Properties

Label 728.2.c.a.365.10
Level $728$
Weight $2$
Character 728.365
Analytic conductor $5.813$
Analytic rank $0$
Dimension $34$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [728,2,Mod(365,728)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(728, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("728.365"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 728 = 2^{3} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 728.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [34] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.81310926715\)
Analytic rank: \(0\)
Dimension: \(34\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 365.10
Character \(\chi\) \(=\) 728.365
Dual form 728.2.c.a.365.9

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.720007 + 1.21721i) q^{2} +2.66332i q^{3} +(-0.963179 - 1.75279i) q^{4} +2.77422i q^{5} +(-3.24180 - 1.91761i) q^{6} -1.00000 q^{7} +(2.82701 + 0.0896372i) q^{8} -4.09325 q^{9} +(-3.37680 - 1.99746i) q^{10} +2.30522i q^{11} +(4.66824 - 2.56525i) q^{12} -1.00000i q^{13} +(0.720007 - 1.21721i) q^{14} -7.38863 q^{15} +(-2.14457 + 3.37651i) q^{16} -6.69704 q^{17} +(2.94717 - 4.98233i) q^{18} -2.40379i q^{19} +(4.86264 - 2.67207i) q^{20} -2.66332i q^{21} +(-2.80592 - 1.65977i) q^{22} +5.02802 q^{23} +(-0.238732 + 7.52921i) q^{24} -2.69630 q^{25} +(1.21721 + 0.720007i) q^{26} -2.91168i q^{27} +(0.963179 + 1.75279i) q^{28} +4.22120i q^{29} +(5.31986 - 8.99348i) q^{30} -6.52105 q^{31} +(-2.56580 - 5.04150i) q^{32} -6.13952 q^{33} +(4.82192 - 8.15168i) q^{34} -2.77422i q^{35} +(3.94254 + 7.17463i) q^{36} -7.64478i q^{37} +(2.92591 + 1.73075i) q^{38} +2.66332 q^{39} +(-0.248673 + 7.84274i) q^{40} -1.66987 q^{41} +(3.24180 + 1.91761i) q^{42} +4.89973i q^{43} +(4.04057 - 2.22034i) q^{44} -11.3556i q^{45} +(-3.62021 + 6.12013i) q^{46} +13.5343 q^{47} +(-8.99271 - 5.71167i) q^{48} +1.00000 q^{49} +(1.94135 - 3.28195i) q^{50} -17.8363i q^{51} +(-1.75279 + 0.963179i) q^{52} -0.579570i q^{53} +(3.54412 + 2.09643i) q^{54} -6.39518 q^{55} +(-2.82701 - 0.0896372i) q^{56} +6.40205 q^{57} +(-5.13807 - 3.03929i) q^{58} +10.2153i q^{59} +(7.11657 + 12.9507i) q^{60} +7.92093i q^{61} +(4.69520 - 7.93746i) q^{62} +4.09325 q^{63} +(7.98393 + 0.506810i) q^{64} +2.77422 q^{65} +(4.42050 - 7.47306i) q^{66} -6.80101i q^{67} +(6.45045 + 11.7385i) q^{68} +13.3912i q^{69} +(3.37680 + 1.99746i) q^{70} +7.75298 q^{71} +(-11.5717 - 0.366908i) q^{72} -5.71664 q^{73} +(9.30527 + 5.50430i) q^{74} -7.18109i q^{75} +(-4.21335 + 2.31528i) q^{76} -2.30522i q^{77} +(-1.91761 + 3.24180i) q^{78} +12.0537 q^{79} +(-9.36718 - 5.94951i) q^{80} -4.52503 q^{81} +(1.20232 - 2.03258i) q^{82} -0.262559i q^{83} +(-4.66824 + 2.56525i) q^{84} -18.5791i q^{85} +(-5.96397 - 3.52784i) q^{86} -11.2424 q^{87} +(-0.206633 + 6.51686i) q^{88} -14.0431 q^{89} +(13.8221 + 8.17611i) q^{90} +1.00000i q^{91} +(-4.84288 - 8.81308i) q^{92} -17.3676i q^{93} +(-9.74482 + 16.4741i) q^{94} +6.66864 q^{95} +(13.4271 - 6.83353i) q^{96} -15.9382 q^{97} +(-0.720007 + 1.21721i) q^{98} -9.43584i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 34 q + 2 q^{2} - 2 q^{4} - 6 q^{6} - 34 q^{7} + 8 q^{8} - 26 q^{9} - 4 q^{12} - 2 q^{14} - 8 q^{15} - 6 q^{16} - 20 q^{17} + 14 q^{18} - 4 q^{20} - 10 q^{22} - 20 q^{23} + 10 q^{24} - 22 q^{25} + 2 q^{28}+ \cdots + 2 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/728\mathbb{Z}\right)^\times\).

\(n\) \(183\) \(365\) \(521\) \(561\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.720007 + 1.21721i −0.509122 + 0.860694i
\(3\) 2.66332i 1.53767i 0.639449 + 0.768833i \(0.279162\pi\)
−0.639449 + 0.768833i \(0.720838\pi\)
\(4\) −0.963179 1.75279i −0.481590 0.876397i
\(5\) 2.77422i 1.24067i 0.784337 + 0.620334i \(0.213003\pi\)
−0.784337 + 0.620334i \(0.786997\pi\)
\(6\) −3.24180 1.91761i −1.32346 0.782860i
\(7\) −1.00000 −0.377964
\(8\) 2.82701 + 0.0896372i 0.999498 + 0.0316915i
\(9\) −4.09325 −1.36442
\(10\) −3.37680 1.99746i −1.06784 0.631652i
\(11\) 2.30522i 0.695049i 0.937671 + 0.347524i \(0.112978\pi\)
−0.937671 + 0.347524i \(0.887022\pi\)
\(12\) 4.66824 2.56525i 1.34761 0.740524i
\(13\) 1.00000i 0.277350i
\(14\) 0.720007 1.21721i 0.192430 0.325312i
\(15\) −7.38863 −1.90773
\(16\) −2.14457 + 3.37651i −0.536143 + 0.844127i
\(17\) −6.69704 −1.62427 −0.812135 0.583469i \(-0.801695\pi\)
−0.812135 + 0.583469i \(0.801695\pi\)
\(18\) 2.94717 4.98233i 0.694655 1.17435i
\(19\) 2.40379i 0.551467i −0.961234 0.275734i \(-0.911079\pi\)
0.961234 0.275734i \(-0.0889208\pi\)
\(20\) 4.86264 2.67207i 1.08732 0.597493i
\(21\) 2.66332i 0.581183i
\(22\) −2.80592 1.65977i −0.598225 0.353865i
\(23\) 5.02802 1.04841 0.524207 0.851591i \(-0.324362\pi\)
0.524207 + 0.851591i \(0.324362\pi\)
\(24\) −0.238732 + 7.52921i −0.0487310 + 1.53689i
\(25\) −2.69630 −0.539259
\(26\) 1.21721 + 0.720007i 0.238714 + 0.141205i
\(27\) 2.91168i 0.560354i
\(28\) 0.963179 + 1.75279i 0.182024 + 0.331247i
\(29\) 4.22120i 0.783857i 0.919996 + 0.391929i \(0.128192\pi\)
−0.919996 + 0.391929i \(0.871808\pi\)
\(30\) 5.31986 8.99348i 0.971270 1.64198i
\(31\) −6.52105 −1.17122 −0.585608 0.810595i \(-0.699144\pi\)
−0.585608 + 0.810595i \(0.699144\pi\)
\(32\) −2.56580 5.04150i −0.453573 0.891219i
\(33\) −6.13952 −1.06875
\(34\) 4.82192 8.15168i 0.826952 1.39800i
\(35\) 2.77422i 0.468929i
\(36\) 3.94254 + 7.17463i 0.657090 + 1.19577i
\(37\) 7.64478i 1.25679i −0.777893 0.628397i \(-0.783711\pi\)
0.777893 0.628397i \(-0.216289\pi\)
\(38\) 2.92591 + 1.73075i 0.474645 + 0.280764i
\(39\) 2.66332 0.426472
\(40\) −0.248673 + 7.84274i −0.0393187 + 1.24005i
\(41\) −1.66987 −0.260790 −0.130395 0.991462i \(-0.541625\pi\)
−0.130395 + 0.991462i \(0.541625\pi\)
\(42\) 3.24180 + 1.91761i 0.500221 + 0.295893i
\(43\) 4.89973i 0.747201i 0.927590 + 0.373601i \(0.121877\pi\)
−0.927590 + 0.373601i \(0.878123\pi\)
\(44\) 4.04057 2.22034i 0.609139 0.334728i
\(45\) 11.3556i 1.69279i
\(46\) −3.62021 + 6.12013i −0.533771 + 0.902364i
\(47\) 13.5343 1.97419 0.987093 0.160148i \(-0.0511970\pi\)
0.987093 + 0.160148i \(0.0511970\pi\)
\(48\) −8.99271 5.71167i −1.29799 0.824409i
\(49\) 1.00000 0.142857
\(50\) 1.94135 3.28195i 0.274549 0.464137i
\(51\) 17.8363i 2.49759i
\(52\) −1.75279 + 0.963179i −0.243069 + 0.133569i
\(53\) 0.579570i 0.0796101i −0.999207 0.0398050i \(-0.987326\pi\)
0.999207 0.0398050i \(-0.0126737\pi\)
\(54\) 3.54412 + 2.09643i 0.482293 + 0.285288i
\(55\) −6.39518 −0.862325
\(56\) −2.82701 0.0896372i −0.377775 0.0119783i
\(57\) 6.40205 0.847973
\(58\) −5.13807 3.03929i −0.674661 0.399079i
\(59\) 10.2153i 1.32992i 0.746880 + 0.664959i \(0.231551\pi\)
−0.746880 + 0.664959i \(0.768449\pi\)
\(60\) 7.11657 + 12.9507i 0.918745 + 1.67193i
\(61\) 7.92093i 1.01417i 0.861896 + 0.507086i \(0.169277\pi\)
−0.861896 + 0.507086i \(0.830723\pi\)
\(62\) 4.69520 7.93746i 0.596291 1.00806i
\(63\) 4.09325 0.515702
\(64\) 7.98393 + 0.506810i 0.997991 + 0.0633512i
\(65\) 2.77422 0.344100
\(66\) 4.42050 7.47306i 0.544126 0.919870i
\(67\) 6.80101i 0.830876i −0.909621 0.415438i \(-0.863628\pi\)
0.909621 0.415438i \(-0.136372\pi\)
\(68\) 6.45045 + 11.7385i 0.782232 + 1.42351i
\(69\) 13.3912i 1.61211i
\(70\) 3.37680 + 1.99746i 0.403604 + 0.238742i
\(71\) 7.75298 0.920110 0.460055 0.887890i \(-0.347830\pi\)
0.460055 + 0.887890i \(0.347830\pi\)
\(72\) −11.5717 0.366908i −1.36373 0.0432405i
\(73\) −5.71664 −0.669082 −0.334541 0.942381i \(-0.608581\pi\)
−0.334541 + 0.942381i \(0.608581\pi\)
\(74\) 9.30527 + 5.50430i 1.08172 + 0.639862i
\(75\) 7.18109i 0.829201i
\(76\) −4.21335 + 2.31528i −0.483304 + 0.265581i
\(77\) 2.30522i 0.262704i
\(78\) −1.91761 + 3.24180i −0.217126 + 0.367062i
\(79\) 12.0537 1.35615 0.678076 0.734992i \(-0.262814\pi\)
0.678076 + 0.734992i \(0.262814\pi\)
\(80\) −9.36718 5.94951i −1.04728 0.665176i
\(81\) −4.52503 −0.502781
\(82\) 1.20232 2.03258i 0.132774 0.224461i
\(83\) 0.262559i 0.0288196i −0.999896 0.0144098i \(-0.995413\pi\)
0.999896 0.0144098i \(-0.00458695\pi\)
\(84\) −4.66824 + 2.56525i −0.509347 + 0.279892i
\(85\) 18.5791i 2.01518i
\(86\) −5.96397 3.52784i −0.643112 0.380417i
\(87\) −11.2424 −1.20531
\(88\) −0.206633 + 6.51686i −0.0220272 + 0.694700i
\(89\) −14.0431 −1.48857 −0.744283 0.667865i \(-0.767208\pi\)
−0.744283 + 0.667865i \(0.767208\pi\)
\(90\) 13.8221 + 8.17611i 1.45698 + 0.861837i
\(91\) 1.00000i 0.104828i
\(92\) −4.84288 8.81308i −0.504905 0.918827i
\(93\) 17.3676i 1.80094i
\(94\) −9.74482 + 16.4741i −1.00510 + 1.69917i
\(95\) 6.66864 0.684188
\(96\) 13.4271 6.83353i 1.37040 0.697444i
\(97\) −15.9382 −1.61828 −0.809142 0.587613i \(-0.800068\pi\)
−0.809142 + 0.587613i \(0.800068\pi\)
\(98\) −0.720007 + 1.21721i −0.0727317 + 0.122956i
\(99\) 9.43584i 0.948337i
\(100\) 2.59702 + 4.72605i 0.259702 + 0.472605i
\(101\) 11.8085i 1.17499i −0.809229 0.587494i \(-0.800115\pi\)
0.809229 0.587494i \(-0.199885\pi\)
\(102\) 21.7105 + 12.8423i 2.14966 + 1.27158i
\(103\) −2.80041 −0.275933 −0.137966 0.990437i \(-0.544057\pi\)
−0.137966 + 0.990437i \(0.544057\pi\)
\(104\) 0.0896372 2.82701i 0.00878965 0.277211i
\(105\) 7.38863 0.721056
\(106\) 0.705456 + 0.417295i 0.0685200 + 0.0405313i
\(107\) 2.80406i 0.271079i 0.990772 + 0.135539i \(0.0432767\pi\)
−0.990772 + 0.135539i \(0.956723\pi\)
\(108\) −5.10358 + 2.80447i −0.491092 + 0.269860i
\(109\) 9.23050i 0.884122i 0.896985 + 0.442061i \(0.145753\pi\)
−0.896985 + 0.442061i \(0.854247\pi\)
\(110\) 4.60457 7.78424i 0.439029 0.742198i
\(111\) 20.3605 1.93253
\(112\) 2.14457 3.37651i 0.202643 0.319050i
\(113\) 7.99544 0.752148 0.376074 0.926590i \(-0.377274\pi\)
0.376074 + 0.926590i \(0.377274\pi\)
\(114\) −4.60952 + 7.79262i −0.431722 + 0.729845i
\(115\) 13.9488i 1.30074i
\(116\) 7.39889 4.06577i 0.686970 0.377497i
\(117\) 4.09325i 0.378422i
\(118\) −12.4341 7.35508i −1.14465 0.677090i
\(119\) 6.69704 0.613917
\(120\) −20.8877 0.662296i −1.90678 0.0604590i
\(121\) 5.68598 0.516907
\(122\) −9.64140 5.70313i −0.872891 0.516337i
\(123\) 4.44740i 0.401008i
\(124\) 6.28094 + 11.4301i 0.564045 + 1.02645i
\(125\) 6.39098i 0.571627i
\(126\) −2.94717 + 4.98233i −0.262555 + 0.443861i
\(127\) −9.95073 −0.882985 −0.441492 0.897265i \(-0.645551\pi\)
−0.441492 + 0.897265i \(0.645551\pi\)
\(128\) −6.36538 + 9.35318i −0.562625 + 0.826712i
\(129\) −13.0495 −1.14895
\(130\) −1.99746 + 3.37680i −0.175189 + 0.296165i
\(131\) 0.170370i 0.0148853i 0.999972 + 0.00744265i \(0.00236909\pi\)
−0.999972 + 0.00744265i \(0.997631\pi\)
\(132\) 5.91346 + 10.7613i 0.514700 + 0.936652i
\(133\) 2.40379i 0.208435i
\(134\) 8.27823 + 4.89678i 0.715130 + 0.423017i
\(135\) 8.07765 0.695213
\(136\) −18.9326 0.600304i −1.62346 0.0514756i
\(137\) −21.3225 −1.82170 −0.910852 0.412734i \(-0.864574\pi\)
−0.910852 + 0.412734i \(0.864574\pi\)
\(138\) −16.2999 9.64177i −1.38754 0.820762i
\(139\) 2.75623i 0.233781i 0.993145 + 0.116890i \(0.0372926\pi\)
−0.993145 + 0.116890i \(0.962707\pi\)
\(140\) −4.86264 + 2.67207i −0.410968 + 0.225831i
\(141\) 36.0462i 3.03564i
\(142\) −5.58220 + 9.43698i −0.468448 + 0.791933i
\(143\) 2.30522 0.192772
\(144\) 8.77828 13.8209i 0.731523 1.15174i
\(145\) −11.7105 −0.972507
\(146\) 4.11602 6.95833i 0.340644 0.575875i
\(147\) 2.66332i 0.219667i
\(148\) −13.3997 + 7.36329i −1.10145 + 0.605259i
\(149\) 4.75728i 0.389732i −0.980830 0.194866i \(-0.937573\pi\)
0.980830 0.194866i \(-0.0624271\pi\)
\(150\) 8.74086 + 5.17044i 0.713688 + 0.422164i
\(151\) −6.72897 −0.547596 −0.273798 0.961787i \(-0.588280\pi\)
−0.273798 + 0.961787i \(0.588280\pi\)
\(152\) 0.215469 6.79553i 0.0174768 0.551190i
\(153\) 27.4127 2.21618
\(154\) 2.80592 + 1.65977i 0.226108 + 0.133748i
\(155\) 18.0908i 1.45309i
\(156\) −2.56525 4.66824i −0.205384 0.373759i
\(157\) 7.37175i 0.588330i 0.955755 + 0.294165i \(0.0950415\pi\)
−0.955755 + 0.294165i \(0.904958\pi\)
\(158\) −8.67878 + 14.6719i −0.690446 + 1.16723i
\(159\) 1.54358 0.122414
\(160\) 13.9862 7.11809i 1.10571 0.562734i
\(161\) −5.02802 −0.396263
\(162\) 3.25805 5.50789i 0.255977 0.432741i
\(163\) 10.1735i 0.796853i 0.917200 + 0.398426i \(0.130444\pi\)
−0.917200 + 0.398426i \(0.869556\pi\)
\(164\) 1.60839 + 2.92694i 0.125594 + 0.228556i
\(165\) 17.0324i 1.32597i
\(166\) 0.319589 + 0.189045i 0.0248049 + 0.0146727i
\(167\) −20.1675 −1.56061 −0.780303 0.625401i \(-0.784935\pi\)
−0.780303 + 0.625401i \(0.784935\pi\)
\(168\) 0.238732 7.52921i 0.0184186 0.580891i
\(169\) −1.00000 −0.0769231
\(170\) 22.6145 + 13.3771i 1.73446 + 1.02597i
\(171\) 9.83932i 0.752432i
\(172\) 8.58821 4.71931i 0.654845 0.359844i
\(173\) 5.41669i 0.411823i 0.978571 + 0.205911i \(0.0660159\pi\)
−0.978571 + 0.205911i \(0.933984\pi\)
\(174\) 8.09460 13.6843i 0.613650 1.03740i
\(175\) 2.69630 0.203821
\(176\) −7.78358 4.94370i −0.586710 0.372646i
\(177\) −27.2065 −2.04497
\(178\) 10.1111 17.0933i 0.757861 1.28120i
\(179\) 6.79698i 0.508030i 0.967200 + 0.254015i \(0.0817513\pi\)
−0.967200 + 0.254015i \(0.918249\pi\)
\(180\) −19.9040 + 10.9375i −1.48356 + 0.815231i
\(181\) 14.9174i 1.10880i 0.832249 + 0.554402i \(0.187053\pi\)
−0.832249 + 0.554402i \(0.812947\pi\)
\(182\) −1.21721 0.720007i −0.0902253 0.0533705i
\(183\) −21.0959 −1.55946
\(184\) 14.2142 + 0.450698i 1.04789 + 0.0332259i
\(185\) 21.2083 1.55927
\(186\) 21.1400 + 12.5048i 1.55006 + 0.916897i
\(187\) 15.4381i 1.12895i
\(188\) −13.0360 23.7229i −0.950747 1.73017i
\(189\) 2.91168i 0.211794i
\(190\) −4.80147 + 8.11711i −0.348335 + 0.588877i
\(191\) −13.5542 −0.980744 −0.490372 0.871513i \(-0.663139\pi\)
−0.490372 + 0.871513i \(0.663139\pi\)
\(192\) −1.34980 + 21.2637i −0.0974131 + 1.53458i
\(193\) −4.61365 −0.332098 −0.166049 0.986118i \(-0.553101\pi\)
−0.166049 + 0.986118i \(0.553101\pi\)
\(194\) 11.4757 19.4001i 0.823904 1.39285i
\(195\) 7.38863i 0.529110i
\(196\) −0.963179 1.75279i −0.0687985 0.125200i
\(197\) 5.21055i 0.371236i −0.982622 0.185618i \(-0.940571\pi\)
0.982622 0.185618i \(-0.0594287\pi\)
\(198\) 11.4854 + 6.79387i 0.816228 + 0.482819i
\(199\) 23.8017 1.68726 0.843629 0.536927i \(-0.180415\pi\)
0.843629 + 0.536927i \(0.180415\pi\)
\(200\) −7.62244 0.241688i −0.538988 0.0170899i
\(201\) 18.1133 1.27761
\(202\) 14.3733 + 8.50219i 1.01130 + 0.598212i
\(203\) 4.22120i 0.296270i
\(204\) −31.2634 + 17.1796i −2.18888 + 1.20281i
\(205\) 4.63259i 0.323554i
\(206\) 2.01632 3.40867i 0.140483 0.237494i
\(207\) −20.5810 −1.43048
\(208\) 3.37651 + 2.14457i 0.234119 + 0.148699i
\(209\) 5.54125 0.383297
\(210\) −5.31986 + 8.99348i −0.367105 + 0.620609i
\(211\) 9.64867i 0.664242i 0.943237 + 0.332121i \(0.107764\pi\)
−0.943237 + 0.332121i \(0.892236\pi\)
\(212\) −1.01587 + 0.558230i −0.0697700 + 0.0383394i
\(213\) 20.6487i 1.41482i
\(214\) −3.41312 2.01894i −0.233316 0.138012i
\(215\) −13.5929 −0.927029
\(216\) 0.260995 8.23135i 0.0177585 0.560072i
\(217\) 6.52105 0.442678
\(218\) −11.2354 6.64603i −0.760959 0.450126i
\(219\) 15.2252i 1.02883i
\(220\) 6.15970 + 11.2094i 0.415287 + 0.755739i
\(221\) 6.69704i 0.450492i
\(222\) −14.6597 + 24.7829i −0.983894 + 1.66332i
\(223\) −1.12765 −0.0755129 −0.0377565 0.999287i \(-0.512021\pi\)
−0.0377565 + 0.999287i \(0.512021\pi\)
\(224\) 2.56580 + 5.04150i 0.171435 + 0.336849i
\(225\) 11.0366 0.735775
\(226\) −5.75678 + 9.73210i −0.382935 + 0.647370i
\(227\) 28.0410i 1.86115i 0.366103 + 0.930574i \(0.380692\pi\)
−0.366103 + 0.930574i \(0.619308\pi\)
\(228\) −6.16632 11.2215i −0.408375 0.743161i
\(229\) 19.7757i 1.30682i 0.757006 + 0.653408i \(0.226662\pi\)
−0.757006 + 0.653408i \(0.773338\pi\)
\(230\) −16.9786 10.0433i −1.11954 0.662233i
\(231\) 6.13952 0.403951
\(232\) −0.378376 + 11.9334i −0.0248416 + 0.783463i
\(233\) −26.7490 −1.75239 −0.876194 0.481958i \(-0.839926\pi\)
−0.876194 + 0.481958i \(0.839926\pi\)
\(234\) −4.98233 2.94717i −0.325705 0.192663i
\(235\) 37.5472i 2.44931i
\(236\) 17.9053 9.83915i 1.16554 0.640474i
\(237\) 32.1029i 2.08531i
\(238\) −4.82192 + 8.15168i −0.312559 + 0.528395i
\(239\) 19.6982 1.27417 0.637086 0.770793i \(-0.280140\pi\)
0.637086 + 0.770793i \(0.280140\pi\)
\(240\) 15.8454 24.9478i 1.02282 1.61037i
\(241\) 8.31281 0.535475 0.267738 0.963492i \(-0.413724\pi\)
0.267738 + 0.963492i \(0.413724\pi\)
\(242\) −4.09395 + 6.92101i −0.263169 + 0.444899i
\(243\) 20.7866i 1.33346i
\(244\) 13.8838 7.62927i 0.888816 0.488414i
\(245\) 2.77422i 0.177238i
\(246\) 5.41340 + 3.20216i 0.345146 + 0.204162i
\(247\) −2.40379 −0.152949
\(248\) −18.4351 0.584529i −1.17063 0.0371176i
\(249\) 0.699279 0.0443150
\(250\) −7.77914 4.60155i −0.491996 0.291028i
\(251\) 24.2860i 1.53292i −0.642292 0.766460i \(-0.722016\pi\)
0.642292 0.766460i \(-0.277984\pi\)
\(252\) −3.94254 7.17463i −0.248357 0.451959i
\(253\) 11.5907i 0.728699i
\(254\) 7.16460 12.1121i 0.449547 0.759980i
\(255\) 49.4819 3.09868
\(256\) −6.80162 14.4823i −0.425101 0.905146i
\(257\) 11.7809 0.734871 0.367436 0.930049i \(-0.380236\pi\)
0.367436 + 0.930049i \(0.380236\pi\)
\(258\) 9.39575 15.8840i 0.584954 0.988892i
\(259\) 7.64478i 0.475024i
\(260\) −2.67207 4.86264i −0.165715 0.301568i
\(261\) 17.2784i 1.06951i
\(262\) −0.207375 0.122668i −0.0128117 0.00757843i
\(263\) 16.2221 1.00029 0.500147 0.865940i \(-0.333279\pi\)
0.500147 + 0.865940i \(0.333279\pi\)
\(264\) −17.3565 0.550329i −1.06822 0.0338704i
\(265\) 1.60786 0.0987698
\(266\) −2.92591 1.73075i −0.179399 0.106119i
\(267\) 37.4012i 2.28892i
\(268\) −11.9208 + 6.55060i −0.728177 + 0.400141i
\(269\) 26.4552i 1.61300i 0.591233 + 0.806501i \(0.298641\pi\)
−0.591233 + 0.806501i \(0.701359\pi\)
\(270\) −5.81597 + 9.83216i −0.353948 + 0.598366i
\(271\) −21.9987 −1.33633 −0.668164 0.744014i \(-0.732920\pi\)
−0.668164 + 0.744014i \(0.732920\pi\)
\(272\) 14.3623 22.6126i 0.870842 1.37109i
\(273\) −2.66332 −0.161191
\(274\) 15.3523 25.9539i 0.927469 1.56793i
\(275\) 6.21554i 0.374811i
\(276\) 23.4720 12.8981i 1.41285 0.776376i
\(277\) 8.68422i 0.521784i 0.965368 + 0.260892i \(0.0840167\pi\)
−0.965368 + 0.260892i \(0.915983\pi\)
\(278\) −3.35490 1.98451i −0.201214 0.119023i
\(279\) 26.6923 1.59803
\(280\) 0.248673 7.84274i 0.0148611 0.468693i
\(281\) 33.4194 1.99363 0.996817 0.0797253i \(-0.0254043\pi\)
0.996817 + 0.0797253i \(0.0254043\pi\)
\(282\) −43.8757 25.9535i −2.61276 1.54551i
\(283\) 23.1585i 1.37663i −0.725412 0.688314i \(-0.758351\pi\)
0.725412 0.688314i \(-0.241649\pi\)
\(284\) −7.46751 13.5894i −0.443115 0.806382i
\(285\) 17.7607i 1.05205i
\(286\) −1.65977 + 2.80592i −0.0981444 + 0.165918i
\(287\) 1.66987 0.0985695
\(288\) 10.5025 + 20.6361i 0.618864 + 1.21600i
\(289\) 27.8504 1.63826
\(290\) 8.43167 14.2541i 0.495125 0.837031i
\(291\) 42.4486i 2.48838i
\(292\) 5.50615 + 10.0201i 0.322223 + 0.586381i
\(293\) 20.2527i 1.18318i −0.806241 0.591588i \(-0.798501\pi\)
0.806241 0.591588i \(-0.201499\pi\)
\(294\) −3.24180 1.91761i −0.189066 0.111837i
\(295\) −28.3395 −1.64999
\(296\) 0.685257 21.6118i 0.0398297 1.25616i
\(297\) 6.71206 0.389473
\(298\) 5.79059 + 3.42528i 0.335440 + 0.198421i
\(299\) 5.02802i 0.290778i
\(300\) −12.5870 + 6.91667i −0.726709 + 0.399334i
\(301\) 4.89973i 0.282416i
\(302\) 4.84491 8.19054i 0.278793 0.471313i
\(303\) 31.4497 1.80674
\(304\) 8.11642 + 5.15510i 0.465508 + 0.295665i
\(305\) −21.9744 −1.25825
\(306\) −19.7373 + 33.3669i −1.12831 + 1.90746i
\(307\) 11.4584i 0.653968i −0.945030 0.326984i \(-0.893968\pi\)
0.945030 0.326984i \(-0.106032\pi\)
\(308\) −4.04057 + 2.22034i −0.230233 + 0.126515i
\(309\) 7.45838i 0.424292i
\(310\) 22.0203 + 13.0255i 1.25067 + 0.739800i
\(311\) 7.17869 0.407066 0.203533 0.979068i \(-0.434758\pi\)
0.203533 + 0.979068i \(0.434758\pi\)
\(312\) 7.52921 + 0.238732i 0.426258 + 0.0135156i
\(313\) 28.1120 1.58898 0.794492 0.607275i \(-0.207737\pi\)
0.794492 + 0.607275i \(0.207737\pi\)
\(314\) −8.97294 5.30772i −0.506372 0.299532i
\(315\) 11.3556i 0.639815i
\(316\) −11.6099 21.1277i −0.653108 1.18853i
\(317\) 15.6537i 0.879198i −0.898194 0.439599i \(-0.855120\pi\)
0.898194 0.439599i \(-0.144880\pi\)
\(318\) −1.11139 + 1.87885i −0.0623235 + 0.105361i
\(319\) −9.73078 −0.544819
\(320\) −1.40600 + 22.1492i −0.0785979 + 1.23818i
\(321\) −7.46810 −0.416829
\(322\) 3.62021 6.12013i 0.201746 0.341062i
\(323\) 16.0983i 0.895732i
\(324\) 4.35841 + 7.93144i 0.242134 + 0.440636i
\(325\) 2.69630i 0.149564i
\(326\) −12.3833 7.32502i −0.685847 0.405695i
\(327\) −24.5838 −1.35948
\(328\) −4.72074 0.149683i −0.260659 0.00826484i
\(329\) −13.5343 −0.746172
\(330\) 20.7319 + 12.2634i 1.14125 + 0.675080i
\(331\) 17.1765i 0.944106i −0.881570 0.472053i \(-0.843513\pi\)
0.881570 0.472053i \(-0.156487\pi\)
\(332\) −0.460212 + 0.252892i −0.0252574 + 0.0138792i
\(333\) 31.2920i 1.71479i
\(334\) 14.5207 24.5480i 0.794539 1.34321i
\(335\) 18.8675 1.03084
\(336\) 8.99271 + 5.71167i 0.490593 + 0.311597i
\(337\) −24.0567 −1.31045 −0.655227 0.755432i \(-0.727427\pi\)
−0.655227 + 0.755432i \(0.727427\pi\)
\(338\) 0.720007 1.21721i 0.0391632 0.0662073i
\(339\) 21.2944i 1.15655i
\(340\) −32.5653 + 17.8950i −1.76610 + 0.970491i
\(341\) 15.0324i 0.814052i
\(342\) −11.9765 7.08438i −0.647614 0.383080i
\(343\) −1.00000 −0.0539949
\(344\) −0.439198 + 13.8516i −0.0236800 + 0.746826i
\(345\) −37.1502 −2.00010
\(346\) −6.59322 3.90005i −0.354454 0.209668i
\(347\) 10.0923i 0.541785i 0.962610 + 0.270893i \(0.0873189\pi\)
−0.962610 + 0.270893i \(0.912681\pi\)
\(348\) 10.8284 + 19.7056i 0.580465 + 1.05633i
\(349\) 22.2058i 1.18865i −0.804225 0.594325i \(-0.797419\pi\)
0.804225 0.594325i \(-0.202581\pi\)
\(350\) −1.94135 + 3.28195i −0.103770 + 0.175427i
\(351\) −2.91168 −0.155414
\(352\) 11.6217 5.91472i 0.619441 0.315256i
\(353\) 2.84719 0.151540 0.0757702 0.997125i \(-0.475858\pi\)
0.0757702 + 0.997125i \(0.475858\pi\)
\(354\) 19.5889 33.1160i 1.04114 1.76009i
\(355\) 21.5085i 1.14155i
\(356\) 13.5260 + 24.6147i 0.716878 + 1.30457i
\(357\) 17.8363i 0.943999i
\(358\) −8.27332 4.89388i −0.437259 0.258649i
\(359\) −5.38588 −0.284256 −0.142128 0.989848i \(-0.545394\pi\)
−0.142128 + 0.989848i \(0.545394\pi\)
\(360\) 1.01788 32.1023i 0.0536472 1.69194i
\(361\) 13.2218 0.695884
\(362\) −18.1576 10.7407i −0.954341 0.564516i
\(363\) 15.1436i 0.794831i
\(364\) 1.75279 0.963179i 0.0918714 0.0504843i
\(365\) 15.8592i 0.830109i
\(366\) 15.1892 25.6781i 0.793954 1.34222i
\(367\) 27.3949 1.43000 0.715001 0.699123i \(-0.246426\pi\)
0.715001 + 0.699123i \(0.246426\pi\)
\(368\) −10.7830 + 16.9772i −0.562100 + 0.884995i
\(369\) 6.83521 0.355827
\(370\) −15.2701 + 25.8149i −0.793856 + 1.34205i
\(371\) 0.579570i 0.0300898i
\(372\) −30.4419 + 16.7281i −1.57834 + 0.867313i
\(373\) 1.81294i 0.0938703i 0.998898 + 0.0469351i \(0.0149454\pi\)
−0.998898 + 0.0469351i \(0.985055\pi\)
\(374\) 18.7914 + 11.1156i 0.971679 + 0.574772i
\(375\) −17.0212 −0.878971
\(376\) 38.2617 + 1.21318i 1.97319 + 0.0625650i
\(377\) 4.22120 0.217403
\(378\) −3.54412 2.09643i −0.182290 0.107829i
\(379\) 14.4281i 0.741122i 0.928808 + 0.370561i \(0.120835\pi\)
−0.928808 + 0.370561i \(0.879165\pi\)
\(380\) −6.42310 11.6888i −0.329498 0.599620i
\(381\) 26.5019i 1.35774i
\(382\) 9.75909 16.4982i 0.499319 0.844121i
\(383\) 20.0617 1.02510 0.512552 0.858656i \(-0.328700\pi\)
0.512552 + 0.858656i \(0.328700\pi\)
\(384\) −24.9105 16.9530i −1.27121 0.865130i
\(385\) 6.39518 0.325928
\(386\) 3.32186 5.61576i 0.169078 0.285835i
\(387\) 20.0558i 1.01950i
\(388\) 15.3514 + 27.9365i 0.779349 + 1.41826i
\(389\) 20.5109i 1.03994i −0.854183 0.519972i \(-0.825942\pi\)
0.854183 0.519972i \(-0.174058\pi\)
\(390\) −8.99348 5.31986i −0.455402 0.269382i
\(391\) −33.6729 −1.70291
\(392\) 2.82701 + 0.0896372i 0.142785 + 0.00452736i
\(393\) −0.453749 −0.0228886
\(394\) 6.34231 + 3.75163i 0.319521 + 0.189005i
\(395\) 33.4397i 1.68253i
\(396\) −16.5391 + 9.08840i −0.831120 + 0.456709i
\(397\) 0.791932i 0.0397459i −0.999803 0.0198730i \(-0.993674\pi\)
0.999803 0.0198730i \(-0.00632618\pi\)
\(398\) −17.1374 + 28.9716i −0.859020 + 1.45221i
\(399\) −6.40205 −0.320504
\(400\) 5.78240 9.10406i 0.289120 0.455203i
\(401\) 22.0537 1.10131 0.550656 0.834732i \(-0.314378\pi\)
0.550656 + 0.834732i \(0.314378\pi\)
\(402\) −13.0417 + 22.0476i −0.650460 + 1.09963i
\(403\) 6.52105i 0.324837i
\(404\) −20.6978 + 11.3737i −1.02976 + 0.565862i
\(405\) 12.5534i 0.623785i
\(406\) 5.13807 + 3.03929i 0.254998 + 0.150838i
\(407\) 17.6229 0.873533
\(408\) 1.59880 50.4234i 0.0791524 2.49633i
\(409\) −22.6362 −1.11929 −0.559645 0.828732i \(-0.689063\pi\)
−0.559645 + 0.828732i \(0.689063\pi\)
\(410\) 5.63882 + 3.33550i 0.278481 + 0.164729i
\(411\) 56.7885i 2.80117i
\(412\) 2.69730 + 4.90854i 0.132886 + 0.241826i
\(413\) 10.2153i 0.502661i
\(414\) 14.8184 25.0513i 0.728287 1.23120i
\(415\) 0.728397 0.0357556
\(416\) −5.04150 + 2.56580i −0.247180 + 0.125799i
\(417\) −7.34072 −0.359477
\(418\) −3.98974 + 6.74485i −0.195145 + 0.329901i
\(419\) 29.3054i 1.43166i 0.698274 + 0.715831i \(0.253952\pi\)
−0.698274 + 0.715831i \(0.746048\pi\)
\(420\) −7.11657 12.9507i −0.347253 0.631931i
\(421\) 12.9130i 0.629342i −0.949201 0.314671i \(-0.898106\pi\)
0.949201 0.314671i \(-0.101894\pi\)
\(422\) −11.7444 6.94711i −0.571709 0.338180i
\(423\) −55.3995 −2.69362
\(424\) 0.0519511 1.63845i 0.00252297 0.0795701i
\(425\) 18.0572 0.875903
\(426\) −25.1337 14.8672i −1.21773 0.720317i
\(427\) 7.92093i 0.383321i
\(428\) 4.91494 2.70081i 0.237573 0.130549i
\(429\) 6.13952i 0.296419i
\(430\) 9.78700 16.5454i 0.471971 0.797889i
\(431\) −11.6196 −0.559695 −0.279847 0.960044i \(-0.590284\pi\)
−0.279847 + 0.960044i \(0.590284\pi\)
\(432\) 9.83132 + 6.24431i 0.473010 + 0.300430i
\(433\) 11.7701 0.565634 0.282817 0.959174i \(-0.408731\pi\)
0.282817 + 0.959174i \(0.408731\pi\)
\(434\) −4.69520 + 7.93746i −0.225377 + 0.381010i
\(435\) 31.1889i 1.49539i
\(436\) 16.1792 8.89063i 0.774842 0.425784i
\(437\) 12.0863i 0.578166i
\(438\) 18.5322 + 10.9623i 0.885504 + 0.523798i
\(439\) 0.365184 0.0174293 0.00871464 0.999962i \(-0.497226\pi\)
0.00871464 + 0.999962i \(0.497226\pi\)
\(440\) −18.0792 0.573246i −0.861892 0.0273284i
\(441\) −4.09325 −0.194917
\(442\) −8.15168 4.82192i −0.387736 0.229355i
\(443\) 36.1653i 1.71826i 0.511755 + 0.859132i \(0.328996\pi\)
−0.511755 + 0.859132i \(0.671004\pi\)
\(444\) −19.6108 35.6877i −0.930686 1.69366i
\(445\) 38.9586i 1.84682i
\(446\) 0.811915 1.37258i 0.0384453 0.0649935i
\(447\) 12.6701 0.599277
\(448\) −7.98393 0.506810i −0.377205 0.0239445i
\(449\) 21.4503 1.01230 0.506152 0.862444i \(-0.331067\pi\)
0.506152 + 0.862444i \(0.331067\pi\)
\(450\) −7.94645 + 13.4338i −0.374599 + 0.633277i
\(451\) 3.84942i 0.181262i
\(452\) −7.70105 14.0144i −0.362227 0.659180i
\(453\) 17.9214i 0.842020i
\(454\) −34.1317 20.1897i −1.60188 0.947552i
\(455\) −2.77422 −0.130057
\(456\) 18.0986 + 0.573862i 0.847547 + 0.0268736i
\(457\) 2.80295 0.131116 0.0655582 0.997849i \(-0.479117\pi\)
0.0655582 + 0.997849i \(0.479117\pi\)
\(458\) −24.0711 14.2387i −1.12477 0.665329i
\(459\) 19.4997i 0.910166i
\(460\) 24.4494 13.4352i 1.13996 0.626421i
\(461\) 19.6840i 0.916774i 0.888753 + 0.458387i \(0.151573\pi\)
−0.888753 + 0.458387i \(0.848427\pi\)
\(462\) −4.42050 + 7.47306i −0.205660 + 0.347678i
\(463\) 10.9945 0.510959 0.255479 0.966815i \(-0.417767\pi\)
0.255479 + 0.966815i \(0.417767\pi\)
\(464\) −14.2529 9.05267i −0.661675 0.420259i
\(465\) 48.1816 2.23437
\(466\) 19.2595 32.5591i 0.892180 1.50827i
\(467\) 26.1563i 1.21037i 0.796086 + 0.605184i \(0.206901\pi\)
−0.796086 + 0.605184i \(0.793099\pi\)
\(468\) 7.17463 3.94254i 0.331647 0.182244i
\(469\) 6.80101i 0.314042i
\(470\) −45.7027 27.0343i −2.10811 1.24700i
\(471\) −19.6333 −0.904655
\(472\) −0.915670 + 28.8787i −0.0421471 + 1.32925i
\(473\) −11.2949 −0.519341
\(474\) −39.0758 23.1143i −1.79481 1.06168i
\(475\) 6.48133i 0.297384i
\(476\) −6.45045 11.7385i −0.295656 0.538035i
\(477\) 2.37233i 0.108621i
\(478\) −14.1829 + 23.9768i −0.648709 + 1.09667i
\(479\) 1.13276 0.0517574 0.0258787 0.999665i \(-0.491762\pi\)
0.0258787 + 0.999665i \(0.491762\pi\)
\(480\) 18.9577 + 37.2497i 0.865298 + 1.70021i
\(481\) −7.64478 −0.348572
\(482\) −5.98528 + 10.1184i −0.272622 + 0.460881i
\(483\) 13.3912i 0.609321i
\(484\) −5.47662 9.96635i −0.248937 0.453016i
\(485\) 44.2162i 2.00775i
\(486\) 25.3016 + 14.9665i 1.14770 + 0.678896i
\(487\) −19.1216 −0.866482 −0.433241 0.901278i \(-0.642630\pi\)
−0.433241 + 0.901278i \(0.642630\pi\)
\(488\) −0.710010 + 22.3925i −0.0321406 + 1.01366i
\(489\) −27.0953 −1.22529
\(490\) −3.37680 1.99746i −0.152548 0.0902360i
\(491\) 41.9448i 1.89294i 0.322788 + 0.946471i \(0.395380\pi\)
−0.322788 + 0.946471i \(0.604620\pi\)
\(492\) −7.79537 + 4.28364i −0.351443 + 0.193121i
\(493\) 28.2695i 1.27320i
\(494\) 1.73075 2.92591i 0.0778700 0.131643i
\(495\) 26.1771 1.17657
\(496\) 13.9849 22.0184i 0.627939 0.988655i
\(497\) −7.75298 −0.347769
\(498\) −0.503486 + 0.851166i −0.0225617 + 0.0381417i
\(499\) 34.0302i 1.52340i 0.647928 + 0.761702i \(0.275636\pi\)
−0.647928 + 0.761702i \(0.724364\pi\)
\(500\) 11.2021 6.15566i 0.500972 0.275290i
\(501\) 53.7124i 2.39969i
\(502\) 29.5611 + 17.4861i 1.31938 + 0.780444i
\(503\) 35.5484 1.58502 0.792512 0.609856i \(-0.208773\pi\)
0.792512 + 0.609856i \(0.208773\pi\)
\(504\) 11.5717 + 0.366908i 0.515443 + 0.0163434i
\(505\) 32.7593 1.45777
\(506\) −14.1082 8.34537i −0.627187 0.370997i
\(507\) 2.66332i 0.118282i
\(508\) 9.58434 + 17.4416i 0.425236 + 0.773845i
\(509\) 40.4806i 1.79427i 0.441755 + 0.897136i \(0.354356\pi\)
−0.441755 + 0.897136i \(0.645644\pi\)
\(510\) −35.6273 + 60.2297i −1.57761 + 2.66701i
\(511\) 5.71664 0.252889
\(512\) 22.5252 + 2.14841i 0.995482 + 0.0949473i
\(513\) −6.99907 −0.309017
\(514\) −8.48232 + 14.3398i −0.374139 + 0.632499i
\(515\) 7.76895i 0.342341i
\(516\) 12.5690 + 22.8731i 0.553321 + 1.00693i
\(517\) 31.1996i 1.37216i
\(518\) −9.30527 5.50430i −0.408850 0.241845i
\(519\) −14.4263 −0.633246
\(520\) 7.84274 + 0.248673i 0.343927 + 0.0109050i
\(521\) 23.0145 1.00828 0.504142 0.863621i \(-0.331809\pi\)
0.504142 + 0.863621i \(0.331809\pi\)
\(522\) 21.0314 + 12.4406i 0.920520 + 0.544510i
\(523\) 2.66001i 0.116314i −0.998307 0.0581570i \(-0.981478\pi\)
0.998307 0.0581570i \(-0.0185224\pi\)
\(524\) 0.298623 0.164097i 0.0130454 0.00716860i
\(525\) 7.18109i 0.313408i
\(526\) −11.6800 + 19.7456i −0.509272 + 0.860948i
\(527\) 43.6717 1.90237
\(528\) 13.1666 20.7301i 0.573005 0.902164i
\(529\) 2.28098 0.0991731
\(530\) −1.15767 + 1.95709i −0.0502859 + 0.0850106i
\(531\) 41.8138i 1.81456i
\(532\) 4.21335 2.31528i 0.182672 0.100380i
\(533\) 1.66987i 0.0723302i
\(534\) 45.5250 + 26.9291i 1.97006 + 1.16534i
\(535\) −7.77908 −0.336319
\(536\) 0.609624 19.2265i 0.0263317 0.830459i
\(537\) −18.1025 −0.781181
\(538\) −32.2014 19.0479i −1.38830 0.821214i
\(539\) 2.30522i 0.0992927i
\(540\) −7.78022 14.1585i −0.334808 0.609283i
\(541\) 8.51106i 0.365919i −0.983120 0.182959i \(-0.941432\pi\)
0.983120 0.182959i \(-0.0585677\pi\)
\(542\) 15.8393 26.7770i 0.680354 1.15017i
\(543\) −39.7298 −1.70497
\(544\) 17.1833 + 33.7631i 0.736726 + 1.44758i
\(545\) −25.6074 −1.09690
\(546\) 1.91761 3.24180i 0.0820660 0.138736i
\(547\) 8.16036i 0.348912i 0.984665 + 0.174456i \(0.0558166\pi\)
−0.984665 + 0.174456i \(0.944183\pi\)
\(548\) 20.5374 + 37.3739i 0.877313 + 1.59653i
\(549\) 32.4224i 1.38375i
\(550\) 7.56559 + 4.47524i 0.322598 + 0.190825i
\(551\) 10.1469 0.432271
\(552\) −1.20035 + 37.8570i −0.0510903 + 1.61130i
\(553\) −12.0537 −0.512577
\(554\) −10.5705 6.25270i −0.449097 0.265652i
\(555\) 56.4844i 2.39763i
\(556\) 4.83111 2.65475i 0.204885 0.112586i
\(557\) 30.1130i 1.27593i −0.770066 0.637964i \(-0.779777\pi\)
0.770066 0.637964i \(-0.220223\pi\)
\(558\) −19.2187 + 32.4900i −0.813591 + 1.37541i
\(559\) 4.89973 0.207236
\(560\) 9.36718 + 5.94951i 0.395835 + 0.251413i
\(561\) 41.1166 1.73594
\(562\) −24.0622 + 40.6783i −1.01500 + 1.71591i
\(563\) 20.3344i 0.856993i −0.903543 0.428497i \(-0.859043\pi\)
0.903543 0.428497i \(-0.140957\pi\)
\(564\) 63.1816 34.7190i 2.66043 1.46193i
\(565\) 22.1811i 0.933167i
\(566\) 28.1886 + 16.6743i 1.18486 + 0.700872i
\(567\) 4.52503 0.190033
\(568\) 21.9177 + 0.694956i 0.919648 + 0.0291597i
\(569\) 41.3117 1.73188 0.865939 0.500150i \(-0.166722\pi\)
0.865939 + 0.500150i \(0.166722\pi\)
\(570\) −21.6184 12.7878i −0.905496 0.535623i
\(571\) 40.7491i 1.70530i 0.522483 + 0.852649i \(0.325006\pi\)
−0.522483 + 0.852649i \(0.674994\pi\)
\(572\) −2.22034 4.04057i −0.0928369 0.168945i
\(573\) 36.0990i 1.50806i
\(574\) −1.20232 + 2.03258i −0.0501839 + 0.0848382i
\(575\) −13.5570 −0.565367
\(576\) −32.6803 2.07450i −1.36168 0.0864376i
\(577\) 18.2569 0.760043 0.380021 0.924978i \(-0.375917\pi\)
0.380021 + 0.924978i \(0.375917\pi\)
\(578\) −20.0525 + 33.8996i −0.834072 + 1.41004i
\(579\) 12.2876i 0.510656i
\(580\) 11.2793 + 20.5262i 0.468349 + 0.852302i
\(581\) 0.262559i 0.0108928i
\(582\) 51.6687 + 30.5633i 2.14174 + 1.26689i
\(583\) 1.33603 0.0553329
\(584\) −16.1610 0.512424i −0.668746 0.0212042i
\(585\) −11.3556 −0.469496
\(586\) 24.6517 + 14.5821i 1.01835 + 0.602381i
\(587\) 32.8881i 1.35744i −0.734399 0.678718i \(-0.762536\pi\)
0.734399 0.678718i \(-0.237464\pi\)
\(588\) 4.66824 2.56525i 0.192515 0.105789i
\(589\) 15.6752i 0.645887i
\(590\) 20.4046 34.4949i 0.840045 1.42013i
\(591\) 13.8773 0.570837
\(592\) 25.8127 + 16.3948i 1.06089 + 0.673821i
\(593\) −46.0425 −1.89074 −0.945369 0.326001i \(-0.894299\pi\)
−0.945369 + 0.326001i \(0.894299\pi\)
\(594\) −4.83273 + 8.16996i −0.198289 + 0.335217i
\(595\) 18.5791i 0.761667i
\(596\) −8.33853 + 4.58211i −0.341560 + 0.187691i
\(597\) 63.3915i 2.59444i
\(598\) 6.12013 + 3.62021i 0.250271 + 0.148041i
\(599\) −2.58321 −0.105547 −0.0527735 0.998607i \(-0.516806\pi\)
−0.0527735 + 0.998607i \(0.516806\pi\)
\(600\) 0.643693 20.3010i 0.0262786 0.828784i
\(601\) 5.32403 0.217172 0.108586 0.994087i \(-0.465368\pi\)
0.108586 + 0.994087i \(0.465368\pi\)
\(602\) 5.96397 + 3.52784i 0.243073 + 0.143784i
\(603\) 27.8383i 1.13366i
\(604\) 6.48120 + 11.7945i 0.263716 + 0.479911i
\(605\) 15.7742i 0.641311i
\(606\) −22.6440 + 38.2808i −0.919850 + 1.55505i
\(607\) −12.7131 −0.516010 −0.258005 0.966144i \(-0.583065\pi\)
−0.258005 + 0.966144i \(0.583065\pi\)
\(608\) −12.1187 + 6.16764i −0.491478 + 0.250131i
\(609\) 11.2424 0.455565
\(610\) 15.8217 26.7474i 0.640603 1.08297i
\(611\) 13.5343i 0.547541i
\(612\) −26.4033 48.0488i −1.06729 1.94226i
\(613\) 25.9763i 1.04917i −0.851357 0.524587i \(-0.824220\pi\)
0.851357 0.524587i \(-0.175780\pi\)
\(614\) 13.9473 + 8.25017i 0.562867 + 0.332950i
\(615\) 12.3381 0.497519
\(616\) 0.206633 6.51686i 0.00832548 0.262572i
\(617\) 12.9002 0.519343 0.259671 0.965697i \(-0.416386\pi\)
0.259671 + 0.965697i \(0.416386\pi\)
\(618\) 9.07838 + 5.37009i 0.365186 + 0.216017i
\(619\) 8.88577i 0.357149i −0.983926 0.178575i \(-0.942851\pi\)
0.983926 0.178575i \(-0.0571486\pi\)
\(620\) −31.7095 + 17.4247i −1.27348 + 0.699793i
\(621\) 14.6400i 0.587483i
\(622\) −5.16871 + 8.73794i −0.207246 + 0.350360i
\(623\) 14.0431 0.562625
\(624\) −5.71167 + 8.99271i −0.228650 + 0.359997i
\(625\) −31.2115 −1.24846
\(626\) −20.2408 + 34.2181i −0.808986 + 1.36763i
\(627\) 14.7581i 0.589382i
\(628\) 12.9212 7.10032i 0.515611 0.283334i
\(629\) 51.1974i 2.04137i
\(630\) −13.8221 8.17611i −0.550685 0.325744i
\(631\) 17.0995 0.680719 0.340359 0.940295i \(-0.389451\pi\)
0.340359 + 0.940295i \(0.389451\pi\)
\(632\) 34.0760 + 1.08046i 1.35547 + 0.0429785i
\(633\) −25.6975 −1.02138
\(634\) 19.0538 + 11.2708i 0.756721 + 0.447619i
\(635\) 27.6055i 1.09549i
\(636\) −1.48674 2.70558i −0.0589532 0.107283i
\(637\) 1.00000i 0.0396214i
\(638\) 7.00623 11.8444i 0.277379 0.468922i
\(639\) −31.7349 −1.25541
\(640\) −25.9478 17.6590i −1.02568 0.698032i
\(641\) −5.85739 −0.231353 −0.115677 0.993287i \(-0.536904\pi\)
−0.115677 + 0.993287i \(0.536904\pi\)
\(642\) 5.37709 9.09021i 0.212217 0.358762i
\(643\) 45.2251i 1.78350i 0.452526 + 0.891751i \(0.350523\pi\)
−0.452526 + 0.891751i \(0.649477\pi\)
\(644\) 4.84288 + 8.81308i 0.190836 + 0.347284i
\(645\) 36.2022i 1.42546i
\(646\) −19.5949 11.5909i −0.770952 0.456037i
\(647\) −26.6756 −1.04873 −0.524364 0.851494i \(-0.675697\pi\)
−0.524364 + 0.851494i \(0.675697\pi\)
\(648\) −12.7923 0.405611i −0.502529 0.0159339i
\(649\) −23.5484 −0.924357
\(650\) −3.28195 1.94135i −0.128729 0.0761461i
\(651\) 17.3676i 0.680691i
\(652\) 17.8321 9.79893i 0.698359 0.383756i
\(653\) 0.320551i 0.0125441i −0.999980 0.00627206i \(-0.998004\pi\)
0.999980 0.00627206i \(-0.00199647\pi\)
\(654\) 17.7005 29.9235i 0.692144 1.17010i
\(655\) −0.472644 −0.0184677
\(656\) 3.58116 5.63834i 0.139821 0.220140i
\(657\) 23.3997 0.912908
\(658\) 9.74482 16.4741i 0.379893 0.642226i
\(659\) 18.9811i 0.739398i 0.929151 + 0.369699i \(0.120539\pi\)
−0.929151 + 0.369699i \(0.879461\pi\)
\(660\) −29.8542 + 16.4052i −1.16207 + 0.638573i
\(661\) 32.3812i 1.25948i −0.776804 0.629742i \(-0.783161\pi\)
0.776804 0.629742i \(-0.216839\pi\)
\(662\) 20.9073 + 12.3672i 0.812587 + 0.480665i
\(663\) −17.8363 −0.692706
\(664\) 0.0235351 0.742257i 0.000913338 0.0288052i
\(665\) −6.66864 −0.258599
\(666\) −38.0888 22.5305i −1.47591 0.873039i
\(667\) 21.2243i 0.821807i
\(668\) 19.4249 + 35.3494i 0.751572 + 1.36771i
\(669\) 3.00328i 0.116114i
\(670\) −13.5847 + 22.9656i −0.524824 + 0.887240i
\(671\) −18.2595 −0.704898
\(672\) −13.4271 + 6.83353i −0.517962 + 0.263609i
\(673\) −1.03242 −0.0397970 −0.0198985 0.999802i \(-0.506334\pi\)
−0.0198985 + 0.999802i \(0.506334\pi\)
\(674\) 17.3210 29.2820i 0.667181 1.12790i
\(675\) 7.85076i 0.302176i
\(676\) 0.963179 + 1.75279i 0.0370454 + 0.0674151i
\(677\) 5.19777i 0.199767i −0.994999 0.0998833i \(-0.968153\pi\)
0.994999 0.0998833i \(-0.0318470\pi\)
\(678\) −25.9197 15.3321i −0.995439 0.588827i
\(679\) 15.9382 0.611654
\(680\) 1.66538 52.5231i 0.0638642 2.01417i
\(681\) −74.6821 −2.86183
\(682\) 18.2976 + 10.8235i 0.700650 + 0.414452i
\(683\) 4.36371i 0.166973i −0.996509 0.0834865i \(-0.973394\pi\)
0.996509 0.0834865i \(-0.0266055\pi\)
\(684\) 17.2463 9.47703i 0.659429 0.362363i
\(685\) 59.1533i 2.26013i
\(686\) 0.720007 1.21721i 0.0274900 0.0464731i
\(687\) −52.6690 −2.00945
\(688\) −16.5440 10.5078i −0.630733 0.400607i
\(689\) −0.579570 −0.0220799
\(690\) 26.7484 45.2194i 1.01829 1.72147i
\(691\) 5.66095i 0.215353i 0.994186 + 0.107676i \(0.0343410\pi\)
−0.994186 + 0.107676i \(0.965659\pi\)
\(692\) 9.49433 5.21724i 0.360920 0.198330i
\(693\) 9.43584i 0.358438i
\(694\) −12.2845 7.26656i −0.466312 0.275835i
\(695\) −7.64639 −0.290044
\(696\) −31.7823 1.00774i −1.20471 0.0381981i
\(697\) 11.1832 0.423594
\(698\) 27.0290 + 15.9883i 1.02306 + 0.605167i
\(699\) 71.2412i 2.69459i
\(700\) −2.59702 4.72605i −0.0981580 0.178628i
\(701\) 13.3890i 0.505695i 0.967506 + 0.252848i \(0.0813671\pi\)
−0.967506 + 0.252848i \(0.918633\pi\)
\(702\) 2.09643 3.54412i 0.0791248 0.133764i
\(703\) −18.3764 −0.693081
\(704\) −1.16831 + 18.4047i −0.0440322 + 0.693653i
\(705\) −100.000 −3.76622
\(706\) −2.04999 + 3.46561i −0.0771526 + 0.130430i
\(707\) 11.8085i 0.444103i
\(708\) 26.2048 + 47.6875i 0.984836 + 1.79220i
\(709\) 27.4963i 1.03265i 0.856394 + 0.516323i \(0.172699\pi\)
−0.856394 + 0.516323i \(0.827301\pi\)
\(710\) −26.1802 15.4863i −0.982527 0.581189i
\(711\) −49.3390 −1.85036
\(712\) −39.6999 1.25878i −1.48782 0.0471749i
\(713\) −32.7880 −1.22792
\(714\) −21.7105 12.8423i −0.812495 0.480611i
\(715\) 6.39518i 0.239166i
\(716\) 11.9137 6.54671i 0.445236 0.244662i
\(717\) 52.4626i 1.95925i
\(718\) 3.87787 6.55572i 0.144721 0.244657i
\(719\) −5.61384 −0.209361 −0.104681 0.994506i \(-0.533382\pi\)
−0.104681 + 0.994506i \(0.533382\pi\)
\(720\) 38.3422 + 24.3529i 1.42893 + 0.907578i
\(721\) 2.80041 0.104293
\(722\) −9.51979 + 16.0936i −0.354290 + 0.598943i
\(723\) 22.1396i 0.823382i
\(724\) 26.1472 14.3681i 0.971752 0.533988i
\(725\) 11.3816i 0.422702i
\(726\) −18.4328 10.9035i −0.684107 0.404666i
\(727\) 41.5030 1.53926 0.769630 0.638490i \(-0.220441\pi\)
0.769630 + 0.638490i \(0.220441\pi\)
\(728\) −0.0896372 + 2.82701i −0.00332218 + 0.104776i
\(729\) 41.7863 1.54764
\(730\) 19.3039 + 11.4188i 0.714470 + 0.422627i
\(731\) 32.8137i 1.21366i
\(732\) 20.3192 + 36.9768i 0.751018 + 1.36670i
\(733\) 15.7818i 0.582913i −0.956584 0.291456i \(-0.905860\pi\)
0.956584 0.291456i \(-0.0941398\pi\)
\(734\) −19.7245 + 33.3452i −0.728046 + 1.23079i
\(735\) −7.38863 −0.272534
\(736\) −12.9009 25.3487i −0.475533 0.934367i
\(737\) 15.6778 0.577499
\(738\) −4.92140 + 8.31986i −0.181159 + 0.306258i
\(739\) 35.4864i 1.30539i −0.757622 0.652694i \(-0.773639\pi\)
0.757622 0.652694i \(-0.226361\pi\)
\(740\) −20.4274 37.1738i −0.750926 1.36654i
\(741\) 6.40205i 0.235185i
\(742\) −0.705456 0.417295i −0.0258981 0.0153194i
\(743\) 43.4551 1.59421 0.797107 0.603838i \(-0.206363\pi\)
0.797107 + 0.603838i \(0.206363\pi\)
\(744\) 1.55678 49.0984i 0.0570745 1.80003i
\(745\) 13.1977 0.483528
\(746\) −2.20672 1.30533i −0.0807936 0.0477914i
\(747\) 1.07472i 0.0393220i
\(748\) −27.0598 + 14.8697i −0.989406 + 0.543689i
\(749\) 2.80406i 0.102458i
\(750\) 12.2554 20.7183i 0.447504 0.756526i
\(751\) 0.732227 0.0267193 0.0133597 0.999911i \(-0.495747\pi\)
0.0133597 + 0.999911i \(0.495747\pi\)
\(752\) −29.0254 + 45.6988i −1.05845 + 1.66646i
\(753\) 64.6814 2.35712
\(754\) −3.03929 + 5.13807i −0.110685 + 0.187117i
\(755\) 18.6676i 0.679385i
\(756\) 5.10358 2.80447i 0.185615 0.101998i
\(757\) 14.3837i 0.522785i −0.965233 0.261393i \(-0.915818\pi\)
0.965233 0.261393i \(-0.0841817\pi\)
\(758\) −17.5620 10.3883i −0.637880 0.377322i
\(759\) −30.8696 −1.12050
\(760\) 18.8523 + 0.597758i 0.683845 + 0.0216830i
\(761\) 1.97792 0.0716996 0.0358498 0.999357i \(-0.488586\pi\)
0.0358498 + 0.999357i \(0.488586\pi\)
\(762\) 32.2583 + 19.0816i 1.16860 + 0.691253i
\(763\) 9.23050i 0.334167i
\(764\) 13.0551 + 23.7576i 0.472316 + 0.859521i
\(765\) 76.0488i 2.74955i
\(766\) −14.4446 + 24.4192i −0.521903 + 0.882301i
\(767\) 10.2153 0.368853
\(768\) 38.5710 18.1149i 1.39181 0.653664i
\(769\) −14.1082 −0.508754 −0.254377 0.967105i \(-0.581870\pi\)
−0.254377 + 0.967105i \(0.581870\pi\)
\(770\) −4.60457 + 7.78424i −0.165937 + 0.280525i
\(771\) 31.3762i 1.12999i
\(772\) 4.44377 + 8.08678i 0.159935 + 0.291050i
\(773\) 39.4071i 1.41737i 0.705523 + 0.708687i \(0.250712\pi\)
−0.705523 + 0.708687i \(0.749288\pi\)
\(774\) 24.4121 + 14.4403i 0.877474 + 0.519047i
\(775\) 17.5827 0.631588
\(776\) −45.0575 1.42866i −1.61747 0.0512859i
\(777\) −20.3605 −0.730428
\(778\) 24.9660 + 14.7680i 0.895074 + 0.529459i
\(779\) 4.01402i 0.143817i
\(780\) 12.9507 7.11657i 0.463711 0.254814i
\(781\) 17.8723i 0.639521i
\(782\) 24.2447 40.9868i 0.866989 1.46568i
\(783\) 12.2908 0.439237
\(784\) −2.14457 + 3.37651i −0.0765919 + 0.120590i
\(785\) −20.4509 −0.729923
\(786\) 0.326703 0.552306i 0.0116531 0.0197001i
\(787\) 10.4800i 0.373571i −0.982401 0.186786i \(-0.940193\pi\)
0.982401 0.186786i \(-0.0598070\pi\)
\(788\) −9.13302 + 5.01869i −0.325350 + 0.178783i
\(789\) 43.2045i 1.53812i
\(790\) −40.7030 24.0768i −1.44815 0.856615i
\(791\) −7.99544 −0.284285
\(792\) 0.845802 26.6752i 0.0300543 0.947861i
\(793\) 7.92093 0.281280
\(794\) 0.963945 + 0.570197i 0.0342091 + 0.0202355i
\(795\) 4.28223i 0.151875i
\(796\) −22.9253 41.7195i −0.812566 1.47871i
\(797\) 31.7295i 1.12392i 0.827166 + 0.561958i \(0.189952\pi\)
−0.827166 + 0.561958i \(0.810048\pi\)
\(798\) 4.60952 7.79262i 0.163175 0.275856i
\(799\) −90.6400 −3.20661
\(800\) 6.91815 + 13.5934i 0.244594 + 0.480598i
\(801\) 57.4820 2.03103
\(802\) −15.8789 + 26.8439i −0.560702 + 0.947893i
\(803\) 13.1781i 0.465045i
\(804\) −17.4463 31.7488i −0.615284 1.11969i
\(805\) 13.9488i 0.491632i
\(806\) −7.93746 4.69520i −0.279585 0.165381i
\(807\) −70.4585 −2.48026
\(808\) 1.05848 33.3826i 0.0372371 1.17440i
\(809\) 17.7495 0.624039 0.312019 0.950076i \(-0.398995\pi\)
0.312019 + 0.950076i \(0.398995\pi\)
\(810\) 15.2801 + 9.03856i 0.536888 + 0.317583i
\(811\) 12.0825i 0.424273i 0.977240 + 0.212136i \(0.0680421\pi\)
−0.977240 + 0.212136i \(0.931958\pi\)
\(812\) −7.39889 + 4.06577i −0.259650 + 0.142681i
\(813\) 58.5896i 2.05483i
\(814\) −12.6886 + 21.4507i −0.444735 + 0.751845i
\(815\) −28.2236 −0.988630
\(816\) 60.2246 + 38.2513i 2.10828 + 1.33906i
\(817\) 11.7779 0.412057
\(818\) 16.2983 27.5530i 0.569855 0.963367i
\(819\) 4.09325i 0.143030i
\(820\) −8.11998 + 4.46202i −0.283562 + 0.155820i
\(821\) 14.5237i 0.506882i −0.967351 0.253441i \(-0.918438\pi\)
0.967351 0.253441i \(-0.0815623\pi\)
\(822\) 69.1233 + 40.8882i 2.41095 + 1.42614i
\(823\) −32.1613 −1.12107 −0.560536 0.828130i \(-0.689405\pi\)
−0.560536 + 0.828130i \(0.689405\pi\)
\(824\) −7.91678 0.251021i −0.275794 0.00874473i
\(825\) 16.5540 0.576335
\(826\) 12.4341 + 7.35508i 0.432638 + 0.255916i
\(827\) 27.0041i 0.939026i −0.882925 0.469513i \(-0.844429\pi\)
0.882925 0.469513i \(-0.155571\pi\)
\(828\) 19.8232 + 36.0742i 0.688902 + 1.25366i
\(829\) 32.8357i 1.14043i 0.821496 + 0.570215i \(0.193140\pi\)
−0.821496 + 0.570215i \(0.806860\pi\)
\(830\) −0.524451 + 0.886609i −0.0182040 + 0.0307747i
\(831\) −23.1288 −0.802330
\(832\) 0.506810 7.98393i 0.0175705 0.276793i
\(833\) −6.69704 −0.232039
\(834\) 5.28537 8.93516i 0.183017 0.309399i
\(835\) 55.9490i 1.93620i
\(836\) −5.33722 9.71268i −0.184592 0.335920i
\(837\) 18.9872i 0.656295i
\(838\) −35.6707 21.1001i −1.23222 0.728890i
\(839\) 28.8041 0.994429 0.497215 0.867628i \(-0.334356\pi\)
0.497215 + 0.867628i \(0.334356\pi\)
\(840\) 20.8877 + 0.662296i 0.720694 + 0.0228514i
\(841\) 11.1815 0.385568
\(842\) 15.7178 + 9.29746i 0.541671 + 0.320412i
\(843\) 89.0064i 3.06554i
\(844\) 16.9121 9.29339i 0.582139 0.319892i
\(845\) 2.77422i 0.0954361i
\(846\) 39.8880 67.4326i 1.37138 2.31838i
\(847\) −5.68598 −0.195373
\(848\) 1.95692 + 1.24293i 0.0672010 + 0.0426824i
\(849\) 61.6784 2.11680
\(850\) −13.0013 + 21.9793i −0.445941 + 0.753885i
\(851\) 38.4381i 1.31764i
\(852\) 36.1928 19.8883i 1.23995 0.681364i
\(853\) 34.6783i 1.18736i −0.804700 0.593681i \(-0.797674\pi\)
0.804700 0.593681i \(-0.202326\pi\)
\(854\) 9.64140 + 5.70313i 0.329922 + 0.195157i
\(855\) −27.2964 −0.933519
\(856\) −0.251348 + 7.92710i −0.00859090 + 0.270943i
\(857\) 3.12688 0.106812 0.0534062 0.998573i \(-0.482992\pi\)
0.0534062 + 0.998573i \(0.482992\pi\)
\(858\) −7.47306 4.42050i −0.255126 0.150913i
\(859\) 36.7898i 1.25525i 0.778515 + 0.627626i \(0.215973\pi\)
−0.778515 + 0.627626i \(0.784027\pi\)
\(860\) 13.0924 + 23.8256i 0.446448 + 0.812446i
\(861\) 4.44740i 0.151567i
\(862\) 8.36617 14.1434i 0.284953 0.481726i
\(863\) 16.4365 0.559506 0.279753 0.960072i \(-0.409747\pi\)
0.279753 + 0.960072i \(0.409747\pi\)
\(864\) −14.6792 + 7.47079i −0.499398 + 0.254161i
\(865\) −15.0271 −0.510936
\(866\) −8.47454 + 14.3266i −0.287977 + 0.486838i
\(867\) 74.1743i 2.51909i
\(868\) −6.28094 11.4301i −0.213189 0.387961i
\(869\) 27.7865i 0.942591i
\(870\) 37.9633 + 22.4562i 1.28707 + 0.761337i
\(871\) −6.80101 −0.230444
\(872\) −0.827396 + 26.0947i −0.0280192 + 0.883678i
\(873\) 65.2393 2.20802
\(874\) 14.7115 + 8.70223i 0.497624 + 0.294357i
\(875\) 6.39098i 0.216055i
\(876\) −26.6867 + 14.6646i −0.901659 + 0.495471i
\(877\) 10.0167i 0.338240i −0.985595 0.169120i \(-0.945908\pi\)
0.985595 0.169120i \(-0.0540925\pi\)
\(878\) −0.262935 + 0.444504i −0.00887363 + 0.0150013i
\(879\) 53.9394 1.81933
\(880\) 13.7149 21.5934i 0.462330 0.727912i
\(881\) 20.3551 0.685779 0.342890 0.939376i \(-0.388594\pi\)
0.342890 + 0.939376i \(0.388594\pi\)
\(882\) 2.94717 4.98233i 0.0992365 0.167764i
\(883\) 16.8609i 0.567415i −0.958911 0.283707i \(-0.908436\pi\)
0.958911 0.283707i \(-0.0915644\pi\)
\(884\) 11.7385 6.45045i 0.394810 0.216952i
\(885\) 75.4769i 2.53713i
\(886\) −44.0206 26.0392i −1.47890 0.874806i
\(887\) 3.98272 0.133727 0.0668633 0.997762i \(-0.478701\pi\)
0.0668633 + 0.997762i \(0.478701\pi\)
\(888\) 57.5592 + 1.82506i 1.93156 + 0.0612449i
\(889\) 9.95073 0.333737
\(890\) 47.4207 + 28.0505i 1.58954 + 0.940255i
\(891\) 10.4312i 0.349457i
\(892\) 1.08613 + 1.97653i 0.0363662 + 0.0661793i
\(893\) 32.5337i 1.08870i
\(894\) −9.12260 + 15.4222i −0.305105 + 0.515795i
\(895\) −18.8563 −0.630297
\(896\) 6.36538 9.35318i 0.212652 0.312468i
\(897\) 13.3912 0.447119
\(898\) −15.4444 + 26.1095i −0.515386 + 0.871284i
\(899\) 27.5267i 0.918065i
\(900\) −10.6302 19.3449i −0.354342 0.644831i
\(901\) 3.88141i 0.129308i
\(902\) 4.68553 + 2.77161i 0.156011 + 0.0922845i
\(903\) 13.0495 0.434261
\(904\) 22.6032 + 0.716689i 0.751770 + 0.0238367i
\(905\) −41.3842 −1.37566
\(906\) 21.8140 + 12.9035i 0.724722 + 0.428691i
\(907\) 16.0034i 0.531385i −0.964058 0.265692i \(-0.914399\pi\)
0.964058 0.265692i \(-0.0856005\pi\)
\(908\) 49.1501 27.0085i 1.63110 0.896310i
\(909\) 48.3351i 1.60317i
\(910\) 1.99746 3.37680i 0.0662151 0.111940i
\(911\) 5.85697 0.194050 0.0970250 0.995282i \(-0.469067\pi\)
0.0970250 + 0.995282i \(0.469067\pi\)
\(912\) −13.7297 + 21.6166i −0.454635 + 0.715797i
\(913\) 0.605256 0.0200310
\(914\) −2.01814 + 3.41176i −0.0667542 + 0.112851i
\(915\) 58.5248i 1.93477i
\(916\) 34.6628 19.0476i 1.14529 0.629349i
\(917\) 0.170370i 0.00562611i
\(918\) −23.7351 14.0399i −0.783375 0.463386i
\(919\) −34.9195 −1.15189 −0.575943 0.817490i \(-0.695365\pi\)
−0.575943 + 0.817490i \(0.695365\pi\)
\(920\) −1.25033 + 39.4334i −0.0412223 + 1.30008i
\(921\) 30.5175 1.00559
\(922\) −23.9594 14.1726i −0.789062 0.466750i
\(923\) 7.75298i 0.255193i
\(924\) −5.91346 10.7613i −0.194538 0.354021i
\(925\) 20.6126i 0.677738i
\(926\) −7.91614 + 13.3826i −0.260140 + 0.439779i
\(927\) 11.4628 0.376487
\(928\) 21.2812 10.8307i 0.698588 0.355537i
\(929\) −43.0245 −1.41159 −0.705794 0.708417i \(-0.749410\pi\)
−0.705794 + 0.708417i \(0.749410\pi\)
\(930\) −34.6911 + 58.6469i −1.13757 + 1.92311i
\(931\) 2.40379i 0.0787810i
\(932\) 25.7641 + 46.8856i 0.843932 + 1.53579i
\(933\) 19.1191i 0.625932i
\(934\) −31.8376 18.8327i −1.04176 0.616225i
\(935\) 42.8287 1.40065
\(936\) −0.366908 + 11.5717i −0.0119928 + 0.378231i
\(937\) −0.552460 −0.0180481 −0.00902404 0.999959i \(-0.502872\pi\)
−0.00902404 + 0.999959i \(0.502872\pi\)
\(938\) −8.27823 4.89678i −0.270294 0.159886i
\(939\) 74.8711i 2.44333i
\(940\) 65.8126 36.1647i 2.14657 1.17956i
\(941\) 54.7997i 1.78642i 0.449641 + 0.893210i \(0.351552\pi\)
−0.449641 + 0.893210i \(0.648448\pi\)
\(942\) 14.1361 23.8978i 0.460580 0.778632i
\(943\) −8.39615 −0.273416
\(944\) −34.4920 21.9074i −1.12262 0.713026i
\(945\) −8.07765 −0.262766
\(946\) 8.13243 13.7482i 0.264408 0.446994i
\(947\) 33.7873i 1.09794i −0.835843 0.548969i \(-0.815020\pi\)
0.835843 0.548969i \(-0.184980\pi\)
\(948\) 56.2698 30.9209i 1.82756 1.00426i
\(949\) 5.71664i 0.185570i
\(950\) −7.88911 4.66660i −0.255956 0.151405i
\(951\) 41.6907 1.35191
\(952\) 18.9326 + 0.600304i 0.613608 + 0.0194560i
\(953\) 15.2367 0.493565 0.246782 0.969071i \(-0.420627\pi\)
0.246782 + 0.969071i \(0.420627\pi\)
\(954\) −2.88761 1.70809i −0.0934899 0.0553016i
\(955\) 37.6022i 1.21678i
\(956\) −18.9729 34.5269i −0.613628 1.11668i
\(957\) 25.9161i 0.837750i
\(958\) −0.815599 + 1.37881i −0.0263508 + 0.0445473i
\(959\) 21.3225 0.688539
\(960\) −58.9903 3.74463i −1.90390 0.120857i
\(961\) 11.5241 0.371745
\(962\) 5.50430 9.30527i 0.177466 0.300014i
\(963\) 11.4777i 0.369865i
\(964\) −8.00673 14.5706i −0.257879 0.469289i
\(965\) 12.7993i 0.412023i
\(966\) 16.2999 + 9.64177i 0.524439 + 0.310219i
\(967\) −14.5570 −0.468121 −0.234060 0.972222i \(-0.575201\pi\)
−0.234060 + 0.972222i \(0.575201\pi\)
\(968\) 16.0743 + 0.509675i 0.516648 + 0.0163816i
\(969\) −42.8748 −1.37734
\(970\) 53.8202 + 31.8360i 1.72806 + 1.02219i
\(971\) 11.6461i 0.373742i 0.982384 + 0.186871i \(0.0598346\pi\)
−0.982384 + 0.186871i \(0.940165\pi\)
\(972\) −36.4347 + 20.0213i −1.16864 + 0.642182i
\(973\) 2.75623i 0.0883608i
\(974\) 13.7677 23.2749i 0.441145 0.745777i
\(975\) −7.18109 −0.229979
\(976\) −26.7451 16.9870i −0.856089 0.543741i
\(977\) 58.9341 1.88547 0.942734 0.333545i \(-0.108245\pi\)
0.942734 + 0.333545i \(0.108245\pi\)
\(978\) 19.5088 32.9806i 0.623824 1.05460i
\(979\) 32.3724i 1.03463i
\(980\) 4.86264 2.67207i 0.155331 0.0853562i
\(981\) 37.7828i 1.20631i
\(982\) −51.0555 30.2006i −1.62925 0.963739i
\(983\) −58.3762 −1.86191 −0.930957 0.365130i \(-0.881025\pi\)
−0.930957 + 0.365130i \(0.881025\pi\)
\(984\) 0.398652 12.5728i 0.0127086 0.400807i
\(985\) 14.4552 0.460581
\(986\) 34.4098 + 20.3543i 1.09583 + 0.648212i
\(987\) 36.0462i 1.14736i
\(988\) 2.31528 + 4.21335i 0.0736589 + 0.134044i
\(989\) 24.6359i 0.783377i
\(990\) −18.8477 + 31.8629i −0.599019 + 1.01267i
\(991\) −4.43349 −0.140834 −0.0704172 0.997518i \(-0.522433\pi\)
−0.0704172 + 0.997518i \(0.522433\pi\)
\(992\) 16.7317 + 32.8758i 0.531232 + 1.04381i
\(993\) 45.7465 1.45172
\(994\) 5.58220 9.43698i 0.177057 0.299323i
\(995\) 66.0312i 2.09333i
\(996\) −0.673531 1.22569i −0.0213416 0.0388375i
\(997\) 19.9632i 0.632241i −0.948719 0.316121i \(-0.897620\pi\)
0.948719 0.316121i \(-0.102380\pi\)
\(998\) −41.4218 24.5020i −1.31118 0.775598i
\(999\) −22.2592 −0.704249
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 728.2.c.a.365.10 yes 34
4.3 odd 2 2912.2.c.a.1457.5 34
8.3 odd 2 2912.2.c.a.1457.30 34
8.5 even 2 inner 728.2.c.a.365.9 34
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
728.2.c.a.365.9 34 8.5 even 2 inner
728.2.c.a.365.10 yes 34 1.1 even 1 trivial
2912.2.c.a.1457.5 34 4.3 odd 2
2912.2.c.a.1457.30 34 8.3 odd 2