598239\pi\)
\(444\) −4.19262 3.40662i −0.198973 0.161671i
\(445\) −24.1545 2.73458i −1.14503 0.129632i
\(446\) −0.306177 0.176771i −0.0144979 0.00837036i
\(447\) −11.0421 + 24.6909i −0.522274 + 1.16784i
\(448\) 0 0
\(449\) −17.4443 −0.823245 −0.411623 0.911354i \(-0.635038\pi\)
−0.411623 + 0.911354i \(0.635038\pi\)
\(450\) 2.72301 9.42928i 0.128364 0.444500i
\(451\) −0.971506 1.68270i −0.0457464 0.0792351i
\(452\) −2.80723 + 10.4767i −0.132041 + 0.492784i
\(453\) 7.38967 + 10.2065i 0.347197 + 0.479543i
\(454\) 11.5748i 0.543231i
\(455\) 0 0
\(456\) −13.6016 + 5.19533i −0.636952 + 0.243294i
\(457\) −9.10323 33.9737i −0.425831 1.58922i −0.762101 0.647458i \(-0.775832\pi\)
0.336269 0.941766i \(-0.390835\pi\)
\(458\) −1.46671 0.393002i −0.0685346 0.0183638i
\(459\) 1.12548 + 23.7295i 0.0525328 + 1.10760i
\(460\) −3.07814 + 7.83073i −0.143519 + 0.365110i
\(461\) 7.52593i 0.350517i −0.984522 0.175259i \(-0.943924\pi\)
0.984522 0.175259i \(-0.0560762\pi\)
\(462\) 0 0
\(463\) −16.6029 16.6029i −0.771601 0.771601i 0.206785 0.978386i \(-0.433700\pi\)
−0.978386 + 0.206785i \(0.933700\pi\)
\(464\) 1.61459 2.79655i 0.0749554 0.129826i
\(465\) 14.6920 24.8884i 0.681324 1.15417i
\(466\) −2.80636 4.86075i −0.130002 0.225170i
\(467\) 10.5373 2.82346i 0.487608 0.130654i −0.00663489 0.999978i \(-0.502112\pi\)
0.494243 + 0.869324i \(0.335445\pi\)
\(468\) −30.9995 1.72754i −1.43295 0.0798556i
\(469\) 0 0
\(470\) 7.15582 + 5.28712i 0.330073 + 0.243877i
\(471\) −27.0684 4.33315i −1.24724 0.199661i
\(472\) −5.61363 1.50417i −0.258388 0.0692349i
\(473\) 1.22721 + 0.328830i 0.0564271 + 0.0151196i
\(474\) 6.05348 + 0.969052i 0.278046 + 0.0445100i
\(475\) −17.1909 + 5.28267i −0.788774 + 0.242385i
\(476\) 0 0
\(477\) 11.8054 + 0.657893i 0.540532 + 0.0301228i
\(478\) −13.6304 + 3.65224i −0.623438 + 0.167050i
\(479\) 8.56960 + 14.8430i 0.391555 + 0.678193i 0.992655 0.120981i \(-0.0386039\pi\)
−0.601100 + 0.799174i \(0.705271\pi\)
\(480\) 21.4929 5.53689i 0.981014 0.252723i
\(481\) 6.53192 11.3136i 0.297830 0.515856i
\(482\) 3.00294 + 3.00294i 0.136780 + 0.136780i
\(483\) 0 0
\(484\) 17.2498i 0.784081i
\(485\) 28.5682 + 11.2297i 1.29722 + 0.509916i
\(486\) 7.27166 7.15228i 0.329849 0.324434i
\(487\) 19.3562 + 5.18649i 0.877115 + 0.235022i 0.669162 0.743117i \(-0.266653\pi\)
0.207953 + 0.978139i \(0.433320\pi\)
\(488\) 1.20659 + 4.50304i 0.0546196 + 0.203843i
\(489\) −23.3928 + 8.93527i −1.05786 + 0.404067i
\(490\) 0 0
\(491\) 25.4502i 1.14855i −0.818661 0.574277i \(-0.805283\pi\)
0.818661 0.574277i \(-0.194717\pi\)
\(492\) 19.2217 + 26.5487i 0.866581 + 1.19691i
\(493\) 2.36658 8.83220i 0.106585 0.397782i
\(494\) −7.74746 13.4190i −0.348575 0.603749i
\(495\) −0.984025 0.451535i −0.0442286 0.0202950i
\(496\) 12.0485 0.540995
\(497\) 0 0
\(498\) 4.42254 9.88910i 0.198179 0.443141i
\(499\) −13.2157 7.63009i −0.591616 0.341570i 0.174120 0.984724i \(-0.444292\pi\)
−0.765736 + 0.643155i \(0.777625\pi\)
\(500\) 17.2730 3.23968i 0.772473 0.144883i
\(501\) −4.80402 3.90341i −0.214628 0.174391i
\(502\) −4.29453 16.0274i −0.191674 0.715338i
\(503\) −7.55387 + 7.55387i −0.336810 + 0.336810i −0.855165 0.518355i \(-0.826545\pi\)
0.518355 + 0.855165i \(0.326545\pi\)
\(504\) 0 0
\(505\) −8.35263 6.17139i −0.371687 0.274623i
\(506\) −0.218928 0.126398i −0.00973252 0.00561907i
\(507\) −5.40796 52.2857i −0.240176 2.32209i
\(508\) 0.110495 0.412372i 0.00490241 0.0182960i
\(509\) 19.6787 34.0846i 0.872244 1.51077i 0.0125748 0.999921i \(-0.495997\pi\)
0.859670 0.510851i \(-0.170669\pi\)
\(510\) 10.0890 5.69557i 0.446750 0.252204i
\(511\) 0 0
\(512\) 11.8791 + 11.8791i 0.524986 + 0.524986i
\(513\) −18.2619 3.97657i −0.806282 0.175570i
\(514\) 6.53402 3.77242i 0.288203 0.166394i
\(515\) −13.8469 17.3825i −0.610169 0.765964i
\(516\) −21.1626 3.38774i −0.931631 0.149137i
\(517\) 0.694006 0.694006i 0.0305223 0.0305223i
\(518\) 0 0
\(519\) −1.25983 3.29827i −0.0553003 0.144778i
\(520\) 13.7424 + 31.5436i 0.602642 + 1.38328i
\(521\) 13.2100 7.62679i 0.578740 0.334136i −0.181893 0.983318i \(-0.558222\pi\)
0.760632 + 0.649183i \(0.224889\pi\)
\(522\) −3.50382 + 1.77070i −0.153358 + 0.0775015i
\(523\) 17.9637 4.81336i 0.785497 0.210473i 0.156290 0.987711i \(-0.450046\pi\)
0.629207 + 0.777238i \(0.283380\pi\)
\(524\) 21.6079 0.943947
\(525\) 0 0
\(526\) 12.8947 0.562235
\(527\) 32.9543 8.83007i 1.43551 0.384644i
\(528\) −0.0464360 0.448956i −0.00202087 0.0195383i
\(529\) 14.9558 8.63475i 0.650253 0.375424i
\(530\) −2.30309 5.28642i −0.100040 0.229627i
\(531\) −4.97338 5.56041i −0.215826 0.241301i
\(532\) 0 0
\(533\) −56.0471 + 56.0471i −2.42767 + 2.42767i
\(534\) −1.94746 + 12.1654i −0.0842747 + 0.526448i
\(535\) −20.1880 25.3426i −0.872803 1.09566i
\(536\) −5.29724 + 3.05836i −0.228806 + 0.132101i
\(537\) −20.4097 28.1896i −0.880745 1.21647i
\(538\) −1.56304 1.56304i −0.0673876 0.0673876i
\(539\) 0 0
\(540\) 17.2951 + 5.86872i 0.744260 + 0.252550i
\(541\) 0.951978 1.64887i 0.0409287 0.0708906i −0.844835 0.535026i \(-0.820302\pi\)
0.885764 + 0.464136i \(0.153635\pi\)
\(542\) −2.72443 + 10.1677i −0.117024 + 0.436740i
\(543\) 28.7382 2.97242i 1.23328 0.127559i
\(544\) 22.6897 + 13.0999i 0.972814 + 0.561654i
\(545\) 16.6104 + 12.2727i 0.711512 + 0.525705i
\(546\) 0 0
\(547\) 4.09919 4.09919i 0.175269 0.175269i −0.614021 0.789290i \(-0.710449\pi\)
0.789290 + 0.614021i \(0.210449\pi\)
\(548\) −3.22219 12.0254i −0.137645 0.513699i
\(549\) −1.86805 + 5.68515i −0.0797264 + 0.242636i
\(550\) 0.0191814 + 0.527663i 0.000817897 + 0.0224996i
\(551\) 6.22994 + 3.59686i 0.265404 + 0.153231i
\(552\) 8.84595 + 3.95603i 0.376509 + 0.168380i
\(553\) 0 0
\(554\) −4.36352 −0.185388
\(555\) −5.48623 + 5.38116i −0.232877 + 0.228418i
\(556\) 13.1144 + 22.7148i 0.556174 + 0.963322i
\(557\) 2.38619 8.90537i 0.101106 0.377333i −0.896768 0.442500i \(-0.854092\pi\)
0.997874 + 0.0651676i \(0.0207582\pi\)
\(558\) −12.2583 8.01843i −0.518934 0.339447i
\(559\) 51.8284i 2.19211i
\(560\) 0 0
\(561\) −0.456037 1.19392i −0.0192539 0.0504074i
\(562\) −2.13318 7.96115i −0.0899829 0.335821i
\(563\) −1.10118 0.295060i −0.0464091 0.0124353i 0.235540 0.971865i \(-0.424314\pi\)
−0.281949 + 0.959429i \(0.590981\pi\)
\(564\) −10.4406 + 12.8495i −0.439628 + 0.541061i
\(565\) 14.3597 + 5.64460i 0.604119 + 0.237470i
\(566\) 11.9538i 0.502457i
\(567\) 0 0
\(568\) 15.5301 + 15.5301i 0.651628 + 0.651628i
\(569\) −1.29985 + 2.25140i −0.0544924 + 0.0943835i −0.891985 0.452065i \(-0.850687\pi\)
0.837492 + 0.546449i \(0.184021\pi\)
\(570\) 2.27387 + 8.82666i 0.0952420 + 0.369708i
\(571\) −1.39746 2.42048i −0.0584820 0.101294i 0.835302 0.549791i \(-0.185293\pi\)
−0.893784 + 0.448497i \(0.851959\pi\)
\(572\) 1.61340 0.432310i 0.0674597 0.0180758i
\(573\) −34.1968 15.2933i −1.42859 0.638886i
\(574\) 0 0
\(575\) 10.5762 + 5.60411i 0.441059 + 0.233708i
\(576\) −0.319544 1.52820i −0.0133143 0.0636748i
\(577\) 17.2446 + 4.62068i 0.717903 + 0.192362i 0.599236 0.800573i \(-0.295471\pi\)
0.118667 + 0.992934i \(0.462138\pi\)
\(578\) 2.46618 + 0.660812i 0.102580 + 0.0274862i
\(579\) 1.58954 9.92953i 0.0660588 0.412657i
\(580\) −5.65384 4.17737i −0.234763 0.173456i
\(581\) 0 0
\(582\) 6.35131 14.2020i 0.263270 0.588691i
\(583\) −0.614426 + 0.164635i −0.0254469 + 0.00681848i
\(584\) 4.54356 + 7.86968i 0.188014 + 0.325650i
\(585\) −7.40262 + 43.5416i −0.306061 + 1.80022i
\(586\) 0.954887 1.65391i 0.0394460 0.0683225i
\(587\) −19.4664 19.4664i −0.803465 0.803465i 0.180171 0.983635i \(-0.442335\pi\)
−0.983635 + 0.180171i \(0.942335\pi\)
\(588\) 0 0
\(589\) 26.8408i 1.10596i
\(590\) −1.33099 + 3.38600i −0.0547959 + 0.139400i
\(591\) 17.3392 + 14.0886i 0.713239 + 0.579527i
\(592\) −3.09450 0.829169i −0.127183 0.0340786i
\(593\) −8.07115 30.1219i −0.331442 1.23696i −0.907675 0.419674i \(-0.862144\pi\)
0.576233 0.817286i \(-0.304522\pi\)
\(594\) −0.251541 + 0.487675i −0.0103209 + 0.0200095i
\(595\) 0 0
\(596\) 24.5464i 1.00546i
\(597\) −0.894934 + 0.647947i −0.0366272 + 0.0265187i
\(598\) −2.66906 + 9.96108i −0.109146 + 0.407339i
\(599\) 9.26661 + 16.0502i 0.378624 + 0.655795i 0.990862 0.134878i \(-0.0430642\pi\)
−0.612239 + 0.790673i \(0.709731\pi\)
\(600\) −2.81232 20.0436i −0.114812 0.818276i
\(601\) 5.32951 0.217395 0.108698 0.994075i \(-0.465332\pi\)
0.108698 + 0.994075i \(0.465332\pi\)
\(602\) 0 0
\(603\) −7.83950 0.436881i −0.319249 0.0177912i
\(604\) 9.90349 + 5.71778i 0.402967 + 0.232653i
\(605\) −24.3827 2.76042i −0.991299 0.112227i
\(606\) −3.31917 + 4.08499i −0.134832 + 0.165941i
\(607\) −4.07471 15.2070i −0.165387 0.617234i −0.997990 0.0633638i \(-0.979817\pi\)
0.832603 0.553870i \(-0.186850\pi\)
\(608\) −14.5751 + 14.5751i −0.591098 + 0.591098i
\(609\) 0 0
\(610\) 2.88607 0.433434i 0.116854 0.0175492i
\(611\) −34.6738 20.0189i −1.40275 0.809880i
\(612\) 9.72412 + 19.2419i 0.393074 + 0.777807i
\(613\) 9.15958 34.1840i 0.369952 1.38068i −0.490630 0.871368i \(-0.663233\pi\)
0.860582 0.509312i \(-0.170100\pi\)
\(614\) −0.296526 + 0.513598i −0.0119668 + 0.0207271i
\(615\) 40.6028 22.9216i 1.63726 0.924287i
\(616\) 0 0
\(617\) −25.1412 25.1412i −1.01215 1.01215i −0.999925 0.0122222i \(-0.996109\pi\)
−0.0122222 0.999925i \(-0.503891\pi\)
\(618\) −9.12325 + 6.60539i −0.366991 + 0.265708i
\(619\) −3.49101 + 2.01554i −0.140316 + 0.0810112i −0.568514 0.822673i \(-0.692482\pi\)
0.428199 + 0.903685i \(0.359148\pi\)
\(620\) 2.95056 26.0623i 0.118497 1.04669i
\(621\) 6.72277 + 10.4656i 0.269775 + 0.419969i
\(622\) −9.64494 + 9.64494i −0.386727 + 0.386727i
\(623\) 0 0
\(624\) −17.2003 + 6.56991i −0.688561 + 0.263007i
\(625\) −1.81518 24.9340i −0.0726072 0.997361i
\(626\) −9.93440 + 5.73563i −0.397058 + 0.229242i
\(627\) 1.00015 0.103447i 0.0399422 0.00413126i
\(628\) −24.0303 + 6.43891i −0.958915 + 0.256941i
\(629\) −9.07152 −0.361705
\(630\) 0 0
\(631\) 25.6331 1.02044 0.510219 0.860044i \(-0.329564\pi\)
0.510219 + 0.860044i \(0.329564\pi\)
\(632\) 12.2118 3.27215i 0.485760 0.130159i
\(633\) 11.5358 1.19316i 0.458507 0.0474238i
\(634\) 2.34103 1.35159i 0.0929740 0.0536786i
\(635\) −0.565210 0.222176i −0.0224297 0.00881677i
\(636\) 10.0240 3.82883i 0.397478 0.151823i
\(637\) 0 0
\(638\) 0.149344 0.149344i 0.00591259 0.00591259i
\(639\) 5.77020 + 27.5956i 0.228266 + 1.09166i
\(640\) 19.4499 15.4939i 0.768825 0.612448i
\(641\) −5.18974 + 2.99630i −0.204982 + 0.118347i −0.598977 0.800766i \(-0.704426\pi\)
0.393995 + 0.919113i \(0.371093\pi\)
\(642\) −13.3012 + 9.63025i −0.524955 + 0.380076i
\(643\) −0.533933 0.533933i −0.0210562 0.0210562i 0.696500 0.717557i \(-0.254739\pi\)
−0.717557 + 0.696500i \(0.754739\pi\)
\(644\) 0 0
\(645\) −8.17518 + 29.3714i −0.321897 + 1.15650i
\(646\) −5.37984 + 9.31815i −0.211667 + 0.366618i
\(647\) 9.09189 33.9314i 0.357439 1.33398i −0.519948 0.854198i \(-0.674049\pi\)
0.877387 0.479783i \(-0.159285\pi\)
\(648\) 7.66774 19.5865i 0.301217 0.769432i
\(649\) 0.347572 + 0.200671i 0.0136434 + 0.00787702i
\(650\) 20.5893 6.32698i 0.807580 0.248165i
\(651\) 0 0
\(652\) −16.0694 + 16.0694i −0.629328 + 0.629328i
\(653\) −0.0900386 0.336028i −0.00352348 0.0131498i 0.964142 0.265388i \(-0.0855000\pi\)
−0.967665 + 0.252238i \(0.918833\pi\)
\(654\) 6.60065 8.12359i 0.258106 0.317657i
\(655\) 3.45783 30.5430i 0.135109 1.19342i
\(656\) 16.8335 + 9.71884i 0.657239 + 0.379457i
\(657\) −0.649039 + 11.6465i −0.0253214 + 0.454374i
\(658\) 0 0
\(659\) 14.9402 0.581989 0.290994 0.956725i \(-0.406014\pi\)
0.290994 + 0.956725i \(0.406014\pi\)
\(660\) −0.982513 0.00949870i −0.0382443 0.000369736i
\(661\) −21.4079 37.0797i −0.832673 1.44223i −0.895911 0.444233i \(-0.853476\pi\)
0.0632386 0.997998i \(-0.479857\pi\)
\(662\) −2.96199 + 11.0543i −0.115121 + 0.429637i
\(663\) −42.2299 + 30.5752i −1.64008 + 1.18744i
\(664\) 22.3400i 0.866962i
\(665\) 0 0
\(666\) 2.59654 + 2.90302i 0.100614 + 0.112490i
\(667\) −1.23915 4.62456i −0.0479800 0.179064i
\(668\) −5.42612 1.45392i −0.209943 0.0562540i
\(669\) −0.726342 0.590173i −0.0280820 0.0228174i
\(670\) 1.52939 + 3.51050i 0.0590856 + 0.135622i
\(671\) 0.321942i 0.0124284i
\(672\) 0 0
\(673\) 5.09320 + 5.09320i 0.196328 + 0.196328i 0.798424 0.602096i \(-0.205667\pi\)
−0.602096 + 0.798424i \(0.705667\pi\)
\(674\) 0.764382 1.32395i 0.0294429 0.0509966i
\(675\) 11.0632 23.5076i 0.425821 0.904807i
\(676\) −23.8519 41.3128i −0.917382 1.58895i
\(677\) −1.68713 + 0.452066i −0.0648418 + 0.0173743i −0.291094 0.956694i \(-0.594019\pi\)
0.226252 + 0.974069i \(0.427353\pi\)
\(678\) 3.19247 7.13859i 0.122606 0.274156i
\(679\) 0 0
\(680\) 14.1980 19.2162i 0.544467 0.736906i
\(681\) 4.84328 30.2550i 0.185595 1.15938i
\(682\) 0.761184 + 0.203959i 0.0291472 + 0.00780998i
\(683\) 34.4803 + 9.23896i 1.31935 + 0.353519i 0.848735 0.528819i \(-0.177365\pi\)
0.470616 + 0.882338i \(0.344032\pi\)
\(684\) −16.6025 + 3.47155i −0.634811 + 0.132738i
\(685\) −17.5136 + 2.63022i −0.669162 + 0.100496i
\(686\) 0 0
\(687\) −3.66934 1.64098i −0.139994 0.0626073i
\(688\) −12.2769 + 3.28958i −0.468051 + 0.125414i
\(689\) 12.9744 + 22.4724i 0.494287 + 0.856130i
\(690\) 3.08379 5.22399i 0.117398 0.198874i
\(691\) −22.5895 + 39.1261i −0.859344 + 1.48843i 0.0132121 + 0.999913i \(0.495794\pi\)
−0.872556 + 0.488514i \(0.837539\pi\)
\(692\) −2.26571 2.26571i −0.0861294 0.0861294i
\(693\) 0 0
\(694\) 17.0042i 0.645470i
\(695\) 34.2062 14.9024i 1.29752 0.565279i
\(696\) −5.10536 + 6.28330i −0.193518 + 0.238168i
\(697\) 53.1645 + 14.2454i 2.01375 + 0.539583i
\(698\) −4.76484 17.7826i −0.180352 0.673082i
\(699\) −5.30157 13.8797i −0.200524 0.524978i
\(700\) 0 0
\(701\) 44.4108i 1.67737i −0.544614 0.838687i \(-0.683324\pi\)
0.544614 0.838687i \(-0.316676\pi\)
\(702\) 21.8720 + 4.76268i 0.825505 + 0.179756i
\(703\) 1.84716 6.89369i 0.0696669 0.260001i
\(704\) 0.0419965 + 0.0727400i 0.00158280 + 0.00274149i
\(705\) 16.4921 + 16.8141i 0.621130 + 0.633257i
\(706\) 10.0473 0.378135
\(707\) 0 0
\(708\) −6.18034 2.76393i −0.232271 0.103875i
\(709\) −15.7821 9.11180i −0.592709 0.342201i 0.173459 0.984841i \(-0.444506\pi\)
−0.766168 + 0.642640i \(0.777839\pi\)
\(710\) 10.7541 8.56674i 0.403594 0.321504i
\(711\) 15.4176 + 5.06597i 0.578204 + 0.189989i
\(712\) 6.57587 + 24.5415i 0.246441 + 0.919731i
\(713\) 12.6315 12.6315i 0.473053 0.473053i
\(714\) 0 0
\(715\) −0.352888 2.34974i −0.0131972 0.0878753i
\(716\) −27.3527 15.7921i −1.02222 0.590178i
\(717\) −37.1563 + 3.84311i −1.38763 + 0.143524i
\(718\) −2.28067 + 8.51158i −0.0851139 + 0.317649i
\(719\) −7.20912 + 12.4866i −0.268855 + 0.465670i −0.968566 0.248755i \(-0.919979\pi\)
0.699712 + 0.714425i \(0.253312\pi\)
\(720\) 10.7838 1.01011i 0.401888 0.0376446i
\(721\) 0 0
\(722\) 2.80496 + 2.80496i 0.104390 + 0.104390i
\(723\) 6.59280 + 9.10586i 0.245189 + 0.338651i
\(724\) 22.7071 13.1099i 0.843902 0.487227i
\(725\) −6.80953 + 7.32328i −0.252899 + 0.271980i
\(726\) −1.96586 + 12.2803i −0.0729597 + 0.455766i
\(727\) −1.34757 + 1.34757i −0.0499787 + 0.0499787i −0.731654 0.681676i \(-0.761252\pi\)
0.681676 + 0.731654i \(0.261252\pi\)
\(728\) 0 0
\(729\) 22.0000 15.6525i 0.814815 0.579721i
\(730\) 5.21527 2.27210i 0.193026 0.0840941i
\(731\) −31.1679 + 17.9948i −1.15279 + 0.665562i
\(732\) 0.558734 + 5.40200i 0.0206514 + 0.199664i
\(733\) 18.4641 4.94744i 0.681987 0.182738i 0.0988384 0.995104i \(-0.468487\pi\)
0.583148 + 0.812366i \(0.301821\pi\)
\(734\) −2.57990 −0.0952258
\(735\) 0 0
\(736\) 13.7183 0.505663
\(737\) 0.408016 0.109327i 0.0150295 0.00402713i
\(738\) −10.6585 21.0909i −0.392347 0.776367i
\(739\) −1.11818 + 0.645584i −0.0411331 + 0.0237482i −0.520426 0.853907i \(-0.674227\pi\)
0.479292 + 0.877655i \(0.340893\pi\)
\(740\) −2.55139 + 6.49068i −0.0937911 + 0.238602i
\(741\) −14.6360 38.3174i −0.537665 1.40763i
\(742\) 0 0
\(743\) 11.5021 11.5021i 0.421972 0.421972i −0.463910 0.885882i \(-0.653554\pi\)
0.885882 + 0.463910i \(0.153554\pi\)
\(744\) −29.8275 4.77484i −1.09353 0.175054i
\(745\) 34.6966 + 3.92807i 1.27118 + 0.143913i
\(746\) −3.39460 + 1.95988i −0.124285 + 0.0717562i
\(747\) 15.6979 23.9984i 0.574357 0.878054i
\(748\) −0.820150 0.820150i −0.0299877 0.0299877i
\(749\) 0 0
\(750\) −12.6661 + 0.337860i −0.462499 + 0.0123369i
\(751\) 21.5667 37.3545i 0.786978 1.36309i −0.140832 0.990034i \(-0.544978\pi\)
0.927810 0.373053i \(-0.121689\pi\)
\(752\) −2.54123 + 9.48399i −0.0926690 + 0.345845i
\(753\) −4.51897 43.6907i −0.164680 1.59218i
\(754\) −7.46151 4.30791i −0.271732 0.156885i
\(755\) 9.66696 13.0837i 0.351817 0.476164i
\(756\) 0 0
\(757\) −21.6057 + 21.6057i −0.785273 + 0.785273i −0.980715 0.195442i \(-0.937386\pi\)
0.195442 + 0.980715i \(0.437386\pi\)
\(758\) 4.25904 + 15.8950i 0.154695 + 0.577331i
\(759\) −0.519361 0.421995i −0.0188516 0.0153175i
\(760\) 11.7119 + 14.7022i 0.424834 + 0.533306i
\(761\) 23.7452 + 13.7093i 0.860763 + 0.496962i 0.864268 0.503032i \(-0.167782\pi\)
−0.00350451 + 0.999994i \(0.501116\pi\)
\(762\) −0.125658 + 0.280980i −0.00455211 + 0.0101788i
\(763\) 0 0
\(764\) −33.9966 −1.22996
\(765\) 28.7547 10.6659i 1.03963 0.385628i
\(766\) 2.03607 + 3.52657i 0.0735661 + 0.127420i
\(767\) 4.23744 15.8143i 0.153005 0.571023i
\(768\) −8.44824 11.6686i −0.304849 0.421053i
\(769\) 17.1148i 0.617174i −0.951196 0.308587i \(-0.900144\pi\)
0.951196 0.308587i \(-0.0998561\pi\)
\(770\) 0 0
\(771\) 18.6576 7.12658i 0.671938 0.256658i
\(772\) −2.36200 8.81509i −0.0850101 0.317262i
\(773\) 40.2165 + 10.7760i 1.44649 + 0.387585i 0.894800 0.446466i \(-0.147318\pi\)
0.551687 + 0.834051i \(0.313984\pi\)
\(774\) 14.6798 + 4.82355i 0.527655 + 0.173379i
\(775\) −36.3672 8.34130i −1.30635 0.299628i
\(776\) 32.0831i 1.15172i
\(777\) 0 0
\(778\) 12.0616 + 12.0616i 0.432431 + 0.432431i
\(779\) −21.6509 + 37.5005i −0.775724 + 1.34359i
\(780\) 9.99927 + 38.8149i 0.358031 + 1.38980i
\(781\) −0.758356 1.31351i −0.0271361 0.0470011i
\(782\) 6.91698 1.85340i 0.247351 0.0662774i
\(783\) −9.89949 + 3.16228i −0.353779 + 0.113011i
\(784\) 0 0
\(785\) 5.25598 + 34.9975i 0.187594 + 1.24912i
\(786\) −15.3829 2.46253i −0.548691 0.0878355i
\(787\) −13.2943 3.56220i −0.473892 0.126979i 0.0139653 0.999902i \(-0.495555\pi\)
−0.487857 + 0.872924i \(0.662221\pi\)
\(788\) 19.5845 + 5.24766i 0.697670 + 0.186940i
\(789\) 33.7051 + 5.39557i 1.19993 + 0.192087i
\(790\) −1.17543 7.82674i −0.0418200 0.278463i
\(791\) 0 0
\(792\) −0.0629640 + 1.12984i −0.00223733 + 0.0401473i
\(793\) −12.6857 + 3.39912i −0.450482 + 0.120706i
\(794\) −6.94229 12.0244i −0.246372 0.426730i
\(795\) −3.80799 14.7817i −0.135055 0.524254i
\(796\) −0.501351 + 0.868365i −0.0177699 + 0.0307784i
\(797\) 31.7624 + 31.7624i 1.12508 + 1.12508i 0.990966 + 0.134115i \(0.0428192\pi\)
0.134115 + 0.990966i \(0.457181\pi\)
\(798\) 0 0
\(799\) 27.8023i 0.983575i
\(800\) −15.2186 24.2776i −0.538059 0.858342i
\(801\) −10.1808 + 30.9840i −0.359722 + 1.09476i
\(802\) 2.30322 + 0.617145i 0.0813294 + 0.0217921i
\(803\) −0.162419 0.606157i −0.00573165 0.0213908i
\(804\) −6.65654 + 2.54257i −0.234758 + 0.0896697i
\(805\) 0 0
\(806\) 32.1469i 1.13233i
\(807\) −3.43157 4.73964i −0.120797 0.166843i
\(808\) −2.80934 + 10.4846i −0.0988322 + 0.368847i
\(809\) 10.6115 + 18.3796i 0.373080 + 0.646193i 0.990038 0.140803i \(-0.0449684\pi\)
−0.616958 + 0.786996i \(0.711635\pi\)
\(810\) −11.6437 6.14903i −0.409119 0.216055i
\(811\) 17.1374 0.601776 0.300888 0.953660i \(-0.402717\pi\)
0.300888 + 0.953660i \(0.402717\pi\)
\(812\) 0 0
\(813\) −11.3758 + 25.4371i −0.398968 + 0.892119i
\(814\) −0.181463 0.104768i −0.00636029 0.00367211i
\(815\) 20.1428 + 25.2859i 0.705571 + 0.885725i
\(816\) 9.92286 + 8.06261i 0.347370 + 0.282248i
\(817\) −7.32827 27.3495i −0.256384 0.956837i
\(818\) −3.99232 + 3.99232i −0.139588 + 0.139588i
\(819\) 0 0
\(820\) 25.1453 34.0327i 0.878111 1.18847i
\(821\) −3.05795 1.76551i −0.106723 0.0616166i 0.445688 0.895188i \(-0.352959\pi\)
−0.552411 + 0.833572i \(0.686292\pi\)
\(822\) 0.923455 + 8.92823i 0.0322092 + 0.311408i
\(823\) −4.73521 + 17.6720i −0.165059 + 0.616008i 0.832974 + 0.553312i \(0.186636\pi\)
−0.998033 + 0.0626958i \(0.980030\pi\)
\(824\) −11.6139 + 20.1158i −0.404589 + 0.700768i
\(825\) −0.170654 + 1.38727i −0.00594142 + 0.0482986i
\(826\) 0 0
\(827\) 28.9027 + 28.9027i 1.00505 + 1.00505i 0.999987 + 0.00505903i \(0.00161035\pi\)
0.00505903 + 0.999987i \(0.498390\pi\)
\(828\) 9.44697 + 6.17950i 0.328305 + 0.214752i
\(829\) −15.1933 + 8.77184i −0.527684 + 0.304659i −0.740073 0.672527i \(-0.765209\pi\)
0.212389 + 0.977185i \(0.431876\pi\)
\(830\) −13.8965 1.57325i −0.482356 0.0546084i
\(831\) −11.4057 1.82585i −0.395660 0.0633380i
\(832\) 2.42282 2.42282i 0.0839961 0.0839961i
\(833\) 0 0
\(834\) −6.74762 17.6655i −0.233651 0.611706i
\(835\) −2.92346 + 7.43721i −0.101170 + 0.257375i
\(836\) 0.790254 0.456253i 0.0273315 0.0157799i
\(837\) −28.6864 26.0885i −0.991548 0.901750i
\(838\) 17.6367 4.72574i 0.609250 0.163248i
\(839\) 15.4350 0.532875 0.266437 0.963852i \(-0.414153\pi\)
0.266437 + 0.963852i \(0.414153\pi\)
\(840\) 0 0
\(841\) −25.0000 −0.862069
\(842\) −14.0739 + 3.77108i −0.485017 + 0.129960i
\(843\) −2.24467 21.7021i −0.0773104 0.747459i
\(844\) 9.11485 5.26246i 0.313746 0.181141i
\(845\) −62.2130 + 27.1038i −2.14019 + 0.932400i
\(846\) 8.89716 7.95786i 0.305891 0.273597i
\(847\) 0 0
\(848\) 4.49966 4.49966i 0.154519 0.154519i
\(849\) 5.00189 31.2459i 0.171664 1.07236i
\(850\) −10.9535 10.1850i −0.375701 0.349344i
\(851\) −4.11351 + 2.37493i −0.141009 + 0.0814117i
\(852\) 15.0044 + 20.7239i 0.514043 + 0.709988i
\(853\) −5.62301 5.62301i −0.192528 0.192528i 0.604259 0.796788i \(-0.293469\pi\)
−0.796788 + 0.604259i \(0.793469\pi\)
\(854\) 0 0
\(855\) 2.25025 + 24.0233i 0.0769569 + 0.821579i
\(856\) −16.9323 + 29.3277i −0.578735 + 1.00240i
\(857\) 5.59795 20.8918i 0.191222 0.713651i −0.801990 0.597337i \(-0.796225\pi\)
0.993212 0.116314i \(-0.0371079\pi\)
\(858\) −1.19787 + 0.123897i −0.0408945 + 0.00422976i
\(859\) −39.2936 22.6862i −1.34068 0.774042i −0.353772 0.935332i \(-0.615101\pi\)
−0.986907 + 0.161290i \(0.948435\pi\)
\(860\) 4.10924 + 27.3618i 0.140124 + 0.933029i
\(861\) 0 0
\(862\) 0.909671 0.909671i 0.0309835 0.0309835i
\(863\) 2.20435 + 8.22674i 0.0750369 + 0.280041i 0.993242 0.116065i \(-0.0370280\pi\)
−0.918205 + 0.396106i \(0.870361\pi\)
\(864\) −1.41073 29.7439i −0.0479942 1.01191i
\(865\) −3.56518 + 2.84003i −0.121220 + 0.0965640i
\(866\) −15.0374 8.68183i −0.510991 0.295021i
\(867\) 6.16980 + 2.75922i 0.209537 + 0.0937080i
\(868\) 0 0
\(869\) −0.873074 −0.0296170
\(870\) 3.54897 + 3.61826i 0.120321 + 0.122670i
\(871\) −8.61581 14.9230i −0.291936 0.505647i
\(872\) 5.58678 20.8501i 0.189192 0.706075i
\(873\) 22.5442 34.4646i 0.763004 1.16645i
\(874\) 5.63379i 0.190566i
\(875\) 0 0
\(876\) 3.77730 + 9.88910i 0.127623 + 0.334122i
\(877\) 6.31256 + 23.5588i 0.213160 + 0.795525i 0.986806 + 0.161906i \(0.0517643\pi\)
−0.773646 + 0.633618i \(0.781569\pi\)
\(878\) 16.3991 + 4.39411i 0.553441 + 0.148294i
\(879\) 3.18801 3.92357i 0.107529 0.132339i
\(880\) −0.534198 + 0.232730i −0.0180078 + 0.00784532i
\(881\) 0.538909i 0.0181563i −0.999959 0.00907815i \(-0.997110\pi\)
0.999959 0.00907815i \(-0.00288970\pi\)
\(882\) 0 0
\(883\) −25.2230 25.2230i −0.848821 0.848821i 0.141165 0.989986i \(-0.454915\pi\)
−0.989986 + 0.141165i \(0.954915\pi\)
\(884\) −23.6576 + 40.9762i −0.795692 + 1.37818i
\(885\) −4.89586 + 8.29367i −0.164573 + 0.278789i
\(886\) −11.5911 20.0764i −0.389411 0.674479i
\(887\) 9.48573 2.54169i 0.318500 0.0853417i −0.0960275 0.995379i \(-0.530614\pi\)
0.414527 + 0.910037i \(0.363947\pi\)
\(888\) 7.33218 + 3.27905i 0.246052 + 0.110038i
\(889\) 0 0
\(890\) 15.7290 2.36221i 0.527238 0.0791814i
\(891\) −0.861557 + 1.16947i −0.0288633 + 0.0391787i
\(892\) −0.820399 0.219825i −0.0274690 0.00736029i
\(893\) −21.1277 5.66115i −0.707012 0.189443i
\(894\) 2.79741 17.4749i 0.0935593 0.584447i
\(895\) −26.6994 + 36.1362i −0.892464 + 1.20790i
\(896\) 0 0
\(897\) −11.1447 + 24.9202i −0.372110 + 0.832062i
\(898\) 11.0250 2.95413i 0.367908 0.0985805i
\(899\) 7.46230 + 12.9251i 0.248882 + 0.431076i
\(900\) 0.455855 23.5739i 0.0151952 0.785795i
\(901\) 9.00945 15.6048i 0.300148 0.519872i
\(902\) 0.898961 + 0.898961i 0.0299321 + 0.0299321i
\(903\) 0 0
\(904\) 16.1265i 0.536359i
\(905\) −14.8973 34.1946i −0.495203 1.13667i
\(906\) −6.39879 5.19920i −0.212586 0.172732i
\(907\) −11.8457 3.17404i −0.393329 0.105392i 0.0567332 0.998389i \(-0.481932\pi\)
−0.450062 + 0.892997i \(0.648598\pi\)
\(908\) −7.19695 26.8594i −0.238839 0.891360i
\(909\) −10.3852 + 9.28881i −0.344456 + 0.308090i
\(910\) 0 0
\(911\) 27.0102i 0.894889i 0.894312 + 0.447444i \(0.147666\pi\)
−0.894312 + 0.447444i \(0.852334\pi\)
\(912\) −8.14750 + 5.89893i −0.269791 + 0.195333i
\(913\) −0.399296 + 1.49019i −0.0132148 + 0.0493182i
\(914\) 11.5067 + 19.9302i 0.380607 + 0.659231i
\(915\) 7.72520 + 0.0746854i 0.255387 + 0.00246902i
\(916\) −3.64787 −0.120529
\(917\) 0 0
\(918\) −4.72983 14.8067i −0.156108 0.488695i
\(919\) 10.7836 + 6.22589i 0.355717 + 0.205373i 0.667200 0.744878i \(-0.267493\pi\)
−0.311484 + 0.950252i \(0.600826\pi\)
\(920\) 1.40730 12.4307i 0.0463972 0.409827i
\(921\) −0.989990 + 1.21841i −0.0326213 + 0.0401479i
\(922\) 1.27449 + 4.75647i 0.0419731 + 0.156646i
\(923\) −43.7503 + 43.7503i −1.44006 + 1.44006i
\(924\) 0 0
\(925\) 8.76636 + 4.64510i 0.288236 + 0.152730i
\(926\) 13.3048 + 7.68155i 0.437224 + 0.252432i
\(927\) −26.6110 + 13.4482i −0.874020 + 0.441697i
\(928\) −2.96640 + 11.0708i −0.0973768 + 0.363415i
\(929\) 7.49824 12.9873i 0.246009 0.426100i −0.716406 0.697684i \(-0.754214\pi\)
0.962415 + 0.271584i \(0.0875473\pi\)
\(930\) −5.07071 + 18.2178i −0.166275 + 0.597385i
\(931\) 0 0
\(932\) −9.53450 9.53450i −0.312313 0.312313i
\(933\) −29.2465 + 21.1749i −0.957487 + 0.693236i
\(934\) −6.18154 + 3.56892i −0.202266 + 0.116778i
\(935\) −1.29054 + 1.02804i −0.0422050 + 0.0336207i
\(936\) 45.1848 9.44809i 1.47691 0.308820i
\(937\) 17.8137 17.8137i 0.581947 0.581947i −0.353491 0.935438i \(-0.615006\pi\)
0.935438 + 0.353491i \(0.115006\pi\)
\(938\) 0 0
\(939\) −28.3673 + 10.8353i −0.925732 + 0.353598i
\(940\) 19.8926 + 7.81948i 0.648824 + 0.255043i
\(941\) 44.3404 25.5999i 1.44546 0.834534i 0.447249 0.894409i \(-0.352404\pi\)
0.998206 + 0.0598755i \(0.0190704\pi\)
\(942\) 17.8413 1.84534i 0.581301 0.0601245i
\(943\) 27.8370 7.45891i 0.906499 0.242896i
\(944\) −4.01498 −0.130677
\(945\) 0 0
\(946\) −0.831296 −0.0270277
\(947\) 37.7699 10.1204i 1.22736 0.328870i 0.413808 0.910364i \(-0.364199\pi\)
0.813550 + 0.581495i \(0.197532\pi\)
\(948\) 14.6497 1.51523i 0.475800 0.0492125i
\(949\) −22.1700 + 12.7998i −0.719667 + 0.415500i
\(950\) 9.97025 6.24993i 0.323478 0.202775i
\(951\) 6.68471 2.55333i 0.216767 0.0827975i
\(952\) 0 0
\(953\) 6.39589 6.39589i 0.207183 0.207183i −0.595886 0.803069i \(-0.703199\pi\)
0.803069 + 0.595886i \(0.203199\pi\)
\(954\) −7.57256 + 1.58341i −0.245171 + 0.0512649i
\(955\) −5.44035 + 48.0546i −0.176046 + 1.55501i
\(956\) −29.3585 + 16.9501i −0.949522 + 0.548207i
\(957\) 0.452858 0.327877i 0.0146388 0.0105988i
\(958\) −7.92969 7.92969i −0.256197 0.256197i
\(959\) 0 0
\(960\) −1.75519 + 0.990859i −0.0566485 + 0.0319798i
\(961\) −12.3430 + 21.3786i −0.398160 + 0.689633i
\(962\) −2.21232 + 8.25648i −0.0713280 + 0.266200i
\(963\) −38.7972 + 19.6067i −1.25022 + 0.631816i
\(964\) 8.83553 + 5.10120i 0.284573 + 0.164298i
\(965\) −12.8382 + 1.92806i −0.413276 + 0.0620665i
\(966\) 0 0
\(967\) 24.4108 24.4108i 0.784999 0.784999i −0.195670 0.980670i \(-0.562688\pi\)
0.980670 + 0.195670i \(0.0626882\pi\)
\(968\) 6.63800 + 24.7734i 0.213353 + 0.796246i
\(969\) −17.9613 + 22.1054i −0.576999 + 0.710128i
\(970\) −19.9571 2.25938i −0.640785 0.0725445i
\(971\) 27.2512 + 15.7335i 0.874534 + 0.504912i 0.868852 0.495071i \(-0.164858\pi\)
0.00568176 + 0.999984i \(0.498191\pi\)
\(972\) 12.4268 21.1183i 0.398591 0.677370i
\(973\) 0 0
\(974\) −13.1117 −0.420125
\(975\) 56.4655 7.92267i 1.80834 0.253729i
\(976\) 1.61033 + 2.78918i 0.0515456 + 0.0892795i
\(977\) −5.90313 + 22.0308i −0.188858 + 0.704827i 0.804914 + 0.593392i \(0.202211\pi\)
−0.993772 + 0.111435i \(0.964455\pi\)
\(978\) 13.2714 9.60869i 0.424371 0.307252i
\(979\) 1.75457i 0.0560764i
\(980\) 0 0
\(981\) 20.6525 18.4721i 0.659383 0.589770i
\(982\) 4.30992 + 16.0848i 0.137535 + 0.513288i
\(983\) −56.1919 15.0566i −1.79224 0.480230i −0.799519 0.600641i \(-0.794912\pi\)
−0.992724 + 0.120411i \(0.961579\pi\)
\(984\) −37.8217 30.7312i −1.20571 0.979675i
\(985\) 10.5517 26.8432i 0.336204 0.855295i
\(986\) 5.98282i 0.190532i
\(987\) 0 0
\(988\) −26.3217 26.3217i −0.837405 0.837405i
\(989\) −9.42212 + 16.3196i −0.299606 + 0.518933i
\(990\) 0.698380 + 0.118733i 0.0221960 + 0.00377360i
\(991\) 27.1762 + 47.0706i 0.863281 + 1.49525i 0.868744 + 0.495262i \(0.164928\pi\)
−0.00546280 + 0.999985i \(0.501739\pi\)
\(992\) −41.3066 + 11.0681i −1.31149 + 0.351412i
\(993\) −12.3678 + 27.6552i −0.392479 + 0.877610i
\(994\) 0 0
\(995\) 1.14721 + 0.847626i 0.0363691 + 0.0268716i
\(996\) 4.11372 25.6976i 0.130348 0.814260i
\(997\) 8.41769 + 2.25551i 0.266591 + 0.0714329i 0.389638 0.920968i \(-0.372600\pi\)
−0.123047 + 0.992401i \(0.539267\pi\)
\(998\) 9.64459 + 2.58426i 0.305294 + 0.0818033i
\(999\) 5.57233 + 8.67464i 0.176301 + 0.274453i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 735.2.y.e.128.3 32
3.2 odd 2 735.2.y.f.128.6 32
5.2 odd 4 735.2.y.f.422.4 32
7.2 even 3 735.2.j.d.638.6 yes 16
7.3 odd 6 inner 735.2.y.e.263.5 32
7.4 even 3 inner 735.2.y.e.263.6 32
7.5 odd 6 735.2.j.d.638.5 yes 16
7.6 odd 2 inner 735.2.y.e.128.4 32
15.2 even 4 inner 735.2.y.e.422.6 32
21.2 odd 6 735.2.j.c.638.3 yes 16
21.5 even 6 735.2.j.c.638.4 yes 16
21.11 odd 6 735.2.y.f.263.4 32
21.17 even 6 735.2.y.f.263.3 32
21.20 even 2 735.2.y.f.128.5 32
35.2 odd 12 735.2.j.c.197.3 16
35.12 even 12 735.2.j.c.197.4 yes 16
35.17 even 12 735.2.y.f.557.5 32
35.27 even 4 735.2.y.f.422.3 32
35.32 odd 12 735.2.y.f.557.6 32
105.2 even 12 735.2.j.d.197.6 yes 16
105.17 odd 12 inner 735.2.y.e.557.4 32
105.32 even 12 inner 735.2.y.e.557.3 32
105.47 odd 12 735.2.j.d.197.5 yes 16
105.62 odd 4 inner 735.2.y.e.422.5 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
735.2.j.c.197.3 16 35.2 odd 12
735.2.j.c.197.4 yes 16 35.12 even 12
735.2.j.c.638.3 yes 16 21.2 odd 6
735.2.j.c.638.4 yes 16 21.5 even 6
735.2.j.d.197.5 yes 16 105.47 odd 12
735.2.j.d.197.6 yes 16 105.2 even 12
735.2.j.d.638.5 yes 16 7.5 odd 6
735.2.j.d.638.6 yes 16 7.2 even 3
735.2.y.e.128.3 32 1.1 even 1 trivial
735.2.y.e.128.4 32 7.6 odd 2 inner
735.2.y.e.263.5 32 7.3 odd 6 inner
735.2.y.e.263.6 32 7.4 even 3 inner
735.2.y.e.422.5 32 105.62 odd 4 inner
735.2.y.e.422.6 32 15.2 even 4 inner
735.2.y.e.557.3 32 105.32 even 12 inner
735.2.y.e.557.4 32 105.17 odd 12 inner
735.2.y.f.128.5 32 21.20 even 2
735.2.y.f.128.6 32 3.2 odd 2
735.2.y.f.263.3 32 21.17 even 6
735.2.y.f.263.4 32 21.11 odd 6
735.2.y.f.422.3 32 35.27 even 4
735.2.y.f.422.4 32 5.2 odd 4
735.2.y.f.557.5 32 35.17 even 12
735.2.y.f.557.6 32 35.32 odd 12