Newspace parameters
Level: | \( N \) | \(=\) | \( 735 = 3 \cdot 5 \cdot 7^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 735.y (of order \(12\), degree \(4\), not minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(5.86900454856\) |
Analytic rank: | \(0\) |
Dimension: | \(32\) |
Relative dimension: | \(8\) over \(\Q(\zeta_{12})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{12}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
128.1 | −2.57291 | + | 0.689408i | −1.01575 | + | 1.40294i | 4.41251 | − | 2.54756i | −1.82584 | − | 1.29085i | 1.64624 | − | 4.30991i | 0 | −5.82966 | + | 5.82966i | −0.936492 | − | 2.85008i | 5.58764 | + | 2.06250i | ||
128.2 | −2.57291 | + | 0.689408i | 1.01575 | − | 1.40294i | 4.41251 | − | 2.54756i | 1.82584 | + | 1.29085i | −1.64624 | + | 4.30991i | 0 | −5.82966 | + | 5.82966i | −0.936492 | − | 2.85008i | −5.58764 | − | 2.06250i | ||
128.3 | −0.632011 | + | 0.169347i | −1.72286 | + | 0.178197i | −1.36129 | + | 0.785942i | 0.893095 | + | 2.04997i | 1.05869 | − | 0.404383i | 0 | 1.65258 | − | 1.65258i | 2.93649 | − | 0.614017i | −0.911602 | − | 1.14436i | ||
128.4 | −0.632011 | + | 0.169347i | 1.72286 | − | 0.178197i | −1.36129 | + | 0.785942i | −0.893095 | − | 2.04997i | −1.05869 | + | 0.404383i | 0 | 1.65258 | − | 1.65258i | 2.93649 | − | 0.614017i | 0.911602 | + | 1.14436i | ||
128.5 | 0.362630 | − | 0.0971664i | −1.01575 | + | 1.40294i | −1.60999 | + | 0.929529i | 1.74522 | − | 1.39793i | −0.232024 | + | 0.607446i | 0 | −1.02444 | + | 1.02444i | −0.936492 | − | 2.85008i | 0.497037 | − | 0.676508i | ||
128.6 | 0.362630 | − | 0.0971664i | 1.01575 | − | 1.40294i | −1.60999 | + | 0.929529i | −1.74522 | + | 1.39793i | 0.232024 | − | 0.607446i | 0 | −1.02444 | + | 1.02444i | −0.936492 | − | 2.85008i | −0.497037 | + | 0.676508i | ||
128.7 | 1.47626 | − | 0.395563i | −1.72286 | + | 0.178197i | 0.290825 | − | 0.167908i | 0.768666 | − | 2.09980i | −2.47290 | + | 0.944565i | 0 | −1.79848 | + | 1.79848i | 2.93649 | − | 0.614017i | 0.304149 | − | 3.40391i | ||
128.8 | 1.47626 | − | 0.395563i | 1.72286 | − | 0.178197i | 0.290825 | − | 0.167908i | −0.768666 | + | 2.09980i | 2.47290 | − | 0.944565i | 0 | −1.79848 | + | 1.79848i | 2.93649 | − | 0.614017i | −0.304149 | + | 3.40391i | ||
263.1 | −0.395563 | + | 1.47626i | −1.01575 | − | 1.40294i | −0.290825 | − | 0.167908i | −1.43415 | − | 1.71558i | 2.47290 | − | 0.944565i | 0 | −1.79848 | + | 1.79848i | −0.936492 | + | 2.85008i | 3.09994 | − | 1.43855i | ||
263.2 | −0.395563 | + | 1.47626i | 1.01575 | + | 1.40294i | −0.290825 | − | 0.167908i | 1.43415 | + | 1.71558i | −2.47290 | + | 0.944565i | 0 | −1.79848 | + | 1.79848i | −0.936492 | + | 2.85008i | −3.09994 | + | 1.43855i | ||
263.3 | −0.0971664 | + | 0.362630i | −1.72286 | − | 0.178197i | 1.60999 | + | 0.929529i | −0.338034 | − | 2.21037i | 0.232024 | − | 0.607446i | 0 | −1.02444 | + | 1.02444i | 2.93649 | + | 0.614017i | 0.834392 | + | 0.0921922i | ||
263.4 | −0.0971664 | + | 0.362630i | 1.72286 | + | 0.178197i | 1.60999 | + | 0.929529i | 0.338034 | + | 2.21037i | −0.232024 | + | 0.607446i | 0 | −1.02444 | + | 1.02444i | 2.93649 | + | 0.614017i | −0.834392 | − | 0.0921922i | ||
263.5 | 0.169347 | − | 0.632011i | −1.01575 | − | 1.40294i | 1.36129 | + | 0.785942i | 2.22187 | + | 0.251543i | −1.05869 | + | 0.404383i | 0 | 1.65258 | − | 1.65258i | −0.936492 | + | 2.85008i | 0.535245 | − | 1.36165i | ||
263.6 | 0.169347 | − | 0.632011i | 1.01575 | + | 1.40294i | 1.36129 | + | 0.785942i | −2.22187 | − | 0.251543i | 1.05869 | − | 0.404383i | 0 | 1.65258 | − | 1.65258i | −0.936492 | + | 2.85008i | −0.535245 | + | 1.36165i | ||
263.7 | 0.689408 | − | 2.57291i | −1.72286 | − | 0.178197i | −4.41251 | − | 2.54756i | −2.03083 | + | 0.935797i | −1.64624 | + | 4.30991i | 0 | −5.82966 | + | 5.82966i | 2.93649 | + | 0.614017i | 1.00765 | + | 5.87029i | ||
263.8 | 0.689408 | − | 2.57291i | 1.72286 | + | 0.178197i | −4.41251 | − | 2.54756i | 2.03083 | − | 0.935797i | 1.64624 | − | 4.30991i | 0 | −5.82966 | + | 5.82966i | 2.93649 | + | 0.614017i | −1.00765 | − | 5.87029i | ||
422.1 | −0.395563 | − | 1.47626i | −1.01575 | + | 1.40294i | −0.290825 | + | 0.167908i | −1.43415 | + | 1.71558i | 2.47290 | + | 0.944565i | 0 | −1.79848 | − | 1.79848i | −0.936492 | − | 2.85008i | 3.09994 | + | 1.43855i | ||
422.2 | −0.395563 | − | 1.47626i | 1.01575 | − | 1.40294i | −0.290825 | + | 0.167908i | 1.43415 | − | 1.71558i | −2.47290 | − | 0.944565i | 0 | −1.79848 | − | 1.79848i | −0.936492 | − | 2.85008i | −3.09994 | − | 1.43855i | ||
422.3 | −0.0971664 | − | 0.362630i | −1.72286 | + | 0.178197i | 1.60999 | − | 0.929529i | −0.338034 | + | 2.21037i | 0.232024 | + | 0.607446i | 0 | −1.02444 | − | 1.02444i | 2.93649 | − | 0.614017i | 0.834392 | − | 0.0921922i | ||
422.4 | −0.0971664 | − | 0.362630i | 1.72286 | − | 0.178197i | 1.60999 | − | 0.929529i | 0.338034 | − | 2.21037i | −0.232024 | − | 0.607446i | 0 | −1.02444 | − | 1.02444i | 2.93649 | − | 0.614017i | −0.834392 | + | 0.0921922i | ||
See all 32 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
7.b | odd | 2 | 1 | inner |
7.c | even | 3 | 1 | inner |
7.d | odd | 6 | 1 | inner |
15.e | even | 4 | 1 | inner |
105.k | odd | 4 | 1 | inner |
105.w | odd | 12 | 1 | inner |
105.x | even | 12 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 735.2.y.e | 32 | |
3.b | odd | 2 | 1 | 735.2.y.f | 32 | ||
5.c | odd | 4 | 1 | 735.2.y.f | 32 | ||
7.b | odd | 2 | 1 | inner | 735.2.y.e | 32 | |
7.c | even | 3 | 1 | 735.2.j.d | yes | 16 | |
7.c | even | 3 | 1 | inner | 735.2.y.e | 32 | |
7.d | odd | 6 | 1 | 735.2.j.d | yes | 16 | |
7.d | odd | 6 | 1 | inner | 735.2.y.e | 32 | |
15.e | even | 4 | 1 | inner | 735.2.y.e | 32 | |
21.c | even | 2 | 1 | 735.2.y.f | 32 | ||
21.g | even | 6 | 1 | 735.2.j.c | ✓ | 16 | |
21.g | even | 6 | 1 | 735.2.y.f | 32 | ||
21.h | odd | 6 | 1 | 735.2.j.c | ✓ | 16 | |
21.h | odd | 6 | 1 | 735.2.y.f | 32 | ||
35.f | even | 4 | 1 | 735.2.y.f | 32 | ||
35.k | even | 12 | 1 | 735.2.j.c | ✓ | 16 | |
35.k | even | 12 | 1 | 735.2.y.f | 32 | ||
35.l | odd | 12 | 1 | 735.2.j.c | ✓ | 16 | |
35.l | odd | 12 | 1 | 735.2.y.f | 32 | ||
105.k | odd | 4 | 1 | inner | 735.2.y.e | 32 | |
105.w | odd | 12 | 1 | 735.2.j.d | yes | 16 | |
105.w | odd | 12 | 1 | inner | 735.2.y.e | 32 | |
105.x | even | 12 | 1 | 735.2.j.d | yes | 16 | |
105.x | even | 12 | 1 | inner | 735.2.y.e | 32 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
735.2.j.c | ✓ | 16 | 21.g | even | 6 | 1 | |
735.2.j.c | ✓ | 16 | 21.h | odd | 6 | 1 | |
735.2.j.c | ✓ | 16 | 35.k | even | 12 | 1 | |
735.2.j.c | ✓ | 16 | 35.l | odd | 12 | 1 | |
735.2.j.d | yes | 16 | 7.c | even | 3 | 1 | |
735.2.j.d | yes | 16 | 7.d | odd | 6 | 1 | |
735.2.j.d | yes | 16 | 105.w | odd | 12 | 1 | |
735.2.j.d | yes | 16 | 105.x | even | 12 | 1 | |
735.2.y.e | 32 | 1.a | even | 1 | 1 | trivial | |
735.2.y.e | 32 | 7.b | odd | 2 | 1 | inner | |
735.2.y.e | 32 | 7.c | even | 3 | 1 | inner | |
735.2.y.e | 32 | 7.d | odd | 6 | 1 | inner | |
735.2.y.e | 32 | 15.e | even | 4 | 1 | inner | |
735.2.y.e | 32 | 105.k | odd | 4 | 1 | inner | |
735.2.y.e | 32 | 105.w | odd | 12 | 1 | inner | |
735.2.y.e | 32 | 105.x | even | 12 | 1 | inner | |
735.2.y.f | 32 | 3.b | odd | 2 | 1 | ||
735.2.y.f | 32 | 5.c | odd | 4 | 1 | ||
735.2.y.f | 32 | 21.c | even | 2 | 1 | ||
735.2.y.f | 32 | 21.g | even | 6 | 1 | ||
735.2.y.f | 32 | 21.h | odd | 6 | 1 | ||
735.2.y.f | 32 | 35.f | even | 4 | 1 | ||
735.2.y.f | 32 | 35.k | even | 12 | 1 | ||
735.2.y.f | 32 | 35.l | odd | 12 | 1 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(735, [\chi])\):
\( T_{2}^{16} + 2 T_{2}^{15} + 2 T_{2}^{14} + 16 T_{2}^{13} + 2 T_{2}^{12} - 62 T_{2}^{11} - 106 T_{2}^{9} + \cdots + 1 \)
|
\( T_{11}^{16} - 44 T_{11}^{14} + 1560 T_{11}^{12} - 15296 T_{11}^{10} + 113904 T_{11}^{8} - 233216 T_{11}^{6} + \cdots + 256 \)
|
\( T_{13}^{16} + 2584T_{13}^{12} + 1444656T_{13}^{8} + 227214464T_{13}^{4} + 3102044416 \)
|
\( T_{17}^{32} - 1064 T_{17}^{28} + 818320 T_{17}^{24} - 298001536 T_{17}^{20} + 79143496704 T_{17}^{16} + \cdots + 55\!\cdots\!76 \)
|