Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [729,2,Mod(28,729)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(729, base_ring=CyclotomicField(54))
chi = DirichletCharacter(H, H._module([44]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("729.28");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 729 = 3^{6} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 729.g (of order \(27\), degree \(18\), not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(5.82109430735\) |
Analytic rank: | \(0\) |
Dimension: | \(144\) |
Relative dimension: | \(8\) over \(\Q(\zeta_{27})\) |
Twist minimal: | no (minimal twist has level 81) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{27}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
28.1 | −2.23012 | + | 1.46677i | 0 | 2.02985 | − | 4.70573i | 1.24595 | − | 1.32063i | 0 | 2.56492 | + | 0.299797i | 1.44840 | + | 8.21430i | 0 | −0.841551 | + | 4.77267i | ||||||
28.2 | −1.97349 | + | 1.29799i | 0 | 1.41775 | − | 3.28671i | −1.82524 | + | 1.93464i | 0 | −4.56284 | − | 0.533319i | 0.647845 | + | 3.67411i | 0 | 1.09096 | − | 6.18715i | ||||||
28.3 | −0.890910 | + | 0.585961i | 0 | −0.341789 | + | 0.792356i | −0.585850 | + | 0.620965i | 0 | 0.284505 | + | 0.0332539i | −0.530120 | − | 3.00646i | 0 | 0.158079 | − | 0.896509i | ||||||
28.4 | −0.463223 | + | 0.304667i | 0 | −0.670406 | + | 1.55417i | 0.355980 | − | 0.377317i | 0 | −2.24586 | − | 0.262503i | −0.355511 | − | 2.01620i | 0 | −0.0499424 | + | 0.283238i | ||||||
28.5 | 0.103498 | − | 0.0680719i | 0 | −0.786081 | + | 1.82234i | −2.31283 | + | 2.45146i | 0 | 3.71541 | + | 0.434269i | 0.0857144 | + | 0.486111i | 0 | −0.0724987 | + | 0.411161i | ||||||
28.6 | 1.26928 | − | 0.834819i | 0 | 0.121992 | − | 0.282809i | −0.0546290 | + | 0.0579033i | 0 | 0.848729 | + | 0.0992022i | 0.446364 | + | 2.53145i | 0 | −0.0210007 | + | 0.119101i | ||||||
28.7 | 1.68031 | − | 1.10516i | 0 | 0.809915 | − | 1.87759i | −2.40279 | + | 2.54681i | 0 | −2.90760 | − | 0.339850i | −0.0156557 | − | 0.0887876i | 0 | −1.22281 | + | 6.93490i | ||||||
28.8 | 1.76633 | − | 1.16173i | 0 | 0.978129 | − | 2.26756i | 2.05186 | − | 2.17484i | 0 | 3.48897 | + | 0.407803i | −0.172370 | − | 0.977557i | 0 | 1.09767 | − | 6.22518i | ||||||
55.1 | −0.900807 | + | 2.08831i | 0 | −2.17708 | − | 2.30757i | −0.0341238 | − | 0.585883i | 0 | 3.70692 | + | 0.878555i | 2.50575 | − | 0.912019i | 0 | 1.25424 | + | 0.456507i | ||||||
55.2 | −0.837555 | + | 1.94167i | 0 | −1.69610 | − | 1.79777i | −0.0261173 | − | 0.448416i | 0 | −2.37407 | − | 0.562666i | 0.937080 | − | 0.341069i | 0 | 0.892552 | + | 0.324862i | ||||||
55.3 | −0.361975 | + | 0.839152i | 0 | 0.799333 | + | 0.847243i | −0.221432 | − | 3.80183i | 0 | −0.706680 | − | 0.167486i | −2.71786 | + | 0.989221i | 0 | 3.27047 | + | 1.19035i | ||||||
55.4 | −0.280212 | + | 0.649604i | 0 | 1.02902 | + | 1.09069i | 0.199739 | + | 3.42939i | 0 | 2.63236 | + | 0.623881i | −2.32646 | + | 0.846761i | 0 | −2.28372 | − | 0.831205i | ||||||
55.5 | −0.0742143 | + | 0.172048i | 0 | 1.34839 | + | 1.42921i | 0.0921050 | + | 1.58138i | 0 | −3.93765 | − | 0.933240i | −0.698107 | + | 0.254090i | 0 | −0.278909 | − | 0.101515i | ||||||
55.6 | 0.415272 | − | 0.962709i | 0 | 0.618125 | + | 0.655174i | −0.0443725 | − | 0.761846i | 0 | 2.82023 | + | 0.668406i | 2.85789 | − | 1.04019i | 0 | −0.751863 | − | 0.273656i | ||||||
55.7 | 0.677333 | − | 1.57023i | 0 | −0.634371 | − | 0.672394i | 0.0798566 | + | 1.37108i | 0 | −0.301861 | − | 0.0715423i | 1.72842 | − | 0.629095i | 0 | 2.20701 | + | 0.803287i | ||||||
55.8 | 0.971435 | − | 2.25204i | 0 | −2.75551 | − | 2.92067i | −0.232513 | − | 3.99210i | 0 | −1.28109 | − | 0.303625i | −4.64483 | + | 1.69058i | 0 | −9.21624 | − | 3.35444i | ||||||
109.1 | −1.80640 | − | 1.91467i | 0 | −0.286600 | + | 4.92073i | 1.22242 | − | 0.142880i | 0 | 3.38572 | + | 1.70037i | 5.90638 | − | 4.95604i | 0 | −2.48175 | − | 2.08243i | ||||||
109.2 | −1.38579 | − | 1.46885i | 0 | −0.120822 | + | 2.07444i | −2.74943 | + | 0.321362i | 0 | −0.546257 | − | 0.274341i | 0.120591 | − | 0.101188i | 0 | 4.28217 | + | 3.59317i | ||||||
109.3 | −1.31250 | − | 1.39117i | 0 | −0.0964037 | + | 1.65519i | 2.46793 | − | 0.288460i | 0 | −4.06877 | − | 2.04341i | −0.501084 | + | 0.420459i | 0 | −3.64045 | − | 3.05470i | ||||||
109.4 | −0.453861 | − | 0.481064i | 0 | 0.0908564 | − | 1.55994i | −2.49650 | + | 0.291799i | 0 | 3.67465 | + | 1.84548i | −1.80495 | + | 1.51453i | 0 | 1.27344 | + | 1.06854i | ||||||
See next 80 embeddings (of 144 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
81.g | even | 27 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 729.2.g.a | 144 | |
3.b | odd | 2 | 1 | 729.2.g.d | 144 | ||
9.c | even | 3 | 1 | 243.2.g.a | 144 | ||
9.c | even | 3 | 1 | 729.2.g.b | 144 | ||
9.d | odd | 6 | 1 | 81.2.g.a | ✓ | 144 | |
9.d | odd | 6 | 1 | 729.2.g.c | 144 | ||
81.g | even | 27 | 1 | 243.2.g.a | 144 | ||
81.g | even | 27 | 1 | inner | 729.2.g.a | 144 | |
81.g | even | 27 | 1 | 729.2.g.b | 144 | ||
81.g | even | 27 | 1 | 6561.2.a.d | 72 | ||
81.h | odd | 54 | 1 | 81.2.g.a | ✓ | 144 | |
81.h | odd | 54 | 1 | 729.2.g.c | 144 | ||
81.h | odd | 54 | 1 | 729.2.g.d | 144 | ||
81.h | odd | 54 | 1 | 6561.2.a.c | 72 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
81.2.g.a | ✓ | 144 | 9.d | odd | 6 | 1 | |
81.2.g.a | ✓ | 144 | 81.h | odd | 54 | 1 | |
243.2.g.a | 144 | 9.c | even | 3 | 1 | ||
243.2.g.a | 144 | 81.g | even | 27 | 1 | ||
729.2.g.a | 144 | 1.a | even | 1 | 1 | trivial | |
729.2.g.a | 144 | 81.g | even | 27 | 1 | inner | |
729.2.g.b | 144 | 9.c | even | 3 | 1 | ||
729.2.g.b | 144 | 81.g | even | 27 | 1 | ||
729.2.g.c | 144 | 9.d | odd | 6 | 1 | ||
729.2.g.c | 144 | 81.h | odd | 54 | 1 | ||
729.2.g.d | 144 | 3.b | odd | 2 | 1 | ||
729.2.g.d | 144 | 81.h | odd | 54 | 1 | ||
6561.2.a.c | 72 | 81.h | odd | 54 | 1 | ||
6561.2.a.d | 72 | 81.g | even | 27 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{144} + 9 T_{2}^{143} + 36 T_{2}^{142} + 75 T_{2}^{141} + 45 T_{2}^{140} - 306 T_{2}^{139} + \cdots + 13966276041 \) acting on \(S_{2}^{\mathrm{new}}(729, [\chi])\).