Properties

Label 729.2.g.a.217.1
Level $729$
Weight $2$
Character 729.217
Analytic conductor $5.821$
Analytic rank $0$
Dimension $144$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [729,2,Mod(28,729)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("729.28"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(729, base_ring=CyclotomicField(54)) chi = DirichletCharacter(H, H._module([44])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 729 = 3^{6} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 729.g (of order \(27\), degree \(18\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [144,-9,0,9,-9,0,9,18,0,-18,-9,0,9,-9,0,9,18,0,-18,-45] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(20)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.82109430735\)
Analytic rank: \(0\)
Dimension: \(144\)
Relative dimension: \(8\) over \(\Q(\zeta_{27})\)
Twist minimal: no (minimal twist has level 81)
Sato-Tate group: $\mathrm{SU}(2)[C_{27}]$

Embedding invariants

Embedding label 217.1
Character \(\chi\) \(=\) 729.217
Dual form 729.2.g.a.514.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.155231 + 2.66522i) q^{2} +(-5.09281 - 0.595264i) q^{4} +(2.46694 - 0.584676i) q^{5} +(0.305106 + 0.409828i) q^{7} +(1.44988 - 8.22270i) q^{8} +(1.17534 + 6.66569i) q^{10} +(1.05464 - 1.11785i) q^{11} +(5.04127 + 2.53182i) q^{13} +(-1.13964 + 0.749555i) q^{14} +(11.7117 + 2.77572i) q^{16} +(1.33086 + 0.484393i) q^{17} +(0.986977 - 0.359230i) q^{19} +(-12.9117 + 1.50916i) q^{20} +(2.81561 + 2.98437i) q^{22} +(-0.155479 + 0.208844i) q^{23} +(1.27579 - 0.640725i) q^{25} +(-7.53041 + 13.0431i) q^{26} +(-1.30989 - 2.26880i) q^{28} +(1.48594 + 0.977316i) q^{29} +(2.04644 + 4.74419i) q^{31} +(-4.42655 + 14.7857i) q^{32} +(-1.49760 + 3.47184i) q^{34} +(0.992294 + 0.832634i) q^{35} +(-5.04999 + 4.23745i) q^{37} +(0.804217 + 2.68627i) q^{38} +(-1.23083 - 21.1326i) q^{40} +(-0.392910 - 6.74600i) q^{41} +(1.75232 + 5.85315i) q^{43} +(-6.03650 + 5.06523i) q^{44} +(-0.532481 - 0.446804i) q^{46} +(-2.89593 + 6.71353i) q^{47} +(1.93275 - 6.45584i) q^{49} +(1.50963 + 3.49971i) q^{50} +(-24.1671 - 15.8950i) q^{52} +(-4.74440 - 8.21755i) q^{53} +(1.94815 - 3.37430i) q^{55} +(3.81226 - 1.91459i) q^{56} +(-2.83542 + 3.80864i) q^{58} +(-3.40033 - 3.60414i) q^{59} +(12.8136 - 1.49769i) q^{61} +(-12.9620 + 4.71777i) q^{62} +(-16.0995 - 5.85975i) q^{64} +(13.9168 + 3.29834i) q^{65} +(-5.36299 + 3.52730i) q^{67} +(-6.48947 - 3.25914i) q^{68} +(-2.37319 + 2.51543i) q^{70} +(0.896716 + 5.08553i) q^{71} +(-1.03528 + 5.87137i) q^{73} +(-10.5098 - 14.1171i) q^{74} +(-5.24032 + 1.24198i) q^{76} +(0.779905 + 0.0911578i) q^{77} +(-0.578079 + 9.92524i) q^{79} +30.5149 q^{80} +18.0405 q^{82} +(0.753098 - 12.9302i) q^{83} +(3.56636 + 0.416848i) q^{85} +(-15.8719 + 3.76171i) q^{86} +(-7.66266 - 10.2927i) q^{88} +(1.71260 - 9.71264i) q^{89} +(0.500509 + 2.83853i) q^{91} +(0.916142 - 0.971054i) q^{92} +(-17.4435 - 8.76045i) q^{94} +(2.22478 - 1.46326i) q^{95} +(-3.50004 - 0.829525i) q^{97} +(16.9062 + 6.15336i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 144 q - 9 q^{2} + 9 q^{4} - 9 q^{5} + 9 q^{7} + 18 q^{8} - 18 q^{10} - 9 q^{11} + 9 q^{13} - 9 q^{14} + 9 q^{16} + 18 q^{17} - 18 q^{19} - 45 q^{20} + 9 q^{22} + 45 q^{23} + 9 q^{25} - 45 q^{26} - 9 q^{28}+ \cdots - 81 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/729\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{14}{27}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.155231 + 2.66522i −0.109765 + 1.88459i 0.274808 + 0.961499i \(0.411386\pi\)
−0.384573 + 0.923094i \(0.625651\pi\)
\(3\) 0 0
\(4\) −5.09281 0.595264i −2.54641 0.297632i
\(5\) 2.46694 0.584676i 1.10325 0.261475i 0.361647 0.932315i \(-0.382214\pi\)
0.741602 + 0.670840i \(0.234066\pi\)
\(6\) 0 0
\(7\) 0.305106 + 0.409828i 0.115319 + 0.154900i 0.856035 0.516918i \(-0.172921\pi\)
−0.740716 + 0.671819i \(0.765513\pi\)
\(8\) 1.44988 8.22270i 0.512611 2.90716i
\(9\) 0 0
\(10\) 1.17534 + 6.66569i 0.371676 + 2.10788i
\(11\) 1.05464 1.11785i 0.317986 0.337046i −0.548589 0.836092i \(-0.684835\pi\)
0.866575 + 0.499047i \(0.166316\pi\)
\(12\) 0 0
\(13\) 5.04127 + 2.53182i 1.39820 + 0.702200i 0.978650 0.205534i \(-0.0658931\pi\)
0.419546 + 0.907734i \(0.362189\pi\)
\(14\) −1.13964 + 0.749555i −0.304582 + 0.200327i
\(15\) 0 0
\(16\) 11.7117 + 2.77572i 2.92792 + 0.693929i
\(17\) 1.33086 + 0.484393i 0.322781 + 0.117483i 0.498328 0.866988i \(-0.333947\pi\)
−0.175548 + 0.984471i \(0.556170\pi\)
\(18\) 0 0
\(19\) 0.986977 0.359230i 0.226428 0.0824131i −0.226315 0.974054i \(-0.572668\pi\)
0.452743 + 0.891641i \(0.350446\pi\)
\(20\) −12.9117 + 1.50916i −2.88714 + 0.337459i
\(21\) 0 0
\(22\) 2.81561 + 2.98437i 0.600290 + 0.636270i
\(23\) −0.155479 + 0.208844i −0.0324196 + 0.0435471i −0.818037 0.575165i \(-0.804938\pi\)
0.785618 + 0.618712i \(0.212345\pi\)
\(24\) 0 0
\(25\) 1.27579 0.640725i 0.255157 0.128145i
\(26\) −7.53041 + 13.0431i −1.47684 + 2.55795i
\(27\) 0 0
\(28\) −1.30989 2.26880i −0.247546 0.428762i
\(29\) 1.48594 + 0.977316i 0.275932 + 0.181483i 0.679931 0.733276i \(-0.262010\pi\)
−0.403999 + 0.914759i \(0.632380\pi\)
\(30\) 0 0
\(31\) 2.04644 + 4.74419i 0.367552 + 0.852081i 0.997170 + 0.0751766i \(0.0239521\pi\)
−0.629618 + 0.776905i \(0.716789\pi\)
\(32\) −4.42655 + 14.7857i −0.782511 + 2.61377i
\(33\) 0 0
\(34\) −1.49760 + 3.47184i −0.256837 + 0.595415i
\(35\) 0.992294 + 0.832634i 0.167728 + 0.140741i
\(36\) 0 0
\(37\) −5.04999 + 4.23745i −0.830214 + 0.696632i −0.955340 0.295509i \(-0.904511\pi\)
0.125126 + 0.992141i \(0.460066\pi\)
\(38\) 0.804217 + 2.68627i 0.130461 + 0.435771i
\(39\) 0 0
\(40\) −1.23083 21.1326i −0.194612 3.34136i
\(41\) −0.392910 6.74600i −0.0613622 1.05355i −0.878695 0.477383i \(-0.841586\pi\)
0.817333 0.576165i \(-0.195452\pi\)
\(42\) 0 0
\(43\) 1.75232 + 5.85315i 0.267226 + 0.892597i 0.981293 + 0.192519i \(0.0616658\pi\)
−0.714067 + 0.700077i \(0.753149\pi\)
\(44\) −6.03650 + 5.06523i −0.910037 + 0.763612i
\(45\) 0 0
\(46\) −0.532481 0.446804i −0.0785100 0.0658777i
\(47\) −2.89593 + 6.71353i −0.422416 + 0.979269i 0.565567 + 0.824702i \(0.308657\pi\)
−0.987982 + 0.154567i \(0.950602\pi\)
\(48\) 0 0
\(49\) 1.93275 6.45584i 0.276108 0.922264i
\(50\) 1.50963 + 3.49971i 0.213494 + 0.494934i
\(51\) 0 0
\(52\) −24.1671 15.8950i −3.35138 2.20423i
\(53\) −4.74440 8.21755i −0.651694 1.12877i −0.982712 0.185142i \(-0.940725\pi\)
0.331018 0.943624i \(-0.392608\pi\)
\(54\) 0 0
\(55\) 1.94815 3.37430i 0.262689 0.454991i
\(56\) 3.81226 1.91459i 0.509435 0.255848i
\(57\) 0 0
\(58\) −2.83542 + 3.80864i −0.372309 + 0.500098i
\(59\) −3.40033 3.60414i −0.442685 0.469219i 0.467156 0.884175i \(-0.345279\pi\)
−0.909842 + 0.414956i \(0.863797\pi\)
\(60\) 0 0
\(61\) 12.8136 1.49769i 1.64061 0.191760i 0.754847 0.655901i \(-0.227711\pi\)
0.885761 + 0.464142i \(0.153637\pi\)
\(62\) −12.9620 + 4.71777i −1.64617 + 0.599157i
\(63\) 0 0
\(64\) −16.0995 5.85975i −2.01244 0.732468i
\(65\) 13.9168 + 3.29834i 1.72617 + 0.409109i
\(66\) 0 0
\(67\) −5.36299 + 3.52730i −0.655194 + 0.430928i −0.833102 0.553119i \(-0.813437\pi\)
0.177908 + 0.984047i \(0.443067\pi\)
\(68\) −6.48947 3.25914i −0.786964 0.395228i
\(69\) 0 0
\(70\) −2.37319 + 2.51543i −0.283650 + 0.300651i
\(71\) 0.896716 + 5.08553i 0.106421 + 0.603541i 0.990643 + 0.136476i \(0.0435776\pi\)
−0.884223 + 0.467065i \(0.845311\pi\)
\(72\) 0 0
\(73\) −1.03528 + 5.87137i −0.121171 + 0.687192i 0.862338 + 0.506332i \(0.168999\pi\)
−0.983509 + 0.180860i \(0.942112\pi\)
\(74\) −10.5098 14.1171i −1.22174 1.64108i
\(75\) 0 0
\(76\) −5.24032 + 1.24198i −0.601106 + 0.142465i
\(77\) 0.779905 + 0.0911578i 0.0888784 + 0.0103884i
\(78\) 0 0
\(79\) −0.578079 + 9.92524i −0.0650390 + 1.11668i 0.795054 + 0.606539i \(0.207443\pi\)
−0.860093 + 0.510138i \(0.829594\pi\)
\(80\) 30.5149 3.41167
\(81\) 0 0
\(82\) 18.0405 1.99224
\(83\) 0.753098 12.9302i 0.0826632 1.41927i −0.660833 0.750533i \(-0.729797\pi\)
0.743496 0.668740i \(-0.233166\pi\)
\(84\) 0 0
\(85\) 3.56636 + 0.416848i 0.386826 + 0.0452135i
\(86\) −15.8719 + 3.76171i −1.71151 + 0.405636i
\(87\) 0 0
\(88\) −7.66266 10.2927i −0.816843 1.09721i
\(89\) 1.71260 9.71264i 0.181535 1.02954i −0.748791 0.662806i \(-0.769366\pi\)
0.930327 0.366732i \(-0.119523\pi\)
\(90\) 0 0
\(91\) 0.500509 + 2.83853i 0.0524676 + 0.297558i
\(92\) 0.916142 0.971054i 0.0955144 0.101239i
\(93\) 0 0
\(94\) −17.4435 8.76045i −1.79916 0.903571i
\(95\) 2.22478 1.46326i 0.228258 0.150127i
\(96\) 0 0
\(97\) −3.50004 0.829525i −0.355375 0.0842255i 0.0490505 0.998796i \(-0.484380\pi\)
−0.404426 + 0.914571i \(0.632529\pi\)
\(98\) 16.9062 + 6.15336i 1.70778 + 0.621583i
\(99\) 0 0
\(100\) −6.87874 + 2.50366i −0.687874 + 0.250366i
\(101\) 17.7029 2.06917i 1.76150 0.205890i 0.827086 0.562076i \(-0.189997\pi\)
0.934415 + 0.356186i \(0.115923\pi\)
\(102\) 0 0
\(103\) −2.96285 3.14044i −0.291939 0.309437i 0.564759 0.825256i \(-0.308969\pi\)
−0.856698 + 0.515819i \(0.827488\pi\)
\(104\) 28.1276 37.7820i 2.75814 3.70483i
\(105\) 0 0
\(106\) 22.6380 11.3692i 2.19880 1.10428i
\(107\) −3.98940 + 6.90985i −0.385670 + 0.668000i −0.991862 0.127318i \(-0.959363\pi\)
0.606192 + 0.795319i \(0.292696\pi\)
\(108\) 0 0
\(109\) 0.106432 + 0.184345i 0.0101943 + 0.0176571i 0.871078 0.491145i \(-0.163422\pi\)
−0.860883 + 0.508803i \(0.830088\pi\)
\(110\) 8.69083 + 5.71605i 0.828638 + 0.545004i
\(111\) 0 0
\(112\) 2.43573 + 5.64666i 0.230155 + 0.533559i
\(113\) 1.59069 5.31329i 0.149640 0.499832i −0.849997 0.526788i \(-0.823396\pi\)
0.999637 + 0.0269560i \(0.00858140\pi\)
\(114\) 0 0
\(115\) −0.261451 + 0.606112i −0.0243804 + 0.0565202i
\(116\) −6.98584 5.86181i −0.648619 0.544256i
\(117\) 0 0
\(118\) 10.1337 8.50315i 0.932878 0.782778i
\(119\) 0.207535 + 0.693215i 0.0190247 + 0.0635469i
\(120\) 0 0
\(121\) 0.502263 + 8.62352i 0.0456603 + 0.783957i
\(122\) 2.00260 + 34.3834i 0.181307 + 3.11293i
\(123\) 0 0
\(124\) −7.59810 25.3794i −0.682330 2.27914i
\(125\) −6.93801 + 5.82168i −0.620554 + 0.520707i
\(126\) 0 0
\(127\) −13.9870 11.7365i −1.24115 1.04145i −0.997434 0.0715979i \(-0.977190\pi\)
−0.243713 0.969847i \(-0.578365\pi\)
\(128\) 5.89038 13.6554i 0.520641 1.20698i
\(129\) 0 0
\(130\) −10.9511 + 36.5793i −0.960477 + 3.20822i
\(131\) −3.18462 7.38277i −0.278241 0.645035i 0.720591 0.693361i \(-0.243871\pi\)
−0.998832 + 0.0483254i \(0.984612\pi\)
\(132\) 0 0
\(133\) 0.448355 + 0.294888i 0.0388773 + 0.0255700i
\(134\) −8.56851 14.8411i −0.740206 1.28207i
\(135\) 0 0
\(136\) 5.91261 10.2409i 0.507002 0.878153i
\(137\) −7.62496 + 3.82940i −0.651444 + 0.327168i −0.743647 0.668573i \(-0.766906\pi\)
0.0922025 + 0.995740i \(0.470609\pi\)
\(138\) 0 0
\(139\) 7.79256 10.4672i 0.660956 0.887818i −0.337614 0.941285i \(-0.609620\pi\)
0.998570 + 0.0534669i \(0.0170272\pi\)
\(140\) −4.55793 4.83112i −0.385215 0.408304i
\(141\) 0 0
\(142\) −13.6932 + 1.60051i −1.14911 + 0.134312i
\(143\) 8.14693 2.96524i 0.681280 0.247966i
\(144\) 0 0
\(145\) 4.23713 + 1.54219i 0.351875 + 0.128072i
\(146\) −15.4878 3.67067i −1.28178 0.303787i
\(147\) 0 0
\(148\) 28.2411 18.5744i 2.32140 1.52681i
\(149\) 14.5793 + 7.32201i 1.19438 + 0.599842i 0.931060 0.364865i \(-0.118885\pi\)
0.263324 + 0.964708i \(0.415181\pi\)
\(150\) 0 0
\(151\) −14.8615 + 15.7523i −1.20941 + 1.28190i −0.260826 + 0.965386i \(0.583995\pi\)
−0.948587 + 0.316517i \(0.897487\pi\)
\(152\) −1.52284 8.63645i −0.123519 0.700509i
\(153\) 0 0
\(154\) −0.364021 + 2.06446i −0.0293336 + 0.166359i
\(155\) 7.82226 + 10.5071i 0.628299 + 0.843953i
\(156\) 0 0
\(157\) −2.45596 + 0.582074i −0.196007 + 0.0464546i −0.327447 0.944870i \(-0.606188\pi\)
0.131440 + 0.991324i \(0.458040\pi\)
\(158\) −26.3632 3.08141i −2.09734 0.245144i
\(159\) 0 0
\(160\) −2.27519 + 39.0636i −0.179870 + 3.08825i
\(161\) −0.133028 −0.0104841
\(162\) 0 0
\(163\) 7.30888 0.572476 0.286238 0.958159i \(-0.407595\pi\)
0.286238 + 0.958159i \(0.407595\pi\)
\(164\) −2.01464 + 34.5900i −0.157317 + 2.70102i
\(165\) 0 0
\(166\) 34.3449 + 4.01434i 2.66568 + 0.311573i
\(167\) 6.23897 1.47866i 0.482786 0.114422i 0.0179862 0.999838i \(-0.494274\pi\)
0.464800 + 0.885416i \(0.346126\pi\)
\(168\) 0 0
\(169\) 11.2412 + 15.0995i 0.864708 + 1.16150i
\(170\) −1.66460 + 9.44043i −0.127669 + 0.724048i
\(171\) 0 0
\(172\) −5.44005 30.8521i −0.414800 2.35245i
\(173\) −3.35472 + 3.55580i −0.255055 + 0.270343i −0.842231 0.539117i \(-0.818758\pi\)
0.587176 + 0.809459i \(0.300240\pi\)
\(174\) 0 0
\(175\) 0.651837 + 0.327365i 0.0492742 + 0.0247465i
\(176\) 15.4544 10.1645i 1.16492 0.766181i
\(177\) 0 0
\(178\) 25.6204 + 6.07216i 1.92033 + 0.455127i
\(179\) −0.481678 0.175316i −0.0360023 0.0131038i 0.323956 0.946072i \(-0.394987\pi\)
−0.359959 + 0.932968i \(0.617209\pi\)
\(180\) 0 0
\(181\) 3.55046 1.29226i 0.263904 0.0960531i −0.206680 0.978409i \(-0.566266\pi\)
0.470583 + 0.882356i \(0.344044\pi\)
\(182\) −7.64298 + 0.893336i −0.566536 + 0.0662185i
\(183\) 0 0
\(184\) 1.49184 + 1.58126i 0.109980 + 0.116572i
\(185\) −9.98050 + 13.4061i −0.733781 + 0.985639i
\(186\) 0 0
\(187\) 1.94506 0.976845i 0.142237 0.0714340i
\(188\) 18.7448 32.4669i 1.36710 2.36789i
\(189\) 0 0
\(190\) 3.55455 + 6.15667i 0.257874 + 0.446652i
\(191\) −18.9332 12.4525i −1.36996 0.901034i −0.370345 0.928894i \(-0.620760\pi\)
−0.999612 + 0.0278600i \(0.991131\pi\)
\(192\) 0 0
\(193\) −2.26697 5.25543i −0.163180 0.378294i 0.816933 0.576732i \(-0.195672\pi\)
−0.980113 + 0.198438i \(0.936413\pi\)
\(194\) 2.75418 9.19960i 0.197739 0.660493i
\(195\) 0 0
\(196\) −13.6861 + 31.7279i −0.977577 + 2.26628i
\(197\) 1.85381 + 1.55553i 0.132078 + 0.110827i 0.706434 0.707779i \(-0.250303\pi\)
−0.574356 + 0.818606i \(0.694747\pi\)
\(198\) 0 0
\(199\) −7.49610 + 6.28997i −0.531384 + 0.445884i −0.868579 0.495550i \(-0.834966\pi\)
0.337195 + 0.941435i \(0.390522\pi\)
\(200\) −3.41874 11.4194i −0.241741 0.807473i
\(201\) 0 0
\(202\) 2.76674 + 47.5032i 0.194667 + 3.34231i
\(203\) 0.0528363 + 0.907164i 0.00370838 + 0.0636704i
\(204\) 0 0
\(205\) −4.91351 16.4123i −0.343174 1.14628i
\(206\) 8.82988 7.40915i 0.615207 0.516220i
\(207\) 0 0
\(208\) 52.0140 + 43.6449i 3.60652 + 3.02623i
\(209\) 0.639339 1.48215i 0.0442240 0.102523i
\(210\) 0 0
\(211\) 5.62474 18.7879i 0.387223 1.29341i −0.513151 0.858298i \(-0.671522\pi\)
0.900374 0.435116i \(-0.143293\pi\)
\(212\) 19.2707 + 44.6746i 1.32352 + 3.06826i
\(213\) 0 0
\(214\) −17.7970 11.7053i −1.21658 0.800155i
\(215\) 7.74505 + 13.4148i 0.528208 + 0.914884i
\(216\) 0 0
\(217\) −1.31992 + 2.28617i −0.0896020 + 0.155195i
\(218\) −0.507842 + 0.255048i −0.0343954 + 0.0172740i
\(219\) 0 0
\(220\) −11.9302 + 16.0250i −0.804332 + 1.08041i
\(221\) 5.48282 + 5.81145i 0.368814 + 0.390920i
\(222\) 0 0
\(223\) −2.60234 + 0.304170i −0.174266 + 0.0203687i −0.202778 0.979225i \(-0.564997\pi\)
0.0285125 + 0.999593i \(0.490923\pi\)
\(224\) −7.41017 + 2.69708i −0.495113 + 0.180206i
\(225\) 0 0
\(226\) 13.9141 + 5.06433i 0.925555 + 0.336874i
\(227\) −1.20184 0.284840i −0.0797686 0.0189055i 0.190538 0.981680i \(-0.438977\pi\)
−0.270306 + 0.962774i \(0.587125\pi\)
\(228\) 0 0
\(229\) −4.09317 + 2.69212i −0.270484 + 0.177900i −0.677504 0.735519i \(-0.736938\pi\)
0.407020 + 0.913419i \(0.366568\pi\)
\(230\) −1.57483 0.790911i −0.103841 0.0521511i
\(231\) 0 0
\(232\) 10.1906 10.8014i 0.669046 0.709148i
\(233\) 0.664049 + 3.76601i 0.0435033 + 0.246719i 0.998803 0.0489208i \(-0.0155782\pi\)
−0.955299 + 0.295640i \(0.904467\pi\)
\(234\) 0 0
\(235\) −3.21886 + 18.2551i −0.209975 + 1.19083i
\(236\) 15.1718 + 20.3793i 0.987602 + 1.32658i
\(237\) 0 0
\(238\) −1.87978 + 0.445517i −0.121848 + 0.0288786i
\(239\) −8.98593 1.05030i −0.581251 0.0679385i −0.179614 0.983737i \(-0.557485\pi\)
−0.401638 + 0.915799i \(0.631559\pi\)
\(240\) 0 0
\(241\) 1.36210 23.3864i 0.0877407 1.50645i −0.611318 0.791385i \(-0.709360\pi\)
0.699058 0.715065i \(-0.253603\pi\)
\(242\) −23.0615 −1.48245
\(243\) 0 0
\(244\) −66.1485 −4.23473
\(245\) 0.993412 17.0562i 0.0634667 1.08968i
\(246\) 0 0
\(247\) 5.88512 + 0.687872i 0.374461 + 0.0437682i
\(248\) 41.9771 9.94876i 2.66555 0.631747i
\(249\) 0 0
\(250\) −14.4390 19.3950i −0.913206 1.22665i
\(251\) 2.14133 12.1441i 0.135160 0.766530i −0.839588 0.543223i \(-0.817204\pi\)
0.974748 0.223307i \(-0.0716851\pi\)
\(252\) 0 0
\(253\) 0.0694831 + 0.394058i 0.00436837 + 0.0247742i
\(254\) 33.4515 35.4565i 2.09894 2.22474i
\(255\) 0 0
\(256\) 4.85954 + 2.44055i 0.303721 + 0.152535i
\(257\) 24.6302 16.1995i 1.53639 1.01050i 0.552132 0.833757i \(-0.313815\pi\)
0.984257 0.176742i \(-0.0565558\pi\)
\(258\) 0 0
\(259\) −3.27741 0.776760i −0.203648 0.0482655i
\(260\) −68.9122 25.0820i −4.27376 1.55552i
\(261\) 0 0
\(262\) 20.1710 7.34166i 1.24617 0.453569i
\(263\) −20.4500 + 2.39027i −1.26100 + 0.147390i −0.720205 0.693762i \(-0.755952\pi\)
−0.540799 + 0.841152i \(0.681878\pi\)
\(264\) 0 0
\(265\) −16.5088 17.4983i −1.01412 1.07491i
\(266\) −0.855539 + 1.14919i −0.0524564 + 0.0704612i
\(267\) 0 0
\(268\) 29.4124 14.7715i 1.79665 0.902310i
\(269\) 6.08593 10.5411i 0.371066 0.642705i −0.618664 0.785656i \(-0.712326\pi\)
0.989730 + 0.142951i \(0.0456591\pi\)
\(270\) 0 0
\(271\) −11.5577 20.0185i −0.702078 1.21603i −0.967736 0.251967i \(-0.918922\pi\)
0.265658 0.964067i \(-0.414411\pi\)
\(272\) 14.2420 + 9.36714i 0.863550 + 0.567966i
\(273\) 0 0
\(274\) −9.02255 20.9166i −0.545072 1.26362i
\(275\) 0.629261 2.10188i 0.0379459 0.126748i
\(276\) 0 0
\(277\) 0.542133 1.25681i 0.0325736 0.0755142i −0.901153 0.433502i \(-0.857278\pi\)
0.933726 + 0.357988i \(0.116537\pi\)
\(278\) 26.6878 + 22.3937i 1.60063 + 1.34308i
\(279\) 0 0
\(280\) 8.28520 6.95211i 0.495136 0.415468i
\(281\) −5.13509 17.1524i −0.306334 1.02323i −0.963103 0.269134i \(-0.913263\pi\)
0.656769 0.754092i \(-0.271923\pi\)
\(282\) 0 0
\(283\) −0.567297 9.74010i −0.0337223 0.578989i −0.972273 0.233848i \(-0.924868\pi\)
0.938551 0.345141i \(-0.112169\pi\)
\(284\) −1.53957 26.4334i −0.0913568 1.56853i
\(285\) 0 0
\(286\) 6.63835 + 22.1736i 0.392534 + 1.31115i
\(287\) 2.64482 2.21927i 0.156119 0.130999i
\(288\) 0 0
\(289\) −11.4862 9.63807i −0.675659 0.566945i
\(290\) −4.76801 + 11.0535i −0.279987 + 0.649083i
\(291\) 0 0
\(292\) 8.76751 29.2855i 0.513080 1.71381i
\(293\) −1.21673 2.82069i −0.0710819 0.164786i 0.878971 0.476875i \(-0.158231\pi\)
−0.950053 + 0.312089i \(0.898971\pi\)
\(294\) 0 0
\(295\) −10.4957 6.90311i −0.611081 0.401915i
\(296\) 27.5213 + 47.6684i 1.59965 + 2.77067i
\(297\) 0 0
\(298\) −21.7779 + 37.7204i −1.26156 + 2.18509i
\(299\) −1.31257 + 0.659196i −0.0759077 + 0.0381223i
\(300\) 0 0
\(301\) −1.86414 + 2.50398i −0.107447 + 0.144327i
\(302\) −39.6763 42.0544i −2.28311 2.41996i
\(303\) 0 0
\(304\) 12.5563 1.46762i 0.720151 0.0841736i
\(305\) 30.7346 11.1865i 1.75986 0.640536i
\(306\) 0 0
\(307\) 5.34825 + 1.94660i 0.305241 + 0.111099i 0.490099 0.871667i \(-0.336960\pi\)
−0.184859 + 0.982765i \(0.559183\pi\)
\(308\) −3.91764 0.928499i −0.223228 0.0529061i
\(309\) 0 0
\(310\) −29.2180 + 19.2170i −1.65947 + 1.09145i
\(311\) 2.90565 + 1.45927i 0.164764 + 0.0827476i 0.529270 0.848453i \(-0.322466\pi\)
−0.364506 + 0.931201i \(0.618762\pi\)
\(312\) 0 0
\(313\) 6.49142 6.88051i 0.366917 0.388909i −0.517441 0.855719i \(-0.673115\pi\)
0.884358 + 0.466810i \(0.154597\pi\)
\(314\) −1.17011 6.63603i −0.0660332 0.374493i
\(315\) 0 0
\(316\) 8.85219 50.2032i 0.497974 2.82415i
\(317\) −12.2475 16.4513i −0.687889 0.923996i 0.311768 0.950158i \(-0.399079\pi\)
−0.999658 + 0.0261623i \(0.991671\pi\)
\(318\) 0 0
\(319\) 2.65963 0.630343i 0.148910 0.0352924i
\(320\) −43.1426 5.04265i −2.41175 0.281893i
\(321\) 0 0
\(322\) 0.0206501 0.354548i 0.00115078 0.0197582i
\(323\) 1.48754 0.0827687
\(324\) 0 0
\(325\) 8.05378 0.446744
\(326\) −1.13457 + 19.4798i −0.0628378 + 1.07888i
\(327\) 0 0
\(328\) −56.0400 6.55013i −3.09429 0.361671i
\(329\) −3.63496 + 0.861501i −0.200402 + 0.0474961i
\(330\) 0 0
\(331\) −4.12134 5.53592i −0.226529 0.304281i 0.674298 0.738459i \(-0.264446\pi\)
−0.900827 + 0.434178i \(0.857039\pi\)
\(332\) −11.5323 + 65.4027i −0.632915 + 3.58944i
\(333\) 0 0
\(334\) 2.97247 + 16.8577i 0.162647 + 0.922415i
\(335\) −11.1679 + 11.8372i −0.610165 + 0.646738i
\(336\) 0 0
\(337\) 24.2352 + 12.1714i 1.32017 + 0.663016i 0.962615 0.270874i \(-0.0873126\pi\)
0.357560 + 0.933890i \(0.383609\pi\)
\(338\) −41.9886 + 27.6163i −2.28388 + 1.50213i
\(339\) 0 0
\(340\) −17.9147 4.24586i −0.971560 0.230264i
\(341\) 7.46157 + 2.71579i 0.404067 + 0.147068i
\(342\) 0 0
\(343\) 6.59630 2.40086i 0.356166 0.129634i
\(344\) 50.6693 5.92239i 2.73191 0.319314i
\(345\) 0 0
\(346\) −8.95622 9.49304i −0.481490 0.510349i
\(347\) −13.8619 + 18.6198i −0.744148 + 0.999565i 0.255317 + 0.966857i \(0.417820\pi\)
−0.999465 + 0.0327071i \(0.989587\pi\)
\(348\) 0 0
\(349\) 2.74329 1.37773i 0.146845 0.0737484i −0.373859 0.927485i \(-0.621966\pi\)
0.520704 + 0.853737i \(0.325669\pi\)
\(350\) −0.973684 + 1.68647i −0.0520456 + 0.0901456i
\(351\) 0 0
\(352\) 11.8598 + 20.5418i 0.632131 + 1.09488i
\(353\) 8.77373 + 5.77057i 0.466978 + 0.307137i 0.761104 0.648630i \(-0.224658\pi\)
−0.294125 + 0.955767i \(0.595028\pi\)
\(354\) 0 0
\(355\) 5.18553 + 12.0214i 0.275219 + 0.638030i
\(356\) −14.5035 + 48.4452i −0.768686 + 2.56759i
\(357\) 0 0
\(358\) 0.542028 1.25656i 0.0286471 0.0664114i
\(359\) −23.6540 19.8481i −1.24841 1.04754i −0.996818 0.0797090i \(-0.974601\pi\)
−0.251594 0.967833i \(-0.580955\pi\)
\(360\) 0 0
\(361\) −13.7098 + 11.5039i −0.721567 + 0.605466i
\(362\) 2.89302 + 9.66335i 0.152054 + 0.507895i
\(363\) 0 0
\(364\) −0.859323 14.7540i −0.0450408 0.773320i
\(365\) 0.878871 + 15.0896i 0.0460022 + 0.789828i
\(366\) 0 0
\(367\) −4.36626 14.5843i −0.227917 0.761295i −0.993078 0.117457i \(-0.962526\pi\)
0.765161 0.643839i \(-0.222659\pi\)
\(368\) −2.40061 + 2.01435i −0.125140 + 0.105005i
\(369\) 0 0
\(370\) −34.1810 28.6813i −1.77699 1.49107i
\(371\) 1.92024 4.45161i 0.0996937 0.231116i
\(372\) 0 0
\(373\) 0.267683 0.894124i 0.0138601 0.0462960i −0.950780 0.309867i \(-0.899715\pi\)
0.964640 + 0.263572i \(0.0849005\pi\)
\(374\) 2.30157 + 5.33564i 0.119011 + 0.275899i
\(375\) 0 0
\(376\) 51.0046 + 33.5462i 2.63036 + 1.73001i
\(377\) 5.01662 + 8.68904i 0.258369 + 0.447508i
\(378\) 0 0
\(379\) 19.2328 33.3122i 0.987924 1.71113i 0.359781 0.933037i \(-0.382851\pi\)
0.628143 0.778098i \(-0.283815\pi\)
\(380\) −12.2014 + 6.12778i −0.625919 + 0.314348i
\(381\) 0 0
\(382\) 36.1278 48.5280i 1.84846 2.48291i
\(383\) 10.1239 + 10.7307i 0.517306 + 0.548312i 0.932382 0.361475i \(-0.117727\pi\)
−0.415076 + 0.909787i \(0.636245\pi\)
\(384\) 0 0
\(385\) 1.97728 0.231110i 0.100771 0.0117785i
\(386\) 14.3588 5.22616i 0.730841 0.266005i
\(387\) 0 0
\(388\) 17.3313 + 6.30806i 0.879862 + 0.320243i
\(389\) 16.6281 + 3.94094i 0.843079 + 0.199814i 0.629391 0.777088i \(-0.283304\pi\)
0.213688 + 0.976902i \(0.431452\pi\)
\(390\) 0 0
\(391\) −0.308083 + 0.202630i −0.0155804 + 0.0102474i
\(392\) −50.2822 25.2527i −2.53963 1.27545i
\(393\) 0 0
\(394\) −4.43359 + 4.69933i −0.223361 + 0.236749i
\(395\) 4.37696 + 24.8230i 0.220229 + 1.24898i
\(396\) 0 0
\(397\) −4.37414 + 24.8070i −0.219532 + 1.24503i 0.653335 + 0.757069i \(0.273369\pi\)
−0.872867 + 0.487958i \(0.837742\pi\)
\(398\) −15.6005 20.9551i −0.781983 1.05039i
\(399\) 0 0
\(400\) 16.7201 3.96273i 0.836003 0.198136i
\(401\) −20.4909 2.39504i −1.02327 0.119603i −0.412128 0.911126i \(-0.635214\pi\)
−0.611139 + 0.791523i \(0.709288\pi\)
\(402\) 0 0
\(403\) −1.69476 + 29.0979i −0.0844221 + 1.44947i
\(404\) −91.3890 −4.54677
\(405\) 0 0
\(406\) −2.42599 −0.120400
\(407\) −0.589081 + 10.1141i −0.0291997 + 0.501339i
\(408\) 0 0
\(409\) −34.9426 4.08420i −1.72780 0.201951i −0.806616 0.591076i \(-0.798703\pi\)
−0.921185 + 0.389125i \(0.872777\pi\)
\(410\) 44.5050 10.5479i 2.19794 0.520922i
\(411\) 0 0
\(412\) 13.2199 + 17.7573i 0.651296 + 0.874842i
\(413\) 0.439618 2.49319i 0.0216322 0.122682i
\(414\) 0 0
\(415\) −5.70212 32.3383i −0.279906 1.58743i
\(416\) −59.7502 + 63.3315i −2.92949 + 3.10508i
\(417\) 0 0
\(418\) 3.85102 + 1.93405i 0.188359 + 0.0945977i
\(419\) −22.6465 + 14.8948i −1.10635 + 0.727659i −0.964987 0.262299i \(-0.915519\pi\)
−0.141365 + 0.989958i \(0.545149\pi\)
\(420\) 0 0
\(421\) −29.6178 7.01956i −1.44349 0.342112i −0.567071 0.823669i \(-0.691923\pi\)
−0.876415 + 0.481557i \(0.840072\pi\)
\(422\) 49.2008 + 17.9076i 2.39506 + 0.871729i
\(423\) 0 0
\(424\) −74.4492 + 27.0973i −3.61557 + 1.31596i
\(425\) 2.00826 0.234731i 0.0974147 0.0113861i
\(426\) 0 0
\(427\) 4.52328 + 4.79440i 0.218897 + 0.232017i
\(428\) 24.4305 32.8158i 1.18089 1.58621i
\(429\) 0 0
\(430\) −36.9557 + 18.5599i −1.78216 + 0.895036i
\(431\) 4.50933 7.81039i 0.217207 0.376213i −0.736746 0.676170i \(-0.763639\pi\)
0.953953 + 0.299956i \(0.0969720\pi\)
\(432\) 0 0
\(433\) −11.8523 20.5287i −0.569584 0.986548i −0.996607 0.0823075i \(-0.973771\pi\)
0.427023 0.904241i \(-0.359562\pi\)
\(434\) −5.88824 3.87276i −0.282645 0.185898i
\(435\) 0 0
\(436\) −0.432303 1.00219i −0.0207036 0.0479963i
\(437\) −0.0784309 + 0.261977i −0.00375186 + 0.0125321i
\(438\) 0 0
\(439\) 1.59411 3.69557i 0.0760828 0.176380i −0.875930 0.482439i \(-0.839751\pi\)
0.952013 + 0.306059i \(0.0990104\pi\)
\(440\) −24.9213 20.9114i −1.18807 0.996913i
\(441\) 0 0
\(442\) −16.3399 + 13.7108i −0.777209 + 0.652156i
\(443\) 2.28228 + 7.62333i 0.108434 + 0.362195i 0.994934 0.100534i \(-0.0320552\pi\)
−0.886499 + 0.462730i \(0.846870\pi\)
\(444\) 0 0
\(445\) −1.45386 24.9618i −0.0689196 1.18330i
\(446\) −0.406715 6.98303i −0.0192585 0.330656i
\(447\) 0 0
\(448\) −2.51057 8.38588i −0.118613 0.396196i
\(449\) 11.2889 9.47253i 0.532757 0.447037i −0.336295 0.941757i \(-0.609174\pi\)
0.869052 + 0.494720i \(0.164729\pi\)
\(450\) 0 0
\(451\) −7.95542 6.67539i −0.374606 0.314332i
\(452\) −11.2639 + 26.1127i −0.529810 + 1.22824i
\(453\) 0 0
\(454\) 0.945724 3.15894i 0.0443850 0.148256i
\(455\) 2.89434 + 6.70984i 0.135689 + 0.314562i
\(456\) 0 0
\(457\) 6.56749 + 4.31950i 0.307214 + 0.202058i 0.693749 0.720217i \(-0.255958\pi\)
−0.386535 + 0.922275i \(0.626328\pi\)
\(458\) −6.53970 11.3271i −0.305580 0.529280i
\(459\) 0 0
\(460\) 1.69232 2.93118i 0.0789047 0.136667i
\(461\) −2.95240 + 1.48275i −0.137507 + 0.0690586i −0.516222 0.856455i \(-0.672662\pi\)
0.378715 + 0.925513i \(0.376366\pi\)
\(462\) 0 0
\(463\) −10.5706 + 14.1988i −0.491257 + 0.659873i −0.976753 0.214366i \(-0.931231\pi\)
0.485497 + 0.874239i \(0.338639\pi\)
\(464\) 14.6900 + 15.5705i 0.681968 + 0.722844i
\(465\) 0 0
\(466\) −10.1403 + 1.18523i −0.469741 + 0.0549048i
\(467\) −37.4545 + 13.6323i −1.73319 + 0.630829i −0.998849 0.0479555i \(-0.984729\pi\)
−0.734338 + 0.678784i \(0.762507\pi\)
\(468\) 0 0
\(469\) −3.08187 1.12171i −0.142307 0.0517956i
\(470\) −48.1541 11.4127i −2.22118 0.526430i
\(471\) 0 0
\(472\) −34.5658 + 22.7343i −1.59102 + 1.04643i
\(473\) 8.39102 + 4.21413i 0.385820 + 0.193766i
\(474\) 0 0
\(475\) 1.02901 1.09068i 0.0472140 0.0500439i
\(476\) −0.644290 3.65395i −0.0295310 0.167478i
\(477\) 0 0
\(478\) 4.19419 23.7864i 0.191838 1.08797i
\(479\) 23.4031 + 31.4359i 1.06932 + 1.43634i 0.891915 + 0.452203i \(0.149362\pi\)
0.177402 + 0.984139i \(0.443231\pi\)
\(480\) 0 0
\(481\) −36.1868 + 8.57643i −1.64998 + 0.391052i
\(482\) 62.1184 + 7.26060i 2.82941 + 0.330711i
\(483\) 0 0
\(484\) 2.57534 44.2170i 0.117061 2.00986i
\(485\) −9.11940 −0.414091
\(486\) 0 0
\(487\) 35.0579 1.58863 0.794313 0.607509i \(-0.207831\pi\)
0.794313 + 0.607509i \(0.207831\pi\)
\(488\) 6.26311 107.533i 0.283518 4.86781i
\(489\) 0 0
\(490\) 45.3043 + 5.29532i 2.04664 + 0.239218i
\(491\) −20.0273 + 4.74656i −0.903821 + 0.214209i −0.656146 0.754634i \(-0.727815\pi\)
−0.247675 + 0.968843i \(0.579666\pi\)
\(492\) 0 0
\(493\) 1.50417 + 2.02045i 0.0677443 + 0.0909964i
\(494\) −2.74688 + 15.5783i −0.123588 + 0.700903i
\(495\) 0 0
\(496\) 10.7987 + 61.2427i 0.484878 + 2.74988i
\(497\) −1.81060 + 1.91912i −0.0812165 + 0.0860845i
\(498\) 0 0
\(499\) 7.36824 + 3.70047i 0.329848 + 0.165656i 0.606014 0.795454i \(-0.292768\pi\)
−0.276166 + 0.961110i \(0.589064\pi\)
\(500\) 38.7994 25.5188i 1.73516 1.14123i
\(501\) 0 0
\(502\) 32.0343 + 7.59227i 1.42976 + 0.338860i
\(503\) −15.9904 5.82003i −0.712977 0.259503i −0.0400358 0.999198i \(-0.512747\pi\)
−0.672941 + 0.739696i \(0.734969\pi\)
\(504\) 0 0
\(505\) 42.4621 15.4549i 1.88954 0.687736i
\(506\) −1.06104 + 0.124017i −0.0471689 + 0.00551325i
\(507\) 0 0
\(508\) 64.2469 + 68.0977i 2.85049 + 3.02135i
\(509\) 9.79652 13.1590i 0.434223 0.583263i −0.530118 0.847924i \(-0.677853\pi\)
0.964342 + 0.264661i \(0.0852599\pi\)
\(510\) 0 0
\(511\) −2.72212 + 1.36710i −0.120420 + 0.0604770i
\(512\) 7.61274 13.1856i 0.336439 0.582729i
\(513\) 0 0
\(514\) 39.3519 + 68.1595i 1.73574 + 3.00639i
\(515\) −9.14532 6.01497i −0.402991 0.265051i
\(516\) 0 0
\(517\) 4.45057 + 10.3176i 0.195736 + 0.453767i
\(518\) 2.57899 8.61442i 0.113314 0.378496i
\(519\) 0 0
\(520\) 47.2990 109.651i 2.07420 4.80853i
\(521\) 9.25237 + 7.76366i 0.405354 + 0.340132i 0.822559 0.568680i \(-0.192546\pi\)
−0.417205 + 0.908812i \(0.636990\pi\)
\(522\) 0 0
\(523\) −5.53110 + 4.64114i −0.241858 + 0.202943i −0.755657 0.654968i \(-0.772682\pi\)
0.513799 + 0.857911i \(0.328238\pi\)
\(524\) 11.8239 + 39.4947i 0.516531 + 1.72534i
\(525\) 0 0
\(526\) −3.19610 54.8748i −0.139356 2.39266i
\(527\) 0.425475 + 7.30513i 0.0185340 + 0.318216i
\(528\) 0 0
\(529\) 6.57703 + 21.9688i 0.285958 + 0.955166i
\(530\) 49.1993 41.2832i 2.13708 1.79323i
\(531\) 0 0
\(532\) −2.10785 1.76870i −0.0913869 0.0766827i
\(533\) 15.0989 35.0032i 0.654005 1.51615i
\(534\) 0 0
\(535\) −5.80160 + 19.3787i −0.250825 + 0.837814i
\(536\) 21.2282 + 49.2124i 0.916917 + 2.12565i
\(537\) 0 0
\(538\) 27.1497 + 17.8567i 1.17051 + 0.769855i
\(539\) −5.17833 8.96913i −0.223046 0.386328i
\(540\) 0 0
\(541\) −19.0806 + 33.0486i −0.820339 + 1.42087i 0.0850910 + 0.996373i \(0.472882\pi\)
−0.905430 + 0.424496i \(0.860451\pi\)
\(542\) 55.1476 27.6962i 2.36879 1.18965i
\(543\) 0 0
\(544\) −13.0532 + 17.5335i −0.559652 + 0.751743i
\(545\) 0.370343 + 0.392541i 0.0158638 + 0.0168146i
\(546\) 0 0
\(547\) 36.9317 4.31670i 1.57909 0.184569i 0.719107 0.694899i \(-0.244551\pi\)
0.859978 + 0.510331i \(0.170477\pi\)
\(548\) 41.1120 14.9635i 1.75622 0.639211i
\(549\) 0 0
\(550\) 5.50428 + 2.00339i 0.234703 + 0.0854250i
\(551\) 1.81767 + 0.430795i 0.0774352 + 0.0183525i
\(552\) 0 0
\(553\) −4.24402 + 2.79133i −0.180474 + 0.118700i
\(554\) 3.26551 + 1.64000i 0.138738 + 0.0696769i
\(555\) 0 0
\(556\) −45.9168 + 48.6689i −1.94730 + 2.06402i
\(557\) −4.26215 24.1719i −0.180593 1.02420i −0.931488 0.363773i \(-0.881488\pi\)
0.750894 0.660422i \(-0.229623\pi\)
\(558\) 0 0
\(559\) −5.98521 + 33.9438i −0.253147 + 1.43567i
\(560\) 9.31026 + 12.5059i 0.393430 + 0.528469i
\(561\) 0 0
\(562\) 46.5120 11.0235i 1.96199 0.465000i
\(563\) 7.01231 + 0.819622i 0.295534 + 0.0345429i 0.262568 0.964914i \(-0.415431\pi\)
0.0329659 + 0.999456i \(0.489505\pi\)
\(564\) 0 0
\(565\) 0.817597 14.0376i 0.0343966 0.590566i
\(566\) 26.0476 1.09486
\(567\) 0 0
\(568\) 43.1169 1.80914
\(569\) −0.491975 + 8.44688i −0.0206247 + 0.354112i 0.972169 + 0.234279i \(0.0752729\pi\)
−0.992794 + 0.119833i \(0.961764\pi\)
\(570\) 0 0
\(571\) 0.438888 + 0.0512987i 0.0183669 + 0.00214678i 0.125271 0.992123i \(-0.460020\pi\)
−0.106905 + 0.994269i \(0.534094\pi\)
\(572\) −43.2559 + 10.2518i −1.80862 + 0.428650i
\(573\) 0 0
\(574\) 5.50427 + 7.39352i 0.229744 + 0.308600i
\(575\) −0.0645463 + 0.366060i −0.00269177 + 0.0152658i
\(576\) 0 0
\(577\) 1.80812 + 10.2544i 0.0752730 + 0.426894i 0.999035 + 0.0439266i \(0.0139868\pi\)
−0.923762 + 0.382968i \(0.874902\pi\)
\(578\) 27.4706 29.1171i 1.14263 1.21111i
\(579\) 0 0
\(580\) −20.6609 10.3763i −0.857897 0.430852i
\(581\) 5.52893 3.63643i 0.229379 0.150865i
\(582\) 0 0
\(583\) −14.1896 3.36301i −0.587675 0.139282i
\(584\) 46.7775 + 17.0256i 1.93567 + 0.704525i
\(585\) 0 0
\(586\) 7.70663 2.80498i 0.318358 0.115873i
\(587\) −36.6788 + 4.28713i −1.51389 + 0.176949i −0.832112 0.554607i \(-0.812869\pi\)
−0.681782 + 0.731556i \(0.738795\pi\)
\(588\) 0 0
\(589\) 3.72405 + 3.94726i 0.153447 + 0.162644i
\(590\) 20.0275 26.9017i 0.824521 1.10752i
\(591\) 0 0
\(592\) −70.9058 + 35.6102i −2.91421 + 1.46357i
\(593\) −1.15692 + 2.00385i −0.0475091 + 0.0822881i −0.888802 0.458291i \(-0.848462\pi\)
0.841293 + 0.540579i \(0.181795\pi\)
\(594\) 0 0
\(595\) 0.917282 + 1.58878i 0.0376049 + 0.0651336i
\(596\) −69.8912 45.9681i −2.86285 1.88293i
\(597\) 0 0
\(598\) −1.55315 3.60060i −0.0635130 0.147240i
\(599\) 2.31454 7.73110i 0.0945695 0.315884i −0.897595 0.440821i \(-0.854688\pi\)
0.992165 + 0.124936i \(0.0398727\pi\)
\(600\) 0 0
\(601\) 6.03525 13.9913i 0.246183 0.570717i −0.749658 0.661826i \(-0.769782\pi\)
0.995841 + 0.0911091i \(0.0290412\pi\)
\(602\) −6.38427 5.35704i −0.260203 0.218337i
\(603\) 0 0
\(604\) 85.0636 71.3769i 3.46119 2.90428i
\(605\) 6.28102 + 20.9801i 0.255360 + 0.852961i
\(606\) 0 0
\(607\) 1.70295 + 29.2385i 0.0691205 + 1.18675i 0.837382 + 0.546617i \(0.184085\pi\)
−0.768262 + 0.640136i \(0.778878\pi\)
\(608\) 0.942570 + 16.1833i 0.0382263 + 0.656320i
\(609\) 0 0
\(610\) 25.0434 + 83.6509i 1.01398 + 3.38693i
\(611\) −31.5966 + 26.5127i −1.27826 + 1.07259i
\(612\) 0 0
\(613\) 5.16392 + 4.33305i 0.208569 + 0.175010i 0.741088 0.671408i \(-0.234310\pi\)
−0.532519 + 0.846418i \(0.678755\pi\)
\(614\) −6.01834 + 13.9521i −0.242880 + 0.563060i
\(615\) 0 0
\(616\) 1.88033 6.28075i 0.0757608 0.253059i
\(617\) −4.77035 11.0589i −0.192047 0.445215i 0.794800 0.606871i \(-0.207576\pi\)
−0.986847 + 0.161656i \(0.948316\pi\)
\(618\) 0 0
\(619\) 11.2250 + 7.38281i 0.451172 + 0.296740i 0.754685 0.656087i \(-0.227790\pi\)
−0.303514 + 0.952827i \(0.598160\pi\)
\(620\) −33.5828 58.1671i −1.34872 2.33605i
\(621\) 0 0
\(622\) −4.34032 + 7.51765i −0.174031 + 0.301430i
\(623\) 4.50304 2.26151i 0.180410 0.0906055i
\(624\) 0 0
\(625\) −17.9745 + 24.1439i −0.718980 + 0.965758i
\(626\) 17.3304 + 18.3691i 0.692661 + 0.734178i
\(627\) 0 0
\(628\) 12.8542 1.50245i 0.512940 0.0599541i
\(629\) −8.77342 + 3.19326i −0.349819 + 0.127324i
\(630\) 0 0
\(631\) −0.571023 0.207835i −0.0227321 0.00827379i 0.330629 0.943761i \(-0.392739\pi\)
−0.353361 + 0.935487i \(0.614961\pi\)
\(632\) 80.7741 + 19.1438i 3.21302 + 0.761500i
\(633\) 0 0
\(634\) 45.7474 30.0886i 1.81686 1.19497i
\(635\) −41.3672 20.7754i −1.64161 0.824445i
\(636\) 0 0
\(637\) 26.0886 27.6523i 1.03367 1.09562i
\(638\) 1.26714 + 7.18633i 0.0501667 + 0.284510i
\(639\) 0 0
\(640\) 6.54721 37.1311i 0.258801 1.46774i
\(641\) 13.5276 + 18.1707i 0.534307 + 0.717699i 0.984530 0.175217i \(-0.0560627\pi\)
−0.450222 + 0.892916i \(0.648655\pi\)
\(642\) 0 0
\(643\) 47.4241 11.2397i 1.87022 0.443251i 0.871347 0.490667i \(-0.163247\pi\)
0.998875 + 0.0474161i \(0.0150987\pi\)
\(644\) 0.677486 + 0.0791867i 0.0266967 + 0.00312039i
\(645\) 0 0
\(646\) −0.230912 + 3.96461i −0.00908511 + 0.155985i
\(647\) 20.1953 0.793960 0.396980 0.917827i \(-0.370058\pi\)
0.396980 + 0.917827i \(0.370058\pi\)
\(648\) 0 0
\(649\) −7.61503 −0.298916
\(650\) −1.25020 + 21.4651i −0.0490368 + 0.841930i
\(651\) 0 0
\(652\) −37.2227 4.35071i −1.45775 0.170387i
\(653\) −18.6280 + 4.41491i −0.728969 + 0.172769i −0.578310 0.815817i \(-0.696288\pi\)
−0.150659 + 0.988586i \(0.548139\pi\)
\(654\) 0 0
\(655\) −12.1728 16.3509i −0.475630 0.638882i
\(656\) 14.1233 80.0975i 0.551424 3.12728i
\(657\) 0 0
\(658\) −1.73183 9.82169i −0.0675137 0.382889i
\(659\) −28.2425 + 29.9353i −1.10017 + 1.16611i −0.115208 + 0.993341i \(0.536754\pi\)
−0.984962 + 0.172771i \(0.944728\pi\)
\(660\) 0 0
\(661\) −25.4494 12.7812i −0.989868 0.497130i −0.121255 0.992621i \(-0.538692\pi\)
−0.868613 + 0.495491i \(0.834988\pi\)
\(662\) 15.3942 10.1249i 0.598312 0.393516i
\(663\) 0 0
\(664\) −105.229 24.9398i −4.08368 0.967850i
\(665\) 1.27848 + 0.465328i 0.0495773 + 0.0180447i
\(666\) 0 0
\(667\) −0.435139 + 0.158378i −0.0168486 + 0.00613241i
\(668\) −32.6541 + 3.81671i −1.26342 + 0.147673i
\(669\) 0 0
\(670\) −29.8152 31.6023i −1.15186 1.22090i
\(671\) 11.8395 15.9032i 0.457059 0.613936i
\(672\) 0 0
\(673\) −32.6287 + 16.3867i −1.25774 + 0.631662i −0.947731 0.319071i \(-0.896629\pi\)
−0.310011 + 0.950733i \(0.600333\pi\)
\(674\) −36.2014 + 62.7027i −1.39443 + 2.41522i
\(675\) 0 0
\(676\) −48.2611 83.5906i −1.85620 3.21502i
\(677\) 1.47886 + 0.972660i 0.0568371 + 0.0373824i 0.577610 0.816313i \(-0.303986\pi\)
−0.520772 + 0.853696i \(0.674356\pi\)
\(678\) 0 0
\(679\) −0.727920 1.68751i −0.0279350 0.0647606i
\(680\) 8.59842 28.7207i 0.329735 1.10139i
\(681\) 0 0
\(682\) −8.39644 + 19.4651i −0.321516 + 0.745358i
\(683\) −17.5030 14.6868i −0.669734 0.561973i 0.243253 0.969963i \(-0.421786\pi\)
−0.912987 + 0.407989i \(0.866230\pi\)
\(684\) 0 0
\(685\) −16.5714 + 13.9050i −0.633159 + 0.531284i
\(686\) 5.37485 + 17.9532i 0.205213 + 0.685458i
\(687\) 0 0
\(688\) 4.27588 + 73.4140i 0.163016 + 2.79888i
\(689\) −3.11246 53.4388i −0.118575 2.03586i
\(690\) 0 0
\(691\) −1.62241 5.41921i −0.0617192 0.206157i 0.921568 0.388216i \(-0.126909\pi\)
−0.983287 + 0.182060i \(0.941724\pi\)
\(692\) 19.2016 16.1121i 0.729936 0.612489i
\(693\) 0 0
\(694\) −47.4741 39.8355i −1.80209 1.51213i
\(695\) 13.1038 30.3781i 0.497057 1.15231i
\(696\) 0 0
\(697\) 2.74481 9.16830i 0.103967 0.347274i
\(698\) 3.24611 + 7.52534i 0.122867 + 0.284838i
\(699\) 0 0
\(700\) −3.12481 2.05522i −0.118107 0.0776801i
\(701\) 12.8656 + 22.2838i 0.485926 + 0.841648i 0.999869 0.0161763i \(-0.00514928\pi\)
−0.513944 + 0.857824i \(0.671816\pi\)
\(702\) 0 0
\(703\) −3.46201 + 5.99637i −0.130572 + 0.226157i
\(704\) −23.5295 + 11.8170i −0.886803 + 0.445369i
\(705\) 0 0
\(706\) −16.7418 + 22.4881i −0.630085 + 0.846352i
\(707\) 6.24925 + 6.62382i 0.235027 + 0.249114i
\(708\) 0 0
\(709\) −33.2813 + 3.89003i −1.24991 + 0.146093i −0.715185 0.698935i \(-0.753658\pi\)
−0.534721 + 0.845028i \(0.679583\pi\)
\(710\) −32.8446 + 11.9545i −1.23264 + 0.448643i
\(711\) 0 0
\(712\) −77.3810 28.1644i −2.89997 1.05550i
\(713\) −1.30898 0.310233i −0.0490215 0.0116183i
\(714\) 0 0
\(715\) 18.3643 12.0784i 0.686785 0.451706i
\(716\) 2.34874 + 1.17958i 0.0877764 + 0.0440829i
\(717\) 0 0
\(718\) 56.5713 59.9621i 2.11122 2.23777i
\(719\) 0.373099 + 2.11595i 0.0139143 + 0.0789116i 0.990974 0.134053i \(-0.0427992\pi\)
−0.977060 + 0.212965i \(0.931688\pi\)
\(720\) 0 0
\(721\) 0.383057 2.17243i 0.0142658 0.0809054i
\(722\) −28.5321 38.3253i −1.06186 1.42632i
\(723\) 0 0
\(724\) −18.8511 + 4.46779i −0.700594 + 0.166044i
\(725\) 2.52193 + 0.294771i 0.0936621 + 0.0109475i
\(726\) 0 0
\(727\) −0.643271 + 11.0445i −0.0238576 + 0.409619i 0.965144 + 0.261718i \(0.0842889\pi\)
−0.989002 + 0.147902i \(0.952748\pi\)
\(728\) 24.0660 0.891946
\(729\) 0 0
\(730\) −40.3536 −1.49355
\(731\) −0.503137 + 8.63852i −0.0186092 + 0.319507i
\(732\) 0 0
\(733\) 16.8882 + 1.97394i 0.623778 + 0.0729092i 0.422110 0.906545i \(-0.361290\pi\)
0.201668 + 0.979454i \(0.435364\pi\)
\(734\) 39.5482 9.37309i 1.45975 0.345967i
\(735\) 0 0
\(736\) −2.39968 3.22333i −0.0884533 0.118813i
\(737\) −1.71303 + 9.71507i −0.0631002 + 0.357859i
\(738\) 0 0
\(739\) −4.23694 24.0289i −0.155858 0.883917i −0.957997 0.286779i \(-0.907416\pi\)
0.802138 0.597138i \(-0.203696\pi\)
\(740\) 58.8090 62.3339i 2.16186 2.29144i
\(741\) 0 0
\(742\) 11.5664 + 5.80888i 0.424617 + 0.213251i
\(743\) −4.93235 + 3.24406i −0.180951 + 0.119013i −0.636753 0.771068i \(-0.719723\pi\)
0.455802 + 0.890081i \(0.349352\pi\)
\(744\) 0 0
\(745\) 40.2473 + 9.53879i 1.47455 + 0.349474i
\(746\) 2.34148 + 0.852230i 0.0857277 + 0.0312023i
\(747\) 0 0
\(748\) −10.4873 + 3.81706i −0.383453 + 0.139566i
\(749\) −4.04904 + 0.473265i −0.147949 + 0.0172927i
\(750\) 0 0
\(751\) 23.7112 + 25.1324i 0.865234 + 0.917095i 0.997247 0.0741534i \(-0.0236255\pi\)
−0.132013 + 0.991248i \(0.542144\pi\)
\(752\) −52.5511 + 70.5884i −1.91634 + 2.57409i
\(753\) 0 0
\(754\) −23.9369 + 12.0216i −0.871731 + 0.437800i
\(755\) −27.4525 + 47.5491i −0.999099 + 1.73049i
\(756\) 0 0
\(757\) 19.4091 + 33.6176i 0.705437 + 1.22185i 0.966534 + 0.256540i \(0.0825824\pi\)
−0.261097 + 0.965313i \(0.584084\pi\)
\(758\) 85.7988 + 56.4308i 3.11635 + 2.04966i
\(759\) 0 0
\(760\) −8.80628 20.4152i −0.319437 0.740539i
\(761\) −11.7222 + 39.1550i −0.424931 + 1.41937i 0.431035 + 0.902335i \(0.358149\pi\)
−0.855966 + 0.517033i \(0.827036\pi\)
\(762\) 0 0
\(763\) −0.0430770 + 0.0998636i −0.00155949 + 0.00361531i
\(764\) 89.0105 + 74.6887i 3.22029 + 2.70214i
\(765\) 0 0
\(766\) −30.1711 + 25.3166i −1.09013 + 0.914725i
\(767\) −8.01694 26.7785i −0.289475 0.966914i
\(768\) 0 0
\(769\) 1.79697 + 30.8528i 0.0648004 + 1.11258i 0.861352 + 0.508009i \(0.169618\pi\)
−0.796551 + 0.604571i \(0.793345\pi\)
\(770\) 0.309025 + 5.30575i 0.0111365 + 0.191206i
\(771\) 0 0
\(772\) 8.41688 + 28.1143i 0.302930 + 1.01186i
\(773\) −22.5762 + 18.9437i −0.812009 + 0.681356i −0.951086 0.308925i \(-0.900031\pi\)
0.139077 + 0.990282i \(0.455586\pi\)
\(774\) 0 0
\(775\) 5.65054 + 4.74137i 0.202974 + 0.170315i
\(776\) −11.8956 + 27.5771i −0.427027 + 0.989959i
\(777\) 0 0
\(778\) −13.0847 + 43.7058i −0.469108 + 1.56693i
\(779\) −2.81116 6.51700i −0.100720 0.233496i
\(780\) 0 0
\(781\) 6.63059 + 4.36101i 0.237261 + 0.156049i
\(782\) −0.492228 0.852563i −0.0176020 0.0304876i
\(783\) 0 0
\(784\) 40.5553 70.2439i 1.44841 2.50871i
\(785\) −5.71839 + 2.87188i −0.204098 + 0.102502i
\(786\) 0 0
\(787\) 9.81231 13.1802i 0.349771 0.469824i −0.592068 0.805888i \(-0.701688\pi\)
0.941839 + 0.336064i \(0.109096\pi\)
\(788\) −8.51513 9.02551i −0.303339 0.321521i
\(789\) 0 0
\(790\) −66.8380 + 7.81224i −2.37799 + 0.277947i
\(791\) 2.66286 0.969203i 0.0946805 0.0344609i
\(792\) 0 0
\(793\) 68.3884 + 24.8914i 2.42854 + 0.883918i
\(794\) −65.4370 15.5089i −2.32227 0.550389i
\(795\) 0 0
\(796\) 41.9204 27.5715i 1.48583 0.977245i
\(797\) 7.51505 + 3.77420i 0.266197 + 0.133689i 0.576892 0.816821i \(-0.304265\pi\)
−0.310695 + 0.950510i \(0.600562\pi\)
\(798\) 0 0
\(799\) −7.10607 + 7.53199i −0.251395 + 0.266463i
\(800\) 3.82623 + 21.6996i 0.135278 + 0.767198i
\(801\) 0 0
\(802\) 9.56414 54.2409i 0.337721 1.91531i
\(803\) 5.47149 + 7.34948i 0.193085 + 0.259358i
\(804\) 0 0
\(805\) −0.328172 + 0.0777781i −0.0115665 + 0.00274132i
\(806\) −77.2893 9.03382i −2.72240 0.318203i
\(807\) 0 0
\(808\) 8.65294 148.565i 0.304409 5.22651i
\(809\) 1.83823 0.0646289 0.0323144 0.999478i \(-0.489712\pi\)
0.0323144 + 0.999478i \(0.489712\pi\)
\(810\) 0 0
\(811\) −8.25761 −0.289964 −0.144982 0.989434i \(-0.546312\pi\)
−0.144982 + 0.989434i \(0.546312\pi\)
\(812\) 0.270917 4.65146i 0.00950732 0.163234i
\(813\) 0 0
\(814\) −26.8649 3.14006i −0.941615 0.110059i
\(815\) 18.0306 4.27332i 0.631583 0.149688i
\(816\) 0 0
\(817\) 3.83212 + 5.14744i 0.134069 + 0.180086i
\(818\) 16.3095 92.4956i 0.570248 3.23403i
\(819\) 0 0
\(820\) 15.2539 + 86.5093i 0.532690 + 3.02104i
\(821\) −17.5206 + 18.5707i −0.611472 + 0.648122i −0.956932 0.290311i \(-0.906241\pi\)
0.345460 + 0.938433i \(0.387723\pi\)
\(822\) 0 0
\(823\) −3.13825 1.57609i −0.109392 0.0549390i 0.393261 0.919427i \(-0.371347\pi\)
−0.502654 + 0.864488i \(0.667643\pi\)
\(824\) −30.1187 + 19.8094i −1.04923 + 0.690092i
\(825\) 0 0
\(826\) 6.57666 + 1.55870i 0.228831 + 0.0542340i
\(827\) −29.3726 10.6908i −1.02139 0.371754i −0.223591 0.974683i \(-0.571778\pi\)
−0.797795 + 0.602929i \(0.794000\pi\)
\(828\) 0 0
\(829\) 44.5589 16.2181i 1.54759 0.563278i 0.579743 0.814800i \(-0.303153\pi\)
0.967852 + 0.251521i \(0.0809308\pi\)
\(830\) 87.0738 10.1775i 3.02238 0.353265i
\(831\) 0 0
\(832\) −66.3262 70.3016i −2.29945 2.43727i
\(833\) 5.69939 7.65561i 0.197472 0.265251i
\(834\) 0 0
\(835\) 14.5266 7.29555i 0.502715 0.252473i
\(836\) −4.13831 + 7.16776i −0.143126 + 0.247902i
\(837\) 0 0
\(838\) −36.1825 62.6699i −1.24990 2.16489i
\(839\) 24.8318 + 16.3321i 0.857288 + 0.563847i 0.900321 0.435227i \(-0.143332\pi\)
−0.0430333 + 0.999074i \(0.513702\pi\)
\(840\) 0 0
\(841\) −10.2335 23.7238i −0.352878 0.818062i
\(842\) 23.3063 77.8483i 0.803187 2.68283i
\(843\) 0 0
\(844\) −39.8295 + 92.3352i −1.37099 + 3.17831i
\(845\) 36.5597 + 30.6772i 1.25769 + 1.05533i
\(846\) 0 0
\(847\) −3.38092 + 2.83693i −0.116170 + 0.0974780i
\(848\) −32.7553 109.410i −1.12482 3.75716i
\(849\) 0 0
\(850\) 0.313866 + 5.38888i 0.0107655 + 0.184837i
\(851\) −0.0997998 1.71350i −0.00342109 0.0587379i
\(852\) 0 0
\(853\) −3.02404 10.1010i −0.103541 0.345852i 0.890482 0.455018i \(-0.150367\pi\)
−0.994024 + 0.109166i \(0.965182\pi\)
\(854\) −13.4803 + 11.3113i −0.461286 + 0.387065i
\(855\) 0 0
\(856\) 51.0334 + 42.8221i 1.74429 + 1.46363i
\(857\) −5.87391 + 13.6172i −0.200649 + 0.465156i −0.988597 0.150585i \(-0.951884\pi\)
0.787948 + 0.615742i \(0.211143\pi\)
\(858\) 0 0
\(859\) −9.06592 + 30.2823i −0.309325 + 1.03322i 0.652096 + 0.758137i \(0.273890\pi\)
−0.961421 + 0.275082i \(0.911295\pi\)
\(860\) −31.4587 72.9295i −1.07273 2.48688i
\(861\) 0 0
\(862\) 20.1164 + 13.2308i 0.685168 + 0.450642i
\(863\) −1.64562 2.85030i −0.0560177 0.0970255i 0.836657 0.547728i \(-0.184507\pi\)
−0.892674 + 0.450702i \(0.851174\pi\)
\(864\) 0 0
\(865\) −6.19692 + 10.7334i −0.210701 + 0.364946i
\(866\) 56.5534 28.4022i 1.92176 0.965145i
\(867\) 0 0
\(868\) 8.08298 10.8573i 0.274354 0.368522i
\(869\) 10.4853 + 11.1138i 0.355689 + 0.377009i
\(870\) 0 0
\(871\) −35.9668 + 4.20391i −1.21869 + 0.142444i
\(872\) 1.67013 0.607878i 0.0565577 0.0205853i
\(873\) 0 0
\(874\) −0.686052 0.249702i −0.0232060 0.00844631i
\(875\) −4.50271 1.06716i −0.152220 0.0360767i
\(876\) 0 0
\(877\) 30.8592 20.2964i 1.04204 0.685361i 0.0914509 0.995810i \(-0.470850\pi\)
0.950590 + 0.310448i \(0.100479\pi\)
\(878\) 9.60203 + 4.82232i 0.324053 + 0.162745i
\(879\) 0 0
\(880\) 32.1822 34.1112i 1.08486 1.14989i
\(881\) −5.05857 28.6886i −0.170427 0.966542i −0.943290 0.331969i \(-0.892287\pi\)
0.772863 0.634573i \(-0.218824\pi\)
\(882\) 0 0
\(883\) −3.27904 + 18.5963i −0.110348 + 0.625817i 0.878600 + 0.477558i \(0.158478\pi\)
−0.988949 + 0.148259i \(0.952633\pi\)
\(884\) −24.4636 32.8603i −0.822800 1.10521i
\(885\) 0 0
\(886\) −20.6721 + 4.89938i −0.694493 + 0.164598i
\(887\) 24.1255 + 2.81987i 0.810055 + 0.0946818i 0.511029 0.859563i \(-0.329264\pi\)
0.299026 + 0.954245i \(0.403338\pi\)
\(888\) 0 0
\(889\) 0.542429 9.31314i 0.0181925 0.312353i
\(890\) 66.7543 2.23761
\(891\) 0 0
\(892\) 13.4343 0.449814
\(893\) −0.446517 + 7.66641i −0.0149421 + 0.256547i
\(894\) 0 0
\(895\) −1.29077 0.150870i −0.0431458 0.00504302i
\(896\) 7.39357 1.75231i 0.247002 0.0585405i
\(897\) 0 0
\(898\) 23.4940 + 31.5579i 0.784004 + 1.05310i
\(899\) −1.59569 + 9.04959i −0.0532191 + 0.301821i
\(900\) 0 0
\(901\) −2.33361 13.2346i −0.0777438 0.440907i
\(902\) 19.0263 20.1667i 0.633506 0.671477i
\(903\) 0 0
\(904\) −41.3832 20.7834i −1.37639 0.691247i
\(905\) 8.00322 5.26380i 0.266036 0.174975i
\(906\) 0 0
\(907\) 38.3630 + 9.09219i 1.27382 + 0.301901i 0.811260 0.584686i \(-0.198782\pi\)
0.462561 + 0.886587i \(0.346931\pi\)
\(908\) 5.95117 + 2.16605i 0.197496 + 0.0718828i
\(909\) 0 0
\(910\) −18.3325 + 6.67247i −0.607715 + 0.221190i
\(911\) 41.1013 4.80405i 1.36175 0.159165i 0.596350 0.802724i \(-0.296617\pi\)
0.765397 + 0.643559i \(0.222543\pi\)
\(912\) 0 0
\(913\) −13.6598 14.4786i −0.452074 0.479170i
\(914\) −12.5319 + 16.8333i −0.414518 + 0.556795i
\(915\) 0 0
\(916\) 22.4483 11.2739i 0.741711 0.372501i
\(917\) 2.05402 3.55767i 0.0678298 0.117485i
\(918\) 0 0
\(919\) 0.677038 + 1.17266i 0.0223334 + 0.0386826i 0.876976 0.480534i \(-0.159557\pi\)
−0.854643 + 0.519217i \(0.826224\pi\)
\(920\) 4.60480 + 3.02862i 0.151816 + 0.0998507i
\(921\) 0 0
\(922\) −3.49355 8.09896i −0.115054 0.266725i
\(923\) −8.35506 + 27.9078i −0.275010 + 0.918597i
\(924\) 0 0
\(925\) −3.72768 + 8.64174i −0.122565 + 0.284139i
\(926\) −36.2019 30.3770i −1.18967 0.998250i
\(927\) 0 0
\(928\) −21.0279 + 17.6445i −0.690274 + 0.579209i
\(929\) −7.66343 25.5976i −0.251429 0.839831i −0.986769 0.162133i \(-0.948163\pi\)
0.735340 0.677698i \(-0.237022\pi\)
\(930\) 0 0
\(931\) −0.411552 7.06607i −0.0134881 0.231581i
\(932\) −1.14011 19.5748i −0.0373454 0.641195i
\(933\) 0 0
\(934\) −30.5190 101.941i −0.998612 3.33560i
\(935\) 4.22721 3.54705i 0.138244 0.116001i
\(936\) 0 0
\(937\) −2.08507 1.74958i −0.0681162 0.0571563i 0.608094 0.793865i \(-0.291934\pi\)
−0.676210 + 0.736709i \(0.736379\pi\)
\(938\) 3.46800 8.03972i 0.113234 0.262506i
\(939\) 0 0
\(940\) 27.2596 91.0535i 0.889111 2.96984i
\(941\) −9.03193 20.9384i −0.294433 0.682571i 0.705218 0.708990i \(-0.250849\pi\)
−0.999651 + 0.0264187i \(0.991590\pi\)
\(942\) 0 0
\(943\) 1.46995 + 0.966803i 0.0478683 + 0.0314835i
\(944\) −29.8195 51.6488i −0.970541 1.68103i
\(945\) 0 0
\(946\) −12.5341 + 21.7097i −0.407520 + 0.705845i
\(947\) −14.6434 + 7.35420i −0.475847 + 0.238980i −0.670524 0.741888i \(-0.733931\pi\)
0.194677 + 0.980868i \(0.437634\pi\)
\(948\) 0 0
\(949\) −20.0844 + 26.9780i −0.651967 + 0.875743i
\(950\) 2.74717 + 2.91183i 0.0891300 + 0.0944723i
\(951\) 0 0
\(952\) 6.00099 0.701416i 0.194493 0.0227330i
\(953\) −33.5144 + 12.1982i −1.08564 + 0.395140i −0.822003 0.569483i \(-0.807143\pi\)
−0.263634 + 0.964623i \(0.584921\pi\)
\(954\) 0 0
\(955\) −53.9877 19.6499i −1.74700 0.635857i
\(956\) 45.1384 + 10.6980i 1.45988 + 0.345998i
\(957\) 0 0
\(958\) −87.4163 + 57.4946i −2.82429 + 1.85757i
\(959\) −3.89581 1.95655i −0.125802 0.0631803i
\(960\) 0 0
\(961\) 2.95410 3.13116i 0.0952935 0.101005i
\(962\) −17.2407 97.7770i −0.555863 3.15246i
\(963\) 0 0
\(964\) −20.8580 + 118.292i −0.671791 + 3.80992i
\(965\) −8.66520 11.6394i −0.278943 0.374685i
\(966\) 0 0
\(967\) −7.83011 + 1.85577i −0.251799 + 0.0596775i −0.354577 0.935027i \(-0.615375\pi\)
0.102778 + 0.994704i \(0.467227\pi\)
\(968\) 71.6368 + 8.37314i 2.30249 + 0.269123i
\(969\) 0 0
\(970\) 1.41562 24.3052i 0.0454527 0.780392i
\(971\) 44.9410 1.44223 0.721113 0.692818i \(-0.243631\pi\)
0.721113 + 0.692818i \(0.243631\pi\)
\(972\) 0 0
\(973\) 6.66731 0.213744
\(974\) −5.44208 + 93.4369i −0.174376 + 2.99391i
\(975\) 0 0
\(976\) 154.225 + 18.0263i 4.93663 + 0.577009i
\(977\) 27.0205 6.40398i 0.864463 0.204881i 0.225617 0.974216i \(-0.427560\pi\)
0.638846 + 0.769335i \(0.279412\pi\)
\(978\) 0 0
\(979\) −9.05113 12.1578i −0.289275 0.388564i
\(980\) −15.2122 + 86.2728i −0.485936 + 2.75588i
\(981\) 0 0
\(982\) −9.54176 54.1140i −0.304490 1.72685i
\(983\) −4.80513 + 5.09314i −0.153260 + 0.162446i −0.799454 0.600727i \(-0.794878\pi\)
0.646195 + 0.763173i \(0.276359\pi\)
\(984\) 0 0
\(985\) 5.48271 + 2.75352i 0.174694 + 0.0877344i
\(986\) −5.61843 + 3.69530i −0.178927 + 0.117682i
\(987\) 0 0
\(988\) −29.5623 7.00640i −0.940503 0.222903i
\(989\) −1.49485 0.544079i −0.0475333 0.0173007i
\(990\) 0 0
\(991\) 55.0238 20.0270i 1.74789 0.636179i 0.748259 0.663407i \(-0.230890\pi\)
0.999629 + 0.0272280i \(0.00866800\pi\)
\(992\) −79.2049 + 9.25772i −2.51476 + 0.293933i
\(993\) 0 0
\(994\) −4.83382 5.12355i −0.153319 0.162509i
\(995\) −14.8148 + 19.8998i −0.469662 + 0.630865i
\(996\) 0 0
\(997\) −34.4025 + 17.2776i −1.08954 + 0.547187i −0.900532 0.434789i \(-0.856823\pi\)
−0.189006 + 0.981976i \(0.560527\pi\)
\(998\) −11.0063 + 19.0635i −0.348400 + 0.603446i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 729.2.g.a.217.1 144
3.2 odd 2 729.2.g.d.217.8 144
9.2 odd 6 81.2.g.a.25.1 yes 144
9.4 even 3 729.2.g.b.703.1 144
9.5 odd 6 729.2.g.c.703.8 144
9.7 even 3 243.2.g.a.73.8 144
81.11 odd 54 6561.2.a.c.1.2 72
81.13 even 27 729.2.g.b.28.1 144
81.14 odd 54 81.2.g.a.13.1 144
81.40 even 27 inner 729.2.g.a.514.1 144
81.41 odd 54 729.2.g.d.514.8 144
81.67 even 27 243.2.g.a.10.8 144
81.68 odd 54 729.2.g.c.28.8 144
81.70 even 27 6561.2.a.d.1.71 72
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
81.2.g.a.13.1 144 81.14 odd 54
81.2.g.a.25.1 yes 144 9.2 odd 6
243.2.g.a.10.8 144 81.67 even 27
243.2.g.a.73.8 144 9.7 even 3
729.2.g.a.217.1 144 1.1 even 1 trivial
729.2.g.a.514.1 144 81.40 even 27 inner
729.2.g.b.28.1 144 81.13 even 27
729.2.g.b.703.1 144 9.4 even 3
729.2.g.c.28.8 144 81.68 odd 54
729.2.g.c.703.8 144 9.5 odd 6
729.2.g.d.217.8 144 3.2 odd 2
729.2.g.d.514.8 144 81.41 odd 54
6561.2.a.c.1.2 72 81.11 odd 54
6561.2.a.d.1.71 72 81.70 even 27