Properties

Label 2912.2.i.a.337.13
Level $2912$
Weight $2$
Character 2912.337
Analytic conductor $23.252$
Analytic rank $0$
Dimension $84$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2912,2,Mod(337,2912)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2912, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2912.337"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2912 = 2^{5} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2912.i (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(23.2524370686\)
Analytic rank: \(0\)
Dimension: \(84\)
Twist minimal: no (minimal twist has level 728)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 337.13
Character \(\chi\) \(=\) 2912.337
Dual form 2912.2.i.a.337.14

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.208275i q^{3} -3.52272 q^{5} +1.00000i q^{7} +2.95662 q^{9} +1.92616 q^{11} +(-3.39827 - 1.20488i) q^{13} +0.733695i q^{15} -3.54436 q^{17} +0.129878 q^{19} +0.208275 q^{21} +5.09962 q^{23} +7.40954 q^{25} -1.24062i q^{27} -6.31068i q^{29} +1.15279i q^{31} -0.401171i q^{33} -3.52272i q^{35} +0.300461 q^{37} +(-0.250947 + 0.707776i) q^{39} +2.93462i q^{41} +5.57927i q^{43} -10.4153 q^{45} +2.30877i q^{47} -1.00000 q^{49} +0.738202i q^{51} +11.5827i q^{53} -6.78531 q^{55} -0.0270504i q^{57} -7.08922 q^{59} -6.22897i q^{61} +2.95662i q^{63} +(11.9712 + 4.24446i) q^{65} -8.04110 q^{67} -1.06212i q^{69} +16.5533i q^{71} -11.4665i q^{73} -1.54322i q^{75} +1.92616i q^{77} -14.6896 q^{79} +8.61147 q^{81} +3.76948 q^{83} +12.4858 q^{85} -1.31436 q^{87} -0.982458i q^{89} +(1.20488 - 3.39827i) q^{91} +0.240098 q^{93} -0.457523 q^{95} +9.30657i q^{97} +5.69492 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 84 q - 84 q^{9} + 8 q^{17} + 24 q^{23} + 92 q^{25} + 24 q^{39} - 84 q^{49} - 32 q^{55} - 24 q^{65} + 40 q^{79} + 84 q^{81} + 48 q^{87} + 16 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2912\mathbb{Z}\right)^\times\).

\(n\) \(1093\) \(1249\) \(2017\) \(2367\)
\(\chi(n)\) \(-1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.208275i 0.120248i −0.998191 0.0601239i \(-0.980850\pi\)
0.998191 0.0601239i \(-0.0191496\pi\)
\(4\) 0 0
\(5\) −3.52272 −1.57541 −0.787704 0.616055i \(-0.788730\pi\)
−0.787704 + 0.616055i \(0.788730\pi\)
\(6\) 0 0
\(7\) 1.00000i 0.377964i
\(8\) 0 0
\(9\) 2.95662 0.985540
\(10\) 0 0
\(11\) 1.92616 0.580758 0.290379 0.956912i \(-0.406219\pi\)
0.290379 + 0.956912i \(0.406219\pi\)
\(12\) 0 0
\(13\) −3.39827 1.20488i −0.942511 0.334174i
\(14\) 0 0
\(15\) 0.733695i 0.189439i
\(16\) 0 0
\(17\) −3.54436 −0.859633 −0.429816 0.902916i \(-0.641422\pi\)
−0.429816 + 0.902916i \(0.641422\pi\)
\(18\) 0 0
\(19\) 0.129878 0.0297960 0.0148980 0.999889i \(-0.495258\pi\)
0.0148980 + 0.999889i \(0.495258\pi\)
\(20\) 0 0
\(21\) 0.208275 0.0454494
\(22\) 0 0
\(23\) 5.09962 1.06334 0.531672 0.846950i \(-0.321564\pi\)
0.531672 + 0.846950i \(0.321564\pi\)
\(24\) 0 0
\(25\) 7.40954 1.48191
\(26\) 0 0
\(27\) 1.24062i 0.238757i
\(28\) 0 0
\(29\) 6.31068i 1.17186i −0.810360 0.585932i \(-0.800729\pi\)
0.810360 0.585932i \(-0.199271\pi\)
\(30\) 0 0
\(31\) 1.15279i 0.207048i 0.994627 + 0.103524i \(0.0330118\pi\)
−0.994627 + 0.103524i \(0.966988\pi\)
\(32\) 0 0
\(33\) 0.401171i 0.0698349i
\(34\) 0 0
\(35\) 3.52272i 0.595448i
\(36\) 0 0
\(37\) 0.300461 0.0493954 0.0246977 0.999695i \(-0.492138\pi\)
0.0246977 + 0.999695i \(0.492138\pi\)
\(38\) 0 0
\(39\) −0.250947 + 0.707776i −0.0401837 + 0.113335i
\(40\) 0 0
\(41\) 2.93462i 0.458311i 0.973390 + 0.229156i \(0.0735964\pi\)
−0.973390 + 0.229156i \(0.926404\pi\)
\(42\) 0 0
\(43\) 5.57927i 0.850830i 0.904998 + 0.425415i \(0.139872\pi\)
−0.904998 + 0.425415i \(0.860128\pi\)
\(44\) 0 0
\(45\) −10.4153 −1.55263
\(46\) 0 0
\(47\) 2.30877i 0.336769i 0.985721 + 0.168384i \(0.0538549\pi\)
−0.985721 + 0.168384i \(0.946145\pi\)
\(48\) 0 0
\(49\) −1.00000 −0.142857
\(50\) 0 0
\(51\) 0.738202i 0.103369i
\(52\) 0 0
\(53\) 11.5827i 1.59101i 0.605946 + 0.795506i \(0.292795\pi\)
−0.605946 + 0.795506i \(0.707205\pi\)
\(54\) 0 0
\(55\) −6.78531 −0.914930
\(56\) 0 0
\(57\) 0.0270504i 0.00358291i
\(58\) 0 0
\(59\) −7.08922 −0.922938 −0.461469 0.887156i \(-0.652677\pi\)
−0.461469 + 0.887156i \(0.652677\pi\)
\(60\) 0 0
\(61\) 6.22897i 0.797538i −0.917051 0.398769i \(-0.869438\pi\)
0.917051 0.398769i \(-0.130562\pi\)
\(62\) 0 0
\(63\) 2.95662i 0.372499i
\(64\) 0 0
\(65\) 11.9712 + 4.24446i 1.48484 + 0.526460i
\(66\) 0 0
\(67\) −8.04110 −0.982376 −0.491188 0.871053i \(-0.663437\pi\)
−0.491188 + 0.871053i \(0.663437\pi\)
\(68\) 0 0
\(69\) 1.06212i 0.127865i
\(70\) 0 0
\(71\) 16.5533i 1.96452i 0.187535 + 0.982258i \(0.439950\pi\)
−0.187535 + 0.982258i \(0.560050\pi\)
\(72\) 0 0
\(73\) 11.4665i 1.34205i −0.741436 0.671024i \(-0.765855\pi\)
0.741436 0.671024i \(-0.234145\pi\)
\(74\) 0 0
\(75\) 1.54322i 0.178196i
\(76\) 0 0
\(77\) 1.92616i 0.219506i
\(78\) 0 0
\(79\) −14.6896 −1.65271 −0.826357 0.563147i \(-0.809591\pi\)
−0.826357 + 0.563147i \(0.809591\pi\)
\(80\) 0 0
\(81\) 8.61147 0.956830
\(82\) 0 0
\(83\) 3.76948 0.413754 0.206877 0.978367i \(-0.433670\pi\)
0.206877 + 0.978367i \(0.433670\pi\)
\(84\) 0 0
\(85\) 12.4858 1.35427
\(86\) 0 0
\(87\) −1.31436 −0.140914
\(88\) 0 0
\(89\) 0.982458i 0.104140i −0.998643 0.0520702i \(-0.983418\pi\)
0.998643 0.0520702i \(-0.0165820\pi\)
\(90\) 0 0
\(91\) 1.20488 3.39827i 0.126306 0.356236i
\(92\) 0 0
\(93\) 0.240098 0.0248970
\(94\) 0 0
\(95\) −0.457523 −0.0469409
\(96\) 0 0
\(97\) 9.30657i 0.944939i 0.881347 + 0.472469i \(0.156637\pi\)
−0.881347 + 0.472469i \(0.843363\pi\)
\(98\) 0 0
\(99\) 5.69492 0.572361
\(100\) 0 0
\(101\) 9.15160i 0.910618i 0.890333 + 0.455309i \(0.150471\pi\)
−0.890333 + 0.455309i \(0.849529\pi\)
\(102\) 0 0
\(103\) −5.49996 −0.541927 −0.270964 0.962590i \(-0.587342\pi\)
−0.270964 + 0.962590i \(0.587342\pi\)
\(104\) 0 0
\(105\) −0.733695 −0.0716013
\(106\) 0 0
\(107\) 6.53885i 0.632134i 0.948737 + 0.316067i \(0.102363\pi\)
−0.948737 + 0.316067i \(0.897637\pi\)
\(108\) 0 0
\(109\) 12.0875 1.15778 0.578888 0.815407i \(-0.303487\pi\)
0.578888 + 0.815407i \(0.303487\pi\)
\(110\) 0 0
\(111\) 0.0625785i 0.00593969i
\(112\) 0 0
\(113\) −4.68304 −0.440543 −0.220272 0.975439i \(-0.570694\pi\)
−0.220272 + 0.975439i \(0.570694\pi\)
\(114\) 0 0
\(115\) −17.9645 −1.67520
\(116\) 0 0
\(117\) −10.0474 3.56238i −0.928883 0.329342i
\(118\) 0 0
\(119\) 3.54436i 0.324911i
\(120\) 0 0
\(121\) −7.28992 −0.662720
\(122\) 0 0
\(123\) 0.611209 0.0551109
\(124\) 0 0
\(125\) −8.48812 −0.759200
\(126\) 0 0
\(127\) 14.7640 1.31009 0.655045 0.755590i \(-0.272650\pi\)
0.655045 + 0.755590i \(0.272650\pi\)
\(128\) 0 0
\(129\) 1.16202 0.102310
\(130\) 0 0
\(131\) 15.8504i 1.38486i 0.721487 + 0.692428i \(0.243459\pi\)
−0.721487 + 0.692428i \(0.756541\pi\)
\(132\) 0 0
\(133\) 0.129878i 0.0112618i
\(134\) 0 0
\(135\) 4.37034i 0.376139i
\(136\) 0 0
\(137\) 8.39453i 0.717193i 0.933493 + 0.358596i \(0.116745\pi\)
−0.933493 + 0.358596i \(0.883255\pi\)
\(138\) 0 0
\(139\) 13.5249i 1.14716i 0.819149 + 0.573581i \(0.194446\pi\)
−0.819149 + 0.573581i \(0.805554\pi\)
\(140\) 0 0
\(141\) 0.480859 0.0404957
\(142\) 0 0
\(143\) −6.54561 2.32079i −0.547371 0.194074i
\(144\) 0 0
\(145\) 22.2307i 1.84616i
\(146\) 0 0
\(147\) 0.208275i 0.0171783i
\(148\) 0 0
\(149\) −19.3528 −1.58545 −0.792723 0.609582i \(-0.791337\pi\)
−0.792723 + 0.609582i \(0.791337\pi\)
\(150\) 0 0
\(151\) 5.55900i 0.452385i −0.974083 0.226193i \(-0.927372\pi\)
0.974083 0.226193i \(-0.0726279\pi\)
\(152\) 0 0
\(153\) −10.4793 −0.847203
\(154\) 0 0
\(155\) 4.06096i 0.326184i
\(156\) 0 0
\(157\) 16.1401i 1.28812i 0.764974 + 0.644061i \(0.222752\pi\)
−0.764974 + 0.644061i \(0.777248\pi\)
\(158\) 0 0
\(159\) 2.41240 0.191316
\(160\) 0 0
\(161\) 5.09962i 0.401906i
\(162\) 0 0
\(163\) −3.76604 −0.294979 −0.147490 0.989064i \(-0.547119\pi\)
−0.147490 + 0.989064i \(0.547119\pi\)
\(164\) 0 0
\(165\) 1.41321i 0.110018i
\(166\) 0 0
\(167\) 23.2916i 1.80236i 0.433449 + 0.901178i \(0.357296\pi\)
−0.433449 + 0.901178i \(0.642704\pi\)
\(168\) 0 0
\(169\) 10.0965 + 8.18903i 0.776656 + 0.629925i
\(170\) 0 0
\(171\) 0.384000 0.0293652
\(172\) 0 0
\(173\) 19.8402i 1.50842i 0.656633 + 0.754210i \(0.271980\pi\)
−0.656633 + 0.754210i \(0.728020\pi\)
\(174\) 0 0
\(175\) 7.40954i 0.560108i
\(176\) 0 0
\(177\) 1.47651i 0.110981i
\(178\) 0 0
\(179\) 0.396420i 0.0296298i 0.999890 + 0.0148149i \(0.00471591\pi\)
−0.999890 + 0.0148149i \(0.995284\pi\)
\(180\) 0 0
\(181\) 21.0449i 1.56425i −0.623121 0.782126i \(-0.714135\pi\)
0.623121 0.782126i \(-0.285865\pi\)
\(182\) 0 0
\(183\) −1.29734 −0.0959022
\(184\) 0 0
\(185\) −1.05844 −0.0778179
\(186\) 0 0
\(187\) −6.82699 −0.499239
\(188\) 0 0
\(189\) 1.24062 0.0902416
\(190\) 0 0
\(191\) −5.37919 −0.389225 −0.194612 0.980880i \(-0.562345\pi\)
−0.194612 + 0.980880i \(0.562345\pi\)
\(192\) 0 0
\(193\) 23.0841i 1.66163i 0.556548 + 0.830816i \(0.312126\pi\)
−0.556548 + 0.830816i \(0.687874\pi\)
\(194\) 0 0
\(195\) 0.884015 2.49330i 0.0633056 0.178549i
\(196\) 0 0
\(197\) −8.31831 −0.592655 −0.296328 0.955086i \(-0.595762\pi\)
−0.296328 + 0.955086i \(0.595762\pi\)
\(198\) 0 0
\(199\) 18.8463 1.33598 0.667989 0.744171i \(-0.267155\pi\)
0.667989 + 0.744171i \(0.267155\pi\)
\(200\) 0 0
\(201\) 1.67476i 0.118129i
\(202\) 0 0
\(203\) 6.31068 0.442923
\(204\) 0 0
\(205\) 10.3378i 0.722026i
\(206\) 0 0
\(207\) 15.0776 1.04797
\(208\) 0 0
\(209\) 0.250165 0.0173043
\(210\) 0 0
\(211\) 19.4654i 1.34005i 0.742337 + 0.670027i \(0.233717\pi\)
−0.742337 + 0.670027i \(0.766283\pi\)
\(212\) 0 0
\(213\) 3.44764 0.236229
\(214\) 0 0
\(215\) 19.6542i 1.34040i
\(216\) 0 0
\(217\) −1.15279 −0.0782567
\(218\) 0 0
\(219\) −2.38818 −0.161378
\(220\) 0 0
\(221\) 12.0447 + 4.27053i 0.810214 + 0.287267i
\(222\) 0 0
\(223\) 17.6477i 1.18178i 0.806753 + 0.590889i \(0.201223\pi\)
−0.806753 + 0.590889i \(0.798777\pi\)
\(224\) 0 0
\(225\) 21.9072 1.46048
\(226\) 0 0
\(227\) −18.0842 −1.20029 −0.600144 0.799892i \(-0.704890\pi\)
−0.600144 + 0.799892i \(0.704890\pi\)
\(228\) 0 0
\(229\) 4.25750 0.281343 0.140672 0.990056i \(-0.455074\pi\)
0.140672 + 0.990056i \(0.455074\pi\)
\(230\) 0 0
\(231\) 0.401171 0.0263951
\(232\) 0 0
\(233\) −12.0468 −0.789210 −0.394605 0.918851i \(-0.629119\pi\)
−0.394605 + 0.918851i \(0.629119\pi\)
\(234\) 0 0
\(235\) 8.13314i 0.530547i
\(236\) 0 0
\(237\) 3.05949i 0.198735i
\(238\) 0 0
\(239\) 1.26186i 0.0816230i 0.999167 + 0.0408115i \(0.0129943\pi\)
−0.999167 + 0.0408115i \(0.987006\pi\)
\(240\) 0 0
\(241\) 16.9944i 1.09471i −0.836902 0.547353i \(-0.815636\pi\)
0.836902 0.547353i \(-0.184364\pi\)
\(242\) 0 0
\(243\) 5.51541i 0.353814i
\(244\) 0 0
\(245\) 3.52272 0.225058
\(246\) 0 0
\(247\) −0.441360 0.156487i −0.0280831 0.00995705i
\(248\) 0 0
\(249\) 0.785089i 0.0497530i
\(250\) 0 0
\(251\) 16.4332i 1.03725i −0.855001 0.518626i \(-0.826444\pi\)
0.855001 0.518626i \(-0.173556\pi\)
\(252\) 0 0
\(253\) 9.82267 0.617546
\(254\) 0 0
\(255\) 2.60048i 0.162848i
\(256\) 0 0
\(257\) −18.6782 −1.16511 −0.582557 0.812790i \(-0.697948\pi\)
−0.582557 + 0.812790i \(0.697948\pi\)
\(258\) 0 0
\(259\) 0.300461i 0.0186697i
\(260\) 0 0
\(261\) 18.6583i 1.15492i
\(262\) 0 0
\(263\) 0.495204 0.0305356 0.0152678 0.999883i \(-0.495140\pi\)
0.0152678 + 0.999883i \(0.495140\pi\)
\(264\) 0 0
\(265\) 40.8027i 2.50649i
\(266\) 0 0
\(267\) −0.204622 −0.0125226
\(268\) 0 0
\(269\) 10.0263i 0.611314i 0.952142 + 0.305657i \(0.0988760\pi\)
−0.952142 + 0.305657i \(0.901124\pi\)
\(270\) 0 0
\(271\) 19.8983i 1.20874i −0.796705 0.604369i \(-0.793425\pi\)
0.796705 0.604369i \(-0.206575\pi\)
\(272\) 0 0
\(273\) −0.707776 0.250947i −0.0428366 0.0151880i
\(274\) 0 0
\(275\) 14.2719 0.860630
\(276\) 0 0
\(277\) 29.0585i 1.74596i −0.487759 0.872978i \(-0.662186\pi\)
0.487759 0.872978i \(-0.337814\pi\)
\(278\) 0 0
\(279\) 3.40837i 0.204054i
\(280\) 0 0
\(281\) 14.5021i 0.865120i −0.901605 0.432560i \(-0.857610\pi\)
0.901605 0.432560i \(-0.142390\pi\)
\(282\) 0 0
\(283\) 5.54760i 0.329771i −0.986313 0.164885i \(-0.947275\pi\)
0.986313 0.164885i \(-0.0527254\pi\)
\(284\) 0 0
\(285\) 0.0952907i 0.00564454i
\(286\) 0 0
\(287\) −2.93462 −0.173225
\(288\) 0 0
\(289\) −4.43753 −0.261031
\(290\) 0 0
\(291\) 1.93833 0.113627
\(292\) 0 0
\(293\) 24.7162 1.44393 0.721967 0.691928i \(-0.243238\pi\)
0.721967 + 0.691928i \(0.243238\pi\)
\(294\) 0 0
\(295\) 24.9733 1.45400
\(296\) 0 0
\(297\) 2.38962i 0.138660i
\(298\) 0 0
\(299\) −17.3299 6.14444i −1.00221 0.355342i
\(300\) 0 0
\(301\) −5.57927 −0.321584
\(302\) 0 0
\(303\) 1.90605 0.109500
\(304\) 0 0
\(305\) 21.9429i 1.25645i
\(306\) 0 0
\(307\) 14.9768 0.854770 0.427385 0.904070i \(-0.359435\pi\)
0.427385 + 0.904070i \(0.359435\pi\)
\(308\) 0 0
\(309\) 1.14551i 0.0651656i
\(310\) 0 0
\(311\) 22.2304 1.26057 0.630284 0.776365i \(-0.282939\pi\)
0.630284 + 0.776365i \(0.282939\pi\)
\(312\) 0 0
\(313\) 8.34646 0.471770 0.235885 0.971781i \(-0.424201\pi\)
0.235885 + 0.971781i \(0.424201\pi\)
\(314\) 0 0
\(315\) 10.4153i 0.586838i
\(316\) 0 0
\(317\) −19.6311 −1.10260 −0.551298 0.834309i \(-0.685867\pi\)
−0.551298 + 0.834309i \(0.685867\pi\)
\(318\) 0 0
\(319\) 12.1554i 0.680570i
\(320\) 0 0
\(321\) 1.36188 0.0760128
\(322\) 0 0
\(323\) −0.460334 −0.0256136
\(324\) 0 0
\(325\) −25.1796 8.92761i −1.39671 0.495215i
\(326\) 0 0
\(327\) 2.51754i 0.139220i
\(328\) 0 0
\(329\) −2.30877 −0.127287
\(330\) 0 0
\(331\) −33.6438 −1.84923 −0.924616 0.380900i \(-0.875614\pi\)
−0.924616 + 0.380900i \(0.875614\pi\)
\(332\) 0 0
\(333\) 0.888348 0.0486812
\(334\) 0 0
\(335\) 28.3265 1.54764
\(336\) 0 0
\(337\) 0.0143341 0.000780827 0.000390413 1.00000i \(-0.499876\pi\)
0.000390413 1.00000i \(0.499876\pi\)
\(338\) 0 0
\(339\) 0.975362i 0.0529744i
\(340\) 0 0
\(341\) 2.22046i 0.120245i
\(342\) 0 0
\(343\) 1.00000i 0.0539949i
\(344\) 0 0
\(345\) 3.74157i 0.201439i
\(346\) 0 0
\(347\) 3.13277i 0.168176i −0.996458 0.0840880i \(-0.973202\pi\)
0.996458 0.0840880i \(-0.0267977\pi\)
\(348\) 0 0
\(349\) −1.24421 −0.0666011 −0.0333006 0.999445i \(-0.510602\pi\)
−0.0333006 + 0.999445i \(0.510602\pi\)
\(350\) 0 0
\(351\) −1.49480 + 4.21596i −0.0797863 + 0.225031i
\(352\) 0 0
\(353\) 7.40604i 0.394184i 0.980385 + 0.197092i \(0.0631497\pi\)
−0.980385 + 0.197092i \(0.936850\pi\)
\(354\) 0 0
\(355\) 58.3126i 3.09491i
\(356\) 0 0
\(357\) −0.738202 −0.0390698
\(358\) 0 0
\(359\) 36.1561i 1.90824i −0.299418 0.954122i \(-0.596792\pi\)
0.299418 0.954122i \(-0.403208\pi\)
\(360\) 0 0
\(361\) −18.9831 −0.999112
\(362\) 0 0
\(363\) 1.51831i 0.0796906i
\(364\) 0 0
\(365\) 40.3931i 2.11427i
\(366\) 0 0
\(367\) −8.10201 −0.422922 −0.211461 0.977386i \(-0.567822\pi\)
−0.211461 + 0.977386i \(0.567822\pi\)
\(368\) 0 0
\(369\) 8.67657i 0.451684i
\(370\) 0 0
\(371\) −11.5827 −0.601346
\(372\) 0 0
\(373\) 7.73552i 0.400530i 0.979742 + 0.200265i \(0.0641803\pi\)
−0.979742 + 0.200265i \(0.935820\pi\)
\(374\) 0 0
\(375\) 1.76787i 0.0912922i
\(376\) 0 0
\(377\) −7.60362 + 21.4454i −0.391606 + 1.10450i
\(378\) 0 0
\(379\) 32.4599 1.66735 0.833675 0.552255i \(-0.186232\pi\)
0.833675 + 0.552255i \(0.186232\pi\)
\(380\) 0 0
\(381\) 3.07497i 0.157535i
\(382\) 0 0
\(383\) 35.7865i 1.82860i 0.405032 + 0.914302i \(0.367260\pi\)
−0.405032 + 0.914302i \(0.632740\pi\)
\(384\) 0 0
\(385\) 6.78531i 0.345811i
\(386\) 0 0
\(387\) 16.4958i 0.838528i
\(388\) 0 0
\(389\) 6.32180i 0.320528i 0.987074 + 0.160264i \(0.0512345\pi\)
−0.987074 + 0.160264i \(0.948765\pi\)
\(390\) 0 0
\(391\) −18.0749 −0.914086
\(392\) 0 0
\(393\) 3.30124 0.166526
\(394\) 0 0
\(395\) 51.7474 2.60370
\(396\) 0 0
\(397\) 10.2742 0.515649 0.257824 0.966192i \(-0.416994\pi\)
0.257824 + 0.966192i \(0.416994\pi\)
\(398\) 0 0
\(399\) 0.0270504 0.00135421
\(400\) 0 0
\(401\) 1.79881i 0.0898285i 0.998991 + 0.0449142i \(0.0143015\pi\)
−0.998991 + 0.0449142i \(0.985699\pi\)
\(402\) 0 0
\(403\) 1.38898 3.91751i 0.0691899 0.195145i
\(404\) 0 0
\(405\) −30.3358 −1.50740
\(406\) 0 0
\(407\) 0.578734 0.0286868
\(408\) 0 0
\(409\) 21.9102i 1.08339i −0.840575 0.541696i \(-0.817783\pi\)
0.840575 0.541696i \(-0.182217\pi\)
\(410\) 0 0
\(411\) 1.74837 0.0862409
\(412\) 0 0
\(413\) 7.08922i 0.348838i
\(414\) 0 0
\(415\) −13.2788 −0.651831
\(416\) 0 0
\(417\) 2.81689 0.137944
\(418\) 0 0
\(419\) 18.8887i 0.922773i −0.887199 0.461386i \(-0.847352\pi\)
0.887199 0.461386i \(-0.152648\pi\)
\(420\) 0 0
\(421\) −6.34070 −0.309027 −0.154513 0.987991i \(-0.549381\pi\)
−0.154513 + 0.987991i \(0.549381\pi\)
\(422\) 0 0
\(423\) 6.82615i 0.331899i
\(424\) 0 0
\(425\) −26.2620 −1.27390
\(426\) 0 0
\(427\) 6.22897 0.301441
\(428\) 0 0
\(429\) −0.483363 + 1.36329i −0.0233370 + 0.0658202i
\(430\) 0 0
\(431\) 27.2674i 1.31342i −0.754141 0.656712i \(-0.771947\pi\)
0.754141 0.656712i \(-0.228053\pi\)
\(432\) 0 0
\(433\) 17.8959 0.860023 0.430012 0.902823i \(-0.358509\pi\)
0.430012 + 0.902823i \(0.358509\pi\)
\(434\) 0 0
\(435\) 4.63012 0.221997
\(436\) 0 0
\(437\) 0.662328 0.0316834
\(438\) 0 0
\(439\) −16.4464 −0.784944 −0.392472 0.919764i \(-0.628380\pi\)
−0.392472 + 0.919764i \(0.628380\pi\)
\(440\) 0 0
\(441\) −2.95662 −0.140791
\(442\) 0 0
\(443\) 21.4873i 1.02089i 0.859910 + 0.510446i \(0.170520\pi\)
−0.859910 + 0.510446i \(0.829480\pi\)
\(444\) 0 0
\(445\) 3.46092i 0.164063i
\(446\) 0 0
\(447\) 4.03072i 0.190646i
\(448\) 0 0
\(449\) 11.6297i 0.548840i −0.961610 0.274420i \(-0.911514\pi\)
0.961610 0.274420i \(-0.0884858\pi\)
\(450\) 0 0
\(451\) 5.65254i 0.266168i
\(452\) 0 0
\(453\) −1.15780 −0.0543983
\(454\) 0 0
\(455\) −4.24446 + 11.9712i −0.198983 + 0.561216i
\(456\) 0 0
\(457\) 20.1702i 0.943524i −0.881726 0.471762i \(-0.843618\pi\)
0.881726 0.471762i \(-0.156382\pi\)
\(458\) 0 0
\(459\) 4.39719i 0.205243i
\(460\) 0 0
\(461\) 15.3054 0.712845 0.356423 0.934325i \(-0.383996\pi\)
0.356423 + 0.934325i \(0.383996\pi\)
\(462\) 0 0
\(463\) 22.3957i 1.04082i −0.853917 0.520409i \(-0.825780\pi\)
0.853917 0.520409i \(-0.174220\pi\)
\(464\) 0 0
\(465\) −0.845798 −0.0392230
\(466\) 0 0
\(467\) 10.1198i 0.468287i 0.972202 + 0.234143i \(0.0752285\pi\)
−0.972202 + 0.234143i \(0.924771\pi\)
\(468\) 0 0
\(469\) 8.04110i 0.371303i
\(470\) 0 0
\(471\) 3.36159 0.154894
\(472\) 0 0
\(473\) 10.7465i 0.494127i
\(474\) 0 0
\(475\) 0.962335 0.0441550
\(476\) 0 0
\(477\) 34.2458i 1.56801i
\(478\) 0 0
\(479\) 20.1092i 0.918811i 0.888227 + 0.459405i \(0.151938\pi\)
−0.888227 + 0.459405i \(0.848062\pi\)
\(480\) 0 0
\(481\) −1.02105 0.362019i −0.0465557 0.0165067i
\(482\) 0 0
\(483\) 1.06212 0.0483284
\(484\) 0 0
\(485\) 32.7844i 1.48866i
\(486\) 0 0
\(487\) 14.2922i 0.647643i −0.946118 0.323822i \(-0.895032\pi\)
0.946118 0.323822i \(-0.104968\pi\)
\(488\) 0 0
\(489\) 0.784373i 0.0354706i
\(490\) 0 0
\(491\) 20.8674i 0.941734i 0.882204 + 0.470867i \(0.156059\pi\)
−0.882204 + 0.470867i \(0.843941\pi\)
\(492\) 0 0
\(493\) 22.3673i 1.00737i
\(494\) 0 0
\(495\) −20.0616 −0.901701
\(496\) 0 0
\(497\) −16.5533 −0.742517
\(498\) 0 0
\(499\) 19.1219 0.856016 0.428008 0.903775i \(-0.359216\pi\)
0.428008 + 0.903775i \(0.359216\pi\)
\(500\) 0 0
\(501\) 4.85106 0.216729
\(502\) 0 0
\(503\) −27.5342 −1.22769 −0.613844 0.789427i \(-0.710378\pi\)
−0.613844 + 0.789427i \(0.710378\pi\)
\(504\) 0 0
\(505\) 32.2385i 1.43459i
\(506\) 0 0
\(507\) 1.70557 2.10286i 0.0757471 0.0933911i
\(508\) 0 0
\(509\) 13.8266 0.612851 0.306426 0.951895i \(-0.400867\pi\)
0.306426 + 0.951895i \(0.400867\pi\)
\(510\) 0 0
\(511\) 11.4665 0.507246
\(512\) 0 0
\(513\) 0.161129i 0.00711401i
\(514\) 0 0
\(515\) 19.3748 0.853756
\(516\) 0 0
\(517\) 4.44705i 0.195581i
\(518\) 0 0
\(519\) 4.13222 0.181384
\(520\) 0 0
\(521\) −4.40236 −0.192871 −0.0964355 0.995339i \(-0.530744\pi\)
−0.0964355 + 0.995339i \(0.530744\pi\)
\(522\) 0 0
\(523\) 5.70151i 0.249309i −0.992200 0.124655i \(-0.960218\pi\)
0.992200 0.124655i \(-0.0397823\pi\)
\(524\) 0 0
\(525\) 1.54322 0.0673518
\(526\) 0 0
\(527\) 4.08591i 0.177985i
\(528\) 0 0
\(529\) 3.00612 0.130701
\(530\) 0 0
\(531\) −20.9601 −0.909593
\(532\) 0 0
\(533\) 3.53587 9.97265i 0.153156 0.431963i
\(534\) 0 0
\(535\) 23.0345i 0.995869i
\(536\) 0 0
\(537\) 0.0825646 0.00356292
\(538\) 0 0
\(539\) −1.92616 −0.0829654
\(540\) 0 0
\(541\) 21.6901 0.932529 0.466265 0.884645i \(-0.345600\pi\)
0.466265 + 0.884645i \(0.345600\pi\)
\(542\) 0 0
\(543\) −4.38312 −0.188098
\(544\) 0 0
\(545\) −42.5810 −1.82397
\(546\) 0 0
\(547\) 8.57481i 0.366632i −0.983054 0.183316i \(-0.941317\pi\)
0.983054 0.183316i \(-0.0586832\pi\)
\(548\) 0 0
\(549\) 18.4167i 0.786006i
\(550\) 0 0
\(551\) 0.819618i 0.0349169i
\(552\) 0 0
\(553\) 14.6896i 0.624667i
\(554\) 0 0
\(555\) 0.220446i 0.00935743i
\(556\) 0 0
\(557\) 2.70216 0.114494 0.0572471 0.998360i \(-0.481768\pi\)
0.0572471 + 0.998360i \(0.481768\pi\)
\(558\) 0 0
\(559\) 6.72235 18.9599i 0.284325 0.801917i
\(560\) 0 0
\(561\) 1.42189i 0.0600324i
\(562\) 0 0
\(563\) 39.2914i 1.65593i 0.560777 + 0.827967i \(0.310503\pi\)
−0.560777 + 0.827967i \(0.689497\pi\)
\(564\) 0 0
\(565\) 16.4970 0.694035
\(566\) 0 0
\(567\) 8.61147i 0.361648i
\(568\) 0 0
\(569\) 1.67637 0.0702771 0.0351386 0.999382i \(-0.488813\pi\)
0.0351386 + 0.999382i \(0.488813\pi\)
\(570\) 0 0
\(571\) 34.5286i 1.44498i 0.691384 + 0.722488i \(0.257001\pi\)
−0.691384 + 0.722488i \(0.742999\pi\)
\(572\) 0 0
\(573\) 1.12035i 0.0468034i
\(574\) 0 0
\(575\) 37.7858 1.57578
\(576\) 0 0
\(577\) 22.3246i 0.929384i 0.885472 + 0.464692i \(0.153835\pi\)
−0.885472 + 0.464692i \(0.846165\pi\)
\(578\) 0 0
\(579\) 4.80785 0.199808
\(580\) 0 0
\(581\) 3.76948i 0.156384i
\(582\) 0 0
\(583\) 22.3102i 0.923993i
\(584\) 0 0
\(585\) 35.3942 + 12.5492i 1.46337 + 0.518848i
\(586\) 0 0
\(587\) 13.2895 0.548517 0.274259 0.961656i \(-0.411568\pi\)
0.274259 + 0.961656i \(0.411568\pi\)
\(588\) 0 0
\(589\) 0.149722i 0.00616920i
\(590\) 0 0
\(591\) 1.73250i 0.0712655i
\(592\) 0 0
\(593\) 22.1464i 0.909444i −0.890634 0.454722i \(-0.849739\pi\)
0.890634 0.454722i \(-0.150261\pi\)
\(594\) 0 0
\(595\) 12.4858i 0.511867i
\(596\) 0 0
\(597\) 3.92522i 0.160649i
\(598\) 0 0
\(599\) −23.3029 −0.952129 −0.476065 0.879410i \(-0.657937\pi\)
−0.476065 + 0.879410i \(0.657937\pi\)
\(600\) 0 0
\(601\) −14.8316 −0.604993 −0.302496 0.953151i \(-0.597820\pi\)
−0.302496 + 0.953151i \(0.597820\pi\)
\(602\) 0 0
\(603\) −23.7745 −0.968172
\(604\) 0 0
\(605\) 25.6803 1.04405
\(606\) 0 0
\(607\) −38.0443 −1.54417 −0.772085 0.635520i \(-0.780786\pi\)
−0.772085 + 0.635520i \(0.780786\pi\)
\(608\) 0 0
\(609\) 1.31436i 0.0532605i
\(610\) 0 0
\(611\) 2.78179 7.84583i 0.112539 0.317408i
\(612\) 0 0
\(613\) −17.0574 −0.688941 −0.344470 0.938797i \(-0.611941\pi\)
−0.344470 + 0.938797i \(0.611941\pi\)
\(614\) 0 0
\(615\) −2.15312 −0.0868221
\(616\) 0 0
\(617\) 7.95481i 0.320249i 0.987097 + 0.160124i \(0.0511895\pi\)
−0.987097 + 0.160124i \(0.948810\pi\)
\(618\) 0 0
\(619\) 27.3721 1.10018 0.550088 0.835106i \(-0.314594\pi\)
0.550088 + 0.835106i \(0.314594\pi\)
\(620\) 0 0
\(621\) 6.32668i 0.253881i
\(622\) 0 0
\(623\) 0.982458 0.0393614
\(624\) 0 0
\(625\) −7.14645 −0.285858
\(626\) 0 0
\(627\) 0.0521032i 0.00208080i
\(628\) 0 0
\(629\) −1.06494 −0.0424619
\(630\) 0 0
\(631\) 21.1834i 0.843298i −0.906759 0.421649i \(-0.861452\pi\)
0.906759 0.421649i \(-0.138548\pi\)
\(632\) 0 0
\(633\) 4.05416 0.161138
\(634\) 0 0
\(635\) −52.0093 −2.06393
\(636\) 0 0
\(637\) 3.39827 + 1.20488i 0.134644 + 0.0477391i
\(638\) 0 0
\(639\) 48.9419i 1.93611i
\(640\) 0 0
\(641\) 0.478600 0.0189036 0.00945179 0.999955i \(-0.496991\pi\)
0.00945179 + 0.999955i \(0.496991\pi\)
\(642\) 0 0
\(643\) −5.62114 −0.221676 −0.110838 0.993838i \(-0.535353\pi\)
−0.110838 + 0.993838i \(0.535353\pi\)
\(644\) 0 0
\(645\) −4.09348 −0.161181
\(646\) 0 0
\(647\) 44.2220 1.73854 0.869272 0.494333i \(-0.164588\pi\)
0.869272 + 0.494333i \(0.164588\pi\)
\(648\) 0 0
\(649\) −13.6550 −0.536004
\(650\) 0 0
\(651\) 0.240098i 0.00941019i
\(652\) 0 0
\(653\) 4.90631i 0.191999i 0.995381 + 0.0959994i \(0.0306047\pi\)
−0.995381 + 0.0959994i \(0.969395\pi\)
\(654\) 0 0
\(655\) 55.8364i 2.18171i
\(656\) 0 0
\(657\) 33.9020i 1.32264i
\(658\) 0 0
\(659\) 2.44724i 0.0953310i 0.998863 + 0.0476655i \(0.0151782\pi\)
−0.998863 + 0.0476655i \(0.984822\pi\)
\(660\) 0 0
\(661\) 46.9632 1.82666 0.913328 0.407225i \(-0.133503\pi\)
0.913328 + 0.407225i \(0.133503\pi\)
\(662\) 0 0
\(663\) 0.889446 2.50861i 0.0345432 0.0974264i
\(664\) 0 0
\(665\) 0.457523i 0.0177420i
\(666\) 0 0
\(667\) 32.1821i 1.24609i
\(668\) 0 0
\(669\) 3.67558 0.142106
\(670\) 0 0
\(671\) 11.9980i 0.463177i
\(672\) 0 0
\(673\) 42.5580 1.64049 0.820245 0.572013i \(-0.193837\pi\)
0.820245 + 0.572013i \(0.193837\pi\)
\(674\) 0 0
\(675\) 9.19240i 0.353816i
\(676\) 0 0
\(677\) 27.1383i 1.04301i −0.853249 0.521504i \(-0.825371\pi\)
0.853249 0.521504i \(-0.174629\pi\)
\(678\) 0 0
\(679\) −9.30657 −0.357153
\(680\) 0 0
\(681\) 3.76648i 0.144332i
\(682\) 0 0
\(683\) −34.5690 −1.32275 −0.661373 0.750057i \(-0.730026\pi\)
−0.661373 + 0.750057i \(0.730026\pi\)
\(684\) 0 0
\(685\) 29.5715i 1.12987i
\(686\) 0 0
\(687\) 0.886732i 0.0338309i
\(688\) 0 0
\(689\) 13.9558 39.3613i 0.531675 1.49955i
\(690\) 0 0
\(691\) 26.6922 1.01542 0.507709 0.861529i \(-0.330492\pi\)
0.507709 + 0.861529i \(0.330492\pi\)
\(692\) 0 0
\(693\) 5.69492i 0.216332i
\(694\) 0 0
\(695\) 47.6442i 1.80725i
\(696\) 0 0
\(697\) 10.4014i 0.393979i
\(698\) 0 0
\(699\) 2.50904i 0.0949007i
\(700\) 0 0
\(701\) 21.2235i 0.801602i 0.916165 + 0.400801i \(0.131268\pi\)
−0.916165 + 0.400801i \(0.868732\pi\)
\(702\) 0 0
\(703\) 0.0390232 0.00147179
\(704\) 0 0
\(705\) −1.69393 −0.0637972
\(706\) 0 0
\(707\) −9.15160 −0.344181
\(708\) 0 0
\(709\) 38.7261 1.45439 0.727194 0.686432i \(-0.240824\pi\)
0.727194 + 0.686432i \(0.240824\pi\)
\(710\) 0 0
\(711\) −43.4317 −1.62882
\(712\) 0 0
\(713\) 5.87881i 0.220163i
\(714\) 0 0
\(715\) 23.0583 + 8.17549i 0.862332 + 0.305746i
\(716\) 0 0
\(717\) 0.262814 0.00981499
\(718\) 0 0
\(719\) −44.9233 −1.67536 −0.837679 0.546163i \(-0.816088\pi\)
−0.837679 + 0.546163i \(0.816088\pi\)
\(720\) 0 0
\(721\) 5.49996i 0.204829i
\(722\) 0 0
\(723\) −3.53951 −0.131636
\(724\) 0 0
\(725\) 46.7592i 1.73659i
\(726\) 0 0
\(727\) −24.2750 −0.900310 −0.450155 0.892950i \(-0.648631\pi\)
−0.450155 + 0.892950i \(0.648631\pi\)
\(728\) 0 0
\(729\) 24.6857 0.914285
\(730\) 0 0
\(731\) 19.7749i 0.731402i
\(732\) 0 0
\(733\) 21.7151 0.802067 0.401033 0.916063i \(-0.368651\pi\)
0.401033 + 0.916063i \(0.368651\pi\)
\(734\) 0 0
\(735\) 0.733695i 0.0270627i
\(736\) 0 0
\(737\) −15.4884 −0.570523
\(738\) 0 0
\(739\) 4.13272 0.152025 0.0760123 0.997107i \(-0.475781\pi\)
0.0760123 + 0.997107i \(0.475781\pi\)
\(740\) 0 0
\(741\) −0.0325925 + 0.0919245i −0.00119731 + 0.00337693i
\(742\) 0 0
\(743\) 20.2682i 0.743567i −0.928319 0.371784i \(-0.878746\pi\)
0.928319 0.371784i \(-0.121254\pi\)
\(744\) 0 0
\(745\) 68.1746 2.49772
\(746\) 0 0
\(747\) 11.1449 0.407771
\(748\) 0 0
\(749\) −6.53885 −0.238924
\(750\) 0 0
\(751\) −50.2644 −1.83417 −0.917087 0.398687i \(-0.869466\pi\)
−0.917087 + 0.398687i \(0.869466\pi\)
\(752\) 0 0
\(753\) −3.42262 −0.124727
\(754\) 0 0
\(755\) 19.5828i 0.712691i
\(756\) 0 0
\(757\) 20.4735i 0.744122i −0.928208 0.372061i \(-0.878651\pi\)
0.928208 0.372061i \(-0.121349\pi\)
\(758\) 0 0
\(759\) 2.04582i 0.0742585i
\(760\) 0 0
\(761\) 31.2031i 1.13111i 0.824710 + 0.565556i \(0.191338\pi\)
−0.824710 + 0.565556i \(0.808662\pi\)
\(762\) 0 0
\(763\) 12.0875i 0.437599i
\(764\) 0 0
\(765\) 36.9157 1.33469
\(766\) 0 0
\(767\) 24.0911 + 8.54167i 0.869880 + 0.308422i
\(768\) 0 0
\(769\) 32.8772i 1.18558i −0.805356 0.592791i \(-0.798026\pi\)
0.805356 0.592791i \(-0.201974\pi\)
\(770\) 0 0
\(771\) 3.89021i 0.140103i
\(772\) 0 0
\(773\) −12.3295 −0.443463 −0.221731 0.975108i \(-0.571171\pi\)
−0.221731 + 0.975108i \(0.571171\pi\)
\(774\) 0 0
\(775\) 8.54166i 0.306826i
\(776\) 0 0
\(777\) 0.0625785 0.00224499
\(778\) 0 0
\(779\) 0.381143i 0.0136558i
\(780\) 0 0
\(781\) 31.8843i 1.14091i
\(782\) 0 0
\(783\) −7.82914 −0.279791
\(784\) 0 0
\(785\) 56.8571i 2.02932i
\(786\) 0 0
\(787\) 34.8281 1.24149 0.620743 0.784014i \(-0.286831\pi\)
0.620743 + 0.784014i \(0.286831\pi\)
\(788\) 0 0
\(789\) 0.103139i 0.00367184i
\(790\) 0 0
\(791\) 4.68304i 0.166510i
\(792\) 0 0
\(793\) −7.50517 + 21.1677i −0.266516 + 0.751689i
\(794\) 0 0
\(795\) −8.49820 −0.301400
\(796\) 0 0
\(797\) 37.3680i 1.32364i 0.749661 + 0.661821i \(0.230216\pi\)
−0.749661 + 0.661821i \(0.769784\pi\)
\(798\) 0 0
\(799\) 8.18310i 0.289497i
\(800\) 0 0
\(801\) 2.90476i 0.102635i
\(802\) 0 0
\(803\) 22.0862i 0.779405i
\(804\) 0 0
\(805\) 17.9645i 0.633166i
\(806\) 0 0
\(807\) 2.08823 0.0735091
\(808\) 0 0
\(809\) 36.3556 1.27819 0.639097 0.769126i \(-0.279308\pi\)
0.639097 + 0.769126i \(0.279308\pi\)
\(810\) 0 0
\(811\) −29.4704 −1.03485 −0.517423 0.855730i \(-0.673109\pi\)
−0.517423 + 0.855730i \(0.673109\pi\)
\(812\) 0 0
\(813\) −4.14433 −0.145348
\(814\) 0 0
\(815\) 13.2667 0.464712
\(816\) 0 0
\(817\) 0.724623i 0.0253514i
\(818\) 0 0
\(819\) 3.56238 10.0474i 0.124480 0.351085i
\(820\) 0 0
\(821\) −8.34090 −0.291100 −0.145550 0.989351i \(-0.546495\pi\)
−0.145550 + 0.989351i \(0.546495\pi\)
\(822\) 0 0
\(823\) −46.3329 −1.61506 −0.807531 0.589825i \(-0.799197\pi\)
−0.807531 + 0.589825i \(0.799197\pi\)
\(824\) 0 0
\(825\) 2.97249i 0.103489i
\(826\) 0 0
\(827\) 36.3252 1.26315 0.631575 0.775315i \(-0.282409\pi\)
0.631575 + 0.775315i \(0.282409\pi\)
\(828\) 0 0
\(829\) 12.3282i 0.428175i 0.976814 + 0.214088i \(0.0686778\pi\)
−0.976814 + 0.214088i \(0.931322\pi\)
\(830\) 0 0
\(831\) −6.05217 −0.209947
\(832\) 0 0
\(833\) 3.54436 0.122805
\(834\) 0 0
\(835\) 82.0496i 2.83944i
\(836\) 0 0
\(837\) 1.43017 0.0494341
\(838\) 0 0
\(839\) 33.9276i 1.17131i 0.810560 + 0.585656i \(0.199163\pi\)
−0.810560 + 0.585656i \(0.800837\pi\)
\(840\) 0 0
\(841\) −10.8247 −0.373266
\(842\) 0 0
\(843\) −3.02042 −0.104029
\(844\) 0 0
\(845\) −35.5672 28.8476i −1.22355 0.992389i
\(846\) 0 0
\(847\) 7.28992i 0.250485i
\(848\) 0 0
\(849\) −1.15543 −0.0396542
\(850\) 0 0
\(851\) 1.53223 0.0525243
\(852\) 0 0
\(853\) −38.7697 −1.32745 −0.663725 0.747977i \(-0.731026\pi\)
−0.663725 + 0.747977i \(0.731026\pi\)
\(854\) 0 0
\(855\) −1.35272 −0.0462621
\(856\) 0 0
\(857\) −26.4866 −0.904764 −0.452382 0.891824i \(-0.649426\pi\)
−0.452382 + 0.891824i \(0.649426\pi\)
\(858\) 0 0
\(859\) 17.8500i 0.609033i 0.952507 + 0.304517i \(0.0984949\pi\)
−0.952507 + 0.304517i \(0.901505\pi\)
\(860\) 0 0
\(861\) 0.611209i 0.0208300i
\(862\) 0 0
\(863\) 13.6999i 0.466350i 0.972435 + 0.233175i \(0.0749115\pi\)
−0.972435 + 0.233175i \(0.925088\pi\)
\(864\) 0 0
\(865\) 69.8913i 2.37638i
\(866\) 0 0
\(867\) 0.924228i 0.0313884i
\(868\) 0 0
\(869\) −28.2945 −0.959827
\(870\) 0 0
\(871\) 27.3258 + 9.68857i 0.925901 + 0.328285i
\(872\) 0 0
\(873\) 27.5160i 0.931276i
\(874\) 0 0
\(875\) 8.48812i 0.286951i
\(876\) 0 0
\(877\) −1.66862 −0.0563452 −0.0281726 0.999603i \(-0.508969\pi\)
−0.0281726 + 0.999603i \(0.508969\pi\)
\(878\) 0 0
\(879\) 5.14777i 0.173630i
\(880\) 0 0
\(881\) −0.959187 −0.0323158 −0.0161579 0.999869i \(-0.505143\pi\)
−0.0161579 + 0.999869i \(0.505143\pi\)
\(882\) 0 0
\(883\) 40.6249i 1.36714i 0.729886 + 0.683569i \(0.239573\pi\)
−0.729886 + 0.683569i \(0.760427\pi\)
\(884\) 0 0
\(885\) 5.20133i 0.174841i
\(886\) 0 0
\(887\) 58.6312 1.96864 0.984322 0.176380i \(-0.0564388\pi\)
0.984322 + 0.176380i \(0.0564388\pi\)
\(888\) 0 0
\(889\) 14.7640i 0.495168i
\(890\) 0 0
\(891\) 16.5870 0.555687
\(892\) 0 0
\(893\) 0.299858i 0.0100344i
\(894\) 0 0
\(895\) 1.39648i 0.0466791i
\(896\) 0 0
\(897\) −1.27973 + 3.60939i −0.0427291 + 0.120514i
\(898\) 0 0
\(899\) 7.27491 0.242632
\(900\) 0 0
\(901\) 41.0534i 1.36769i
\(902\) 0 0
\(903\) 1.16202i 0.0386697i
\(904\) 0 0
\(905\) 74.1351i 2.46433i
\(906\) 0 0
\(907\) 16.8426i 0.559251i −0.960109 0.279625i \(-0.909790\pi\)
0.960109 0.279625i \(-0.0902103\pi\)
\(908\) 0 0
\(909\) 27.0578i 0.897451i
\(910\) 0 0
\(911\) 19.4339 0.643874 0.321937 0.946761i \(-0.395666\pi\)
0.321937 + 0.946761i \(0.395666\pi\)
\(912\) 0 0
\(913\) 7.26061 0.240291
\(914\) 0 0
\(915\) 4.57016 0.151085
\(916\) 0 0
\(917\) −15.8504 −0.523426
\(918\) 0 0
\(919\) 4.84960 0.159974 0.0799868 0.996796i \(-0.474512\pi\)
0.0799868 + 0.996796i \(0.474512\pi\)
\(920\) 0 0
\(921\) 3.11929i 0.102784i
\(922\) 0 0
\(923\) 19.9448 56.2527i 0.656490 1.85158i
\(924\) 0 0
\(925\) 2.22627 0.0731994
\(926\) 0 0
\(927\) −16.2613 −0.534091
\(928\) 0 0
\(929\) 15.2435i 0.500124i −0.968230 0.250062i \(-0.919549\pi\)
0.968230 0.250062i \(-0.0804509\pi\)
\(930\) 0 0
\(931\) −0.129878 −0.00425658
\(932\) 0 0
\(933\) 4.63003i 0.151580i
\(934\) 0 0
\(935\) 24.0495 0.786504
\(936\) 0 0
\(937\) −58.4300 −1.90883 −0.954413 0.298490i \(-0.903517\pi\)
−0.954413 + 0.298490i \(0.903517\pi\)
\(938\) 0 0
\(939\) 1.73836i 0.0567293i
\(940\) 0 0
\(941\) 22.9904 0.749467 0.374733 0.927133i \(-0.377734\pi\)
0.374733 + 0.927133i \(0.377734\pi\)
\(942\) 0 0
\(943\) 14.9655i 0.487342i
\(944\) 0 0
\(945\) −4.37034 −0.142167
\(946\) 0 0
\(947\) −19.1597 −0.622608 −0.311304 0.950310i \(-0.600766\pi\)
−0.311304 + 0.950310i \(0.600766\pi\)
\(948\) 0 0
\(949\) −13.8157 + 38.9662i −0.448477 + 1.26490i
\(950\) 0 0
\(951\) 4.08868i 0.132585i
\(952\) 0 0
\(953\) 40.8834 1.32434 0.662171 0.749353i \(-0.269635\pi\)
0.662171 + 0.749353i \(0.269635\pi\)
\(954\) 0 0
\(955\) 18.9494 0.613188
\(956\) 0 0
\(957\) −2.53166 −0.0818370
\(958\) 0 0
\(959\) −8.39453 −0.271073
\(960\) 0 0
\(961\) 29.6711 0.957131
\(962\) 0 0
\(963\) 19.3329i 0.622994i
\(964\) 0 0
\(965\) 81.3188i 2.61775i
\(966\) 0 0
\(967\) 1.86092i 0.0598431i −0.999552 0.0299216i \(-0.990474\pi\)
0.999552 0.0299216i \(-0.00952575\pi\)
\(968\) 0 0
\(969\) 0.0958761i 0.00307998i
\(970\) 0 0
\(971\) 22.8850i 0.734416i 0.930139 + 0.367208i \(0.119686\pi\)
−0.930139 + 0.367208i \(0.880314\pi\)
\(972\) 0 0
\(973\) −13.5249 −0.433587
\(974\) 0 0
\(975\) −1.85940 + 5.24430i −0.0595485 + 0.167952i
\(976\) 0 0
\(977\) 3.98677i 0.127548i 0.997964 + 0.0637740i \(0.0203137\pi\)
−0.997964 + 0.0637740i \(0.979686\pi\)
\(978\) 0 0
\(979\) 1.89237i 0.0604804i
\(980\) 0 0
\(981\) 35.7383 1.14104
\(982\) 0 0
\(983\) 50.8782i 1.62276i 0.584518 + 0.811381i \(0.301284\pi\)
−0.584518 + 0.811381i \(0.698716\pi\)
\(984\) 0 0
\(985\) 29.3031 0.933673
\(986\) 0 0
\(987\) 0.480859i 0.0153059i
\(988\) 0 0
\(989\) 28.4521i 0.904726i
\(990\) 0 0
\(991\) 54.2500 1.72331 0.861653 0.507497i \(-0.169429\pi\)
0.861653 + 0.507497i \(0.169429\pi\)
\(992\) 0 0
\(993\) 7.00718i 0.222366i
\(994\) 0 0
\(995\) −66.3902 −2.10471
\(996\) 0 0
\(997\) 25.8118i 0.817467i 0.912654 + 0.408734i \(0.134029\pi\)
−0.912654 + 0.408734i \(0.865971\pi\)
\(998\) 0 0
\(999\) 0.372756i 0.0117935i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2912.2.i.a.337.13 84
4.3 odd 2 728.2.i.a.701.69 yes 84
8.3 odd 2 728.2.i.a.701.15 84
8.5 even 2 inner 2912.2.i.a.337.72 84
13.12 even 2 inner 2912.2.i.a.337.71 84
52.51 odd 2 728.2.i.a.701.16 yes 84
104.51 odd 2 728.2.i.a.701.70 yes 84
104.77 even 2 inner 2912.2.i.a.337.14 84
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
728.2.i.a.701.15 84 8.3 odd 2
728.2.i.a.701.16 yes 84 52.51 odd 2
728.2.i.a.701.69 yes 84 4.3 odd 2
728.2.i.a.701.70 yes 84 104.51 odd 2
2912.2.i.a.337.13 84 1.1 even 1 trivial
2912.2.i.a.337.14 84 104.77 even 2 inner
2912.2.i.a.337.71 84 13.12 even 2 inner
2912.2.i.a.337.72 84 8.5 even 2 inner