Properties

Label 728.2.i
Level $728$
Weight $2$
Character orbit 728.i
Rep. character $\chi_{728}(701,\cdot)$
Character field $\Q$
Dimension $84$
Newform subspaces $1$
Sturm bound $224$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 728 = 2^{3} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 728.i (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 104 \)
Character field: \(\Q\)
Newform subspaces: \( 1 \)
Sturm bound: \(224\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(728, [\chi])\).

Total New Old
Modular forms 116 84 32
Cusp forms 108 84 24
Eisenstein series 8 0 8

Trace form

\( 84 q - 84 q^{9} + 8 q^{10} - 20 q^{12} - 8 q^{16} + 8 q^{17} - 12 q^{22} - 24 q^{23} + 92 q^{25} - 40 q^{30} + 44 q^{36} + 20 q^{38} - 24 q^{39} - 28 q^{40} - 72 q^{48} - 84 q^{49} - 44 q^{52} + 32 q^{55}+ \cdots - 16 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(728, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
728.2.i.a 728.i 104.e $84$ $5.813$ None 728.2.i.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$

Decomposition of \(S_{2}^{\mathrm{old}}(728, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(728, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(104, [\chi])\)\(^{\oplus 2}\)