Properties

Label 728.2.i.a.701.16
Level $728$
Weight $2$
Character 728.701
Analytic conductor $5.813$
Analytic rank $0$
Dimension $84$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [728,2,Mod(701,728)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(728, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("728.701"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 728 = 2^{3} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 728.i (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.81310926715\)
Analytic rank: \(0\)
Dimension: \(84\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 701.16
Character \(\chi\) \(=\) 728.701
Dual form 728.2.i.a.701.15

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.13101 + 0.849005i) q^{2} +0.208275i q^{3} +(0.558380 - 1.92047i) q^{4} +3.52272 q^{5} +(-0.176827 - 0.235562i) q^{6} +1.00000i q^{7} +(0.998957 + 2.64615i) q^{8} +2.95662 q^{9} +(-3.98424 + 2.99081i) q^{10} +1.92616 q^{11} +(0.399987 + 0.116297i) q^{12} +(3.39827 - 1.20488i) q^{13} +(-0.849005 - 1.13101i) q^{14} +0.733695i q^{15} +(-3.37642 - 2.14470i) q^{16} -3.54436 q^{17} +(-3.34398 + 2.51019i) q^{18} +0.129878 q^{19} +(1.96701 - 6.76528i) q^{20} -0.208275 q^{21} +(-2.17851 + 1.63532i) q^{22} -5.09962 q^{23} +(-0.551127 + 0.208058i) q^{24} +7.40954 q^{25} +(-2.82054 + 4.24789i) q^{26} +1.24062i q^{27} +(1.92047 + 0.558380i) q^{28} -6.31068i q^{29} +(-0.622911 - 0.829818i) q^{30} +1.15279i q^{31} +(5.63964 - 0.440915i) q^{32} +0.401171i q^{33} +(4.00871 - 3.00918i) q^{34} +3.52272i q^{35} +(1.65092 - 5.67811i) q^{36} -0.300461 q^{37} +(-0.146894 + 0.110267i) q^{38} +(0.250947 + 0.707776i) q^{39} +(3.51904 + 9.32162i) q^{40} -2.93462i q^{41} +(0.235562 - 0.176827i) q^{42} -5.57927i q^{43} +(1.07553 - 3.69913i) q^{44} +10.4153 q^{45} +(5.76773 - 4.32960i) q^{46} +2.30877i q^{47} +(0.446689 - 0.703226i) q^{48} -1.00000 q^{49} +(-8.38028 + 6.29074i) q^{50} -0.738202i q^{51} +(-0.416414 - 7.19907i) q^{52} +11.5827i q^{53} +(-1.05329 - 1.40315i) q^{54} +6.78531 q^{55} +(-2.64615 + 0.998957i) q^{56} +0.0270504i q^{57} +(5.35780 + 7.13746i) q^{58} -7.08922 q^{59} +(1.40904 + 0.409680i) q^{60} -6.22897i q^{61} +(-0.978728 - 1.30382i) q^{62} +2.95662i q^{63} +(-6.00417 + 5.28677i) q^{64} +(11.9712 - 4.24446i) q^{65} +(-0.340596 - 0.453729i) q^{66} -8.04110 q^{67} +(-1.97910 + 6.80684i) q^{68} -1.06212i q^{69} +(-2.99081 - 3.98424i) q^{70} +16.5533i q^{71} +(2.95354 + 7.82365i) q^{72} +11.4665i q^{73} +(0.339825 - 0.255093i) q^{74} +1.54322i q^{75} +(0.0725211 - 0.249427i) q^{76} +1.92616i q^{77} +(-0.884730 - 0.587449i) q^{78} +14.6896 q^{79} +(-11.8942 - 7.55519i) q^{80} +8.61147 q^{81} +(2.49151 + 3.31910i) q^{82} +3.76948 q^{83} +(-0.116297 + 0.399987i) q^{84} -12.4858 q^{85} +(4.73683 + 6.31022i) q^{86} +1.31436 q^{87} +(1.92415 + 5.09689i) q^{88} +0.982458i q^{89} +(-11.7799 + 8.84268i) q^{90} +(1.20488 + 3.39827i) q^{91} +(-2.84752 + 9.79368i) q^{92} -0.240098 q^{93} +(-1.96016 - 2.61125i) q^{94} +0.457523 q^{95} +(0.0918317 + 1.17460i) q^{96} -9.30657i q^{97} +(1.13101 - 0.849005i) q^{98} +5.69492 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 84 q - 84 q^{9} + 8 q^{10} - 20 q^{12} - 8 q^{16} + 8 q^{17} - 12 q^{22} - 24 q^{23} + 92 q^{25} - 40 q^{30} + 44 q^{36} + 20 q^{38} - 24 q^{39} - 28 q^{40} - 72 q^{48} - 84 q^{49} - 44 q^{52} + 32 q^{55}+ \cdots - 16 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/728\mathbb{Z}\right)^\times\).

\(n\) \(183\) \(365\) \(521\) \(561\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.13101 + 0.849005i −0.799747 + 0.600337i
\(3\) 0.208275i 0.120248i 0.998191 + 0.0601239i \(0.0191496\pi\)
−0.998191 + 0.0601239i \(0.980850\pi\)
\(4\) 0.558380 1.92047i 0.279190 0.960236i
\(5\) 3.52272 1.57541 0.787704 0.616055i \(-0.211270\pi\)
0.787704 + 0.616055i \(0.211270\pi\)
\(6\) −0.176827 0.235562i −0.0721893 0.0961678i
\(7\) 1.00000i 0.377964i
\(8\) 0.998957 + 2.64615i 0.353185 + 0.935554i
\(9\) 2.95662 0.985540
\(10\) −3.98424 + 2.99081i −1.25993 + 0.945776i
\(11\) 1.92616 0.580758 0.290379 0.956912i \(-0.406219\pi\)
0.290379 + 0.956912i \(0.406219\pi\)
\(12\) 0.399987 + 0.116297i 0.115466 + 0.0335720i
\(13\) 3.39827 1.20488i 0.942511 0.334174i
\(14\) −0.849005 1.13101i −0.226906 0.302276i
\(15\) 0.733695i 0.189439i
\(16\) −3.37642 2.14470i −0.844106 0.536176i
\(17\) −3.54436 −0.859633 −0.429816 0.902916i \(-0.641422\pi\)
−0.429816 + 0.902916i \(0.641422\pi\)
\(18\) −3.34398 + 2.51019i −0.788183 + 0.591657i
\(19\) 0.129878 0.0297960 0.0148980 0.999889i \(-0.495258\pi\)
0.0148980 + 0.999889i \(0.495258\pi\)
\(20\) 1.96701 6.76528i 0.439838 1.51276i
\(21\) −0.208275 −0.0454494
\(22\) −2.17851 + 1.63532i −0.464459 + 0.348651i
\(23\) −5.09962 −1.06334 −0.531672 0.846950i \(-0.678436\pi\)
−0.531672 + 0.846950i \(0.678436\pi\)
\(24\) −0.551127 + 0.208058i −0.112498 + 0.0424697i
\(25\) 7.40954 1.48191
\(26\) −2.82054 + 4.24789i −0.553153 + 0.833079i
\(27\) 1.24062i 0.238757i
\(28\) 1.92047 + 0.558380i 0.362935 + 0.105524i
\(29\) 6.31068i 1.17186i −0.810360 0.585932i \(-0.800729\pi\)
0.810360 0.585932i \(-0.199271\pi\)
\(30\) −0.622911 0.829818i −0.113727 0.151503i
\(31\) 1.15279i 0.207048i 0.994627 + 0.103524i \(0.0330118\pi\)
−0.994627 + 0.103524i \(0.966988\pi\)
\(32\) 5.63964 0.440915i 0.996958 0.0779435i
\(33\) 0.401171i 0.0698349i
\(34\) 4.00871 3.00918i 0.687489 0.516070i
\(35\) 3.52272i 0.595448i
\(36\) 1.65092 5.67811i 0.275153 0.946351i
\(37\) −0.300461 −0.0493954 −0.0246977 0.999695i \(-0.507862\pi\)
−0.0246977 + 0.999695i \(0.507862\pi\)
\(38\) −0.146894 + 0.110267i −0.0238293 + 0.0178877i
\(39\) 0.250947 + 0.707776i 0.0401837 + 0.113335i
\(40\) 3.51904 + 9.32162i 0.556409 + 1.47388i
\(41\) 2.93462i 0.458311i −0.973390 0.229156i \(-0.926404\pi\)
0.973390 0.229156i \(-0.0735964\pi\)
\(42\) 0.235562 0.176827i 0.0363480 0.0272850i
\(43\) 5.57927i 0.850830i −0.904998 0.425415i \(-0.860128\pi\)
0.904998 0.425415i \(-0.139872\pi\)
\(44\) 1.07553 3.69913i 0.162142 0.557665i
\(45\) 10.4153 1.55263
\(46\) 5.76773 4.32960i 0.850406 0.638365i
\(47\) 2.30877i 0.336769i 0.985721 + 0.168384i \(0.0538549\pi\)
−0.985721 + 0.168384i \(0.946145\pi\)
\(48\) 0.446689 0.703226i 0.0644740 0.101502i
\(49\) −1.00000 −0.142857
\(50\) −8.38028 + 6.29074i −1.18515 + 0.889645i
\(51\) 0.738202i 0.103369i
\(52\) −0.416414 7.19907i −0.0577462 0.998331i
\(53\) 11.5827i 1.59101i 0.605946 + 0.795506i \(0.292795\pi\)
−0.605946 + 0.795506i \(0.707205\pi\)
\(54\) −1.05329 1.40315i −0.143335 0.190945i
\(55\) 6.78531 0.914930
\(56\) −2.64615 + 0.998957i −0.353606 + 0.133491i
\(57\) 0.0270504i 0.00358291i
\(58\) 5.35780 + 7.13746i 0.703514 + 0.937195i
\(59\) −7.08922 −0.922938 −0.461469 0.887156i \(-0.652677\pi\)
−0.461469 + 0.887156i \(0.652677\pi\)
\(60\) 1.40904 + 0.409680i 0.181906 + 0.0528895i
\(61\) 6.22897i 0.797538i −0.917051 0.398769i \(-0.869438\pi\)
0.917051 0.398769i \(-0.130562\pi\)
\(62\) −0.978728 1.30382i −0.124299 0.165586i
\(63\) 2.95662i 0.372499i
\(64\) −6.00417 + 5.28677i −0.750521 + 0.660846i
\(65\) 11.9712 4.24446i 1.48484 0.526460i
\(66\) −0.340596 0.453729i −0.0419245 0.0558502i
\(67\) −8.04110 −0.982376 −0.491188 0.871053i \(-0.663437\pi\)
−0.491188 + 0.871053i \(0.663437\pi\)
\(68\) −1.97910 + 6.80684i −0.240001 + 0.825450i
\(69\) 1.06212i 0.127865i
\(70\) −2.99081 3.98424i −0.357470 0.476208i
\(71\) 16.5533i 1.96452i 0.187535 + 0.982258i \(0.439950\pi\)
−0.187535 + 0.982258i \(0.560050\pi\)
\(72\) 2.95354 + 7.82365i 0.348078 + 0.922026i
\(73\) 11.4665i 1.34205i 0.741436 + 0.671024i \(0.234145\pi\)
−0.741436 + 0.671024i \(0.765855\pi\)
\(74\) 0.339825 0.255093i 0.0395038 0.0296539i
\(75\) 1.54322i 0.178196i
\(76\) 0.0725211 0.249427i 0.00831875 0.0286112i
\(77\) 1.92616i 0.219506i
\(78\) −0.884730 0.587449i −0.100176 0.0665155i
\(79\) 14.6896 1.65271 0.826357 0.563147i \(-0.190409\pi\)
0.826357 + 0.563147i \(0.190409\pi\)
\(80\) −11.8942 7.55519i −1.32981 0.844696i
\(81\) 8.61147 0.956830
\(82\) 2.49151 + 3.31910i 0.275141 + 0.366533i
\(83\) 3.76948 0.413754 0.206877 0.978367i \(-0.433670\pi\)
0.206877 + 0.978367i \(0.433670\pi\)
\(84\) −0.116297 + 0.399987i −0.0126890 + 0.0436421i
\(85\) −12.4858 −1.35427
\(86\) 4.73683 + 6.31022i 0.510785 + 0.680449i
\(87\) 1.31436 0.140914
\(88\) 1.92415 + 5.09689i 0.205115 + 0.543330i
\(89\) 0.982458i 0.104140i 0.998643 + 0.0520702i \(0.0165820\pi\)
−0.998643 + 0.0520702i \(0.983418\pi\)
\(90\) −11.7799 + 8.84268i −1.24171 + 0.932100i
\(91\) 1.20488 + 3.39827i 0.126306 + 0.356236i
\(92\) −2.84752 + 9.79368i −0.296875 + 1.02106i
\(93\) −0.240098 −0.0248970
\(94\) −1.96016 2.61125i −0.202175 0.269330i
\(95\) 0.457523 0.0469409
\(96\) 0.0918317 + 1.17460i 0.00937253 + 0.119882i
\(97\) 9.30657i 0.944939i −0.881347 0.472469i \(-0.843363\pi\)
0.881347 0.472469i \(-0.156637\pi\)
\(98\) 1.13101 0.849005i 0.114250 0.0857625i
\(99\) 5.69492 0.572361
\(100\) 4.13733 14.2298i 0.413733 1.42298i
\(101\) 9.15160i 0.910618i 0.890333 + 0.455309i \(0.150471\pi\)
−0.890333 + 0.455309i \(0.849529\pi\)
\(102\) 0.626738 + 0.834916i 0.0620563 + 0.0826690i
\(103\) 5.49996 0.541927 0.270964 0.962590i \(-0.412658\pi\)
0.270964 + 0.962590i \(0.412658\pi\)
\(104\) 6.58302 + 7.78870i 0.645518 + 0.763745i
\(105\) −0.733695 −0.0716013
\(106\) −9.83381 13.1002i −0.955144 1.27241i
\(107\) 6.53885i 0.632134i −0.948737 0.316067i \(-0.897637\pi\)
0.948737 0.316067i \(-0.102363\pi\)
\(108\) 2.38257 + 0.692735i 0.229263 + 0.0666585i
\(109\) −12.0875 −1.15778 −0.578888 0.815407i \(-0.696513\pi\)
−0.578888 + 0.815407i \(0.696513\pi\)
\(110\) −7.67427 + 5.76076i −0.731713 + 0.549267i
\(111\) 0.0625785i 0.00593969i
\(112\) 2.14470 3.37642i 0.202656 0.319042i
\(113\) −4.68304 −0.440543 −0.220272 0.975439i \(-0.570694\pi\)
−0.220272 + 0.975439i \(0.570694\pi\)
\(114\) −0.0229659 0.0305943i −0.00215095 0.00286542i
\(115\) −17.9645 −1.67520
\(116\) −12.1195 3.52376i −1.12527 0.327172i
\(117\) 10.0474 3.56238i 0.928883 0.329342i
\(118\) 8.01800 6.01879i 0.738117 0.554074i
\(119\) 3.54436i 0.324911i
\(120\) −1.94146 + 0.732929i −0.177231 + 0.0669070i
\(121\) −7.28992 −0.662720
\(122\) 5.28843 + 7.04504i 0.478792 + 0.637828i
\(123\) 0.611209 0.0551109
\(124\) 2.21391 + 0.643696i 0.198815 + 0.0578056i
\(125\) 8.48812 0.759200
\(126\) −2.51019 3.34398i −0.223625 0.297905i
\(127\) −14.7640 −1.31009 −0.655045 0.755590i \(-0.727350\pi\)
−0.655045 + 0.755590i \(0.727350\pi\)
\(128\) 2.30230 11.0770i 0.203496 0.979076i
\(129\) 1.16202 0.102310
\(130\) −9.93596 + 14.9641i −0.871442 + 1.31244i
\(131\) 15.8504i 1.38486i −0.721487 0.692428i \(-0.756541\pi\)
0.721487 0.692428i \(-0.243459\pi\)
\(132\) 0.770437 + 0.224006i 0.0670580 + 0.0194972i
\(133\) 0.129878i 0.0112618i
\(134\) 9.09458 6.82694i 0.785652 0.589757i
\(135\) 4.37034i 0.376139i
\(136\) −3.54066 9.37888i −0.303609 0.804233i
\(137\) 8.39453i 0.717193i −0.933493 0.358596i \(-0.883255\pi\)
0.933493 0.358596i \(-0.116745\pi\)
\(138\) 0.901750 + 1.20128i 0.0767620 + 0.102259i
\(139\) 13.5249i 1.14716i −0.819149 0.573581i \(-0.805554\pi\)
0.819149 0.573581i \(-0.194446\pi\)
\(140\) 6.76528 + 1.96701i 0.571770 + 0.166243i
\(141\) −0.480859 −0.0404957
\(142\) −14.0538 18.7220i −1.17937 1.57112i
\(143\) 6.54561 2.32079i 0.547371 0.194074i
\(144\) −9.98281 6.34108i −0.831901 0.528423i
\(145\) 22.2307i 1.84616i
\(146\) −9.73509 12.9687i −0.805681 1.07330i
\(147\) 0.208275i 0.0171783i
\(148\) −0.167771 + 0.577026i −0.0137907 + 0.0474312i
\(149\) 19.3528 1.58545 0.792723 0.609582i \(-0.208663\pi\)
0.792723 + 0.609582i \(0.208663\pi\)
\(150\) −1.31021 1.74541i −0.106978 0.142512i
\(151\) 5.55900i 0.452385i −0.974083 0.226193i \(-0.927372\pi\)
0.974083 0.226193i \(-0.0726279\pi\)
\(152\) 0.129742 + 0.343676i 0.0105235 + 0.0278758i
\(153\) −10.4793 −0.847203
\(154\) −1.63532 2.17851i −0.131778 0.175549i
\(155\) 4.06096i 0.326184i
\(156\) 1.49939 0.0867287i 0.120047 0.00694385i
\(157\) 16.1401i 1.28812i 0.764974 + 0.644061i \(0.222752\pi\)
−0.764974 + 0.644061i \(0.777248\pi\)
\(158\) −16.6142 + 12.4716i −1.32175 + 0.992186i
\(159\) −2.41240 −0.191316
\(160\) 19.8669 1.55322i 1.57061 0.122793i
\(161\) 5.09962i 0.401906i
\(162\) −9.73969 + 7.31119i −0.765222 + 0.574421i
\(163\) −3.76604 −0.294979 −0.147490 0.989064i \(-0.547119\pi\)
−0.147490 + 0.989064i \(0.547119\pi\)
\(164\) −5.63586 1.63863i −0.440087 0.127956i
\(165\) 1.41321i 0.110018i
\(166\) −4.26333 + 3.20031i −0.330899 + 0.248392i
\(167\) 23.2916i 1.80236i 0.433449 + 0.901178i \(0.357296\pi\)
−0.433449 + 0.901178i \(0.642704\pi\)
\(168\) −0.208058 0.551127i −0.0160520 0.0425203i
\(169\) 10.0965 8.18903i 0.776656 0.629925i
\(170\) 14.1216 10.6005i 1.08307 0.813020i
\(171\) 0.384000 0.0293652
\(172\) −10.7148 3.11535i −0.816998 0.237543i
\(173\) 19.8402i 1.50842i 0.656633 + 0.754210i \(0.271980\pi\)
−0.656633 + 0.754210i \(0.728020\pi\)
\(174\) −1.48656 + 1.11590i −0.112696 + 0.0845960i
\(175\) 7.40954i 0.560108i
\(176\) −6.50352 4.13104i −0.490222 0.311389i
\(177\) 1.47651i 0.110981i
\(178\) −0.834112 1.11117i −0.0625194 0.0832859i
\(179\) 0.396420i 0.0296298i −0.999890 0.0148149i \(-0.995284\pi\)
0.999890 0.0148149i \(-0.00471591\pi\)
\(180\) 5.81571 20.0024i 0.433478 1.49089i
\(181\) 21.0449i 1.56425i −0.623121 0.782126i \(-0.714135\pi\)
0.623121 0.782126i \(-0.285865\pi\)
\(182\) −4.24789 2.82054i −0.314874 0.209072i
\(183\) 1.29734 0.0959022
\(184\) −5.09430 13.4943i −0.375557 0.994816i
\(185\) −1.05844 −0.0778179
\(186\) 0.271554 0.203845i 0.0199113 0.0149466i
\(187\) −6.82699 −0.499239
\(188\) 4.43393 + 1.28917i 0.323377 + 0.0940223i
\(189\) −1.24062 −0.0902416
\(190\) −0.517464 + 0.388440i −0.0375408 + 0.0281804i
\(191\) 5.37919 0.389225 0.194612 0.980880i \(-0.437655\pi\)
0.194612 + 0.980880i \(0.437655\pi\)
\(192\) −1.10110 1.25052i −0.0794653 0.0902485i
\(193\) 23.0841i 1.66163i −0.556548 0.830816i \(-0.687874\pi\)
0.556548 0.830816i \(-0.312126\pi\)
\(194\) 7.90133 + 10.5258i 0.567282 + 0.755712i
\(195\) 0.884015 + 2.49330i 0.0633056 + 0.178549i
\(196\) −0.558380 + 1.92047i −0.0398843 + 0.137177i
\(197\) 8.31831 0.592655 0.296328 0.955086i \(-0.404238\pi\)
0.296328 + 0.955086i \(0.404238\pi\)
\(198\) −6.44102 + 4.83502i −0.457744 + 0.343610i
\(199\) −18.8463 −1.33598 −0.667989 0.744171i \(-0.732845\pi\)
−0.667989 + 0.744171i \(0.732845\pi\)
\(200\) 7.40181 + 19.6067i 0.523387 + 1.38640i
\(201\) 1.67476i 0.118129i
\(202\) −7.76976 10.3506i −0.546678 0.728264i
\(203\) 6.31068 0.442923
\(204\) −1.41770 0.412197i −0.0992586 0.0288596i
\(205\) 10.3378i 0.722026i
\(206\) −6.22053 + 4.66950i −0.433405 + 0.325339i
\(207\) −15.0776 −1.04797
\(208\) −14.0581 3.22010i −0.974756 0.223274i
\(209\) 0.250165 0.0173043
\(210\) 0.829818 0.622911i 0.0572629 0.0429849i
\(211\) 19.4654i 1.34005i −0.742337 0.670027i \(-0.766283\pi\)
0.742337 0.670027i \(-0.233717\pi\)
\(212\) 22.2443 + 6.46757i 1.52775 + 0.444194i
\(213\) −3.44764 −0.236229
\(214\) 5.55152 + 7.39552i 0.379494 + 0.505548i
\(215\) 19.6542i 1.34040i
\(216\) −3.28285 + 1.23932i −0.223370 + 0.0843252i
\(217\) −1.15279 −0.0782567
\(218\) 13.6712 10.2624i 0.925928 0.695057i
\(219\) −2.38818 −0.161378
\(220\) 3.78878 13.0310i 0.255439 0.878549i
\(221\) −12.0447 + 4.27053i −0.810214 + 0.287267i
\(222\) 0.0531295 + 0.0707771i 0.00356582 + 0.00475025i
\(223\) 17.6477i 1.18178i 0.806753 + 0.590889i \(0.201223\pi\)
−0.806753 + 0.590889i \(0.798777\pi\)
\(224\) 0.440915 + 5.63964i 0.0294599 + 0.376815i
\(225\) 21.9072 1.46048
\(226\) 5.29658 3.97593i 0.352323 0.264475i
\(227\) −18.0842 −1.20029 −0.600144 0.799892i \(-0.704890\pi\)
−0.600144 + 0.799892i \(0.704890\pi\)
\(228\) 0.0519494 + 0.0151044i 0.00344044 + 0.00100031i
\(229\) −4.25750 −0.281343 −0.140672 0.990056i \(-0.544926\pi\)
−0.140672 + 0.990056i \(0.544926\pi\)
\(230\) 20.3181 15.2520i 1.33974 1.00569i
\(231\) −0.401171 −0.0263951
\(232\) 16.6990 6.30410i 1.09634 0.413884i
\(233\) −12.0468 −0.789210 −0.394605 0.918851i \(-0.629119\pi\)
−0.394605 + 0.918851i \(0.629119\pi\)
\(234\) −8.33927 + 12.5594i −0.545155 + 0.821033i
\(235\) 8.13314i 0.530547i
\(236\) −3.95848 + 13.6147i −0.257675 + 0.886238i
\(237\) 3.05949i 0.198735i
\(238\) 3.00918 + 4.00871i 0.195056 + 0.259846i
\(239\) 1.26186i 0.0816230i 0.999167 + 0.0408115i \(0.0129943\pi\)
−0.999167 + 0.0408115i \(0.987006\pi\)
\(240\) 1.57356 2.47727i 0.101573 0.159907i
\(241\) 16.9944i 1.09471i 0.836902 + 0.547353i \(0.184364\pi\)
−0.836902 + 0.547353i \(0.815636\pi\)
\(242\) 8.24499 6.18918i 0.530008 0.397856i
\(243\) 5.51541i 0.353814i
\(244\) −11.9626 3.47813i −0.765825 0.222664i
\(245\) −3.52272 −0.225058
\(246\) −0.691286 + 0.518920i −0.0440748 + 0.0330851i
\(247\) 0.441360 0.156487i 0.0280831 0.00995705i
\(248\) −3.05046 + 1.15159i −0.193704 + 0.0731261i
\(249\) 0.785089i 0.0497530i
\(250\) −9.60017 + 7.20646i −0.607168 + 0.455776i
\(251\) 16.4332i 1.03725i 0.855001 + 0.518626i \(0.173556\pi\)
−0.855001 + 0.518626i \(0.826444\pi\)
\(252\) 5.67811 + 1.65092i 0.357687 + 0.103998i
\(253\) −9.82267 −0.617546
\(254\) 16.6982 12.5347i 1.04774 0.786496i
\(255\) 2.60048i 0.162848i
\(256\) 6.80049 + 14.4829i 0.425030 + 0.905179i
\(257\) −18.6782 −1.16511 −0.582557 0.812790i \(-0.697948\pi\)
−0.582557 + 0.812790i \(0.697948\pi\)
\(258\) −1.31426 + 0.986564i −0.0818225 + 0.0614208i
\(259\) 0.300461i 0.0186697i
\(260\) −1.46691 25.3603i −0.0909738 1.57278i
\(261\) 18.6583i 1.15492i
\(262\) 13.4571 + 17.9270i 0.831380 + 1.10753i
\(263\) −0.495204 −0.0305356 −0.0152678 0.999883i \(-0.504860\pi\)
−0.0152678 + 0.999883i \(0.504860\pi\)
\(264\) −1.06156 + 0.400752i −0.0653343 + 0.0246646i
\(265\) 40.8027i 2.50649i
\(266\) −0.110267 0.146894i −0.00676090 0.00900662i
\(267\) −0.204622 −0.0125226
\(268\) −4.48998 + 15.4427i −0.274269 + 0.943313i
\(269\) 10.0263i 0.611314i 0.952142 + 0.305657i \(0.0988760\pi\)
−0.952142 + 0.305657i \(0.901124\pi\)
\(270\) −3.71045 4.94291i −0.225810 0.300816i
\(271\) 19.8983i 1.20874i −0.796705 0.604369i \(-0.793425\pi\)
0.796705 0.604369i \(-0.206575\pi\)
\(272\) 11.9673 + 7.60160i 0.725621 + 0.460915i
\(273\) −0.707776 + 0.250947i −0.0428366 + 0.0151880i
\(274\) 7.12700 + 9.49432i 0.430558 + 0.573573i
\(275\) 14.2719 0.860630
\(276\) −2.03978 0.593069i −0.122780 0.0356985i
\(277\) 29.0585i 1.74596i −0.487759 0.872978i \(-0.662186\pi\)
0.487759 0.872978i \(-0.337814\pi\)
\(278\) 11.4827 + 15.2968i 0.688685 + 0.917440i
\(279\) 3.40837i 0.204054i
\(280\) −9.32162 + 3.51904i −0.557073 + 0.210303i
\(281\) 14.5021i 0.865120i 0.901605 + 0.432560i \(0.142390\pi\)
−0.901605 + 0.432560i \(0.857610\pi\)
\(282\) 0.543858 0.408252i 0.0323863 0.0243111i
\(283\) 5.54760i 0.329771i 0.986313 + 0.164885i \(0.0527254\pi\)
−0.986313 + 0.164885i \(0.947275\pi\)
\(284\) 31.7902 + 9.24303i 1.88640 + 0.548473i
\(285\) 0.0952907i 0.00564454i
\(286\) −5.43280 + 8.18210i −0.321248 + 0.483818i
\(287\) 2.93462 0.173225
\(288\) 16.6743 1.30362i 0.982542 0.0768164i
\(289\) −4.43753 −0.261031
\(290\) 18.8740 + 25.1433i 1.10832 + 1.47646i
\(291\) 1.93833 0.113627
\(292\) 22.0210 + 6.40264i 1.28868 + 0.374686i
\(293\) −24.7162 −1.44393 −0.721967 0.691928i \(-0.756762\pi\)
−0.721967 + 0.691928i \(0.756762\pi\)
\(294\) 0.176827 + 0.235562i 0.0103128 + 0.0137383i
\(295\) −24.9733 −1.45400
\(296\) −0.300147 0.795062i −0.0174457 0.0462121i
\(297\) 2.38962i 0.138660i
\(298\) −21.8883 + 16.4307i −1.26796 + 0.951803i
\(299\) −17.3299 + 6.14444i −1.00221 + 0.355342i
\(300\) 2.96372 + 0.861704i 0.171110 + 0.0497505i
\(301\) 5.57927 0.321584
\(302\) 4.71963 + 6.28731i 0.271584 + 0.361794i
\(303\) −1.90605 −0.109500
\(304\) −0.438523 0.278550i −0.0251510 0.0159759i
\(305\) 21.9429i 1.25645i
\(306\) 11.8522 8.89700i 0.677548 0.508608i
\(307\) 14.9768 0.854770 0.427385 0.904070i \(-0.359435\pi\)
0.427385 + 0.904070i \(0.359435\pi\)
\(308\) 3.69913 + 1.07553i 0.210777 + 0.0612838i
\(309\) 1.14551i 0.0651656i
\(310\) −3.44778 4.59300i −0.195821 0.260865i
\(311\) −22.2304 −1.26057 −0.630284 0.776365i \(-0.717061\pi\)
−0.630284 + 0.776365i \(0.717061\pi\)
\(312\) −1.62219 + 1.37108i −0.0918387 + 0.0776221i
\(313\) 8.34646 0.471770 0.235885 0.971781i \(-0.424201\pi\)
0.235885 + 0.971781i \(0.424201\pi\)
\(314\) −13.7030 18.2547i −0.773308 1.03017i
\(315\) 10.4153i 0.586838i
\(316\) 8.20239 28.2110i 0.461421 1.58700i
\(317\) 19.6311 1.10260 0.551298 0.834309i \(-0.314133\pi\)
0.551298 + 0.834309i \(0.314133\pi\)
\(318\) 2.72845 2.04814i 0.153004 0.114854i
\(319\) 12.1554i 0.680570i
\(320\) −21.1510 + 18.6238i −1.18238 + 1.04110i
\(321\) 1.36188 0.0760128
\(322\) 4.32960 + 5.76773i 0.241279 + 0.321423i
\(323\) −0.460334 −0.0256136
\(324\) 4.80847 16.5381i 0.267137 0.918783i
\(325\) 25.1796 8.92761i 1.39671 0.495215i
\(326\) 4.25944 3.19739i 0.235909 0.177087i
\(327\) 2.51754i 0.139220i
\(328\) 7.76544 2.93156i 0.428775 0.161868i
\(329\) −2.30877 −0.127287
\(330\) −1.19982 1.59836i −0.0660482 0.0879868i
\(331\) −33.6438 −1.84923 −0.924616 0.380900i \(-0.875614\pi\)
−0.924616 + 0.380900i \(0.875614\pi\)
\(332\) 2.10480 7.23918i 0.115516 0.397302i
\(333\) −0.888348 −0.0486812
\(334\) −19.7747 26.3431i −1.08202 1.44143i
\(335\) −28.3265 −1.54764
\(336\) 0.703226 + 0.446689i 0.0383641 + 0.0243689i
\(337\) 0.0143341 0.000780827 0.000390413 1.00000i \(-0.499876\pi\)
0.000390413 1.00000i \(0.499876\pi\)
\(338\) −4.46677 + 17.8339i −0.242960 + 0.970036i
\(339\) 0.975362i 0.0529744i
\(340\) −6.97180 + 23.9786i −0.378099 + 1.30042i
\(341\) 2.22046i 0.120245i
\(342\) −0.434309 + 0.326018i −0.0234847 + 0.0176290i
\(343\) 1.00000i 0.0539949i
\(344\) 14.7636 5.57345i 0.795998 0.300500i
\(345\) 3.74157i 0.201439i
\(346\) −16.8444 22.4395i −0.905561 1.20635i
\(347\) 3.13277i 0.168176i 0.996458 + 0.0840880i \(0.0267977\pi\)
−0.996458 + 0.0840880i \(0.973202\pi\)
\(348\) 0.733911 2.52419i 0.0393418 0.135311i
\(349\) 1.24421 0.0666011 0.0333006 0.999445i \(-0.489398\pi\)
0.0333006 + 0.999445i \(0.489398\pi\)
\(350\) −6.29074 8.38028i −0.336254 0.447945i
\(351\) 1.49480 + 4.21596i 0.0797863 + 0.225031i
\(352\) 10.8628 0.849271i 0.578991 0.0452663i
\(353\) 7.40604i 0.394184i −0.980385 0.197092i \(-0.936850\pi\)
0.980385 0.197092i \(-0.0631497\pi\)
\(354\) 1.25356 + 1.66995i 0.0666262 + 0.0887569i
\(355\) 58.3126i 3.09491i
\(356\) 1.88678 + 0.548585i 0.0999993 + 0.0290749i
\(357\) 0.738202 0.0390698
\(358\) 0.336563 + 0.448356i 0.0177879 + 0.0236964i
\(359\) 36.1561i 1.90824i −0.299418 0.954122i \(-0.596792\pi\)
0.299418 0.954122i \(-0.403208\pi\)
\(360\) 10.4045 + 27.5605i 0.548364 + 1.45257i
\(361\) −18.9831 −0.999112
\(362\) 17.8672 + 23.8020i 0.939079 + 1.25101i
\(363\) 1.51831i 0.0796906i
\(364\) 7.19907 0.416414i 0.377334 0.0218260i
\(365\) 40.3931i 2.11427i
\(366\) −1.46731 + 1.10145i −0.0766974 + 0.0575737i
\(367\) 8.10201 0.422922 0.211461 0.977386i \(-0.432178\pi\)
0.211461 + 0.977386i \(0.432178\pi\)
\(368\) 17.2185 + 10.9372i 0.897575 + 0.570140i
\(369\) 8.67657i 0.451684i
\(370\) 1.19711 0.898619i 0.0622346 0.0467170i
\(371\) −11.5827 −0.601346
\(372\) −0.134066 + 0.461102i −0.00695100 + 0.0239070i
\(373\) 7.73552i 0.400530i 0.979742 + 0.200265i \(0.0641803\pi\)
−0.979742 + 0.200265i \(0.935820\pi\)
\(374\) 7.72141 5.79615i 0.399265 0.299712i
\(375\) 1.76787i 0.0912922i
\(376\) −6.10934 + 2.30636i −0.315065 + 0.118941i
\(377\) −7.60362 21.4454i −0.391606 1.10450i
\(378\) 1.40315 1.05329i 0.0721704 0.0541754i
\(379\) 32.4599 1.66735 0.833675 0.552255i \(-0.186232\pi\)
0.833675 + 0.552255i \(0.186232\pi\)
\(380\) 0.255471 0.878660i 0.0131054 0.0450743i
\(381\) 3.07497i 0.157535i
\(382\) −6.08394 + 4.56696i −0.311281 + 0.233666i
\(383\) 35.7865i 1.82860i 0.405032 + 0.914302i \(0.367260\pi\)
−0.405032 + 0.914302i \(0.632740\pi\)
\(384\) 2.30706 + 0.479512i 0.117732 + 0.0244700i
\(385\) 6.78531i 0.345811i
\(386\) 19.5985 + 26.1084i 0.997540 + 1.32888i
\(387\) 16.4958i 0.838528i
\(388\) −17.8730 5.19660i −0.907364 0.263817i
\(389\) 6.32180i 0.320528i 0.987074 + 0.160264i \(0.0512345\pi\)
−0.987074 + 0.160264i \(0.948765\pi\)
\(390\) −3.11665 2.06942i −0.157818 0.104789i
\(391\) 18.0749 0.914086
\(392\) −0.998957 2.64615i −0.0504549 0.133651i
\(393\) 3.30124 0.166526
\(394\) −9.40812 + 7.06229i −0.473974 + 0.355793i
\(395\) 51.7474 2.60370
\(396\) 3.17992 10.9369i 0.159797 0.549601i
\(397\) −10.2742 −0.515649 −0.257824 0.966192i \(-0.583006\pi\)
−0.257824 + 0.966192i \(0.583006\pi\)
\(398\) 21.3154 16.0006i 1.06844 0.802038i
\(399\) −0.0270504 −0.00135421
\(400\) −25.0177 15.8913i −1.25089 0.794563i
\(401\) 1.79881i 0.0898285i −0.998991 0.0449142i \(-0.985699\pi\)
0.998991 0.0449142i \(-0.0143015\pi\)
\(402\) 1.42188 + 1.89418i 0.0709170 + 0.0944730i
\(403\) 1.38898 + 3.91751i 0.0691899 + 0.195145i
\(404\) 17.5754 + 5.11007i 0.874408 + 0.254235i
\(405\) 30.3358 1.50740
\(406\) −7.13746 + 5.35780i −0.354226 + 0.265903i
\(407\) −0.578734 −0.0286868
\(408\) 1.95339 0.737432i 0.0967072 0.0365083i
\(409\) 21.9102i 1.08339i 0.840575 + 0.541696i \(0.182217\pi\)
−0.840575 + 0.541696i \(0.817783\pi\)
\(410\) 8.77689 + 11.6922i 0.433460 + 0.577438i
\(411\) 1.74837 0.0862409
\(412\) 3.07107 10.5625i 0.151301 0.520378i
\(413\) 7.08922i 0.348838i
\(414\) 17.0530 12.8010i 0.838110 0.629135i
\(415\) 13.2788 0.651831
\(416\) 18.6338 8.29345i 0.913597 0.406620i
\(417\) 2.81689 0.137944
\(418\) −0.282940 + 0.212392i −0.0138390 + 0.0103884i
\(419\) 18.8887i 0.922773i 0.887199 + 0.461386i \(0.152648\pi\)
−0.887199 + 0.461386i \(0.847352\pi\)
\(420\) −0.409680 + 1.40904i −0.0199903 + 0.0687541i
\(421\) 6.34070 0.309027 0.154513 0.987991i \(-0.450619\pi\)
0.154513 + 0.987991i \(0.450619\pi\)
\(422\) 16.5262 + 22.0156i 0.804484 + 1.07170i
\(423\) 6.82615i 0.331899i
\(424\) −30.6496 + 11.5707i −1.48848 + 0.561921i
\(425\) −26.2620 −1.27390
\(426\) 3.89933 2.92707i 0.188923 0.141817i
\(427\) 6.22897 0.301441
\(428\) −12.5577 3.65116i −0.606998 0.176485i
\(429\) 0.483363 + 1.36329i 0.0233370 + 0.0658202i
\(430\) 16.6865 + 22.2291i 0.804695 + 1.07198i
\(431\) 27.2674i 1.31342i −0.754141 0.656712i \(-0.771947\pi\)
0.754141 0.656712i \(-0.228053\pi\)
\(432\) 2.66076 4.18885i 0.128016 0.201536i
\(433\) 17.8959 0.860023 0.430012 0.902823i \(-0.358509\pi\)
0.430012 + 0.902823i \(0.358509\pi\)
\(434\) 1.30382 0.978728i 0.0625855 0.0469804i
\(435\) 4.63012 0.221997
\(436\) −6.74944 + 23.2138i −0.323239 + 1.11174i
\(437\) −0.662328 −0.0316834
\(438\) 2.70106 2.02758i 0.129062 0.0968814i
\(439\) 16.4464 0.784944 0.392472 0.919764i \(-0.371620\pi\)
0.392472 + 0.919764i \(0.371620\pi\)
\(440\) 6.77823 + 17.9549i 0.323139 + 0.855967i
\(441\) −2.95662 −0.140791
\(442\) 9.99700 15.0560i 0.475509 0.716142i
\(443\) 21.4873i 1.02089i −0.859910 0.510446i \(-0.829480\pi\)
0.859910 0.510446i \(-0.170520\pi\)
\(444\) −0.120180 0.0349426i −0.00570350 0.00165830i
\(445\) 3.46092i 0.164063i
\(446\) −14.9830 19.9598i −0.709466 0.945123i
\(447\) 4.03072i 0.190646i
\(448\) −5.28677 6.00417i −0.249776 0.283670i
\(449\) 11.6297i 0.548840i 0.961610 + 0.274420i \(0.0884858\pi\)
−0.961610 + 0.274420i \(0.911514\pi\)
\(450\) −24.7773 + 18.5993i −1.16801 + 0.876781i
\(451\) 5.65254i 0.266168i
\(452\) −2.61491 + 8.99365i −0.122995 + 0.423026i
\(453\) 1.15780 0.0543983
\(454\) 20.4534 15.3536i 0.959926 0.720578i
\(455\) 4.24446 + 11.9712i 0.198983 + 0.561216i
\(456\) −0.0715792 + 0.0270221i −0.00335200 + 0.00126543i
\(457\) 20.1702i 0.943524i 0.881726 + 0.471762i \(0.156382\pi\)
−0.881726 + 0.471762i \(0.843618\pi\)
\(458\) 4.81529 3.61464i 0.225004 0.168901i
\(459\) 4.39719i 0.205243i
\(460\) −10.0310 + 34.5004i −0.467699 + 1.60859i
\(461\) −15.3054 −0.712845 −0.356423 0.934325i \(-0.616004\pi\)
−0.356423 + 0.934325i \(0.616004\pi\)
\(462\) 0.453729 0.340596i 0.0211094 0.0158460i
\(463\) 22.3957i 1.04082i −0.853917 0.520409i \(-0.825780\pi\)
0.853917 0.520409i \(-0.174220\pi\)
\(464\) −13.5345 + 21.3075i −0.628326 + 0.989178i
\(465\) −0.845798 −0.0392230
\(466\) 13.6250 10.2278i 0.631168 0.473792i
\(467\) 10.1198i 0.468287i −0.972202 0.234143i \(-0.924771\pi\)
0.972202 0.234143i \(-0.0752285\pi\)
\(468\) −1.23118 21.2849i −0.0569112 0.983896i
\(469\) 8.04110i 0.371303i
\(470\) −6.90508 9.19868i −0.318508 0.424304i
\(471\) −3.36159 −0.154894
\(472\) −7.08183 18.7591i −0.325967 0.863458i
\(473\) 10.7465i 0.494127i
\(474\) −2.59752 3.46032i −0.119308 0.158938i
\(475\) 0.962335 0.0441550
\(476\) −6.80684 1.97910i −0.311991 0.0907117i
\(477\) 34.2458i 1.56801i
\(478\) −1.07133 1.42718i −0.0490013 0.0652777i
\(479\) 20.1092i 0.918811i 0.888227 + 0.459405i \(0.151938\pi\)
−0.888227 + 0.459405i \(0.848062\pi\)
\(480\) 0.323497 + 4.13778i 0.0147655 + 0.188863i
\(481\) −1.02105 + 0.362019i −0.0465557 + 0.0165067i
\(482\) −14.4283 19.2209i −0.657193 0.875488i
\(483\) 1.06212 0.0483284
\(484\) −4.07054 + 14.0001i −0.185025 + 0.636368i
\(485\) 32.7844i 1.48866i
\(486\) −4.68261 6.23800i −0.212408 0.282961i
\(487\) 14.2922i 0.647643i −0.946118 0.323822i \(-0.895032\pi\)
0.946118 0.323822i \(-0.104968\pi\)
\(488\) 16.4828 6.22247i 0.746139 0.281678i
\(489\) 0.784373i 0.0354706i
\(490\) 3.98424 2.99081i 0.179990 0.135111i
\(491\) 20.8674i 0.941734i −0.882204 0.470867i \(-0.843941\pi\)
0.882204 0.470867i \(-0.156059\pi\)
\(492\) 0.341287 1.17381i 0.0153864 0.0529195i
\(493\) 22.3673i 1.00737i
\(494\) −0.366326 + 0.551707i −0.0164818 + 0.0248225i
\(495\) 20.0616 0.901701
\(496\) 2.47240 3.89232i 0.111014 0.174770i
\(497\) −16.5533 −0.742517
\(498\) −0.666545 0.887946i −0.0298686 0.0397898i
\(499\) 19.1219 0.856016 0.428008 0.903775i \(-0.359216\pi\)
0.428008 + 0.903775i \(0.359216\pi\)
\(500\) 4.73959 16.3012i 0.211961 0.729011i
\(501\) −4.85106 −0.216729
\(502\) −13.9518 18.5861i −0.622701 0.829538i
\(503\) 27.5342 1.22769 0.613844 0.789427i \(-0.289622\pi\)
0.613844 + 0.789427i \(0.289622\pi\)
\(504\) −7.82365 + 2.95354i −0.348493 + 0.131561i
\(505\) 32.2385i 1.43459i
\(506\) 11.1096 8.33950i 0.493880 0.370736i
\(507\) 1.70557 + 2.10286i 0.0757471 + 0.0933911i
\(508\) −8.24390 + 28.3538i −0.365764 + 1.25800i
\(509\) −13.8266 −0.612851 −0.306426 0.951895i \(-0.599133\pi\)
−0.306426 + 0.951895i \(0.599133\pi\)
\(510\) 2.20782 + 2.94117i 0.0977639 + 0.130237i
\(511\) −11.4665 −0.507246
\(512\) −19.9875 10.6067i −0.883330 0.468752i
\(513\) 0.161129i 0.00711401i
\(514\) 21.1253 15.8579i 0.931797 0.699462i
\(515\) 19.3748 0.853756
\(516\) 0.648850 2.23163i 0.0285640 0.0982422i
\(517\) 4.44705i 0.195581i
\(518\) 0.255093 + 0.339825i 0.0112081 + 0.0149310i
\(519\) −4.13222 −0.181384
\(520\) 23.1901 + 27.4374i 1.01695 + 1.20321i
\(521\) −4.40236 −0.192871 −0.0964355 0.995339i \(-0.530744\pi\)
−0.0964355 + 0.995339i \(0.530744\pi\)
\(522\) 15.8410 + 21.1028i 0.693341 + 0.923643i
\(523\) 5.70151i 0.249309i 0.992200 + 0.124655i \(0.0397823\pi\)
−0.992200 + 0.124655i \(0.960218\pi\)
\(524\) −30.4402 8.85053i −1.32979 0.386637i
\(525\) −1.54322 −0.0673518
\(526\) 0.560082 0.420431i 0.0244207 0.0183317i
\(527\) 4.08591i 0.177985i
\(528\) 0.860393 1.35452i 0.0374438 0.0589481i
\(529\) 3.00612 0.130701
\(530\) −34.6417 46.1484i −1.50474 2.00456i
\(531\) −20.9601 −0.909593
\(532\) 0.249427 + 0.0725211i 0.0108140 + 0.00314419i
\(533\) −3.53587 9.97265i −0.153156 0.431963i
\(534\) 0.231430 0.173725i 0.0100149 0.00751782i
\(535\) 23.0345i 0.995869i
\(536\) −8.03271 21.2779i −0.346960 0.919066i
\(537\) 0.0825646 0.00356292
\(538\) −8.51238 11.3399i −0.366995 0.488896i
\(539\) −1.92616 −0.0829654
\(540\) 8.39312 + 2.44031i 0.361182 + 0.105014i
\(541\) −21.6901 −0.932529 −0.466265 0.884645i \(-0.654400\pi\)
−0.466265 + 0.884645i \(0.654400\pi\)
\(542\) 16.8938 + 22.5053i 0.725650 + 0.966684i
\(543\) 4.38312 0.188098
\(544\) −19.9889 + 1.56276i −0.857018 + 0.0670028i
\(545\) −42.5810 −1.82397
\(546\) 0.587449 0.884730i 0.0251405 0.0378630i
\(547\) 8.57481i 0.366632i 0.983054 + 0.183316i \(0.0586832\pi\)
−0.983054 + 0.183316i \(0.941317\pi\)
\(548\) −16.1215 4.68733i −0.688674 0.200233i
\(549\) 18.4167i 0.786006i
\(550\) −16.1417 + 12.1169i −0.688286 + 0.516668i
\(551\) 0.819618i 0.0349169i
\(552\) 2.81054 1.06102i 0.119624 0.0451599i
\(553\) 14.6896i 0.624667i
\(554\) 24.6708 + 32.8655i 1.04816 + 1.39632i
\(555\) 0.220446i 0.00935743i
\(556\) −25.9741 7.55200i −1.10155 0.320276i
\(557\) −2.70216 −0.114494 −0.0572471 0.998360i \(-0.518232\pi\)
−0.0572471 + 0.998360i \(0.518232\pi\)
\(558\) −2.89373 3.85491i −0.122501 0.163191i
\(559\) −6.72235 18.9599i −0.284325 0.801917i
\(560\) 7.55519 11.8942i 0.319265 0.502621i
\(561\) 1.42189i 0.0600324i
\(562\) −12.3123 16.4020i −0.519364 0.691877i
\(563\) 39.2914i 1.65593i −0.560777 0.827967i \(-0.689497\pi\)
0.560777 0.827967i \(-0.310503\pi\)
\(564\) −0.268502 + 0.923477i −0.0113060 + 0.0388854i
\(565\) −16.4970 −0.694035
\(566\) −4.70994 6.27441i −0.197974 0.263733i
\(567\) 8.61147i 0.361648i
\(568\) −43.8025 + 16.5360i −1.83791 + 0.693837i
\(569\) 1.67637 0.0702771 0.0351386 0.999382i \(-0.488813\pi\)
0.0351386 + 0.999382i \(0.488813\pi\)
\(570\) −0.0809024 0.107775i −0.00338863 0.00451420i
\(571\) 34.5286i 1.44498i −0.691384 0.722488i \(-0.742999\pi\)
0.691384 0.722488i \(-0.257001\pi\)
\(572\) −0.802078 13.8665i −0.0335366 0.579789i
\(573\) 1.12035i 0.0468034i
\(574\) −3.31910 + 2.49151i −0.138536 + 0.103994i
\(575\) −37.7858 −1.57578
\(576\) −17.7521 + 15.6310i −0.739669 + 0.651291i
\(577\) 22.3246i 0.929384i −0.885472 0.464692i \(-0.846165\pi\)
0.885472 0.464692i \(-0.153835\pi\)
\(578\) 5.01891 3.76749i 0.208759 0.156707i
\(579\) 4.80785 0.199808
\(580\) −42.6935 12.4132i −1.77275 0.515430i
\(581\) 3.76948i 0.156384i
\(582\) −2.19227 + 1.64565i −0.0908727 + 0.0682144i
\(583\) 22.3102i 0.923993i
\(584\) −30.3419 + 11.4545i −1.25556 + 0.473990i
\(585\) 35.3942 12.5492i 1.46337 0.518848i
\(586\) 27.9543 20.9842i 1.15478 0.866848i
\(587\) 13.2895 0.548517 0.274259 0.961656i \(-0.411568\pi\)
0.274259 + 0.961656i \(0.411568\pi\)
\(588\) −0.399987 0.116297i −0.0164952 0.00479599i
\(589\) 0.149722i 0.00616920i
\(590\) 28.2451 21.2025i 1.16283 0.872893i
\(591\) 1.73250i 0.0712655i
\(592\) 1.01448 + 0.644399i 0.0416950 + 0.0264846i
\(593\) 22.1464i 0.909444i 0.890634 + 0.454722i \(0.150261\pi\)
−0.890634 + 0.454722i \(0.849739\pi\)
\(594\) −2.02880 2.70269i −0.0832428 0.110893i
\(595\) 12.4858i 0.511867i
\(596\) 10.8062 37.1666i 0.442640 1.52240i
\(597\) 3.92522i 0.160649i
\(598\) 14.3837 21.6626i 0.588192 0.885850i
\(599\) 23.3029 0.952129 0.476065 0.879410i \(-0.342063\pi\)
0.476065 + 0.879410i \(0.342063\pi\)
\(600\) −4.08359 + 1.54161i −0.166712 + 0.0629361i
\(601\) −14.8316 −0.604993 −0.302496 0.953151i \(-0.597820\pi\)
−0.302496 + 0.953151i \(0.597820\pi\)
\(602\) −6.31022 + 4.73683i −0.257186 + 0.193059i
\(603\) −23.7745 −0.968172
\(604\) −10.6759 3.10403i −0.434397 0.126301i
\(605\) −25.6803 −1.04405
\(606\) 2.15577 1.61825i 0.0875721 0.0657368i
\(607\) 38.0443 1.54417 0.772085 0.635520i \(-0.219214\pi\)
0.772085 + 0.635520i \(0.219214\pi\)
\(608\) 0.732465 0.0572651i 0.0297054 0.00232241i
\(609\) 1.31436i 0.0532605i
\(610\) 18.6296 + 24.8177i 0.754292 + 1.00484i
\(611\) 2.78179 + 7.84583i 0.112539 + 0.317408i
\(612\) −5.85144 + 20.1252i −0.236530 + 0.813515i
\(613\) 17.0574 0.688941 0.344470 0.938797i \(-0.388059\pi\)
0.344470 + 0.938797i \(0.388059\pi\)
\(614\) −16.9389 + 12.7154i −0.683600 + 0.513151i
\(615\) 2.15312 0.0868221
\(616\) −5.09689 + 1.92415i −0.205360 + 0.0775261i
\(617\) 7.95481i 0.320249i −0.987097 0.160124i \(-0.948810\pi\)
0.987097 0.160124i \(-0.0511895\pi\)
\(618\) −0.972541 1.29558i −0.0391213 0.0521159i
\(619\) 27.3721 1.10018 0.550088 0.835106i \(-0.314594\pi\)
0.550088 + 0.835106i \(0.314594\pi\)
\(620\) 7.79897 + 2.26756i 0.313214 + 0.0910674i
\(621\) 6.32668i 0.253881i
\(622\) 25.1428 18.8737i 1.00813 0.756766i
\(623\) −0.982458 −0.0393614
\(624\) 0.670668 2.92796i 0.0268482 0.117212i
\(625\) −7.14645 −0.285858
\(626\) −9.43995 + 7.08619i −0.377296 + 0.283221i
\(627\) 0.0521032i 0.00208080i
\(628\) 30.9966 + 9.01231i 1.23690 + 0.359630i
\(629\) 1.06494 0.0424619
\(630\) −8.84268 11.7799i −0.352301 0.469322i
\(631\) 21.1834i 0.843298i −0.906759 0.421649i \(-0.861452\pi\)
0.906759 0.421649i \(-0.138548\pi\)
\(632\) 14.6743 + 38.8709i 0.583713 + 1.54620i
\(633\) 4.05416 0.161138
\(634\) −22.2031 + 16.6670i −0.881797 + 0.661929i
\(635\) −52.0093 −2.06393
\(636\) −1.34703 + 4.63294i −0.0534134 + 0.183708i
\(637\) −3.39827 + 1.20488i −0.134644 + 0.0477391i
\(638\) 10.3200 + 13.7479i 0.408571 + 0.544283i
\(639\) 48.9419i 1.93611i
\(640\) 8.11034 39.0211i 0.320590 1.54244i
\(641\) 0.478600 0.0189036 0.00945179 0.999955i \(-0.496991\pi\)
0.00945179 + 0.999955i \(0.496991\pi\)
\(642\) −1.54030 + 1.15624i −0.0607910 + 0.0456333i
\(643\) −5.62114 −0.221676 −0.110838 0.993838i \(-0.535353\pi\)
−0.110838 + 0.993838i \(0.535353\pi\)
\(644\) −9.79368 2.84752i −0.385925 0.112208i
\(645\) 4.09348 0.161181
\(646\) 0.520643 0.390826i 0.0204844 0.0153768i
\(647\) −44.2220 −1.73854 −0.869272 0.494333i \(-0.835412\pi\)
−0.869272 + 0.494333i \(0.835412\pi\)
\(648\) 8.60249 + 22.7872i 0.337938 + 0.895166i
\(649\) −13.6550 −0.536004
\(650\) −20.8989 + 31.4749i −0.819722 + 1.23455i
\(651\) 0.240098i 0.00941019i
\(652\) −2.10288 + 7.23257i −0.0823551 + 0.283249i
\(653\) 4.90631i 0.191999i 0.995381 + 0.0959994i \(0.0306047\pi\)
−0.995381 + 0.0959994i \(0.969395\pi\)
\(654\) 2.13740 + 2.84737i 0.0835791 + 0.111341i
\(655\) 55.8364i 2.18171i
\(656\) −6.29390 + 9.90853i −0.245735 + 0.386863i
\(657\) 33.9020i 1.32264i
\(658\) 2.61125 1.96016i 0.101797 0.0764149i
\(659\) 2.44724i 0.0953310i −0.998863 0.0476655i \(-0.984822\pi\)
0.998863 0.0476655i \(-0.0151782\pi\)
\(660\) 2.71403 + 0.789108i 0.105644 + 0.0307160i
\(661\) −46.9632 −1.82666 −0.913328 0.407225i \(-0.866497\pi\)
−0.913328 + 0.407225i \(0.866497\pi\)
\(662\) 38.0516 28.5638i 1.47892 1.11016i
\(663\) −0.889446 2.50861i −0.0345432 0.0974264i
\(664\) 3.76555 + 9.97459i 0.146132 + 0.387089i
\(665\) 0.457523i 0.0177420i
\(666\) 1.00473 0.754212i 0.0389326 0.0292251i
\(667\) 32.1821i 1.24609i
\(668\) 44.7308 + 13.0055i 1.73069 + 0.503199i
\(669\) −3.67558 −0.142106
\(670\) 32.0376 24.0494i 1.23772 0.929108i
\(671\) 11.9980i 0.463177i
\(672\) −1.17460 + 0.0918317i −0.0453111 + 0.00354248i
\(673\) 42.5580 1.64049 0.820245 0.572013i \(-0.193837\pi\)
0.820245 + 0.572013i \(0.193837\pi\)
\(674\) −0.0162120 + 0.0121697i −0.000624464 + 0.000468760i
\(675\) 9.19240i 0.353816i
\(676\) −10.0891 23.9627i −0.388043 0.921641i
\(677\) 27.1383i 1.04301i −0.853249 0.521504i \(-0.825371\pi\)
0.853249 0.521504i \(-0.174629\pi\)
\(678\) 0.828087 + 1.10315i 0.0318025 + 0.0423661i
\(679\) 9.30657 0.357153
\(680\) −12.4727 33.0392i −0.478308 1.26699i
\(681\) 3.76648i 0.144332i
\(682\) −1.88518 2.51137i −0.0721874 0.0961653i
\(683\) −34.5690 −1.32275 −0.661373 0.750057i \(-0.730026\pi\)
−0.661373 + 0.750057i \(0.730026\pi\)
\(684\) 0.214418 0.737461i 0.00819846 0.0281975i
\(685\) 29.5715i 1.12987i
\(686\) 0.849005 + 1.13101i 0.0324152 + 0.0431823i
\(687\) 0.886732i 0.0338309i
\(688\) −11.9659 + 18.8380i −0.456195 + 0.718191i
\(689\) 13.9558 + 39.3613i 0.531675 + 1.49955i
\(690\) 3.17661 + 4.23176i 0.120931 + 0.161100i
\(691\) 26.6922 1.01542 0.507709 0.861529i \(-0.330492\pi\)
0.507709 + 0.861529i \(0.330492\pi\)
\(692\) 38.1025 + 11.0783i 1.44844 + 0.421136i
\(693\) 5.69492i 0.216332i
\(694\) −2.65974 3.54320i −0.100962 0.134498i
\(695\) 47.6442i 1.80725i
\(696\) 1.31299 + 3.47799i 0.0497687 + 0.131833i
\(697\) 10.4014i 0.393979i
\(698\) −1.40722 + 1.05634i −0.0532640 + 0.0399831i
\(699\) 2.50904i 0.0949007i
\(700\) 14.2298 + 4.13733i 0.537836 + 0.156377i
\(701\) 21.2235i 0.801602i 0.916165 + 0.400801i \(0.131268\pi\)
−0.916165 + 0.400801i \(0.868732\pi\)
\(702\) −5.27000 3.49921i −0.198903 0.132069i
\(703\) −0.0390232 −0.00147179
\(704\) −11.5650 + 10.1831i −0.435871 + 0.383792i
\(705\) −1.69393 −0.0637972
\(706\) 6.28777 + 8.37633i 0.236643 + 0.315247i
\(707\) −9.15160 −0.344181
\(708\) −2.83560 0.824453i −0.106568 0.0309848i
\(709\) −38.7261 −1.45439 −0.727194 0.686432i \(-0.759176\pi\)
−0.727194 + 0.686432i \(0.759176\pi\)
\(710\) −49.5077 65.9523i −1.85799 2.47515i
\(711\) 43.4317 1.62882
\(712\) −2.59973 + 0.981433i −0.0974289 + 0.0367808i
\(713\) 5.87881i 0.220163i
\(714\) −0.834916 + 0.626738i −0.0312459 + 0.0234551i
\(715\) 23.0583 8.17549i 0.862332 0.305746i
\(716\) −0.761314 0.221353i −0.0284516 0.00827235i
\(717\) −0.262814 −0.00981499
\(718\) 30.6967 + 40.8930i 1.14559 + 1.52611i
\(719\) 44.9233 1.67536 0.837679 0.546163i \(-0.183912\pi\)
0.837679 + 0.546163i \(0.183912\pi\)
\(720\) −35.1666 22.3378i −1.31058 0.832482i
\(721\) 5.49996i 0.204829i
\(722\) 21.4702 16.1168i 0.799037 0.599805i
\(723\) −3.53951 −0.131636
\(724\) −40.4161 11.7510i −1.50205 0.436723i
\(725\) 46.7592i 1.73659i
\(726\) 1.28905 + 1.71723i 0.0478413 + 0.0637323i
\(727\) 24.2750 0.900310 0.450155 0.892950i \(-0.351369\pi\)
0.450155 + 0.892950i \(0.351369\pi\)
\(728\) −7.78870 + 6.58302i −0.288668 + 0.243983i
\(729\) 24.6857 0.914285
\(730\) −34.2940 45.6851i −1.26928 1.69088i
\(731\) 19.7749i 0.731402i
\(732\) 0.724408 2.49151i 0.0267749 0.0920887i
\(733\) −21.7151 −0.802067 −0.401033 0.916063i \(-0.631349\pi\)
−0.401033 + 0.916063i \(0.631349\pi\)
\(734\) −9.16348 + 6.87865i −0.338230 + 0.253896i
\(735\) 0.733695i 0.0270627i
\(736\) −28.7600 + 2.24850i −1.06011 + 0.0828807i
\(737\) −15.4884 −0.570523
\(738\) 7.36645 + 9.81331i 0.271163 + 0.361233i
\(739\) 4.13272 0.152025 0.0760123 0.997107i \(-0.475781\pi\)
0.0760123 + 0.997107i \(0.475781\pi\)
\(740\) −0.591010 + 2.03270i −0.0217260 + 0.0747235i
\(741\) 0.0325925 + 0.0919245i 0.00119731 + 0.00337693i
\(742\) 13.1002 9.83381i 0.480924 0.361011i
\(743\) 20.2682i 0.743567i −0.928319 0.371784i \(-0.878746\pi\)
0.928319 0.371784i \(-0.121254\pi\)
\(744\) −0.239848 0.635335i −0.00879325 0.0232925i
\(745\) 68.1746 2.49772
\(746\) −6.56750 8.74897i −0.240453 0.320323i
\(747\) 11.1449 0.407771
\(748\) −3.81205 + 13.1110i −0.139382 + 0.479387i
\(749\) 6.53885 0.238924
\(750\) −1.50093 1.99948i −0.0548061 0.0730106i
\(751\) 50.2644 1.83417 0.917087 0.398687i \(-0.130534\pi\)
0.917087 + 0.398687i \(0.130534\pi\)
\(752\) 4.95163 7.79538i 0.180567 0.284268i
\(753\) −3.42262 −0.124727
\(754\) 26.8071 + 17.7995i 0.976256 + 0.648221i
\(755\) 19.5828i 0.712691i
\(756\) −0.692735 + 2.38257i −0.0251945 + 0.0866532i
\(757\) 20.4735i 0.744122i −0.928208 0.372061i \(-0.878651\pi\)
0.928208 0.372061i \(-0.121349\pi\)
\(758\) −36.7125 + 27.5586i −1.33346 + 1.00097i
\(759\) 2.04582i 0.0742585i
\(760\) 0.457046 + 1.21067i 0.0165788 + 0.0439157i
\(761\) 31.2031i 1.13111i −0.824710 0.565556i \(-0.808662\pi\)
0.824710 0.565556i \(-0.191338\pi\)
\(762\) 2.61067 + 3.47783i 0.0945744 + 0.125988i
\(763\) 12.0875i 0.437599i
\(764\) 3.00363 10.3306i 0.108668 0.373748i
\(765\) −36.9157 −1.33469
\(766\) −30.3829 40.4750i −1.09778 1.46242i
\(767\) −24.0911 + 8.54167i −0.869880 + 0.308422i
\(768\) −3.01642 + 1.41637i −0.108846 + 0.0511090i
\(769\) 32.8772i 1.18558i 0.805356 + 0.592791i \(0.201974\pi\)
−0.805356 + 0.592791i \(0.798026\pi\)
\(770\) −5.76076 7.67427i −0.207603 0.276561i
\(771\) 3.89021i 0.140103i
\(772\) −44.3324 12.8897i −1.59556 0.463911i
\(773\) 12.3295 0.443463 0.221731 0.975108i \(-0.428829\pi\)
0.221731 + 0.975108i \(0.428829\pi\)
\(774\) 14.0050 + 18.6569i 0.503400 + 0.670610i
\(775\) 8.54166i 0.306826i
\(776\) 24.6265 9.29686i 0.884041 0.333738i
\(777\) 0.0625785 0.00224499
\(778\) −5.36724 7.15004i −0.192425 0.256341i
\(779\) 0.381143i 0.0136558i
\(780\) 5.28192 0.305521i 0.189123 0.0109394i
\(781\) 31.8843i 1.14091i
\(782\) −20.4429 + 15.3457i −0.731037 + 0.548760i
\(783\) 7.82914 0.279791
\(784\) 3.37642 + 2.14470i 0.120587 + 0.0765966i
\(785\) 56.8571i 2.02932i
\(786\) −3.73375 + 2.80277i −0.133178 + 0.0999717i
\(787\) 34.8281 1.24149 0.620743 0.784014i \(-0.286831\pi\)
0.620743 + 0.784014i \(0.286831\pi\)
\(788\) 4.64478 15.9751i 0.165463 0.569089i
\(789\) 0.103139i 0.00367184i
\(790\) −58.5270 + 43.9339i −2.08230 + 1.56310i
\(791\) 4.68304i 0.166510i
\(792\) 5.68897 + 15.0696i 0.202149 + 0.535474i
\(793\) −7.50517 21.1677i −0.266516 0.751689i
\(794\) 11.6203 8.72288i 0.412388 0.309563i
\(795\) −8.49820 −0.301400
\(796\) −10.5234 + 36.1938i −0.372992 + 1.28286i
\(797\) 37.3680i 1.32364i 0.749661 + 0.661821i \(0.230216\pi\)
−0.749661 + 0.661821i \(0.769784\pi\)
\(798\) 0.0305943 0.0229659i 0.00108303 0.000812984i
\(799\) 8.18310i 0.289497i
\(800\) 41.7872 3.26697i 1.47740 0.115505i
\(801\) 2.90476i 0.102635i
\(802\) 1.52720 + 2.03448i 0.0539274 + 0.0718400i
\(803\) 22.0862i 0.779405i
\(804\) −3.21633 0.935153i −0.113431 0.0329803i
\(805\) 17.9645i 0.633166i
\(806\) −4.89694 3.25150i −0.172487 0.114529i
\(807\) −2.08823 −0.0735091
\(808\) −24.2165 + 9.14205i −0.851932 + 0.321616i
\(809\) 36.3556 1.27819 0.639097 0.769126i \(-0.279308\pi\)
0.639097 + 0.769126i \(0.279308\pi\)
\(810\) −34.3102 + 25.7552i −1.20554 + 0.904947i
\(811\) −29.4704 −1.03485 −0.517423 0.855730i \(-0.673109\pi\)
−0.517423 + 0.855730i \(0.673109\pi\)
\(812\) 3.52376 12.1195i 0.123660 0.425311i
\(813\) 4.14433 0.145348
\(814\) 0.654556 0.491348i 0.0229422 0.0172218i
\(815\) −13.2667 −0.464712
\(816\) −1.58323 + 2.49248i −0.0554240 + 0.0872544i
\(817\) 0.724623i 0.0253514i
\(818\) −18.6019 24.7808i −0.650400 0.866439i
\(819\) 3.56238 + 10.0474i 0.124480 + 0.351085i
\(820\) −19.8535 5.77244i −0.693316 0.201582i
\(821\) 8.34090 0.291100 0.145550 0.989351i \(-0.453505\pi\)
0.145550 + 0.989351i \(0.453505\pi\)
\(822\) −1.97743 + 1.48438i −0.0689709 + 0.0517736i
\(823\) 46.3329 1.61506 0.807531 0.589825i \(-0.200803\pi\)
0.807531 + 0.589825i \(0.200803\pi\)
\(824\) 5.49422 + 14.5537i 0.191400 + 0.507002i
\(825\) 2.97249i 0.103489i
\(826\) 6.01879 + 8.01800i 0.209420 + 0.278982i
\(827\) 36.3252 1.26315 0.631575 0.775315i \(-0.282409\pi\)
0.631575 + 0.775315i \(0.282409\pi\)
\(828\) −8.41905 + 28.9562i −0.292582 + 1.00630i
\(829\) 12.3282i 0.428175i 0.976814 + 0.214088i \(0.0686778\pi\)
−0.976814 + 0.214088i \(0.931322\pi\)
\(830\) −15.0185 + 11.2738i −0.521300 + 0.391319i
\(831\) 6.05217 0.209947
\(832\) −14.0339 + 25.2002i −0.486537 + 0.873660i
\(833\) 3.54436 0.122805
\(834\) −3.18594 + 2.39156i −0.110320 + 0.0828128i
\(835\) 82.0496i 2.83944i
\(836\) 0.139687 0.480435i 0.00483118 0.0166162i
\(837\) −1.43017 −0.0494341
\(838\) −16.0366 21.3633i −0.553975 0.737985i
\(839\) 33.9276i 1.17131i 0.810560 + 0.585656i \(0.199163\pi\)
−0.810560 + 0.585656i \(0.800837\pi\)
\(840\) −0.732929 1.94146i −0.0252885 0.0669869i
\(841\) −10.8247 −0.373266
\(842\) −7.17141 + 5.38329i −0.247143 + 0.185520i
\(843\) −3.02042 −0.104029
\(844\) −37.3827 10.8691i −1.28677 0.374129i
\(845\) 35.5672 28.8476i 1.22355 0.992389i
\(846\) −5.79544 7.72047i −0.199251 0.265435i
\(847\) 7.28992i 0.250485i
\(848\) 24.8416 39.1083i 0.853063 1.34298i
\(849\) −1.15543 −0.0396542
\(850\) 29.7027 22.2966i 1.01879 0.764768i
\(851\) 1.53223 0.0525243
\(852\) −1.92509 + 6.62110i −0.0659526 + 0.226835i
\(853\) 38.7697 1.32745 0.663725 0.747977i \(-0.268974\pi\)
0.663725 + 0.747977i \(0.268974\pi\)
\(854\) −7.04504 + 5.28843i −0.241076 + 0.180966i
\(855\) 1.35272 0.0462621
\(856\) 17.3027 6.53203i 0.591396 0.223260i
\(857\) −26.4866 −0.904764 −0.452382 0.891824i \(-0.649426\pi\)
−0.452382 + 0.891824i \(0.649426\pi\)
\(858\) −1.70413 1.13152i −0.0581780 0.0386294i
\(859\) 17.8500i 0.609033i −0.952507 0.304517i \(-0.901505\pi\)
0.952507 0.304517i \(-0.0984949\pi\)
\(860\) −37.7453 10.9745i −1.28710 0.374227i
\(861\) 0.611209i 0.0208300i
\(862\) 23.1502 + 30.8398i 0.788498 + 1.05041i
\(863\) 13.6999i 0.466350i 0.972435 + 0.233175i \(0.0749115\pi\)
−0.972435 + 0.233175i \(0.925088\pi\)
\(864\) 0.547006 + 6.99664i 0.0186095 + 0.238031i
\(865\) 69.8913i 2.37638i
\(866\) −20.2405 + 15.1937i −0.687801 + 0.516304i
\(867\) 0.924228i 0.0313884i
\(868\) −0.643696 + 2.21391i −0.0218485 + 0.0751449i
\(869\) 28.2945 0.959827
\(870\) −5.23672 + 3.93099i −0.177541 + 0.133273i
\(871\) −27.3258 + 9.68857i −0.925901 + 0.328285i
\(872\) −12.0749 31.9854i −0.408909 1.08316i
\(873\) 27.5160i 0.931276i
\(874\) 0.749101 0.562320i 0.0253387 0.0190208i
\(875\) 8.48812i 0.286951i
\(876\) −1.33351 + 4.58643i −0.0450552 + 0.154961i
\(877\) 1.66862 0.0563452 0.0281726 0.999603i \(-0.491031\pi\)
0.0281726 + 0.999603i \(0.491031\pi\)
\(878\) −18.6011 + 13.9631i −0.627757 + 0.471231i
\(879\) 5.14777i 0.173630i
\(880\) −22.9101 14.5525i −0.772298 0.490564i
\(881\) −0.959187 −0.0323158 −0.0161579 0.999869i \(-0.505143\pi\)
−0.0161579 + 0.999869i \(0.505143\pi\)
\(882\) 3.34398 2.51019i 0.112598 0.0845224i
\(883\) 40.6249i 1.36714i −0.729886 0.683569i \(-0.760427\pi\)
0.729886 0.683569i \(-0.239573\pi\)
\(884\) 1.47592 + 25.5161i 0.0496405 + 0.858198i
\(885\) 5.20133i 0.174841i
\(886\) 18.2428 + 24.3024i 0.612879 + 0.816454i
\(887\) −58.6312 −1.96864 −0.984322 0.176380i \(-0.943561\pi\)
−0.984322 + 0.176380i \(0.943561\pi\)
\(888\) 0.165592 0.0625132i 0.00555690 0.00209781i
\(889\) 14.7640i 0.495168i
\(890\) −2.93834 3.91435i −0.0984934 0.131209i
\(891\) 16.5870 0.555687
\(892\) 33.8919 + 9.85412i 1.13479 + 0.329940i
\(893\) 0.299858i 0.0100344i
\(894\) −3.42210 4.55879i −0.114452 0.152469i
\(895\) 1.39648i 0.0466791i
\(896\) 11.0770 + 2.30230i 0.370056 + 0.0769144i
\(897\) −1.27973 3.60939i −0.0427291 0.120514i
\(898\) −9.87368 13.1533i −0.329489 0.438933i
\(899\) 7.27491 0.242632
\(900\) 12.2325 42.0722i 0.407751 1.40241i
\(901\) 41.0534i 1.36769i
\(902\) 4.79904 + 6.39310i 0.159791 + 0.212867i
\(903\) 1.16202i 0.0386697i
\(904\) −4.67815 12.3920i −0.155593 0.412152i
\(905\) 74.1351i 2.46433i
\(906\) −1.30949 + 0.982981i −0.0435049 + 0.0326574i
\(907\) 16.8426i 0.559251i 0.960109 + 0.279625i \(0.0902103\pi\)
−0.960109 + 0.279625i \(0.909790\pi\)
\(908\) −10.0978 + 34.7301i −0.335108 + 1.15256i
\(909\) 27.0578i 0.897451i
\(910\) −14.9641 9.93596i −0.496055 0.329374i
\(911\) −19.4339 −0.643874 −0.321937 0.946761i \(-0.604334\pi\)
−0.321937 + 0.946761i \(0.604334\pi\)
\(912\) 0.0580150 0.0913335i 0.00192107 0.00302435i
\(913\) 7.26061 0.240291
\(914\) −17.1246 22.8128i −0.566433 0.754580i
\(915\) 4.57016 0.151085
\(916\) −2.37730 + 8.17641i −0.0785482 + 0.270156i
\(917\) 15.8504 0.523426
\(918\) 3.73324 + 4.97328i 0.123215 + 0.164143i
\(919\) −4.84960 −0.159974 −0.0799868 0.996796i \(-0.525488\pi\)
−0.0799868 + 0.996796i \(0.525488\pi\)
\(920\) −17.9458 47.5367i −0.591655 1.56724i
\(921\) 3.11929i 0.102784i
\(922\) 17.3106 12.9944i 0.570096 0.427948i
\(923\) 19.9448 + 56.2527i 0.656490 + 1.85158i
\(924\) −0.224006 + 0.770437i −0.00736924 + 0.0253455i
\(925\) −2.22627 −0.0731994
\(926\) 19.0141 + 25.3299i 0.624842 + 0.832391i
\(927\) 16.2613 0.534091
\(928\) −2.78247 35.5900i −0.0913391 1.16830i
\(929\) 15.2435i 0.500124i 0.968230 + 0.250062i \(0.0804509\pi\)
−0.968230 + 0.250062i \(0.919549\pi\)
\(930\) 0.956609 0.718087i 0.0313684 0.0235470i
\(931\) −0.129878 −0.00425658
\(932\) −6.72667 + 23.1355i −0.220339 + 0.757828i
\(933\) 4.63003i 0.151580i
\(934\) 8.59173 + 11.4456i 0.281130 + 0.374511i
\(935\) −24.0495 −0.786504
\(936\) 19.4635 + 23.0282i 0.636184 + 0.752702i
\(937\) −58.4300 −1.90883 −0.954413 0.298490i \(-0.903517\pi\)
−0.954413 + 0.298490i \(0.903517\pi\)
\(938\) 6.82694 + 9.09458i 0.222907 + 0.296949i
\(939\) 1.73836i 0.0567293i
\(940\) 15.6195 + 4.54138i 0.509451 + 0.148123i
\(941\) −22.9904 −0.749467 −0.374733 0.927133i \(-0.622266\pi\)
−0.374733 + 0.927133i \(0.622266\pi\)
\(942\) 3.80200 2.85401i 0.123876 0.0929885i
\(943\) 14.9655i 0.487342i
\(944\) 23.9362 + 15.2043i 0.779058 + 0.494857i
\(945\) −4.37034 −0.142167
\(946\) 9.12388 + 12.1545i 0.296643 + 0.395176i
\(947\) −19.1597 −0.622608 −0.311304 0.950310i \(-0.600766\pi\)
−0.311304 + 0.950310i \(0.600766\pi\)
\(948\) 5.87566 + 1.70836i 0.190833 + 0.0554848i
\(949\) 13.8157 + 38.9662i 0.448477 + 1.26490i
\(950\) −1.08841 + 0.817028i −0.0353128 + 0.0265079i
\(951\) 4.08868i 0.132585i
\(952\) 9.37888 3.54066i 0.303971 0.114753i
\(953\) 40.8834 1.32434 0.662171 0.749353i \(-0.269635\pi\)
0.662171 + 0.749353i \(0.269635\pi\)
\(954\) −29.0749 38.7324i −0.941333 1.25401i
\(955\) 18.9494 0.613188
\(956\) 2.42337 + 0.704597i 0.0783773 + 0.0227883i
\(957\) 2.53166 0.0818370
\(958\) −17.0728 22.7437i −0.551597 0.734816i
\(959\) 8.39453 0.271073
\(960\) −3.87888 4.40523i −0.125190 0.142178i
\(961\) 29.6711 0.957131
\(962\) 0.847461 1.27632i 0.0273232 0.0411503i
\(963\) 19.3329i 0.622994i
\(964\) 32.6373 + 9.48933i 1.05118 + 0.305631i
\(965\) 81.3188i 2.61775i
\(966\) −1.20128 + 0.901750i −0.0386504 + 0.0290133i
\(967\) 1.86092i 0.0598431i −0.999552 0.0299216i \(-0.990474\pi\)
0.999552 0.0299216i \(-0.00952575\pi\)
\(968\) −7.28231 19.2902i −0.234062 0.620010i
\(969\) 0.0958761i 0.00307998i
\(970\) 27.8341 + 37.0796i 0.893700 + 1.19055i
\(971\) 22.8850i 0.734416i −0.930139 0.367208i \(-0.880314\pi\)
0.930139 0.367208i \(-0.119686\pi\)
\(972\) 10.5922 + 3.07969i 0.339745 + 0.0987811i
\(973\) 13.5249 0.433587
\(974\) 12.1342 + 16.1647i 0.388805 + 0.517951i
\(975\) 1.85940 + 5.24430i 0.0595485 + 0.167952i
\(976\) −13.3593 + 21.0316i −0.427621 + 0.673207i
\(977\) 3.98677i 0.127548i −0.997964 0.0637740i \(-0.979686\pi\)
0.997964 0.0637740i \(-0.0203137\pi\)
\(978\) 0.665937 + 0.887136i 0.0212943 + 0.0283675i
\(979\) 1.89237i 0.0604804i
\(980\) −1.96701 + 6.76528i −0.0628339 + 0.216109i
\(981\) −35.7383 −1.14104
\(982\) 17.7166 + 23.6013i 0.565358 + 0.753148i
\(983\) 50.8782i 1.62276i 0.584518 + 0.811381i \(0.301284\pi\)
−0.584518 + 0.811381i \(0.698716\pi\)
\(984\) 0.610572 + 1.61735i 0.0194643 + 0.0515592i
\(985\) 29.3031 0.933673
\(986\) −18.9900 25.2977i −0.604764 0.805643i
\(987\) 0.480859i 0.0153059i
\(988\) −0.0540829 0.935000i −0.00172061 0.0297463i
\(989\) 28.4521i 0.904726i
\(990\) −22.6899 + 17.0324i −0.721132 + 0.541325i
\(991\) −54.2500 −1.72331 −0.861653 0.507497i \(-0.830571\pi\)
−0.861653 + 0.507497i \(0.830571\pi\)
\(992\) 0.508283 + 6.50134i 0.0161380 + 0.206418i
\(993\) 7.00718i 0.222366i
\(994\) 18.7220 14.0538i 0.593826 0.445761i
\(995\) −66.3902 −2.10471
\(996\) 1.50774 + 0.438378i 0.0477746 + 0.0138905i
\(997\) 25.8118i 0.817467i 0.912654 + 0.408734i \(0.134029\pi\)
−0.912654 + 0.408734i \(0.865971\pi\)
\(998\) −21.6272 + 16.2346i −0.684596 + 0.513898i
\(999\) 0.372756i 0.0117935i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 728.2.i.a.701.16 yes 84
4.3 odd 2 2912.2.i.a.337.71 84
8.3 odd 2 2912.2.i.a.337.14 84
8.5 even 2 inner 728.2.i.a.701.70 yes 84
13.12 even 2 inner 728.2.i.a.701.69 yes 84
52.51 odd 2 2912.2.i.a.337.13 84
104.51 odd 2 2912.2.i.a.337.72 84
104.77 even 2 inner 728.2.i.a.701.15 84
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
728.2.i.a.701.15 84 104.77 even 2 inner
728.2.i.a.701.16 yes 84 1.1 even 1 trivial
728.2.i.a.701.69 yes 84 13.12 even 2 inner
728.2.i.a.701.70 yes 84 8.5 even 2 inner
2912.2.i.a.337.13 84 52.51 odd 2
2912.2.i.a.337.14 84 8.3 odd 2
2912.2.i.a.337.71 84 4.3 odd 2
2912.2.i.a.337.72 84 104.51 odd 2