Properties

Label 728.2.i.a.701.69
Level $728$
Weight $2$
Character 728.701
Analytic conductor $5.813$
Analytic rank $0$
Dimension $84$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [728,2,Mod(701,728)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(728, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("728.701"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 728 = 2^{3} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 728.i (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.81310926715\)
Analytic rank: \(0\)
Dimension: \(84\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 701.69
Character \(\chi\) \(=\) 728.701
Dual form 728.2.i.a.701.70

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.13101 - 0.849005i) q^{2} +0.208275i q^{3} +(0.558380 - 1.92047i) q^{4} -3.52272 q^{5} +(0.176827 + 0.235562i) q^{6} -1.00000i q^{7} +(-0.998957 - 2.64615i) q^{8} +2.95662 q^{9} +(-3.98424 + 2.99081i) q^{10} -1.92616 q^{11} +(0.399987 + 0.116297i) q^{12} +(-3.39827 - 1.20488i) q^{13} +(-0.849005 - 1.13101i) q^{14} -0.733695i q^{15} +(-3.37642 - 2.14470i) q^{16} -3.54436 q^{17} +(3.34398 - 2.51019i) q^{18} -0.129878 q^{19} +(-1.96701 + 6.76528i) q^{20} +0.208275 q^{21} +(-2.17851 + 1.63532i) q^{22} -5.09962 q^{23} +(0.551127 - 0.208058i) q^{24} +7.40954 q^{25} +(-4.86644 + 1.52242i) q^{26} +1.24062i q^{27} +(-1.92047 - 0.558380i) q^{28} -6.31068i q^{29} +(-0.622911 - 0.829818i) q^{30} -1.15279i q^{31} +(-5.63964 + 0.440915i) q^{32} -0.401171i q^{33} +(-4.00871 + 3.00918i) q^{34} +3.52272i q^{35} +(1.65092 - 5.67811i) q^{36} +0.300461 q^{37} +(-0.146894 + 0.110267i) q^{38} +(0.250947 - 0.707776i) q^{39} +(3.51904 + 9.32162i) q^{40} +2.93462i q^{41} +(0.235562 - 0.176827i) q^{42} -5.57927i q^{43} +(-1.07553 + 3.69913i) q^{44} -10.4153 q^{45} +(-5.76773 + 4.32960i) q^{46} -2.30877i q^{47} +(0.446689 - 0.703226i) q^{48} -1.00000 q^{49} +(8.38028 - 6.29074i) q^{50} -0.738202i q^{51} +(-4.21147 + 5.85351i) q^{52} +11.5827i q^{53} +(1.05329 + 1.40315i) q^{54} +6.78531 q^{55} +(-2.64615 + 0.998957i) q^{56} -0.0270504i q^{57} +(-5.35780 - 7.13746i) q^{58} +7.08922 q^{59} +(-1.40904 - 0.409680i) q^{60} -6.22897i q^{61} +(-0.978728 - 1.30382i) q^{62} -2.95662i q^{63} +(-6.00417 + 5.28677i) q^{64} +(11.9712 + 4.24446i) q^{65} +(-0.340596 - 0.453729i) q^{66} +8.04110 q^{67} +(-1.97910 + 6.80684i) q^{68} -1.06212i q^{69} +(2.99081 + 3.98424i) q^{70} -16.5533i q^{71} +(-2.95354 - 7.82365i) q^{72} -11.4665i q^{73} +(0.339825 - 0.255093i) q^{74} +1.54322i q^{75} +(-0.0725211 + 0.249427i) q^{76} +1.92616i q^{77} +(-0.317082 - 1.01356i) q^{78} +14.6896 q^{79} +(11.8942 + 7.55519i) q^{80} +8.61147 q^{81} +(2.49151 + 3.31910i) q^{82} -3.76948 q^{83} +(0.116297 - 0.399987i) q^{84} +12.4858 q^{85} +(-4.73683 - 6.31022i) q^{86} +1.31436 q^{87} +(1.92415 + 5.09689i) q^{88} -0.982458i q^{89} +(-11.7799 + 8.84268i) q^{90} +(-1.20488 + 3.39827i) q^{91} +(-2.84752 + 9.79368i) q^{92} +0.240098 q^{93} +(-1.96016 - 2.61125i) q^{94} +0.457523 q^{95} +(-0.0918317 - 1.17460i) q^{96} +9.30657i q^{97} +(-1.13101 + 0.849005i) q^{98} -5.69492 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 84 q - 84 q^{9} + 8 q^{10} - 20 q^{12} - 8 q^{16} + 8 q^{17} - 12 q^{22} - 24 q^{23} + 92 q^{25} - 40 q^{30} + 44 q^{36} + 20 q^{38} - 24 q^{39} - 28 q^{40} - 72 q^{48} - 84 q^{49} - 44 q^{52} + 32 q^{55}+ \cdots - 16 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/728\mathbb{Z}\right)^\times\).

\(n\) \(183\) \(365\) \(521\) \(561\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.13101 0.849005i 0.799747 0.600337i
\(3\) 0.208275i 0.120248i 0.998191 + 0.0601239i \(0.0191496\pi\)
−0.998191 + 0.0601239i \(0.980850\pi\)
\(4\) 0.558380 1.92047i 0.279190 0.960236i
\(5\) −3.52272 −1.57541 −0.787704 0.616055i \(-0.788730\pi\)
−0.787704 + 0.616055i \(0.788730\pi\)
\(6\) 0.176827 + 0.235562i 0.0721893 + 0.0961678i
\(7\) 1.00000i 0.377964i
\(8\) −0.998957 2.64615i −0.353185 0.935554i
\(9\) 2.95662 0.985540
\(10\) −3.98424 + 2.99081i −1.25993 + 0.945776i
\(11\) −1.92616 −0.580758 −0.290379 0.956912i \(-0.593781\pi\)
−0.290379 + 0.956912i \(0.593781\pi\)
\(12\) 0.399987 + 0.116297i 0.115466 + 0.0335720i
\(13\) −3.39827 1.20488i −0.942511 0.334174i
\(14\) −0.849005 1.13101i −0.226906 0.302276i
\(15\) 0.733695i 0.189439i
\(16\) −3.37642 2.14470i −0.844106 0.536176i
\(17\) −3.54436 −0.859633 −0.429816 0.902916i \(-0.641422\pi\)
−0.429816 + 0.902916i \(0.641422\pi\)
\(18\) 3.34398 2.51019i 0.788183 0.591657i
\(19\) −0.129878 −0.0297960 −0.0148980 0.999889i \(-0.504742\pi\)
−0.0148980 + 0.999889i \(0.504742\pi\)
\(20\) −1.96701 + 6.76528i −0.439838 + 1.51276i
\(21\) 0.208275 0.0454494
\(22\) −2.17851 + 1.63532i −0.464459 + 0.348651i
\(23\) −5.09962 −1.06334 −0.531672 0.846950i \(-0.678436\pi\)
−0.531672 + 0.846950i \(0.678436\pi\)
\(24\) 0.551127 0.208058i 0.112498 0.0424697i
\(25\) 7.40954 1.48191
\(26\) −4.86644 + 1.52242i −0.954388 + 0.298570i
\(27\) 1.24062i 0.238757i
\(28\) −1.92047 0.558380i −0.362935 0.105524i
\(29\) 6.31068i 1.17186i −0.810360 0.585932i \(-0.800729\pi\)
0.810360 0.585932i \(-0.199271\pi\)
\(30\) −0.622911 0.829818i −0.113727 0.151503i
\(31\) 1.15279i 0.207048i −0.994627 0.103524i \(-0.966988\pi\)
0.994627 0.103524i \(-0.0330118\pi\)
\(32\) −5.63964 + 0.440915i −0.996958 + 0.0779435i
\(33\) 0.401171i 0.0698349i
\(34\) −4.00871 + 3.00918i −0.687489 + 0.516070i
\(35\) 3.52272i 0.595448i
\(36\) 1.65092 5.67811i 0.275153 0.946351i
\(37\) 0.300461 0.0493954 0.0246977 0.999695i \(-0.492138\pi\)
0.0246977 + 0.999695i \(0.492138\pi\)
\(38\) −0.146894 + 0.110267i −0.0238293 + 0.0178877i
\(39\) 0.250947 0.707776i 0.0401837 0.113335i
\(40\) 3.51904 + 9.32162i 0.556409 + 1.47388i
\(41\) 2.93462i 0.458311i 0.973390 + 0.229156i \(0.0735964\pi\)
−0.973390 + 0.229156i \(0.926404\pi\)
\(42\) 0.235562 0.176827i 0.0363480 0.0272850i
\(43\) 5.57927i 0.850830i −0.904998 0.425415i \(-0.860128\pi\)
0.904998 0.425415i \(-0.139872\pi\)
\(44\) −1.07553 + 3.69913i −0.162142 + 0.557665i
\(45\) −10.4153 −1.55263
\(46\) −5.76773 + 4.32960i −0.850406 + 0.638365i
\(47\) 2.30877i 0.336769i −0.985721 0.168384i \(-0.946145\pi\)
0.985721 0.168384i \(-0.0538549\pi\)
\(48\) 0.446689 0.703226i 0.0644740 0.101502i
\(49\) −1.00000 −0.142857
\(50\) 8.38028 6.29074i 1.18515 0.889645i
\(51\) 0.738202i 0.103369i
\(52\) −4.21147 + 5.85351i −0.584025 + 0.811735i
\(53\) 11.5827i 1.59101i 0.605946 + 0.795506i \(0.292795\pi\)
−0.605946 + 0.795506i \(0.707205\pi\)
\(54\) 1.05329 + 1.40315i 0.143335 + 0.190945i
\(55\) 6.78531 0.914930
\(56\) −2.64615 + 0.998957i −0.353606 + 0.133491i
\(57\) 0.0270504i 0.00358291i
\(58\) −5.35780 7.13746i −0.703514 0.937195i
\(59\) 7.08922 0.922938 0.461469 0.887156i \(-0.347323\pi\)
0.461469 + 0.887156i \(0.347323\pi\)
\(60\) −1.40904 0.409680i −0.181906 0.0528895i
\(61\) 6.22897i 0.797538i −0.917051 0.398769i \(-0.869438\pi\)
0.917051 0.398769i \(-0.130562\pi\)
\(62\) −0.978728 1.30382i −0.124299 0.165586i
\(63\) 2.95662i 0.372499i
\(64\) −6.00417 + 5.28677i −0.750521 + 0.660846i
\(65\) 11.9712 + 4.24446i 1.48484 + 0.526460i
\(66\) −0.340596 0.453729i −0.0419245 0.0558502i
\(67\) 8.04110 0.982376 0.491188 0.871053i \(-0.336563\pi\)
0.491188 + 0.871053i \(0.336563\pi\)
\(68\) −1.97910 + 6.80684i −0.240001 + 0.825450i
\(69\) 1.06212i 0.127865i
\(70\) 2.99081 + 3.98424i 0.357470 + 0.476208i
\(71\) 16.5533i 1.96452i −0.187535 0.982258i \(-0.560050\pi\)
0.187535 0.982258i \(-0.439950\pi\)
\(72\) −2.95354 7.82365i −0.348078 0.922026i
\(73\) 11.4665i 1.34205i −0.741436 0.671024i \(-0.765855\pi\)
0.741436 0.671024i \(-0.234145\pi\)
\(74\) 0.339825 0.255093i 0.0395038 0.0296539i
\(75\) 1.54322i 0.178196i
\(76\) −0.0725211 + 0.249427i −0.00831875 + 0.0286112i
\(77\) 1.92616i 0.219506i
\(78\) −0.317082 1.01356i −0.0359024 0.114763i
\(79\) 14.6896 1.65271 0.826357 0.563147i \(-0.190409\pi\)
0.826357 + 0.563147i \(0.190409\pi\)
\(80\) 11.8942 + 7.55519i 1.32981 + 0.844696i
\(81\) 8.61147 0.956830
\(82\) 2.49151 + 3.31910i 0.275141 + 0.366533i
\(83\) −3.76948 −0.413754 −0.206877 0.978367i \(-0.566330\pi\)
−0.206877 + 0.978367i \(0.566330\pi\)
\(84\) 0.116297 0.399987i 0.0126890 0.0436421i
\(85\) 12.4858 1.35427
\(86\) −4.73683 6.31022i −0.510785 0.680449i
\(87\) 1.31436 0.140914
\(88\) 1.92415 + 5.09689i 0.205115 + 0.543330i
\(89\) 0.982458i 0.104140i −0.998643 0.0520702i \(-0.983418\pi\)
0.998643 0.0520702i \(-0.0165820\pi\)
\(90\) −11.7799 + 8.84268i −1.24171 + 0.932100i
\(91\) −1.20488 + 3.39827i −0.126306 + 0.356236i
\(92\) −2.84752 + 9.79368i −0.296875 + 1.02106i
\(93\) 0.240098 0.0248970
\(94\) −1.96016 2.61125i −0.202175 0.269330i
\(95\) 0.457523 0.0469409
\(96\) −0.0918317 1.17460i −0.00937253 0.119882i
\(97\) 9.30657i 0.944939i 0.881347 + 0.472469i \(0.156637\pi\)
−0.881347 + 0.472469i \(0.843363\pi\)
\(98\) −1.13101 + 0.849005i −0.114250 + 0.0857625i
\(99\) −5.69492 −0.572361
\(100\) 4.13733 14.2298i 0.413733 1.42298i
\(101\) 9.15160i 0.910618i 0.890333 + 0.455309i \(0.150471\pi\)
−0.890333 + 0.455309i \(0.849529\pi\)
\(102\) −0.626738 0.834916i −0.0620563 0.0826690i
\(103\) 5.49996 0.541927 0.270964 0.962590i \(-0.412658\pi\)
0.270964 + 0.962590i \(0.412658\pi\)
\(104\) 0.206437 + 10.1959i 0.0202429 + 0.999795i
\(105\) −0.733695 −0.0716013
\(106\) 9.83381 + 13.1002i 0.955144 + 1.27241i
\(107\) 6.53885i 0.632134i −0.948737 0.316067i \(-0.897637\pi\)
0.948737 0.316067i \(-0.102363\pi\)
\(108\) 2.38257 + 0.692735i 0.229263 + 0.0666585i
\(109\) 12.0875 1.15778 0.578888 0.815407i \(-0.303487\pi\)
0.578888 + 0.815407i \(0.303487\pi\)
\(110\) 7.67427 5.76076i 0.731713 0.549267i
\(111\) 0.0625785i 0.00593969i
\(112\) −2.14470 + 3.37642i −0.202656 + 0.319042i
\(113\) −4.68304 −0.440543 −0.220272 0.975439i \(-0.570694\pi\)
−0.220272 + 0.975439i \(0.570694\pi\)
\(114\) −0.0229659 0.0305943i −0.00215095 0.00286542i
\(115\) 17.9645 1.67520
\(116\) −12.1195 3.52376i −1.12527 0.327172i
\(117\) −10.0474 3.56238i −0.928883 0.329342i
\(118\) 8.01800 6.01879i 0.738117 0.554074i
\(119\) 3.54436i 0.324911i
\(120\) −1.94146 + 0.732929i −0.177231 + 0.0669070i
\(121\) −7.28992 −0.662720
\(122\) −5.28843 7.04504i −0.478792 0.637828i
\(123\) −0.611209 −0.0551109
\(124\) −2.21391 0.643696i −0.198815 0.0578056i
\(125\) −8.48812 −0.759200
\(126\) −2.51019 3.34398i −0.223625 0.297905i
\(127\) −14.7640 −1.31009 −0.655045 0.755590i \(-0.727350\pi\)
−0.655045 + 0.755590i \(0.727350\pi\)
\(128\) −2.30230 + 11.0770i −0.203496 + 0.979076i
\(129\) 1.16202 0.102310
\(130\) 17.1431 5.36304i 1.50355 0.470370i
\(131\) 15.8504i 1.38486i −0.721487 0.692428i \(-0.756541\pi\)
0.721487 0.692428i \(-0.243459\pi\)
\(132\) −0.770437 0.224006i −0.0670580 0.0194972i
\(133\) 0.129878i 0.0112618i
\(134\) 9.09458 6.82694i 0.785652 0.589757i
\(135\) 4.37034i 0.376139i
\(136\) 3.54066 + 9.37888i 0.303609 + 0.804233i
\(137\) 8.39453i 0.717193i 0.933493 + 0.358596i \(0.116745\pi\)
−0.933493 + 0.358596i \(0.883255\pi\)
\(138\) −0.901750 1.20128i −0.0767620 0.102259i
\(139\) 13.5249i 1.14716i −0.819149 0.573581i \(-0.805554\pi\)
0.819149 0.573581i \(-0.194446\pi\)
\(140\) 6.76528 + 1.96701i 0.571770 + 0.166243i
\(141\) 0.480859 0.0404957
\(142\) −14.0538 18.7220i −1.17937 1.57112i
\(143\) 6.54561 + 2.32079i 0.547371 + 0.194074i
\(144\) −9.98281 6.34108i −0.831901 0.528423i
\(145\) 22.2307i 1.84616i
\(146\) −9.73509 12.9687i −0.805681 1.07330i
\(147\) 0.208275i 0.0171783i
\(148\) 0.167771 0.577026i 0.0137907 0.0474312i
\(149\) −19.3528 −1.58545 −0.792723 0.609582i \(-0.791337\pi\)
−0.792723 + 0.609582i \(0.791337\pi\)
\(150\) 1.31021 + 1.74541i 0.106978 + 0.142512i
\(151\) 5.55900i 0.452385i 0.974083 + 0.226193i \(0.0726279\pi\)
−0.974083 + 0.226193i \(0.927372\pi\)
\(152\) 0.129742 + 0.343676i 0.0105235 + 0.0278758i
\(153\) −10.4793 −0.847203
\(154\) 1.63532 + 2.17851i 0.131778 + 0.175549i
\(155\) 4.06096i 0.326184i
\(156\) −1.21914 0.877144i −0.0976094 0.0702278i
\(157\) 16.1401i 1.28812i 0.764974 + 0.644061i \(0.222752\pi\)
−0.764974 + 0.644061i \(0.777248\pi\)
\(158\) 16.6142 12.4716i 1.32175 0.992186i
\(159\) −2.41240 −0.191316
\(160\) 19.8669 1.55322i 1.57061 0.122793i
\(161\) 5.09962i 0.401906i
\(162\) 9.73969 7.31119i 0.765222 0.574421i
\(163\) 3.76604 0.294979 0.147490 0.989064i \(-0.452881\pi\)
0.147490 + 0.989064i \(0.452881\pi\)
\(164\) 5.63586 + 1.63863i 0.440087 + 0.127956i
\(165\) 1.41321i 0.110018i
\(166\) −4.26333 + 3.20031i −0.330899 + 0.248392i
\(167\) 23.2916i 1.80236i −0.433449 0.901178i \(-0.642704\pi\)
0.433449 0.901178i \(-0.357296\pi\)
\(168\) −0.208058 0.551127i −0.0160520 0.0425203i
\(169\) 10.0965 + 8.18903i 0.776656 + 0.629925i
\(170\) 14.1216 10.6005i 1.08307 0.813020i
\(171\) −0.384000 −0.0293652
\(172\) −10.7148 3.11535i −0.816998 0.237543i
\(173\) 19.8402i 1.50842i 0.656633 + 0.754210i \(0.271980\pi\)
−0.656633 + 0.754210i \(0.728020\pi\)
\(174\) 1.48656 1.11590i 0.112696 0.0845960i
\(175\) 7.40954i 0.560108i
\(176\) 6.50352 + 4.13104i 0.490222 + 0.311389i
\(177\) 1.47651i 0.110981i
\(178\) −0.834112 1.11117i −0.0625194 0.0832859i
\(179\) 0.396420i 0.0296298i −0.999890 0.0148149i \(-0.995284\pi\)
0.999890 0.0148149i \(-0.00471591\pi\)
\(180\) −5.81571 + 20.0024i −0.433478 + 1.49089i
\(181\) 21.0449i 1.56425i −0.623121 0.782126i \(-0.714135\pi\)
0.623121 0.782126i \(-0.285865\pi\)
\(182\) 1.52242 + 4.86644i 0.112849 + 0.360725i
\(183\) 1.29734 0.0959022
\(184\) 5.09430 + 13.4943i 0.375557 + 0.994816i
\(185\) −1.05844 −0.0778179
\(186\) 0.271554 0.203845i 0.0199113 0.0149466i
\(187\) 6.82699 0.499239
\(188\) −4.43393 1.28917i −0.323377 0.0940223i
\(189\) 1.24062 0.0902416
\(190\) 0.517464 0.388440i 0.0375408 0.0281804i
\(191\) 5.37919 0.389225 0.194612 0.980880i \(-0.437655\pi\)
0.194612 + 0.980880i \(0.437655\pi\)
\(192\) −1.10110 1.25052i −0.0794653 0.0902485i
\(193\) 23.0841i 1.66163i 0.556548 + 0.830816i \(0.312126\pi\)
−0.556548 + 0.830816i \(0.687874\pi\)
\(194\) 7.90133 + 10.5258i 0.567282 + 0.755712i
\(195\) −0.884015 + 2.49330i −0.0633056 + 0.178549i
\(196\) −0.558380 + 1.92047i −0.0398843 + 0.137177i
\(197\) −8.31831 −0.592655 −0.296328 0.955086i \(-0.595762\pi\)
−0.296328 + 0.955086i \(0.595762\pi\)
\(198\) −6.44102 + 4.83502i −0.457744 + 0.343610i
\(199\) −18.8463 −1.33598 −0.667989 0.744171i \(-0.732845\pi\)
−0.667989 + 0.744171i \(0.732845\pi\)
\(200\) −7.40181 19.6067i −0.523387 1.38640i
\(201\) 1.67476i 0.118129i
\(202\) 7.76976 + 10.3506i 0.546678 + 0.728264i
\(203\) −6.31068 −0.442923
\(204\) −1.41770 0.412197i −0.0992586 0.0288596i
\(205\) 10.3378i 0.722026i
\(206\) 6.22053 4.66950i 0.433405 0.325339i
\(207\) −15.0776 −1.04797
\(208\) 8.88990 + 11.3565i 0.616404 + 0.787430i
\(209\) 0.250165 0.0173043
\(210\) −0.829818 + 0.622911i −0.0572629 + 0.0429849i
\(211\) 19.4654i 1.34005i −0.742337 0.670027i \(-0.766283\pi\)
0.742337 0.670027i \(-0.233717\pi\)
\(212\) 22.2443 + 6.46757i 1.52775 + 0.444194i
\(213\) 3.44764 0.236229
\(214\) −5.55152 7.39552i −0.379494 0.505548i
\(215\) 19.6542i 1.34040i
\(216\) 3.28285 1.23932i 0.223370 0.0843252i
\(217\) −1.15279 −0.0782567
\(218\) 13.6712 10.2624i 0.925928 0.695057i
\(219\) 2.38818 0.161378
\(220\) 3.78878 13.0310i 0.255439 0.878549i
\(221\) 12.0447 + 4.27053i 0.810214 + 0.287267i
\(222\) 0.0531295 + 0.0707771i 0.00356582 + 0.00475025i
\(223\) 17.6477i 1.18178i −0.806753 0.590889i \(-0.798777\pi\)
0.806753 0.590889i \(-0.201223\pi\)
\(224\) 0.440915 + 5.63964i 0.0294599 + 0.376815i
\(225\) 21.9072 1.46048
\(226\) −5.29658 + 3.97593i −0.352323 + 0.264475i
\(227\) 18.0842 1.20029 0.600144 0.799892i \(-0.295110\pi\)
0.600144 + 0.799892i \(0.295110\pi\)
\(228\) −0.0519494 0.0151044i −0.00344044 0.00100031i
\(229\) 4.25750 0.281343 0.140672 0.990056i \(-0.455074\pi\)
0.140672 + 0.990056i \(0.455074\pi\)
\(230\) 20.3181 15.2520i 1.33974 1.00569i
\(231\) −0.401171 −0.0263951
\(232\) −16.6990 + 6.30410i −1.09634 + 0.413884i
\(233\) −12.0468 −0.789210 −0.394605 0.918851i \(-0.629119\pi\)
−0.394605 + 0.918851i \(0.629119\pi\)
\(234\) −14.3882 + 4.50121i −0.940588 + 0.294253i
\(235\) 8.13314i 0.530547i
\(236\) 3.95848 13.6147i 0.257675 0.886238i
\(237\) 3.05949i 0.198735i
\(238\) 3.00918 + 4.00871i 0.195056 + 0.259846i
\(239\) 1.26186i 0.0816230i −0.999167 0.0408115i \(-0.987006\pi\)
0.999167 0.0408115i \(-0.0129943\pi\)
\(240\) −1.57356 + 2.47727i −0.101573 + 0.159907i
\(241\) 16.9944i 1.09471i −0.836902 0.547353i \(-0.815636\pi\)
0.836902 0.547353i \(-0.184364\pi\)
\(242\) −8.24499 + 6.18918i −0.530008 + 0.397856i
\(243\) 5.51541i 0.353814i
\(244\) −11.9626 3.47813i −0.765825 0.222664i
\(245\) 3.52272 0.225058
\(246\) −0.691286 + 0.518920i −0.0440748 + 0.0330851i
\(247\) 0.441360 + 0.156487i 0.0280831 + 0.00995705i
\(248\) −3.05046 + 1.15159i −0.193704 + 0.0731261i
\(249\) 0.785089i 0.0497530i
\(250\) −9.60017 + 7.20646i −0.607168 + 0.455776i
\(251\) 16.4332i 1.03725i 0.855001 + 0.518626i \(0.173556\pi\)
−0.855001 + 0.518626i \(0.826444\pi\)
\(252\) −5.67811 1.65092i −0.357687 0.103998i
\(253\) 9.82267 0.617546
\(254\) −16.6982 + 12.5347i −1.04774 + 0.786496i
\(255\) 2.60048i 0.162848i
\(256\) 6.80049 + 14.4829i 0.425030 + 0.905179i
\(257\) −18.6782 −1.16511 −0.582557 0.812790i \(-0.697948\pi\)
−0.582557 + 0.812790i \(0.697948\pi\)
\(258\) 1.31426 0.986564i 0.0818225 0.0614208i
\(259\) 0.300461i 0.0186697i
\(260\) 14.8358 20.6203i 0.920078 1.27881i
\(261\) 18.6583i 1.15492i
\(262\) −13.4571 17.9270i −0.831380 1.10753i
\(263\) −0.495204 −0.0305356 −0.0152678 0.999883i \(-0.504860\pi\)
−0.0152678 + 0.999883i \(0.504860\pi\)
\(264\) −1.06156 + 0.400752i −0.0653343 + 0.0246646i
\(265\) 40.8027i 2.50649i
\(266\) 0.110267 + 0.146894i 0.00676090 + 0.00900662i
\(267\) 0.204622 0.0125226
\(268\) 4.48998 15.4427i 0.274269 0.943313i
\(269\) 10.0263i 0.611314i 0.952142 + 0.305657i \(0.0988760\pi\)
−0.952142 + 0.305657i \(0.901124\pi\)
\(270\) −3.71045 4.94291i −0.225810 0.300816i
\(271\) 19.8983i 1.20874i 0.796705 + 0.604369i \(0.206575\pi\)
−0.796705 + 0.604369i \(0.793425\pi\)
\(272\) 11.9673 + 7.60160i 0.725621 + 0.460915i
\(273\) −0.707776 0.250947i −0.0428366 0.0151880i
\(274\) 7.12700 + 9.49432i 0.430558 + 0.573573i
\(275\) −14.2719 −0.860630
\(276\) −2.03978 0.593069i −0.122780 0.0356985i
\(277\) 29.0585i 1.74596i −0.487759 0.872978i \(-0.662186\pi\)
0.487759 0.872978i \(-0.337814\pi\)
\(278\) −11.4827 15.2968i −0.688685 0.917440i
\(279\) 3.40837i 0.204054i
\(280\) 9.32162 3.51904i 0.557073 0.210303i
\(281\) 14.5021i 0.865120i −0.901605 0.432560i \(-0.857610\pi\)
0.901605 0.432560i \(-0.142390\pi\)
\(282\) 0.543858 0.408252i 0.0323863 0.0243111i
\(283\) 5.54760i 0.329771i 0.986313 + 0.164885i \(0.0527254\pi\)
−0.986313 + 0.164885i \(0.947275\pi\)
\(284\) −31.7902 9.24303i −1.88640 0.548473i
\(285\) 0.0952907i 0.00564454i
\(286\) 9.37353 2.93241i 0.554268 0.173397i
\(287\) 2.93462 0.173225
\(288\) −16.6743 + 1.30362i −0.982542 + 0.0768164i
\(289\) −4.43753 −0.261031
\(290\) 18.8740 + 25.1433i 1.10832 + 1.47646i
\(291\) −1.93833 −0.113627
\(292\) −22.0210 6.40264i −1.28868 0.374686i
\(293\) 24.7162 1.44393 0.721967 0.691928i \(-0.243238\pi\)
0.721967 + 0.691928i \(0.243238\pi\)
\(294\) −0.176827 0.235562i −0.0103128 0.0137383i
\(295\) −24.9733 −1.45400
\(296\) −0.300147 0.795062i −0.0174457 0.0462121i
\(297\) 2.38962i 0.138660i
\(298\) −21.8883 + 16.4307i −1.26796 + 0.951803i
\(299\) 17.3299 + 6.14444i 1.00221 + 0.355342i
\(300\) 2.96372 + 0.861704i 0.171110 + 0.0497505i
\(301\) −5.57927 −0.321584
\(302\) 4.71963 + 6.28731i 0.271584 + 0.361794i
\(303\) −1.90605 −0.109500
\(304\) 0.438523 + 0.278550i 0.0251510 + 0.0159759i
\(305\) 21.9429i 1.25645i
\(306\) −11.8522 + 8.89700i −0.677548 + 0.508608i
\(307\) −14.9768 −0.854770 −0.427385 0.904070i \(-0.640565\pi\)
−0.427385 + 0.904070i \(0.640565\pi\)
\(308\) 3.69913 + 1.07553i 0.210777 + 0.0612838i
\(309\) 1.14551i 0.0651656i
\(310\) 3.44778 + 4.59300i 0.195821 + 0.260865i
\(311\) −22.2304 −1.26057 −0.630284 0.776365i \(-0.717061\pi\)
−0.630284 + 0.776365i \(0.717061\pi\)
\(312\) −2.12356 + 0.0429958i −0.120223 + 0.00243416i
\(313\) 8.34646 0.471770 0.235885 0.971781i \(-0.424201\pi\)
0.235885 + 0.971781i \(0.424201\pi\)
\(314\) 13.7030 + 18.2547i 0.773308 + 1.03017i
\(315\) 10.4153i 0.586838i
\(316\) 8.20239 28.2110i 0.461421 1.58700i
\(317\) −19.6311 −1.10260 −0.551298 0.834309i \(-0.685867\pi\)
−0.551298 + 0.834309i \(0.685867\pi\)
\(318\) −2.72845 + 2.04814i −0.153004 + 0.114854i
\(319\) 12.1554i 0.680570i
\(320\) 21.1510 18.6238i 1.18238 1.04110i
\(321\) 1.36188 0.0760128
\(322\) 4.32960 + 5.76773i 0.241279 + 0.321423i
\(323\) 0.460334 0.0256136
\(324\) 4.80847 16.5381i 0.267137 0.918783i
\(325\) −25.1796 8.92761i −1.39671 0.495215i
\(326\) 4.25944 3.19739i 0.235909 0.177087i
\(327\) 2.51754i 0.139220i
\(328\) 7.76544 2.93156i 0.428775 0.161868i
\(329\) −2.30877 −0.127287
\(330\) 1.19982 + 1.59836i 0.0660482 + 0.0879868i
\(331\) 33.6438 1.84923 0.924616 0.380900i \(-0.124386\pi\)
0.924616 + 0.380900i \(0.124386\pi\)
\(332\) −2.10480 + 7.23918i −0.115516 + 0.397302i
\(333\) 0.888348 0.0486812
\(334\) −19.7747 26.3431i −1.08202 1.44143i
\(335\) −28.3265 −1.54764
\(336\) −0.703226 0.446689i −0.0383641 0.0243689i
\(337\) 0.0143341 0.000780827 0.000390413 1.00000i \(-0.499876\pi\)
0.000390413 1.00000i \(0.499876\pi\)
\(338\) 18.3718 + 0.689894i 0.999296 + 0.0375253i
\(339\) 0.975362i 0.0529744i
\(340\) 6.97180 23.9786i 0.378099 1.30042i
\(341\) 2.22046i 0.120245i
\(342\) −0.434309 + 0.326018i −0.0234847 + 0.0176290i
\(343\) 1.00000i 0.0539949i
\(344\) −14.7636 + 5.57345i −0.795998 + 0.300500i
\(345\) 3.74157i 0.201439i
\(346\) 16.8444 + 22.4395i 0.905561 + 1.20635i
\(347\) 3.13277i 0.168176i 0.996458 + 0.0840880i \(0.0267977\pi\)
−0.996458 + 0.0840880i \(0.973202\pi\)
\(348\) 0.733911 2.52419i 0.0393418 0.135311i
\(349\) −1.24421 −0.0666011 −0.0333006 0.999445i \(-0.510602\pi\)
−0.0333006 + 0.999445i \(0.510602\pi\)
\(350\) −6.29074 8.38028i −0.336254 0.447945i
\(351\) 1.49480 4.21596i 0.0797863 0.225031i
\(352\) 10.8628 0.849271i 0.578991 0.0452663i
\(353\) 7.40604i 0.394184i 0.980385 + 0.197092i \(0.0631497\pi\)
−0.980385 + 0.197092i \(0.936850\pi\)
\(354\) 1.25356 + 1.66995i 0.0666262 + 0.0887569i
\(355\) 58.3126i 3.09491i
\(356\) −1.88678 0.548585i −0.0999993 0.0290749i
\(357\) −0.738202 −0.0390698
\(358\) −0.336563 0.448356i −0.0177879 0.0236964i
\(359\) 36.1561i 1.90824i 0.299418 + 0.954122i \(0.403208\pi\)
−0.299418 + 0.954122i \(0.596792\pi\)
\(360\) 10.4045 + 27.5605i 0.548364 + 1.45257i
\(361\) −18.9831 −0.999112
\(362\) −17.8672 23.8020i −0.939079 1.25101i
\(363\) 1.51831i 0.0796906i
\(364\) 5.85351 + 4.21147i 0.306807 + 0.220741i
\(365\) 40.3931i 2.11427i
\(366\) 1.46731 1.10145i 0.0766974 0.0575737i
\(367\) 8.10201 0.422922 0.211461 0.977386i \(-0.432178\pi\)
0.211461 + 0.977386i \(0.432178\pi\)
\(368\) 17.2185 + 10.9372i 0.897575 + 0.570140i
\(369\) 8.67657i 0.451684i
\(370\) −1.19711 + 0.898619i −0.0622346 + 0.0467170i
\(371\) 11.5827 0.601346
\(372\) 0.134066 0.461102i 0.00695100 0.0239070i
\(373\) 7.73552i 0.400530i 0.979742 + 0.200265i \(0.0641803\pi\)
−0.979742 + 0.200265i \(0.935820\pi\)
\(374\) 7.72141 5.79615i 0.399265 0.299712i
\(375\) 1.76787i 0.0912922i
\(376\) −6.10934 + 2.30636i −0.315065 + 0.118941i
\(377\) −7.60362 + 21.4454i −0.391606 + 1.10450i
\(378\) 1.40315 1.05329i 0.0721704 0.0541754i
\(379\) −32.4599 −1.66735 −0.833675 0.552255i \(-0.813768\pi\)
−0.833675 + 0.552255i \(0.813768\pi\)
\(380\) 0.255471 0.878660i 0.0131054 0.0450743i
\(381\) 3.07497i 0.157535i
\(382\) 6.08394 4.56696i 0.311281 0.233666i
\(383\) 35.7865i 1.82860i −0.405032 0.914302i \(-0.632740\pi\)
0.405032 0.914302i \(-0.367260\pi\)
\(384\) −2.30706 0.479512i −0.117732 0.0244700i
\(385\) 6.78531i 0.345811i
\(386\) 19.5985 + 26.1084i 0.997540 + 1.32888i
\(387\) 16.4958i 0.838528i
\(388\) 17.8730 + 5.19660i 0.907364 + 0.263817i
\(389\) 6.32180i 0.320528i 0.987074 + 0.160264i \(0.0512345\pi\)
−0.987074 + 0.160264i \(0.948765\pi\)
\(390\) 1.11699 + 3.57048i 0.0565610 + 0.180798i
\(391\) 18.0749 0.914086
\(392\) 0.998957 + 2.64615i 0.0504549 + 0.133651i
\(393\) 3.30124 0.166526
\(394\) −9.40812 + 7.06229i −0.473974 + 0.355793i
\(395\) −51.7474 −2.60370
\(396\) −3.17992 + 10.9369i −0.159797 + 0.549601i
\(397\) 10.2742 0.515649 0.257824 0.966192i \(-0.416994\pi\)
0.257824 + 0.966192i \(0.416994\pi\)
\(398\) −21.3154 + 16.0006i −1.06844 + 0.802038i
\(399\) −0.0270504 −0.00135421
\(400\) −25.0177 15.8913i −1.25089 0.794563i
\(401\) 1.79881i 0.0898285i 0.998991 + 0.0449142i \(0.0143015\pi\)
−0.998991 + 0.0449142i \(0.985699\pi\)
\(402\) 1.42188 + 1.89418i 0.0709170 + 0.0944730i
\(403\) −1.38898 + 3.91751i −0.0691899 + 0.195145i
\(404\) 17.5754 + 5.11007i 0.874408 + 0.254235i
\(405\) −30.3358 −1.50740
\(406\) −7.13746 + 5.35780i −0.354226 + 0.265903i
\(407\) −0.578734 −0.0286868
\(408\) −1.95339 + 0.737432i −0.0967072 + 0.0365083i
\(409\) 21.9102i 1.08339i −0.840575 0.541696i \(-0.817783\pi\)
0.840575 0.541696i \(-0.182217\pi\)
\(410\) −8.77689 11.6922i −0.433460 0.577438i
\(411\) −1.74837 −0.0862409
\(412\) 3.07107 10.5625i 0.151301 0.520378i
\(413\) 7.08922i 0.348838i
\(414\) −17.0530 + 12.8010i −0.838110 + 0.629135i
\(415\) 13.2788 0.651831
\(416\) 19.6963 + 5.29675i 0.965691 + 0.259695i
\(417\) 2.81689 0.137944
\(418\) 0.282940 0.212392i 0.0138390 0.0103884i
\(419\) 18.8887i 0.922773i 0.887199 + 0.461386i \(0.152648\pi\)
−0.887199 + 0.461386i \(0.847352\pi\)
\(420\) −0.409680 + 1.40904i −0.0199903 + 0.0687541i
\(421\) −6.34070 −0.309027 −0.154513 0.987991i \(-0.549381\pi\)
−0.154513 + 0.987991i \(0.549381\pi\)
\(422\) −16.5262 22.0156i −0.804484 1.07170i
\(423\) 6.82615i 0.331899i
\(424\) 30.6496 11.5707i 1.48848 0.561921i
\(425\) −26.2620 −1.27390
\(426\) 3.89933 2.92707i 0.188923 0.141817i
\(427\) −6.22897 −0.301441
\(428\) −12.5577 3.65116i −0.606998 0.176485i
\(429\) −0.483363 + 1.36329i −0.0233370 + 0.0658202i
\(430\) 16.6865 + 22.2291i 0.804695 + 1.07198i
\(431\) 27.2674i 1.31342i 0.754141 + 0.656712i \(0.228053\pi\)
−0.754141 + 0.656712i \(0.771947\pi\)
\(432\) 2.66076 4.18885i 0.128016 0.201536i
\(433\) 17.8959 0.860023 0.430012 0.902823i \(-0.358509\pi\)
0.430012 + 0.902823i \(0.358509\pi\)
\(434\) −1.30382 + 0.978728i −0.0625855 + 0.0469804i
\(435\) −4.63012 −0.221997
\(436\) 6.74944 23.2138i 0.323239 1.11174i
\(437\) 0.662328 0.0316834
\(438\) 2.70106 2.02758i 0.129062 0.0968814i
\(439\) 16.4464 0.784944 0.392472 0.919764i \(-0.371620\pi\)
0.392472 + 0.919764i \(0.371620\pi\)
\(440\) −6.77823 17.9549i −0.323139 0.855967i
\(441\) −2.95662 −0.140791
\(442\) 17.2484 5.39599i 0.820423 0.256661i
\(443\) 21.4873i 1.02089i −0.859910 0.510446i \(-0.829480\pi\)
0.859910 0.510446i \(-0.170520\pi\)
\(444\) 0.120180 + 0.0349426i 0.00570350 + 0.00165830i
\(445\) 3.46092i 0.164063i
\(446\) −14.9830 19.9598i −0.709466 0.945123i
\(447\) 4.03072i 0.190646i
\(448\) 5.28677 + 6.00417i 0.249776 + 0.283670i
\(449\) 11.6297i 0.548840i −0.961610 0.274420i \(-0.911514\pi\)
0.961610 0.274420i \(-0.0884858\pi\)
\(450\) 24.7773 18.5993i 1.16801 0.876781i
\(451\) 5.65254i 0.266168i
\(452\) −2.61491 + 8.99365i −0.122995 + 0.423026i
\(453\) −1.15780 −0.0543983
\(454\) 20.4534 15.3536i 0.959926 0.720578i
\(455\) 4.24446 11.9712i 0.198983 0.561216i
\(456\) −0.0715792 + 0.0270221i −0.00335200 + 0.00126543i
\(457\) 20.1702i 0.943524i −0.881726 0.471762i \(-0.843618\pi\)
0.881726 0.471762i \(-0.156382\pi\)
\(458\) 4.81529 3.61464i 0.225004 0.168901i
\(459\) 4.39719i 0.205243i
\(460\) 10.0310 34.5004i 0.467699 1.60859i
\(461\) 15.3054 0.712845 0.356423 0.934325i \(-0.383996\pi\)
0.356423 + 0.934325i \(0.383996\pi\)
\(462\) −0.453729 + 0.340596i −0.0211094 + 0.0158460i
\(463\) 22.3957i 1.04082i 0.853917 + 0.520409i \(0.174220\pi\)
−0.853917 + 0.520409i \(0.825780\pi\)
\(464\) −13.5345 + 21.3075i −0.628326 + 0.989178i
\(465\) −0.845798 −0.0392230
\(466\) −13.6250 + 10.2278i −0.631168 + 0.473792i
\(467\) 10.1198i 0.468287i −0.972202 0.234143i \(-0.924771\pi\)
0.972202 0.234143i \(-0.0752285\pi\)
\(468\) −12.4517 + 17.3066i −0.575581 + 0.799998i
\(469\) 8.04110i 0.371303i
\(470\) 6.90508 + 9.19868i 0.318508 + 0.424304i
\(471\) −3.36159 −0.154894
\(472\) −7.08183 18.7591i −0.325967 0.863458i
\(473\) 10.7465i 0.494127i
\(474\) 2.59752 + 3.46032i 0.119308 + 0.158938i
\(475\) −0.962335 −0.0441550
\(476\) 6.80684 + 1.97910i 0.311991 + 0.0907117i
\(477\) 34.2458i 1.56801i
\(478\) −1.07133 1.42718i −0.0490013 0.0652777i
\(479\) 20.1092i 0.918811i −0.888227 0.459405i \(-0.848062\pi\)
0.888227 0.459405i \(-0.151938\pi\)
\(480\) 0.323497 + 4.13778i 0.0147655 + 0.188863i
\(481\) −1.02105 0.362019i −0.0465557 0.0165067i
\(482\) −14.4283 19.2209i −0.657193 0.875488i
\(483\) −1.06212 −0.0483284
\(484\) −4.07054 + 14.0001i −0.185025 + 0.636368i
\(485\) 32.7844i 1.48866i
\(486\) 4.68261 + 6.23800i 0.212408 + 0.282961i
\(487\) 14.2922i 0.647643i 0.946118 + 0.323822i \(0.104968\pi\)
−0.946118 + 0.323822i \(0.895032\pi\)
\(488\) −16.4828 + 6.22247i −0.746139 + 0.281678i
\(489\) 0.784373i 0.0354706i
\(490\) 3.98424 2.99081i 0.179990 0.135111i
\(491\) 20.8674i 0.941734i −0.882204 0.470867i \(-0.843941\pi\)
0.882204 0.470867i \(-0.156059\pi\)
\(492\) −0.341287 + 1.17381i −0.0153864 + 0.0529195i
\(493\) 22.3673i 1.00737i
\(494\) 0.632043 0.197728i 0.0284370 0.00889621i
\(495\) 20.0616 0.901701
\(496\) −2.47240 + 3.89232i −0.111014 + 0.174770i
\(497\) −16.5533 −0.742517
\(498\) −0.666545 0.887946i −0.0298686 0.0397898i
\(499\) −19.1219 −0.856016 −0.428008 0.903775i \(-0.640784\pi\)
−0.428008 + 0.903775i \(0.640784\pi\)
\(500\) −4.73959 + 16.3012i −0.211961 + 0.729011i
\(501\) 4.85106 0.216729
\(502\) 13.9518 + 18.5861i 0.622701 + 0.829538i
\(503\) 27.5342 1.22769 0.613844 0.789427i \(-0.289622\pi\)
0.613844 + 0.789427i \(0.289622\pi\)
\(504\) −7.82365 + 2.95354i −0.348493 + 0.131561i
\(505\) 32.2385i 1.43459i
\(506\) 11.1096 8.33950i 0.493880 0.370736i
\(507\) −1.70557 + 2.10286i −0.0757471 + 0.0933911i
\(508\) −8.24390 + 28.3538i −0.365764 + 1.25800i
\(509\) 13.8266 0.612851 0.306426 0.951895i \(-0.400867\pi\)
0.306426 + 0.951895i \(0.400867\pi\)
\(510\) 2.20782 + 2.94117i 0.0977639 + 0.130237i
\(511\) −11.4665 −0.507246
\(512\) 19.9875 + 10.6067i 0.883330 + 0.468752i
\(513\) 0.161129i 0.00711401i
\(514\) −21.1253 + 15.8579i −0.931797 + 0.699462i
\(515\) −19.3748 −0.853756
\(516\) 0.648850 2.23163i 0.0285640 0.0982422i
\(517\) 4.44705i 0.195581i
\(518\) −0.255093 0.339825i −0.0112081 0.0149310i
\(519\) −4.13222 −0.181384
\(520\) −0.727221 35.9174i −0.0318907 1.57508i
\(521\) −4.40236 −0.192871 −0.0964355 0.995339i \(-0.530744\pi\)
−0.0964355 + 0.995339i \(0.530744\pi\)
\(522\) −15.8410 21.1028i −0.693341 0.923643i
\(523\) 5.70151i 0.249309i 0.992200 + 0.124655i \(0.0397823\pi\)
−0.992200 + 0.124655i \(0.960218\pi\)
\(524\) −30.4402 8.85053i −1.32979 0.386637i
\(525\) 1.54322 0.0673518
\(526\) −0.560082 + 0.420431i −0.0244207 + 0.0183317i
\(527\) 4.08591i 0.177985i
\(528\) −0.860393 + 1.35452i −0.0374438 + 0.0589481i
\(529\) 3.00612 0.130701
\(530\) −34.6417 46.1484i −1.50474 2.00456i
\(531\) 20.9601 0.909593
\(532\) 0.249427 + 0.0725211i 0.0108140 + 0.00314419i
\(533\) 3.53587 9.97265i 0.153156 0.431963i
\(534\) 0.231430 0.173725i 0.0100149 0.00751782i
\(535\) 23.0345i 0.995869i
\(536\) −8.03271 21.2779i −0.346960 0.919066i
\(537\) 0.0825646 0.00356292
\(538\) 8.51238 + 11.3399i 0.366995 + 0.488896i
\(539\) 1.92616 0.0829654
\(540\) −8.39312 2.44031i −0.361182 0.105014i
\(541\) 21.6901 0.932529 0.466265 0.884645i \(-0.345600\pi\)
0.466265 + 0.884645i \(0.345600\pi\)
\(542\) 16.8938 + 22.5053i 0.725650 + 0.966684i
\(543\) 4.38312 0.188098
\(544\) 19.9889 1.56276i 0.857018 0.0670028i
\(545\) −42.5810 −1.82397
\(546\) −1.01356 + 0.317082i −0.0433763 + 0.0135698i
\(547\) 8.57481i 0.366632i 0.983054 + 0.183316i \(0.0586832\pi\)
−0.983054 + 0.183316i \(0.941317\pi\)
\(548\) 16.1215 + 4.68733i 0.688674 + 0.200233i
\(549\) 18.4167i 0.786006i
\(550\) −16.1417 + 12.1169i −0.688286 + 0.516668i
\(551\) 0.819618i 0.0349169i
\(552\) −2.81054 + 1.06102i −0.119624 + 0.0451599i
\(553\) 14.6896i 0.624667i
\(554\) −24.6708 32.8655i −1.04816 1.39632i
\(555\) 0.220446i 0.00935743i
\(556\) −25.9741 7.55200i −1.10155 0.320276i
\(557\) 2.70216 0.114494 0.0572471 0.998360i \(-0.481768\pi\)
0.0572471 + 0.998360i \(0.481768\pi\)
\(558\) −2.89373 3.85491i −0.122501 0.163191i
\(559\) −6.72235 + 18.9599i −0.284325 + 0.801917i
\(560\) 7.55519 11.8942i 0.319265 0.502621i
\(561\) 1.42189i 0.0600324i
\(562\) −12.3123 16.4020i −0.519364 0.691877i
\(563\) 39.2914i 1.65593i −0.560777 0.827967i \(-0.689497\pi\)
0.560777 0.827967i \(-0.310503\pi\)
\(564\) 0.268502 0.923477i 0.0113060 0.0388854i
\(565\) 16.4970 0.694035
\(566\) 4.70994 + 6.27441i 0.197974 + 0.263733i
\(567\) 8.61147i 0.361648i
\(568\) −43.8025 + 16.5360i −1.83791 + 0.693837i
\(569\) 1.67637 0.0702771 0.0351386 0.999382i \(-0.488813\pi\)
0.0351386 + 0.999382i \(0.488813\pi\)
\(570\) 0.0809024 + 0.107775i 0.00338863 + 0.00451420i
\(571\) 34.5286i 1.44498i −0.691384 0.722488i \(-0.742999\pi\)
0.691384 0.722488i \(-0.257001\pi\)
\(572\) 8.11194 11.2748i 0.339177 0.471422i
\(573\) 1.12035i 0.0468034i
\(574\) 3.31910 2.49151i 0.138536 0.103994i
\(575\) −37.7858 −1.57578
\(576\) −17.7521 + 15.6310i −0.739669 + 0.651291i
\(577\) 22.3246i 0.929384i 0.885472 + 0.464692i \(0.153835\pi\)
−0.885472 + 0.464692i \(0.846165\pi\)
\(578\) −5.01891 + 3.76749i −0.208759 + 0.156707i
\(579\) −4.80785 −0.199808
\(580\) 42.6935 + 12.4132i 1.77275 + 0.515430i
\(581\) 3.76948i 0.156384i
\(582\) −2.19227 + 1.64565i −0.0908727 + 0.0682144i
\(583\) 22.3102i 0.923993i
\(584\) −30.3419 + 11.4545i −1.25556 + 0.473990i
\(585\) 35.3942 + 12.5492i 1.46337 + 0.518848i
\(586\) 27.9543 20.9842i 1.15478 0.866848i
\(587\) −13.2895 −0.548517 −0.274259 0.961656i \(-0.588432\pi\)
−0.274259 + 0.961656i \(0.588432\pi\)
\(588\) −0.399987 0.116297i −0.0164952 0.00479599i
\(589\) 0.149722i 0.00616920i
\(590\) −28.2451 + 21.2025i −1.16283 + 0.872893i
\(591\) 1.73250i 0.0712655i
\(592\) −1.01448 0.644399i −0.0416950 0.0264846i
\(593\) 22.1464i 0.909444i −0.890634 0.454722i \(-0.849739\pi\)
0.890634 0.454722i \(-0.150261\pi\)
\(594\) −2.02880 2.70269i −0.0832428 0.110893i
\(595\) 12.4858i 0.511867i
\(596\) −10.8062 + 37.1666i −0.442640 + 1.52240i
\(597\) 3.92522i 0.160649i
\(598\) 24.8170 7.76375i 1.01484 0.317483i
\(599\) 23.3029 0.952129 0.476065 0.879410i \(-0.342063\pi\)
0.476065 + 0.879410i \(0.342063\pi\)
\(600\) 4.08359 1.54161i 0.166712 0.0629361i
\(601\) −14.8316 −0.604993 −0.302496 0.953151i \(-0.597820\pi\)
−0.302496 + 0.953151i \(0.597820\pi\)
\(602\) −6.31022 + 4.73683i −0.257186 + 0.193059i
\(603\) 23.7745 0.968172
\(604\) 10.6759 + 3.10403i 0.434397 + 0.126301i
\(605\) 25.6803 1.04405
\(606\) −2.15577 + 1.61825i −0.0875721 + 0.0657368i
\(607\) 38.0443 1.54417 0.772085 0.635520i \(-0.219214\pi\)
0.772085 + 0.635520i \(0.219214\pi\)
\(608\) 0.732465 0.0572651i 0.0297054 0.00232241i
\(609\) 1.31436i 0.0532605i
\(610\) 18.6296 + 24.8177i 0.754292 + 1.00484i
\(611\) −2.78179 + 7.84583i −0.112539 + 0.317408i
\(612\) −5.85144 + 20.1252i −0.236530 + 0.813515i
\(613\) −17.0574 −0.688941 −0.344470 0.938797i \(-0.611941\pi\)
−0.344470 + 0.938797i \(0.611941\pi\)
\(614\) −16.9389 + 12.7154i −0.683600 + 0.513151i
\(615\) 2.15312 0.0868221
\(616\) 5.09689 1.92415i 0.205360 0.0775261i
\(617\) 7.95481i 0.320249i 0.987097 + 0.160124i \(0.0511895\pi\)
−0.987097 + 0.160124i \(0.948810\pi\)
\(618\) 0.972541 + 1.29558i 0.0391213 + 0.0521159i
\(619\) −27.3721 −1.10018 −0.550088 0.835106i \(-0.685406\pi\)
−0.550088 + 0.835106i \(0.685406\pi\)
\(620\) 7.79897 + 2.26756i 0.313214 + 0.0910674i
\(621\) 6.32668i 0.253881i
\(622\) −25.1428 + 18.8737i −1.00813 + 0.756766i
\(623\) −0.982458 −0.0393614
\(624\) −2.36527 + 1.85155i −0.0946868 + 0.0741212i
\(625\) −7.14645 −0.285858
\(626\) 9.43995 7.08619i 0.377296 0.283221i
\(627\) 0.0521032i 0.00208080i
\(628\) 30.9966 + 9.01231i 1.23690 + 0.359630i
\(629\) −1.06494 −0.0424619
\(630\) 8.84268 + 11.7799i 0.352301 + 0.469322i
\(631\) 21.1834i 0.843298i 0.906759 + 0.421649i \(0.138548\pi\)
−0.906759 + 0.421649i \(0.861452\pi\)
\(632\) −14.6743 38.8709i −0.583713 1.54620i
\(633\) 4.05416 0.161138
\(634\) −22.2031 + 16.6670i −0.881797 + 0.661929i
\(635\) 52.0093 2.06393
\(636\) −1.34703 + 4.63294i −0.0534134 + 0.183708i
\(637\) 3.39827 + 1.20488i 0.134644 + 0.0477391i
\(638\) 10.3200 + 13.7479i 0.408571 + 0.544283i
\(639\) 48.9419i 1.93611i
\(640\) 8.11034 39.0211i 0.320590 1.54244i
\(641\) 0.478600 0.0189036 0.00945179 0.999955i \(-0.496991\pi\)
0.00945179 + 0.999955i \(0.496991\pi\)
\(642\) 1.54030 1.15624i 0.0607910 0.0456333i
\(643\) 5.62114 0.221676 0.110838 0.993838i \(-0.464647\pi\)
0.110838 + 0.993838i \(0.464647\pi\)
\(644\) 9.79368 + 2.84752i 0.385925 + 0.112208i
\(645\) −4.09348 −0.161181
\(646\) 0.520643 0.390826i 0.0204844 0.0153768i
\(647\) −44.2220 −1.73854 −0.869272 0.494333i \(-0.835412\pi\)
−0.869272 + 0.494333i \(0.835412\pi\)
\(648\) −8.60249 22.7872i −0.337938 0.895166i
\(649\) −13.6550 −0.536004
\(650\) −36.0581 + 11.2804i −1.41431 + 0.442454i
\(651\) 0.240098i 0.00941019i
\(652\) 2.10288 7.23257i 0.0823551 0.283249i
\(653\) 4.90631i 0.191999i 0.995381 + 0.0959994i \(0.0306047\pi\)
−0.995381 + 0.0959994i \(0.969395\pi\)
\(654\) 2.13740 + 2.84737i 0.0835791 + 0.111341i
\(655\) 55.8364i 2.18171i
\(656\) 6.29390 9.90853i 0.245735 0.386863i
\(657\) 33.9020i 1.32264i
\(658\) −2.61125 + 1.96016i −0.101797 + 0.0764149i
\(659\) 2.44724i 0.0953310i −0.998863 0.0476655i \(-0.984822\pi\)
0.998863 0.0476655i \(-0.0151782\pi\)
\(660\) 2.71403 + 0.789108i 0.105644 + 0.0307160i
\(661\) 46.9632 1.82666 0.913328 0.407225i \(-0.133503\pi\)
0.913328 + 0.407225i \(0.133503\pi\)
\(662\) 38.0516 28.5638i 1.47892 1.11016i
\(663\) −0.889446 + 2.50861i −0.0345432 + 0.0974264i
\(664\) 3.76555 + 9.97459i 0.146132 + 0.387089i
\(665\) 0.457523i 0.0177420i
\(666\) 1.00473 0.754212i 0.0389326 0.0292251i
\(667\) 32.1821i 1.24609i
\(668\) −44.7308 13.0055i −1.73069 0.503199i
\(669\) 3.67558 0.142106
\(670\) −32.0376 + 24.0494i −1.23772 + 0.929108i
\(671\) 11.9980i 0.463177i
\(672\) −1.17460 + 0.0918317i −0.0453111 + 0.00354248i
\(673\) 42.5580 1.64049 0.820245 0.572013i \(-0.193837\pi\)
0.820245 + 0.572013i \(0.193837\pi\)
\(674\) 0.0162120 0.0121697i 0.000624464 0.000468760i
\(675\) 9.19240i 0.353816i
\(676\) 21.3645 14.8175i 0.821711 0.569904i
\(677\) 27.1383i 1.04301i −0.853249 0.521504i \(-0.825371\pi\)
0.853249 0.521504i \(-0.174629\pi\)
\(678\) −0.828087 1.10315i −0.0318025 0.0423661i
\(679\) 9.30657 0.357153
\(680\) −12.4727 33.0392i −0.478308 1.26699i
\(681\) 3.76648i 0.144332i
\(682\) 1.88518 + 2.51137i 0.0721874 + 0.0961653i
\(683\) 34.5690 1.32275 0.661373 0.750057i \(-0.269974\pi\)
0.661373 + 0.750057i \(0.269974\pi\)
\(684\) −0.214418 + 0.737461i −0.00819846 + 0.0281975i
\(685\) 29.5715i 1.12987i
\(686\) 0.849005 + 1.13101i 0.0324152 + 0.0431823i
\(687\) 0.886732i 0.0338309i
\(688\) −11.9659 + 18.8380i −0.456195 + 0.718191i
\(689\) 13.9558 39.3613i 0.531675 1.49955i
\(690\) 3.17661 + 4.23176i 0.120931 + 0.161100i
\(691\) −26.6922 −1.01542 −0.507709 0.861529i \(-0.669508\pi\)
−0.507709 + 0.861529i \(0.669508\pi\)
\(692\) 38.1025 + 11.0783i 1.44844 + 0.421136i
\(693\) 5.69492i 0.216332i
\(694\) 2.65974 + 3.54320i 0.100962 + 0.134498i
\(695\) 47.6442i 1.80725i
\(696\) −1.31299 3.47799i −0.0497687 0.131833i
\(697\) 10.4014i 0.393979i
\(698\) −1.40722 + 1.05634i −0.0532640 + 0.0399831i
\(699\) 2.50904i 0.0949007i
\(700\) −14.2298 4.13733i −0.537836 0.156377i
\(701\) 21.2235i 0.801602i 0.916165 + 0.400801i \(0.131268\pi\)
−0.916165 + 0.400801i \(0.868732\pi\)
\(702\) −1.88874 6.03739i −0.0712858 0.227867i
\(703\) −0.0390232 −0.00147179
\(704\) 11.5650 10.1831i 0.435871 0.383792i
\(705\) −1.69393 −0.0637972
\(706\) 6.28777 + 8.37633i 0.236643 + 0.315247i
\(707\) 9.15160 0.344181
\(708\) 2.83560 + 0.824453i 0.106568 + 0.0309848i
\(709\) 38.7261 1.45439 0.727194 0.686432i \(-0.240824\pi\)
0.727194 + 0.686432i \(0.240824\pi\)
\(710\) 49.5077 + 65.9523i 1.85799 + 2.47515i
\(711\) 43.4317 1.62882
\(712\) −2.59973 + 0.981433i −0.0974289 + 0.0367808i
\(713\) 5.87881i 0.220163i
\(714\) −0.834916 + 0.626738i −0.0312459 + 0.0234551i
\(715\) −23.0583 8.17549i −0.862332 0.305746i
\(716\) −0.761314 0.221353i −0.0284516 0.00827235i
\(717\) 0.262814 0.00981499
\(718\) 30.6967 + 40.8930i 1.14559 + 1.52611i
\(719\) 44.9233 1.67536 0.837679 0.546163i \(-0.183912\pi\)
0.837679 + 0.546163i \(0.183912\pi\)
\(720\) 35.1666 + 22.3378i 1.31058 + 0.832482i
\(721\) 5.49996i 0.204829i
\(722\) −21.4702 + 16.1168i −0.799037 + 0.599805i
\(723\) 3.53951 0.131636
\(724\) −40.4161 11.7510i −1.50205 0.436723i
\(725\) 46.7592i 1.73659i
\(726\) −1.28905 1.71723i −0.0478413 0.0637323i
\(727\) 24.2750 0.900310 0.450155 0.892950i \(-0.351369\pi\)
0.450155 + 0.892950i \(0.351369\pi\)
\(728\) 10.1959 0.206437i 0.377887 0.00765108i
\(729\) 24.6857 0.914285
\(730\) 34.2940 + 45.6851i 1.26928 + 1.69088i
\(731\) 19.7749i 0.731402i
\(732\) 0.724408 2.49151i 0.0267749 0.0920887i
\(733\) 21.7151 0.802067 0.401033 0.916063i \(-0.368651\pi\)
0.401033 + 0.916063i \(0.368651\pi\)
\(734\) 9.16348 6.87865i 0.338230 0.253896i
\(735\) 0.733695i 0.0270627i
\(736\) 28.7600 2.24850i 1.06011 0.0828807i
\(737\) −15.4884 −0.570523
\(738\) 7.36645 + 9.81331i 0.271163 + 0.361233i
\(739\) −4.13272 −0.152025 −0.0760123 0.997107i \(-0.524219\pi\)
−0.0760123 + 0.997107i \(0.524219\pi\)
\(740\) −0.591010 + 2.03270i −0.0217260 + 0.0747235i
\(741\) −0.0325925 + 0.0919245i −0.00119731 + 0.00337693i
\(742\) 13.1002 9.83381i 0.480924 0.361011i
\(743\) 20.2682i 0.743567i 0.928319 + 0.371784i \(0.121254\pi\)
−0.928319 + 0.371784i \(0.878746\pi\)
\(744\) −0.239848 0.635335i −0.00879325 0.0232925i
\(745\) 68.1746 2.49772
\(746\) 6.56750 + 8.74897i 0.240453 + 0.320323i
\(747\) −11.1449 −0.407771
\(748\) 3.81205 13.1110i 0.139382 0.479387i
\(749\) −6.53885 −0.238924
\(750\) −1.50093 1.99948i −0.0548061 0.0730106i
\(751\) 50.2644 1.83417 0.917087 0.398687i \(-0.130534\pi\)
0.917087 + 0.398687i \(0.130534\pi\)
\(752\) −4.95163 + 7.79538i −0.180567 + 0.284268i
\(753\) −3.42262 −0.124727
\(754\) 9.60749 + 30.7106i 0.349884 + 1.11841i
\(755\) 19.5828i 0.712691i
\(756\) 0.692735 2.38257i 0.0251945 0.0866532i
\(757\) 20.4735i 0.744122i −0.928208 0.372061i \(-0.878651\pi\)
0.928208 0.372061i \(-0.121349\pi\)
\(758\) −36.7125 + 27.5586i −1.33346 + 1.00097i
\(759\) 2.04582i 0.0742585i
\(760\) −0.457046 1.21067i −0.0165788 0.0439157i
\(761\) 31.2031i 1.13111i 0.824710 + 0.565556i \(0.191338\pi\)
−0.824710 + 0.565556i \(0.808662\pi\)
\(762\) −2.61067 3.47783i −0.0945744 0.125988i
\(763\) 12.0875i 0.437599i
\(764\) 3.00363 10.3306i 0.108668 0.373748i
\(765\) 36.9157 1.33469
\(766\) −30.3829 40.4750i −1.09778 1.46242i
\(767\) −24.0911 8.54167i −0.869880 0.308422i
\(768\) −3.01642 + 1.41637i −0.108846 + 0.0511090i
\(769\) 32.8772i 1.18558i −0.805356 0.592791i \(-0.798026\pi\)
0.805356 0.592791i \(-0.201974\pi\)
\(770\) −5.76076 7.67427i −0.207603 0.276561i
\(771\) 3.89021i 0.140103i
\(772\) 44.3324 + 12.8897i 1.59556 + 0.463911i
\(773\) −12.3295 −0.443463 −0.221731 0.975108i \(-0.571171\pi\)
−0.221731 + 0.975108i \(0.571171\pi\)
\(774\) −14.0050 18.6569i −0.503400 0.670610i
\(775\) 8.54166i 0.306826i
\(776\) 24.6265 9.29686i 0.884041 0.333738i
\(777\) 0.0625785 0.00224499
\(778\) 5.36724 + 7.15004i 0.192425 + 0.256341i
\(779\) 0.381143i 0.0136558i
\(780\) 4.29469 + 3.08993i 0.153775 + 0.110637i
\(781\) 31.8843i 1.14091i
\(782\) 20.4429 15.3457i 0.731037 0.548760i
\(783\) 7.82914 0.279791
\(784\) 3.37642 + 2.14470i 0.120587 + 0.0765966i
\(785\) 56.8571i 2.02932i
\(786\) 3.73375 2.80277i 0.133178 0.0999717i
\(787\) −34.8281 −1.24149 −0.620743 0.784014i \(-0.713169\pi\)
−0.620743 + 0.784014i \(0.713169\pi\)
\(788\) −4.64478 + 15.9751i −0.165463 + 0.569089i
\(789\) 0.103139i 0.00367184i
\(790\) −58.5270 + 43.9339i −2.08230 + 1.56310i
\(791\) 4.68304i 0.166510i
\(792\) 5.68897 + 15.0696i 0.202149 + 0.535474i
\(793\) −7.50517 + 21.1677i −0.266516 + 0.751689i
\(794\) 11.6203 8.72288i 0.412388 0.309563i
\(795\) 8.49820 0.301400
\(796\) −10.5234 + 36.1938i −0.372992 + 1.28286i
\(797\) 37.3680i 1.32364i 0.749661 + 0.661821i \(0.230216\pi\)
−0.749661 + 0.661821i \(0.769784\pi\)
\(798\) −0.0305943 + 0.0229659i −0.00108303 + 0.000812984i
\(799\) 8.18310i 0.289497i
\(800\) −41.7872 + 3.26697i −1.47740 + 0.115505i
\(801\) 2.90476i 0.102635i
\(802\) 1.52720 + 2.03448i 0.0539274 + 0.0718400i
\(803\) 22.0862i 0.779405i
\(804\) 3.21633 + 0.935153i 0.113431 + 0.0329803i
\(805\) 17.9645i 0.633166i
\(806\) 1.75503 + 5.61000i 0.0618183 + 0.197604i
\(807\) −2.08823 −0.0735091
\(808\) 24.2165 9.14205i 0.851932 0.321616i
\(809\) 36.3556 1.27819 0.639097 0.769126i \(-0.279308\pi\)
0.639097 + 0.769126i \(0.279308\pi\)
\(810\) −34.3102 + 25.7552i −1.20554 + 0.904947i
\(811\) 29.4704 1.03485 0.517423 0.855730i \(-0.326891\pi\)
0.517423 + 0.855730i \(0.326891\pi\)
\(812\) −3.52376 + 12.1195i −0.123660 + 0.425311i
\(813\) −4.14433 −0.145348
\(814\) −0.654556 + 0.491348i −0.0229422 + 0.0172218i
\(815\) −13.2667 −0.464712
\(816\) −1.58323 + 2.49248i −0.0554240 + 0.0872544i
\(817\) 0.724623i 0.0253514i
\(818\) −18.6019 24.7808i −0.650400 0.866439i
\(819\) −3.56238 + 10.0474i −0.124480 + 0.351085i
\(820\) −19.8535 5.77244i −0.693316 0.201582i
\(821\) −8.34090 −0.291100 −0.145550 0.989351i \(-0.546495\pi\)
−0.145550 + 0.989351i \(0.546495\pi\)
\(822\) −1.97743 + 1.48438i −0.0689709 + 0.0517736i
\(823\) 46.3329 1.61506 0.807531 0.589825i \(-0.200803\pi\)
0.807531 + 0.589825i \(0.200803\pi\)
\(824\) −5.49422 14.5537i −0.191400 0.507002i
\(825\) 2.97249i 0.103489i
\(826\) −6.01879 8.01800i −0.209420 0.278982i
\(827\) −36.3252 −1.26315 −0.631575 0.775315i \(-0.717591\pi\)
−0.631575 + 0.775315i \(0.717591\pi\)
\(828\) −8.41905 + 28.9562i −0.292582 + 1.00630i
\(829\) 12.3282i 0.428175i 0.976814 + 0.214088i \(0.0686778\pi\)
−0.976814 + 0.214088i \(0.931322\pi\)
\(830\) 15.0185 11.2738i 0.521300 0.391319i
\(831\) 6.05217 0.209947
\(832\) 26.7737 10.7316i 0.928213 0.372050i
\(833\) 3.54436 0.122805
\(834\) 3.18594 2.39156i 0.110320 0.0828128i
\(835\) 82.0496i 2.83944i
\(836\) 0.139687 0.480435i 0.00483118 0.0166162i
\(837\) 1.43017 0.0494341
\(838\) 16.0366 + 21.3633i 0.553975 + 0.737985i
\(839\) 33.9276i 1.17131i −0.810560 0.585656i \(-0.800837\pi\)
0.810560 0.585656i \(-0.199163\pi\)
\(840\) 0.732929 + 1.94146i 0.0252885 + 0.0669869i
\(841\) −10.8247 −0.373266
\(842\) −7.17141 + 5.38329i −0.247143 + 0.185520i
\(843\) 3.02042 0.104029
\(844\) −37.3827 10.8691i −1.28677 0.374129i
\(845\) −35.5672 28.8476i −1.22355 0.992389i
\(846\) −5.79544 7.72047i −0.199251 0.265435i
\(847\) 7.28992i 0.250485i
\(848\) 24.8416 39.1083i 0.853063 1.34298i
\(849\) −1.15543 −0.0396542
\(850\) −29.7027 + 22.2966i −1.01879 + 0.764768i
\(851\) −1.53223 −0.0525243
\(852\) 1.92509 6.62110i 0.0659526 0.226835i
\(853\) −38.7697 −1.32745 −0.663725 0.747977i \(-0.731026\pi\)
−0.663725 + 0.747977i \(0.731026\pi\)
\(854\) −7.04504 + 5.28843i −0.241076 + 0.180966i
\(855\) 1.35272 0.0462621
\(856\) −17.3027 + 6.53203i −0.591396 + 0.223260i
\(857\) −26.4866 −0.904764 −0.452382 0.891824i \(-0.649426\pi\)
−0.452382 + 0.891824i \(0.649426\pi\)
\(858\) 0.610749 + 1.95227i 0.0208506 + 0.0666495i
\(859\) 17.8500i 0.609033i −0.952507 0.304517i \(-0.901505\pi\)
0.952507 0.304517i \(-0.0984949\pi\)
\(860\) 37.7453 + 10.9745i 1.28710 + 0.374227i
\(861\) 0.611209i 0.0208300i
\(862\) 23.1502 + 30.8398i 0.788498 + 1.05041i
\(863\) 13.6999i 0.466350i −0.972435 0.233175i \(-0.925088\pi\)
0.972435 0.233175i \(-0.0749115\pi\)
\(864\) −0.547006 6.99664i −0.0186095 0.238031i
\(865\) 69.8913i 2.37638i
\(866\) 20.2405 15.1937i 0.687801 0.516304i
\(867\) 0.924228i 0.0313884i
\(868\) −0.643696 + 2.21391i −0.0218485 + 0.0751449i
\(869\) −28.2945 −0.959827
\(870\) −5.23672 + 3.93099i −0.177541 + 0.133273i
\(871\) −27.3258 9.68857i −0.925901 0.328285i
\(872\) −12.0749 31.9854i −0.408909 1.08316i
\(873\) 27.5160i 0.931276i
\(874\) 0.749101 0.562320i 0.0253387 0.0190208i
\(875\) 8.48812i 0.286951i
\(876\) 1.33351 4.58643i 0.0450552 0.154961i
\(877\) −1.66862 −0.0563452 −0.0281726 0.999603i \(-0.508969\pi\)
−0.0281726 + 0.999603i \(0.508969\pi\)
\(878\) 18.6011 13.9631i 0.627757 0.471231i
\(879\) 5.14777i 0.173630i
\(880\) −22.9101 14.5525i −0.772298 0.490564i
\(881\) −0.959187 −0.0323158 −0.0161579 0.999869i \(-0.505143\pi\)
−0.0161579 + 0.999869i \(0.505143\pi\)
\(882\) −3.34398 + 2.51019i −0.112598 + 0.0845224i
\(883\) 40.6249i 1.36714i −0.729886 0.683569i \(-0.760427\pi\)
0.729886 0.683569i \(-0.239573\pi\)
\(884\) 14.9269 20.7469i 0.502047 0.697794i
\(885\) 5.20133i 0.174841i
\(886\) −18.2428 24.3024i −0.612879 0.816454i
\(887\) −58.6312 −1.96864 −0.984322 0.176380i \(-0.943561\pi\)
−0.984322 + 0.176380i \(0.943561\pi\)
\(888\) 0.165592 0.0625132i 0.00555690 0.00209781i
\(889\) 14.7640i 0.495168i
\(890\) 2.93834 + 3.91435i 0.0984934 + 0.131209i
\(891\) −16.5870 −0.555687
\(892\) −33.8919 9.85412i −1.13479 0.329940i
\(893\) 0.299858i 0.0100344i
\(894\) −3.42210 4.55879i −0.114452 0.152469i
\(895\) 1.39648i 0.0466791i
\(896\) 11.0770 + 2.30230i 0.370056 + 0.0769144i
\(897\) −1.27973 + 3.60939i −0.0427291 + 0.120514i
\(898\) −9.87368 13.1533i −0.329489 0.438933i
\(899\) −7.27491 −0.242632
\(900\) 12.2325 42.0722i 0.407751 1.40241i
\(901\) 41.0534i 1.36769i
\(902\) −4.79904 6.39310i −0.159791 0.212867i
\(903\) 1.16202i 0.0386697i
\(904\) 4.67815 + 12.3920i 0.155593 + 0.412152i
\(905\) 74.1351i 2.46433i
\(906\) −1.30949 + 0.982981i −0.0435049 + 0.0326574i
\(907\) 16.8426i 0.559251i 0.960109 + 0.279625i \(0.0902103\pi\)
−0.960109 + 0.279625i \(0.909790\pi\)
\(908\) 10.0978 34.7301i 0.335108 1.15256i
\(909\) 27.0578i 0.897451i
\(910\) −5.36304 17.1431i −0.177783 0.568288i
\(911\) −19.4339 −0.643874 −0.321937 0.946761i \(-0.604334\pi\)
−0.321937 + 0.946761i \(0.604334\pi\)
\(912\) −0.0580150 + 0.0913335i −0.00192107 + 0.00302435i
\(913\) 7.26061 0.240291
\(914\) −17.1246 22.8128i −0.566433 0.754580i
\(915\) −4.57016 −0.151085
\(916\) 2.37730 8.17641i 0.0785482 0.270156i
\(917\) −15.8504 −0.523426
\(918\) −3.73324 4.97328i −0.123215 0.164143i
\(919\) −4.84960 −0.159974 −0.0799868 0.996796i \(-0.525488\pi\)
−0.0799868 + 0.996796i \(0.525488\pi\)
\(920\) −17.9458 47.5367i −0.591655 1.56724i
\(921\) 3.11929i 0.102784i
\(922\) 17.3106 12.9944i 0.570096 0.427948i
\(923\) −19.9448 + 56.2527i −0.656490 + 1.85158i
\(924\) −0.224006 + 0.770437i −0.00736924 + 0.0253455i
\(925\) 2.22627 0.0731994
\(926\) 19.0141 + 25.3299i 0.624842 + 0.832391i
\(927\) 16.2613 0.534091
\(928\) 2.78247 + 35.5900i 0.0913391 + 1.16830i
\(929\) 15.2435i 0.500124i −0.968230 0.250062i \(-0.919549\pi\)
0.968230 0.250062i \(-0.0804509\pi\)
\(930\) −0.956609 + 0.718087i −0.0313684 + 0.0235470i
\(931\) 0.129878 0.00425658
\(932\) −6.72667 + 23.1355i −0.220339 + 0.757828i
\(933\) 4.63003i 0.151580i
\(934\) −8.59173 11.4456i −0.281130 0.374511i
\(935\) −24.0495 −0.786504
\(936\) 0.610358 + 30.1456i 0.0199502 + 0.985339i
\(937\) −58.4300 −1.90883 −0.954413 0.298490i \(-0.903517\pi\)
−0.954413 + 0.298490i \(0.903517\pi\)
\(938\) −6.82694 9.09458i −0.222907 0.296949i
\(939\) 1.73836i 0.0567293i
\(940\) 15.6195 + 4.54138i 0.509451 + 0.148123i
\(941\) 22.9904 0.749467 0.374733 0.927133i \(-0.377734\pi\)
0.374733 + 0.927133i \(0.377734\pi\)
\(942\) −3.80200 + 2.85401i −0.123876 + 0.0929885i
\(943\) 14.9655i 0.487342i
\(944\) −23.9362 15.2043i −0.779058 0.494857i
\(945\) −4.37034 −0.142167
\(946\) 9.12388 + 12.1545i 0.296643 + 0.395176i
\(947\) 19.1597 0.622608 0.311304 0.950310i \(-0.399234\pi\)
0.311304 + 0.950310i \(0.399234\pi\)
\(948\) 5.87566 + 1.70836i 0.190833 + 0.0554848i
\(949\) −13.8157 + 38.9662i −0.448477 + 1.26490i
\(950\) −1.08841 + 0.817028i −0.0353128 + 0.0265079i
\(951\) 4.08868i 0.132585i
\(952\) 9.37888 3.54066i 0.303971 0.114753i
\(953\) 40.8834 1.32434 0.662171 0.749353i \(-0.269635\pi\)
0.662171 + 0.749353i \(0.269635\pi\)
\(954\) 29.0749 + 38.7324i 0.941333 + 1.25401i
\(955\) −18.9494 −0.613188
\(956\) −2.42337 0.704597i −0.0783773 0.0227883i
\(957\) −2.53166 −0.0818370
\(958\) −17.0728 22.7437i −0.551597 0.734816i
\(959\) 8.39453 0.271073
\(960\) 3.87888 + 4.40523i 0.125190 + 0.142178i
\(961\) 29.6711 0.957131
\(962\) −1.46217 + 0.457426i −0.0471424 + 0.0147480i
\(963\) 19.3329i 0.622994i
\(964\) −32.6373 9.48933i −1.05118 0.305631i
\(965\) 81.3188i 2.61775i
\(966\) −1.20128 + 0.901750i −0.0386504 + 0.0290133i
\(967\) 1.86092i 0.0598431i 0.999552 + 0.0299216i \(0.00952575\pi\)
−0.999552 + 0.0299216i \(0.990474\pi\)
\(968\) 7.28231 + 19.2902i 0.234062 + 0.620010i
\(969\) 0.0958761i 0.00307998i
\(970\) −27.8341 37.0796i −0.893700 1.19055i
\(971\) 22.8850i 0.734416i −0.930139 0.367208i \(-0.880314\pi\)
0.930139 0.367208i \(-0.119686\pi\)
\(972\) 10.5922 + 3.07969i 0.339745 + 0.0987811i
\(973\) −13.5249 −0.433587
\(974\) 12.1342 + 16.1647i 0.388805 + 0.517951i
\(975\) 1.85940 5.24430i 0.0595485 0.167952i
\(976\) −13.3593 + 21.0316i −0.427621 + 0.673207i
\(977\) 3.98677i 0.127548i 0.997964 + 0.0637740i \(0.0203137\pi\)
−0.997964 + 0.0637740i \(0.979686\pi\)
\(978\) 0.665937 + 0.887136i 0.0212943 + 0.0283675i
\(979\) 1.89237i 0.0604804i
\(980\) 1.96701 6.76528i 0.0628339 0.216109i
\(981\) 35.7383 1.14104
\(982\) −17.7166 23.6013i −0.565358 0.753148i
\(983\) 50.8782i 1.62276i −0.584518 0.811381i \(-0.698716\pi\)
0.584518 0.811381i \(-0.301284\pi\)
\(984\) 0.610572 + 1.61735i 0.0194643 + 0.0515592i
\(985\) 29.3031 0.933673
\(986\) 18.9900 + 25.2977i 0.604764 + 0.805643i
\(987\) 0.480859i 0.0153059i
\(988\) 0.546976 0.760241i 0.0174016 0.0241865i
\(989\) 28.4521i 0.904726i
\(990\) 22.6899 17.0324i 0.721132 0.541325i
\(991\) −54.2500 −1.72331 −0.861653 0.507497i \(-0.830571\pi\)
−0.861653 + 0.507497i \(0.830571\pi\)
\(992\) 0.508283 + 6.50134i 0.0161380 + 0.206418i
\(993\) 7.00718i 0.222366i
\(994\) −18.7220 + 14.0538i −0.593826 + 0.445761i
\(995\) 66.3902 2.10471
\(996\) −1.50774 0.438378i −0.0477746 0.0138905i
\(997\) 25.8118i 0.817467i 0.912654 + 0.408734i \(0.134029\pi\)
−0.912654 + 0.408734i \(0.865971\pi\)
\(998\) −21.6272 + 16.2346i −0.684596 + 0.513898i
\(999\) 0.372756i 0.0117935i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 728.2.i.a.701.69 yes 84
4.3 odd 2 2912.2.i.a.337.13 84
8.3 odd 2 2912.2.i.a.337.72 84
8.5 even 2 inner 728.2.i.a.701.15 84
13.12 even 2 inner 728.2.i.a.701.16 yes 84
52.51 odd 2 2912.2.i.a.337.71 84
104.51 odd 2 2912.2.i.a.337.14 84
104.77 even 2 inner 728.2.i.a.701.70 yes 84
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
728.2.i.a.701.15 84 8.5 even 2 inner
728.2.i.a.701.16 yes 84 13.12 even 2 inner
728.2.i.a.701.69 yes 84 1.1 even 1 trivial
728.2.i.a.701.70 yes 84 104.77 even 2 inner
2912.2.i.a.337.13 84 4.3 odd 2
2912.2.i.a.337.14 84 104.51 odd 2
2912.2.i.a.337.71 84 52.51 odd 2
2912.2.i.a.337.72 84 8.3 odd 2