Properties

Label 2912.2.c.a.1457.5
Level $2912$
Weight $2$
Character 2912.1457
Analytic conductor $23.252$
Analytic rank $0$
Dimension $34$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2912,2,Mod(1457,2912)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2912, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2912.1457"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2912 = 2^{5} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2912.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [34] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(23.2524370686\)
Analytic rank: \(0\)
Dimension: \(34\)
Twist minimal: no (minimal twist has level 728)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1457.5
Character \(\chi\) \(=\) 2912.1457
Dual form 2912.2.c.a.1457.30

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.66332i q^{3} +2.77422i q^{5} +1.00000 q^{7} -4.09325 q^{9} -2.30522i q^{11} -1.00000i q^{13} +7.38863 q^{15} -6.69704 q^{17} +2.40379i q^{19} -2.66332i q^{21} -5.02802 q^{23} -2.69630 q^{25} +2.91168i q^{27} +4.22120i q^{29} +6.52105 q^{31} -6.13952 q^{33} +2.77422i q^{35} -7.64478i q^{37} -2.66332 q^{39} -1.66987 q^{41} -4.89973i q^{43} -11.3556i q^{45} -13.5343 q^{47} +1.00000 q^{49} +17.8363i q^{51} -0.579570i q^{53} +6.39518 q^{55} +6.40205 q^{57} -10.2153i q^{59} +7.92093i q^{61} -4.09325 q^{63} +2.77422 q^{65} +6.80101i q^{67} +13.3912i q^{69} -7.75298 q^{71} -5.71664 q^{73} +7.18109i q^{75} -2.30522i q^{77} -12.0537 q^{79} -4.52503 q^{81} +0.262559i q^{83} -18.5791i q^{85} +11.2424 q^{87} -14.0431 q^{89} -1.00000i q^{91} -17.3676i q^{93} -6.66864 q^{95} -15.9382 q^{97} +9.43584i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 34 q + 34 q^{7} - 26 q^{9} + 8 q^{15} - 20 q^{17} + 20 q^{23} - 22 q^{25} - 16 q^{31} - 8 q^{33} - 8 q^{39} + 8 q^{41} + 34 q^{49} + 32 q^{55} + 8 q^{57} - 26 q^{63} - 20 q^{65} - 64 q^{71} - 20 q^{79}+ \cdots + 56 q^{87}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2912\mathbb{Z}\right)^\times\).

\(n\) \(1093\) \(1249\) \(2017\) \(2367\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 2.66332i − 1.53767i −0.639449 0.768833i \(-0.720838\pi\)
0.639449 0.768833i \(-0.279162\pi\)
\(4\) 0 0
\(5\) 2.77422i 1.24067i 0.784337 + 0.620334i \(0.213003\pi\)
−0.784337 + 0.620334i \(0.786997\pi\)
\(6\) 0 0
\(7\) 1.00000 0.377964
\(8\) 0 0
\(9\) −4.09325 −1.36442
\(10\) 0 0
\(11\) − 2.30522i − 0.695049i −0.937671 0.347524i \(-0.887022\pi\)
0.937671 0.347524i \(-0.112978\pi\)
\(12\) 0 0
\(13\) − 1.00000i − 0.277350i
\(14\) 0 0
\(15\) 7.38863 1.90773
\(16\) 0 0
\(17\) −6.69704 −1.62427 −0.812135 0.583469i \(-0.801695\pi\)
−0.812135 + 0.583469i \(0.801695\pi\)
\(18\) 0 0
\(19\) 2.40379i 0.551467i 0.961234 + 0.275734i \(0.0889208\pi\)
−0.961234 + 0.275734i \(0.911079\pi\)
\(20\) 0 0
\(21\) − 2.66332i − 0.581183i
\(22\) 0 0
\(23\) −5.02802 −1.04841 −0.524207 0.851591i \(-0.675638\pi\)
−0.524207 + 0.851591i \(0.675638\pi\)
\(24\) 0 0
\(25\) −2.69630 −0.539259
\(26\) 0 0
\(27\) 2.91168i 0.560354i
\(28\) 0 0
\(29\) 4.22120i 0.783857i 0.919996 + 0.391929i \(0.128192\pi\)
−0.919996 + 0.391929i \(0.871808\pi\)
\(30\) 0 0
\(31\) 6.52105 1.17122 0.585608 0.810595i \(-0.300856\pi\)
0.585608 + 0.810595i \(0.300856\pi\)
\(32\) 0 0
\(33\) −6.13952 −1.06875
\(34\) 0 0
\(35\) 2.77422i 0.468929i
\(36\) 0 0
\(37\) − 7.64478i − 1.25679i −0.777893 0.628397i \(-0.783711\pi\)
0.777893 0.628397i \(-0.216289\pi\)
\(38\) 0 0
\(39\) −2.66332 −0.426472
\(40\) 0 0
\(41\) −1.66987 −0.260790 −0.130395 0.991462i \(-0.541625\pi\)
−0.130395 + 0.991462i \(0.541625\pi\)
\(42\) 0 0
\(43\) − 4.89973i − 0.747201i −0.927590 0.373601i \(-0.878123\pi\)
0.927590 0.373601i \(-0.121877\pi\)
\(44\) 0 0
\(45\) − 11.3556i − 1.69279i
\(46\) 0 0
\(47\) −13.5343 −1.97419 −0.987093 0.160148i \(-0.948803\pi\)
−0.987093 + 0.160148i \(0.948803\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 17.8363i 2.49759i
\(52\) 0 0
\(53\) − 0.579570i − 0.0796101i −0.999207 0.0398050i \(-0.987326\pi\)
0.999207 0.0398050i \(-0.0126737\pi\)
\(54\) 0 0
\(55\) 6.39518 0.862325
\(56\) 0 0
\(57\) 6.40205 0.847973
\(58\) 0 0
\(59\) − 10.2153i − 1.32992i −0.746880 0.664959i \(-0.768449\pi\)
0.746880 0.664959i \(-0.231551\pi\)
\(60\) 0 0
\(61\) 7.92093i 1.01417i 0.861896 + 0.507086i \(0.169277\pi\)
−0.861896 + 0.507086i \(0.830723\pi\)
\(62\) 0 0
\(63\) −4.09325 −0.515702
\(64\) 0 0
\(65\) 2.77422 0.344100
\(66\) 0 0
\(67\) 6.80101i 0.830876i 0.909621 + 0.415438i \(0.136372\pi\)
−0.909621 + 0.415438i \(0.863628\pi\)
\(68\) 0 0
\(69\) 13.3912i 1.61211i
\(70\) 0 0
\(71\) −7.75298 −0.920110 −0.460055 0.887890i \(-0.652170\pi\)
−0.460055 + 0.887890i \(0.652170\pi\)
\(72\) 0 0
\(73\) −5.71664 −0.669082 −0.334541 0.942381i \(-0.608581\pi\)
−0.334541 + 0.942381i \(0.608581\pi\)
\(74\) 0 0
\(75\) 7.18109i 0.829201i
\(76\) 0 0
\(77\) − 2.30522i − 0.262704i
\(78\) 0 0
\(79\) −12.0537 −1.35615 −0.678076 0.734992i \(-0.737186\pi\)
−0.678076 + 0.734992i \(0.737186\pi\)
\(80\) 0 0
\(81\) −4.52503 −0.502781
\(82\) 0 0
\(83\) 0.262559i 0.0288196i 0.999896 + 0.0144098i \(0.00458695\pi\)
−0.999896 + 0.0144098i \(0.995413\pi\)
\(84\) 0 0
\(85\) − 18.5791i − 2.01518i
\(86\) 0 0
\(87\) 11.2424 1.20531
\(88\) 0 0
\(89\) −14.0431 −1.48857 −0.744283 0.667865i \(-0.767208\pi\)
−0.744283 + 0.667865i \(0.767208\pi\)
\(90\) 0 0
\(91\) − 1.00000i − 0.104828i
\(92\) 0 0
\(93\) − 17.3676i − 1.80094i
\(94\) 0 0
\(95\) −6.66864 −0.684188
\(96\) 0 0
\(97\) −15.9382 −1.61828 −0.809142 0.587613i \(-0.800068\pi\)
−0.809142 + 0.587613i \(0.800068\pi\)
\(98\) 0 0
\(99\) 9.43584i 0.948337i
\(100\) 0 0
\(101\) − 11.8085i − 1.17499i −0.809229 0.587494i \(-0.800115\pi\)
0.809229 0.587494i \(-0.199885\pi\)
\(102\) 0 0
\(103\) 2.80041 0.275933 0.137966 0.990437i \(-0.455943\pi\)
0.137966 + 0.990437i \(0.455943\pi\)
\(104\) 0 0
\(105\) 7.38863 0.721056
\(106\) 0 0
\(107\) − 2.80406i − 0.271079i −0.990772 0.135539i \(-0.956723\pi\)
0.990772 0.135539i \(-0.0432767\pi\)
\(108\) 0 0
\(109\) 9.23050i 0.884122i 0.896985 + 0.442061i \(0.145753\pi\)
−0.896985 + 0.442061i \(0.854247\pi\)
\(110\) 0 0
\(111\) −20.3605 −1.93253
\(112\) 0 0
\(113\) 7.99544 0.752148 0.376074 0.926590i \(-0.377274\pi\)
0.376074 + 0.926590i \(0.377274\pi\)
\(114\) 0 0
\(115\) − 13.9488i − 1.30074i
\(116\) 0 0
\(117\) 4.09325i 0.378422i
\(118\) 0 0
\(119\) −6.69704 −0.613917
\(120\) 0 0
\(121\) 5.68598 0.516907
\(122\) 0 0
\(123\) 4.44740i 0.401008i
\(124\) 0 0
\(125\) 6.39098i 0.571627i
\(126\) 0 0
\(127\) 9.95073 0.882985 0.441492 0.897265i \(-0.354449\pi\)
0.441492 + 0.897265i \(0.354449\pi\)
\(128\) 0 0
\(129\) −13.0495 −1.14895
\(130\) 0 0
\(131\) − 0.170370i − 0.0148853i −0.999972 0.00744265i \(-0.997631\pi\)
0.999972 0.00744265i \(-0.00236909\pi\)
\(132\) 0 0
\(133\) 2.40379i 0.208435i
\(134\) 0 0
\(135\) −8.07765 −0.695213
\(136\) 0 0
\(137\) −21.3225 −1.82170 −0.910852 0.412734i \(-0.864574\pi\)
−0.910852 + 0.412734i \(0.864574\pi\)
\(138\) 0 0
\(139\) − 2.75623i − 0.233781i −0.993145 0.116890i \(-0.962707\pi\)
0.993145 0.116890i \(-0.0372926\pi\)
\(140\) 0 0
\(141\) 36.0462i 3.03564i
\(142\) 0 0
\(143\) −2.30522 −0.192772
\(144\) 0 0
\(145\) −11.7105 −0.972507
\(146\) 0 0
\(147\) − 2.66332i − 0.219667i
\(148\) 0 0
\(149\) − 4.75728i − 0.389732i −0.980830 0.194866i \(-0.937573\pi\)
0.980830 0.194866i \(-0.0624271\pi\)
\(150\) 0 0
\(151\) 6.72897 0.547596 0.273798 0.961787i \(-0.411720\pi\)
0.273798 + 0.961787i \(0.411720\pi\)
\(152\) 0 0
\(153\) 27.4127 2.21618
\(154\) 0 0
\(155\) 18.0908i 1.45309i
\(156\) 0 0
\(157\) 7.37175i 0.588330i 0.955755 + 0.294165i \(0.0950415\pi\)
−0.955755 + 0.294165i \(0.904958\pi\)
\(158\) 0 0
\(159\) −1.54358 −0.122414
\(160\) 0 0
\(161\) −5.02802 −0.396263
\(162\) 0 0
\(163\) − 10.1735i − 0.796853i −0.917200 0.398426i \(-0.869556\pi\)
0.917200 0.398426i \(-0.130444\pi\)
\(164\) 0 0
\(165\) − 17.0324i − 1.32597i
\(166\) 0 0
\(167\) 20.1675 1.56061 0.780303 0.625401i \(-0.215065\pi\)
0.780303 + 0.625401i \(0.215065\pi\)
\(168\) 0 0
\(169\) −1.00000 −0.0769231
\(170\) 0 0
\(171\) − 9.83932i − 0.752432i
\(172\) 0 0
\(173\) 5.41669i 0.411823i 0.978571 + 0.205911i \(0.0660159\pi\)
−0.978571 + 0.205911i \(0.933984\pi\)
\(174\) 0 0
\(175\) −2.69630 −0.203821
\(176\) 0 0
\(177\) −27.2065 −2.04497
\(178\) 0 0
\(179\) − 6.79698i − 0.508030i −0.967200 0.254015i \(-0.918249\pi\)
0.967200 0.254015i \(-0.0817513\pi\)
\(180\) 0 0
\(181\) 14.9174i 1.10880i 0.832249 + 0.554402i \(0.187053\pi\)
−0.832249 + 0.554402i \(0.812947\pi\)
\(182\) 0 0
\(183\) 21.0959 1.55946
\(184\) 0 0
\(185\) 21.2083 1.55927
\(186\) 0 0
\(187\) 15.4381i 1.12895i
\(188\) 0 0
\(189\) 2.91168i 0.211794i
\(190\) 0 0
\(191\) 13.5542 0.980744 0.490372 0.871513i \(-0.336861\pi\)
0.490372 + 0.871513i \(0.336861\pi\)
\(192\) 0 0
\(193\) −4.61365 −0.332098 −0.166049 0.986118i \(-0.553101\pi\)
−0.166049 + 0.986118i \(0.553101\pi\)
\(194\) 0 0
\(195\) − 7.38863i − 0.529110i
\(196\) 0 0
\(197\) − 5.21055i − 0.371236i −0.982622 0.185618i \(-0.940571\pi\)
0.982622 0.185618i \(-0.0594287\pi\)
\(198\) 0 0
\(199\) −23.8017 −1.68726 −0.843629 0.536927i \(-0.819585\pi\)
−0.843629 + 0.536927i \(0.819585\pi\)
\(200\) 0 0
\(201\) 18.1133 1.27761
\(202\) 0 0
\(203\) 4.22120i 0.296270i
\(204\) 0 0
\(205\) − 4.63259i − 0.323554i
\(206\) 0 0
\(207\) 20.5810 1.43048
\(208\) 0 0
\(209\) 5.54125 0.383297
\(210\) 0 0
\(211\) − 9.64867i − 0.664242i −0.943237 0.332121i \(-0.892236\pi\)
0.943237 0.332121i \(-0.107764\pi\)
\(212\) 0 0
\(213\) 20.6487i 1.41482i
\(214\) 0 0
\(215\) 13.5929 0.927029
\(216\) 0 0
\(217\) 6.52105 0.442678
\(218\) 0 0
\(219\) 15.2252i 1.02883i
\(220\) 0 0
\(221\) 6.69704i 0.450492i
\(222\) 0 0
\(223\) 1.12765 0.0755129 0.0377565 0.999287i \(-0.487979\pi\)
0.0377565 + 0.999287i \(0.487979\pi\)
\(224\) 0 0
\(225\) 11.0366 0.735775
\(226\) 0 0
\(227\) − 28.0410i − 1.86115i −0.366103 0.930574i \(-0.619308\pi\)
0.366103 0.930574i \(-0.380692\pi\)
\(228\) 0 0
\(229\) 19.7757i 1.30682i 0.757006 + 0.653408i \(0.226662\pi\)
−0.757006 + 0.653408i \(0.773338\pi\)
\(230\) 0 0
\(231\) −6.13952 −0.403951
\(232\) 0 0
\(233\) −26.7490 −1.75239 −0.876194 0.481958i \(-0.839926\pi\)
−0.876194 + 0.481958i \(0.839926\pi\)
\(234\) 0 0
\(235\) − 37.5472i − 2.44931i
\(236\) 0 0
\(237\) 32.1029i 2.08531i
\(238\) 0 0
\(239\) −19.6982 −1.27417 −0.637086 0.770793i \(-0.719860\pi\)
−0.637086 + 0.770793i \(0.719860\pi\)
\(240\) 0 0
\(241\) 8.31281 0.535475 0.267738 0.963492i \(-0.413724\pi\)
0.267738 + 0.963492i \(0.413724\pi\)
\(242\) 0 0
\(243\) 20.7866i 1.33346i
\(244\) 0 0
\(245\) 2.77422i 0.177238i
\(246\) 0 0
\(247\) 2.40379 0.152949
\(248\) 0 0
\(249\) 0.699279 0.0443150
\(250\) 0 0
\(251\) 24.2860i 1.53292i 0.642292 + 0.766460i \(0.277984\pi\)
−0.642292 + 0.766460i \(0.722016\pi\)
\(252\) 0 0
\(253\) 11.5907i 0.728699i
\(254\) 0 0
\(255\) −49.4819 −3.09868
\(256\) 0 0
\(257\) 11.7809 0.734871 0.367436 0.930049i \(-0.380236\pi\)
0.367436 + 0.930049i \(0.380236\pi\)
\(258\) 0 0
\(259\) − 7.64478i − 0.475024i
\(260\) 0 0
\(261\) − 17.2784i − 1.06951i
\(262\) 0 0
\(263\) −16.2221 −1.00029 −0.500147 0.865940i \(-0.666721\pi\)
−0.500147 + 0.865940i \(0.666721\pi\)
\(264\) 0 0
\(265\) 1.60786 0.0987698
\(266\) 0 0
\(267\) 37.4012i 2.28892i
\(268\) 0 0
\(269\) 26.4552i 1.61300i 0.591233 + 0.806501i \(0.298641\pi\)
−0.591233 + 0.806501i \(0.701359\pi\)
\(270\) 0 0
\(271\) 21.9987 1.33633 0.668164 0.744014i \(-0.267080\pi\)
0.668164 + 0.744014i \(0.267080\pi\)
\(272\) 0 0
\(273\) −2.66332 −0.161191
\(274\) 0 0
\(275\) 6.21554i 0.374811i
\(276\) 0 0
\(277\) 8.68422i 0.521784i 0.965368 + 0.260892i \(0.0840167\pi\)
−0.965368 + 0.260892i \(0.915983\pi\)
\(278\) 0 0
\(279\) −26.6923 −1.59803
\(280\) 0 0
\(281\) 33.4194 1.99363 0.996817 0.0797253i \(-0.0254043\pi\)
0.996817 + 0.0797253i \(0.0254043\pi\)
\(282\) 0 0
\(283\) 23.1585i 1.37663i 0.725412 + 0.688314i \(0.241649\pi\)
−0.725412 + 0.688314i \(0.758351\pi\)
\(284\) 0 0
\(285\) 17.7607i 1.05205i
\(286\) 0 0
\(287\) −1.66987 −0.0985695
\(288\) 0 0
\(289\) 27.8504 1.63826
\(290\) 0 0
\(291\) 42.4486i 2.48838i
\(292\) 0 0
\(293\) − 20.2527i − 1.18318i −0.806241 0.591588i \(-0.798501\pi\)
0.806241 0.591588i \(-0.201499\pi\)
\(294\) 0 0
\(295\) 28.3395 1.64999
\(296\) 0 0
\(297\) 6.71206 0.389473
\(298\) 0 0
\(299\) 5.02802i 0.290778i
\(300\) 0 0
\(301\) − 4.89973i − 0.282416i
\(302\) 0 0
\(303\) −31.4497 −1.80674
\(304\) 0 0
\(305\) −21.9744 −1.25825
\(306\) 0 0
\(307\) 11.4584i 0.653968i 0.945030 + 0.326984i \(0.106032\pi\)
−0.945030 + 0.326984i \(0.893968\pi\)
\(308\) 0 0
\(309\) − 7.45838i − 0.424292i
\(310\) 0 0
\(311\) −7.17869 −0.407066 −0.203533 0.979068i \(-0.565242\pi\)
−0.203533 + 0.979068i \(0.565242\pi\)
\(312\) 0 0
\(313\) 28.1120 1.58898 0.794492 0.607275i \(-0.207737\pi\)
0.794492 + 0.607275i \(0.207737\pi\)
\(314\) 0 0
\(315\) − 11.3556i − 0.639815i
\(316\) 0 0
\(317\) − 15.6537i − 0.879198i −0.898194 0.439599i \(-0.855120\pi\)
0.898194 0.439599i \(-0.144880\pi\)
\(318\) 0 0
\(319\) 9.73078 0.544819
\(320\) 0 0
\(321\) −7.46810 −0.416829
\(322\) 0 0
\(323\) − 16.0983i − 0.895732i
\(324\) 0 0
\(325\) 2.69630i 0.149564i
\(326\) 0 0
\(327\) 24.5838 1.35948
\(328\) 0 0
\(329\) −13.5343 −0.746172
\(330\) 0 0
\(331\) 17.1765i 0.944106i 0.881570 + 0.472053i \(0.156487\pi\)
−0.881570 + 0.472053i \(0.843513\pi\)
\(332\) 0 0
\(333\) 31.2920i 1.71479i
\(334\) 0 0
\(335\) −18.8675 −1.03084
\(336\) 0 0
\(337\) −24.0567 −1.31045 −0.655227 0.755432i \(-0.727427\pi\)
−0.655227 + 0.755432i \(0.727427\pi\)
\(338\) 0 0
\(339\) − 21.2944i − 1.15655i
\(340\) 0 0
\(341\) − 15.0324i − 0.814052i
\(342\) 0 0
\(343\) 1.00000 0.0539949
\(344\) 0 0
\(345\) −37.1502 −2.00010
\(346\) 0 0
\(347\) − 10.0923i − 0.541785i −0.962610 0.270893i \(-0.912681\pi\)
0.962610 0.270893i \(-0.0873189\pi\)
\(348\) 0 0
\(349\) − 22.2058i − 1.18865i −0.804225 0.594325i \(-0.797419\pi\)
0.804225 0.594325i \(-0.202581\pi\)
\(350\) 0 0
\(351\) 2.91168 0.155414
\(352\) 0 0
\(353\) 2.84719 0.151540 0.0757702 0.997125i \(-0.475858\pi\)
0.0757702 + 0.997125i \(0.475858\pi\)
\(354\) 0 0
\(355\) − 21.5085i − 1.14155i
\(356\) 0 0
\(357\) 17.8363i 0.943999i
\(358\) 0 0
\(359\) 5.38588 0.284256 0.142128 0.989848i \(-0.454606\pi\)
0.142128 + 0.989848i \(0.454606\pi\)
\(360\) 0 0
\(361\) 13.2218 0.695884
\(362\) 0 0
\(363\) − 15.1436i − 0.794831i
\(364\) 0 0
\(365\) − 15.8592i − 0.830109i
\(366\) 0 0
\(367\) −27.3949 −1.43000 −0.715001 0.699123i \(-0.753574\pi\)
−0.715001 + 0.699123i \(0.753574\pi\)
\(368\) 0 0
\(369\) 6.83521 0.355827
\(370\) 0 0
\(371\) − 0.579570i − 0.0300898i
\(372\) 0 0
\(373\) 1.81294i 0.0938703i 0.998898 + 0.0469351i \(0.0149454\pi\)
−0.998898 + 0.0469351i \(0.985055\pi\)
\(374\) 0 0
\(375\) 17.0212 0.878971
\(376\) 0 0
\(377\) 4.22120 0.217403
\(378\) 0 0
\(379\) − 14.4281i − 0.741122i −0.928808 0.370561i \(-0.879165\pi\)
0.928808 0.370561i \(-0.120835\pi\)
\(380\) 0 0
\(381\) − 26.5019i − 1.35774i
\(382\) 0 0
\(383\) −20.0617 −1.02510 −0.512552 0.858656i \(-0.671300\pi\)
−0.512552 + 0.858656i \(0.671300\pi\)
\(384\) 0 0
\(385\) 6.39518 0.325928
\(386\) 0 0
\(387\) 20.0558i 1.01950i
\(388\) 0 0
\(389\) − 20.5109i − 1.03994i −0.854183 0.519972i \(-0.825942\pi\)
0.854183 0.519972i \(-0.174058\pi\)
\(390\) 0 0
\(391\) 33.6729 1.70291
\(392\) 0 0
\(393\) −0.453749 −0.0228886
\(394\) 0 0
\(395\) − 33.4397i − 1.68253i
\(396\) 0 0
\(397\) − 0.791932i − 0.0397459i −0.999803 0.0198730i \(-0.993674\pi\)
0.999803 0.0198730i \(-0.00632618\pi\)
\(398\) 0 0
\(399\) 6.40205 0.320504
\(400\) 0 0
\(401\) 22.0537 1.10131 0.550656 0.834732i \(-0.314378\pi\)
0.550656 + 0.834732i \(0.314378\pi\)
\(402\) 0 0
\(403\) − 6.52105i − 0.324837i
\(404\) 0 0
\(405\) − 12.5534i − 0.623785i
\(406\) 0 0
\(407\) −17.6229 −0.873533
\(408\) 0 0
\(409\) −22.6362 −1.11929 −0.559645 0.828732i \(-0.689063\pi\)
−0.559645 + 0.828732i \(0.689063\pi\)
\(410\) 0 0
\(411\) 56.7885i 2.80117i
\(412\) 0 0
\(413\) − 10.2153i − 0.502661i
\(414\) 0 0
\(415\) −0.728397 −0.0357556
\(416\) 0 0
\(417\) −7.34072 −0.359477
\(418\) 0 0
\(419\) − 29.3054i − 1.43166i −0.698274 0.715831i \(-0.746048\pi\)
0.698274 0.715831i \(-0.253952\pi\)
\(420\) 0 0
\(421\) − 12.9130i − 0.629342i −0.949201 0.314671i \(-0.898106\pi\)
0.949201 0.314671i \(-0.101894\pi\)
\(422\) 0 0
\(423\) 55.3995 2.69362
\(424\) 0 0
\(425\) 18.0572 0.875903
\(426\) 0 0
\(427\) 7.92093i 0.383321i
\(428\) 0 0
\(429\) 6.13952i 0.296419i
\(430\) 0 0
\(431\) 11.6196 0.559695 0.279847 0.960044i \(-0.409716\pi\)
0.279847 + 0.960044i \(0.409716\pi\)
\(432\) 0 0
\(433\) 11.7701 0.565634 0.282817 0.959174i \(-0.408731\pi\)
0.282817 + 0.959174i \(0.408731\pi\)
\(434\) 0 0
\(435\) 31.1889i 1.49539i
\(436\) 0 0
\(437\) − 12.0863i − 0.578166i
\(438\) 0 0
\(439\) −0.365184 −0.0174293 −0.00871464 0.999962i \(-0.502774\pi\)
−0.00871464 + 0.999962i \(0.502774\pi\)
\(440\) 0 0
\(441\) −4.09325 −0.194917
\(442\) 0 0
\(443\) − 36.1653i − 1.71826i −0.511755 0.859132i \(-0.671004\pi\)
0.511755 0.859132i \(-0.328996\pi\)
\(444\) 0 0
\(445\) − 38.9586i − 1.84682i
\(446\) 0 0
\(447\) −12.6701 −0.599277
\(448\) 0 0
\(449\) 21.4503 1.01230 0.506152 0.862444i \(-0.331067\pi\)
0.506152 + 0.862444i \(0.331067\pi\)
\(450\) 0 0
\(451\) 3.84942i 0.181262i
\(452\) 0 0
\(453\) − 17.9214i − 0.842020i
\(454\) 0 0
\(455\) 2.77422 0.130057
\(456\) 0 0
\(457\) 2.80295 0.131116 0.0655582 0.997849i \(-0.479117\pi\)
0.0655582 + 0.997849i \(0.479117\pi\)
\(458\) 0 0
\(459\) − 19.4997i − 0.910166i
\(460\) 0 0
\(461\) 19.6840i 0.916774i 0.888753 + 0.458387i \(0.151573\pi\)
−0.888753 + 0.458387i \(0.848427\pi\)
\(462\) 0 0
\(463\) −10.9945 −0.510959 −0.255479 0.966815i \(-0.582233\pi\)
−0.255479 + 0.966815i \(0.582233\pi\)
\(464\) 0 0
\(465\) 48.1816 2.23437
\(466\) 0 0
\(467\) − 26.1563i − 1.21037i −0.796086 0.605184i \(-0.793099\pi\)
0.796086 0.605184i \(-0.206901\pi\)
\(468\) 0 0
\(469\) 6.80101i 0.314042i
\(470\) 0 0
\(471\) 19.6333 0.904655
\(472\) 0 0
\(473\) −11.2949 −0.519341
\(474\) 0 0
\(475\) − 6.48133i − 0.297384i
\(476\) 0 0
\(477\) 2.37233i 0.108621i
\(478\) 0 0
\(479\) −1.13276 −0.0517574 −0.0258787 0.999665i \(-0.508238\pi\)
−0.0258787 + 0.999665i \(0.508238\pi\)
\(480\) 0 0
\(481\) −7.64478 −0.348572
\(482\) 0 0
\(483\) 13.3912i 0.609321i
\(484\) 0 0
\(485\) − 44.2162i − 2.00775i
\(486\) 0 0
\(487\) 19.1216 0.866482 0.433241 0.901278i \(-0.357370\pi\)
0.433241 + 0.901278i \(0.357370\pi\)
\(488\) 0 0
\(489\) −27.0953 −1.22529
\(490\) 0 0
\(491\) − 41.9448i − 1.89294i −0.322788 0.946471i \(-0.604620\pi\)
0.322788 0.946471i \(-0.395380\pi\)
\(492\) 0 0
\(493\) − 28.2695i − 1.27320i
\(494\) 0 0
\(495\) −26.1771 −1.17657
\(496\) 0 0
\(497\) −7.75298 −0.347769
\(498\) 0 0
\(499\) − 34.0302i − 1.52340i −0.647928 0.761702i \(-0.724364\pi\)
0.647928 0.761702i \(-0.275636\pi\)
\(500\) 0 0
\(501\) − 53.7124i − 2.39969i
\(502\) 0 0
\(503\) −35.5484 −1.58502 −0.792512 0.609856i \(-0.791227\pi\)
−0.792512 + 0.609856i \(0.791227\pi\)
\(504\) 0 0
\(505\) 32.7593 1.45777
\(506\) 0 0
\(507\) 2.66332i 0.118282i
\(508\) 0 0
\(509\) 40.4806i 1.79427i 0.441755 + 0.897136i \(0.354356\pi\)
−0.441755 + 0.897136i \(0.645644\pi\)
\(510\) 0 0
\(511\) −5.71664 −0.252889
\(512\) 0 0
\(513\) −6.99907 −0.309017
\(514\) 0 0
\(515\) 7.76895i 0.342341i
\(516\) 0 0
\(517\) 31.1996i 1.37216i
\(518\) 0 0
\(519\) 14.4263 0.633246
\(520\) 0 0
\(521\) 23.0145 1.00828 0.504142 0.863621i \(-0.331809\pi\)
0.504142 + 0.863621i \(0.331809\pi\)
\(522\) 0 0
\(523\) 2.66001i 0.116314i 0.998307 + 0.0581570i \(0.0185224\pi\)
−0.998307 + 0.0581570i \(0.981478\pi\)
\(524\) 0 0
\(525\) 7.18109i 0.313408i
\(526\) 0 0
\(527\) −43.6717 −1.90237
\(528\) 0 0
\(529\) 2.28098 0.0991731
\(530\) 0 0
\(531\) 41.8138i 1.81456i
\(532\) 0 0
\(533\) 1.66987i 0.0723302i
\(534\) 0 0
\(535\) 7.77908 0.336319
\(536\) 0 0
\(537\) −18.1025 −0.781181
\(538\) 0 0
\(539\) − 2.30522i − 0.0992927i
\(540\) 0 0
\(541\) − 8.51106i − 0.365919i −0.983120 0.182959i \(-0.941432\pi\)
0.983120 0.182959i \(-0.0585677\pi\)
\(542\) 0 0
\(543\) 39.7298 1.70497
\(544\) 0 0
\(545\) −25.6074 −1.09690
\(546\) 0 0
\(547\) − 8.16036i − 0.348912i −0.984665 0.174456i \(-0.944183\pi\)
0.984665 0.174456i \(-0.0558166\pi\)
\(548\) 0 0
\(549\) − 32.4224i − 1.38375i
\(550\) 0 0
\(551\) −10.1469 −0.432271
\(552\) 0 0
\(553\) −12.0537 −0.512577
\(554\) 0 0
\(555\) − 56.4844i − 2.39763i
\(556\) 0 0
\(557\) − 30.1130i − 1.27593i −0.770066 0.637964i \(-0.779777\pi\)
0.770066 0.637964i \(-0.220223\pi\)
\(558\) 0 0
\(559\) −4.89973 −0.207236
\(560\) 0 0
\(561\) 41.1166 1.73594
\(562\) 0 0
\(563\) 20.3344i 0.856993i 0.903543 + 0.428497i \(0.140957\pi\)
−0.903543 + 0.428497i \(0.859043\pi\)
\(564\) 0 0
\(565\) 22.1811i 0.933167i
\(566\) 0 0
\(567\) −4.52503 −0.190033
\(568\) 0 0
\(569\) 41.3117 1.73188 0.865939 0.500150i \(-0.166722\pi\)
0.865939 + 0.500150i \(0.166722\pi\)
\(570\) 0 0
\(571\) − 40.7491i − 1.70530i −0.522483 0.852649i \(-0.674994\pi\)
0.522483 0.852649i \(-0.325006\pi\)
\(572\) 0 0
\(573\) − 36.0990i − 1.50806i
\(574\) 0 0
\(575\) 13.5570 0.565367
\(576\) 0 0
\(577\) 18.2569 0.760043 0.380021 0.924978i \(-0.375917\pi\)
0.380021 + 0.924978i \(0.375917\pi\)
\(578\) 0 0
\(579\) 12.2876i 0.510656i
\(580\) 0 0
\(581\) 0.262559i 0.0108928i
\(582\) 0 0
\(583\) −1.33603 −0.0553329
\(584\) 0 0
\(585\) −11.3556 −0.469496
\(586\) 0 0
\(587\) 32.8881i 1.35744i 0.734399 + 0.678718i \(0.237464\pi\)
−0.734399 + 0.678718i \(0.762536\pi\)
\(588\) 0 0
\(589\) 15.6752i 0.645887i
\(590\) 0 0
\(591\) −13.8773 −0.570837
\(592\) 0 0
\(593\) −46.0425 −1.89074 −0.945369 0.326001i \(-0.894299\pi\)
−0.945369 + 0.326001i \(0.894299\pi\)
\(594\) 0 0
\(595\) − 18.5791i − 0.761667i
\(596\) 0 0
\(597\) 63.3915i 2.59444i
\(598\) 0 0
\(599\) 2.58321 0.105547 0.0527735 0.998607i \(-0.483194\pi\)
0.0527735 + 0.998607i \(0.483194\pi\)
\(600\) 0 0
\(601\) 5.32403 0.217172 0.108586 0.994087i \(-0.465368\pi\)
0.108586 + 0.994087i \(0.465368\pi\)
\(602\) 0 0
\(603\) − 27.8383i − 1.13366i
\(604\) 0 0
\(605\) 15.7742i 0.641311i
\(606\) 0 0
\(607\) 12.7131 0.516010 0.258005 0.966144i \(-0.416935\pi\)
0.258005 + 0.966144i \(0.416935\pi\)
\(608\) 0 0
\(609\) 11.2424 0.455565
\(610\) 0 0
\(611\) 13.5343i 0.547541i
\(612\) 0 0
\(613\) − 25.9763i − 1.04917i −0.851357 0.524587i \(-0.824220\pi\)
0.851357 0.524587i \(-0.175780\pi\)
\(614\) 0 0
\(615\) −12.3381 −0.497519
\(616\) 0 0
\(617\) 12.9002 0.519343 0.259671 0.965697i \(-0.416386\pi\)
0.259671 + 0.965697i \(0.416386\pi\)
\(618\) 0 0
\(619\) 8.88577i 0.357149i 0.983926 + 0.178575i \(0.0571486\pi\)
−0.983926 + 0.178575i \(0.942851\pi\)
\(620\) 0 0
\(621\) − 14.6400i − 0.587483i
\(622\) 0 0
\(623\) −14.0431 −0.562625
\(624\) 0 0
\(625\) −31.2115 −1.24846
\(626\) 0 0
\(627\) − 14.7581i − 0.589382i
\(628\) 0 0
\(629\) 51.1974i 2.04137i
\(630\) 0 0
\(631\) −17.0995 −0.680719 −0.340359 0.940295i \(-0.610549\pi\)
−0.340359 + 0.940295i \(0.610549\pi\)
\(632\) 0 0
\(633\) −25.6975 −1.02138
\(634\) 0 0
\(635\) 27.6055i 1.09549i
\(636\) 0 0
\(637\) − 1.00000i − 0.0396214i
\(638\) 0 0
\(639\) 31.7349 1.25541
\(640\) 0 0
\(641\) −5.85739 −0.231353 −0.115677 0.993287i \(-0.536904\pi\)
−0.115677 + 0.993287i \(0.536904\pi\)
\(642\) 0 0
\(643\) − 45.2251i − 1.78350i −0.452526 0.891751i \(-0.649477\pi\)
0.452526 0.891751i \(-0.350523\pi\)
\(644\) 0 0
\(645\) − 36.2022i − 1.42546i
\(646\) 0 0
\(647\) 26.6756 1.04873 0.524364 0.851494i \(-0.324303\pi\)
0.524364 + 0.851494i \(0.324303\pi\)
\(648\) 0 0
\(649\) −23.5484 −0.924357
\(650\) 0 0
\(651\) − 17.3676i − 0.680691i
\(652\) 0 0
\(653\) − 0.320551i − 0.0125441i −0.999980 0.00627206i \(-0.998004\pi\)
0.999980 0.00627206i \(-0.00199647\pi\)
\(654\) 0 0
\(655\) 0.472644 0.0184677
\(656\) 0 0
\(657\) 23.3997 0.912908
\(658\) 0 0
\(659\) − 18.9811i − 0.739398i −0.929151 0.369699i \(-0.879461\pi\)
0.929151 0.369699i \(-0.120539\pi\)
\(660\) 0 0
\(661\) − 32.3812i − 1.25948i −0.776804 0.629742i \(-0.783161\pi\)
0.776804 0.629742i \(-0.216839\pi\)
\(662\) 0 0
\(663\) 17.8363 0.692706
\(664\) 0 0
\(665\) −6.66864 −0.258599
\(666\) 0 0
\(667\) − 21.2243i − 0.821807i
\(668\) 0 0
\(669\) − 3.00328i − 0.116114i
\(670\) 0 0
\(671\) 18.2595 0.704898
\(672\) 0 0
\(673\) −1.03242 −0.0397970 −0.0198985 0.999802i \(-0.506334\pi\)
−0.0198985 + 0.999802i \(0.506334\pi\)
\(674\) 0 0
\(675\) − 7.85076i − 0.302176i
\(676\) 0 0
\(677\) − 5.19777i − 0.199767i −0.994999 0.0998833i \(-0.968153\pi\)
0.994999 0.0998833i \(-0.0318470\pi\)
\(678\) 0 0
\(679\) −15.9382 −0.611654
\(680\) 0 0
\(681\) −74.6821 −2.86183
\(682\) 0 0
\(683\) 4.36371i 0.166973i 0.996509 + 0.0834865i \(0.0266055\pi\)
−0.996509 + 0.0834865i \(0.973394\pi\)
\(684\) 0 0
\(685\) − 59.1533i − 2.26013i
\(686\) 0 0
\(687\) 52.6690 2.00945
\(688\) 0 0
\(689\) −0.579570 −0.0220799
\(690\) 0 0
\(691\) − 5.66095i − 0.215353i −0.994186 0.107676i \(-0.965659\pi\)
0.994186 0.107676i \(-0.0343410\pi\)
\(692\) 0 0
\(693\) 9.43584i 0.358438i
\(694\) 0 0
\(695\) 7.64639 0.290044
\(696\) 0 0
\(697\) 11.1832 0.423594
\(698\) 0 0
\(699\) 71.2412i 2.69459i
\(700\) 0 0
\(701\) 13.3890i 0.505695i 0.967506 + 0.252848i \(0.0813671\pi\)
−0.967506 + 0.252848i \(0.918633\pi\)
\(702\) 0 0
\(703\) 18.3764 0.693081
\(704\) 0 0
\(705\) −100.000 −3.76622
\(706\) 0 0
\(707\) − 11.8085i − 0.444103i
\(708\) 0 0
\(709\) 27.4963i 1.03265i 0.856394 + 0.516323i \(0.172699\pi\)
−0.856394 + 0.516323i \(0.827301\pi\)
\(710\) 0 0
\(711\) 49.3390 1.85036
\(712\) 0 0
\(713\) −32.7880 −1.22792
\(714\) 0 0
\(715\) − 6.39518i − 0.239166i
\(716\) 0 0
\(717\) 52.4626i 1.95925i
\(718\) 0 0
\(719\) 5.61384 0.209361 0.104681 0.994506i \(-0.466618\pi\)
0.104681 + 0.994506i \(0.466618\pi\)
\(720\) 0 0
\(721\) 2.80041 0.104293
\(722\) 0 0
\(723\) − 22.1396i − 0.823382i
\(724\) 0 0
\(725\) − 11.3816i − 0.422702i
\(726\) 0 0
\(727\) −41.5030 −1.53926 −0.769630 0.638490i \(-0.779559\pi\)
−0.769630 + 0.638490i \(0.779559\pi\)
\(728\) 0 0
\(729\) 41.7863 1.54764
\(730\) 0 0
\(731\) 32.8137i 1.21366i
\(732\) 0 0
\(733\) − 15.7818i − 0.582913i −0.956584 0.291456i \(-0.905860\pi\)
0.956584 0.291456i \(-0.0941398\pi\)
\(734\) 0 0
\(735\) 7.38863 0.272534
\(736\) 0 0
\(737\) 15.6778 0.577499
\(738\) 0 0
\(739\) 35.4864i 1.30539i 0.757622 + 0.652694i \(0.226361\pi\)
−0.757622 + 0.652694i \(0.773639\pi\)
\(740\) 0 0
\(741\) − 6.40205i − 0.235185i
\(742\) 0 0
\(743\) −43.4551 −1.59421 −0.797107 0.603838i \(-0.793637\pi\)
−0.797107 + 0.603838i \(0.793637\pi\)
\(744\) 0 0
\(745\) 13.1977 0.483528
\(746\) 0 0
\(747\) − 1.07472i − 0.0393220i
\(748\) 0 0
\(749\) − 2.80406i − 0.102458i
\(750\) 0 0
\(751\) −0.732227 −0.0267193 −0.0133597 0.999911i \(-0.504253\pi\)
−0.0133597 + 0.999911i \(0.504253\pi\)
\(752\) 0 0
\(753\) 64.6814 2.35712
\(754\) 0 0
\(755\) 18.6676i 0.679385i
\(756\) 0 0
\(757\) − 14.3837i − 0.522785i −0.965233 0.261393i \(-0.915818\pi\)
0.965233 0.261393i \(-0.0841817\pi\)
\(758\) 0 0
\(759\) 30.8696 1.12050
\(760\) 0 0
\(761\) 1.97792 0.0716996 0.0358498 0.999357i \(-0.488586\pi\)
0.0358498 + 0.999357i \(0.488586\pi\)
\(762\) 0 0
\(763\) 9.23050i 0.334167i
\(764\) 0 0
\(765\) 76.0488i 2.74955i
\(766\) 0 0
\(767\) −10.2153 −0.368853
\(768\) 0 0
\(769\) −14.1082 −0.508754 −0.254377 0.967105i \(-0.581870\pi\)
−0.254377 + 0.967105i \(0.581870\pi\)
\(770\) 0 0
\(771\) − 31.3762i − 1.12999i
\(772\) 0 0
\(773\) 39.4071i 1.41737i 0.705523 + 0.708687i \(0.250712\pi\)
−0.705523 + 0.708687i \(0.749288\pi\)
\(774\) 0 0
\(775\) −17.5827 −0.631588
\(776\) 0 0
\(777\) −20.3605 −0.730428
\(778\) 0 0
\(779\) − 4.01402i − 0.143817i
\(780\) 0 0
\(781\) 17.8723i 0.639521i
\(782\) 0 0
\(783\) −12.2908 −0.439237
\(784\) 0 0
\(785\) −20.4509 −0.729923
\(786\) 0 0
\(787\) 10.4800i 0.373571i 0.982401 + 0.186786i \(0.0598070\pi\)
−0.982401 + 0.186786i \(0.940193\pi\)
\(788\) 0 0
\(789\) 43.2045i 1.53812i
\(790\) 0 0
\(791\) 7.99544 0.284285
\(792\) 0 0
\(793\) 7.92093 0.281280
\(794\) 0 0
\(795\) − 4.28223i − 0.151875i
\(796\) 0 0
\(797\) 31.7295i 1.12392i 0.827166 + 0.561958i \(0.189952\pi\)
−0.827166 + 0.561958i \(0.810048\pi\)
\(798\) 0 0
\(799\) 90.6400 3.20661
\(800\) 0 0
\(801\) 57.4820 2.03103
\(802\) 0 0
\(803\) 13.1781i 0.465045i
\(804\) 0 0
\(805\) − 13.9488i − 0.491632i
\(806\) 0 0
\(807\) 70.4585 2.48026
\(808\) 0 0
\(809\) 17.7495 0.624039 0.312019 0.950076i \(-0.398995\pi\)
0.312019 + 0.950076i \(0.398995\pi\)
\(810\) 0 0
\(811\) − 12.0825i − 0.424273i −0.977240 0.212136i \(-0.931958\pi\)
0.977240 0.212136i \(-0.0680421\pi\)
\(812\) 0 0
\(813\) − 58.5896i − 2.05483i
\(814\) 0 0
\(815\) 28.2236 0.988630
\(816\) 0 0
\(817\) 11.7779 0.412057
\(818\) 0 0
\(819\) 4.09325i 0.143030i
\(820\) 0 0
\(821\) − 14.5237i − 0.506882i −0.967351 0.253441i \(-0.918438\pi\)
0.967351 0.253441i \(-0.0815623\pi\)
\(822\) 0 0
\(823\) 32.1613 1.12107 0.560536 0.828130i \(-0.310595\pi\)
0.560536 + 0.828130i \(0.310595\pi\)
\(824\) 0 0
\(825\) 16.5540 0.576335
\(826\) 0 0
\(827\) 27.0041i 0.939026i 0.882925 + 0.469513i \(0.155571\pi\)
−0.882925 + 0.469513i \(0.844429\pi\)
\(828\) 0 0
\(829\) 32.8357i 1.14043i 0.821496 + 0.570215i \(0.193140\pi\)
−0.821496 + 0.570215i \(0.806860\pi\)
\(830\) 0 0
\(831\) 23.1288 0.802330
\(832\) 0 0
\(833\) −6.69704 −0.232039
\(834\) 0 0
\(835\) 55.9490i 1.93620i
\(836\) 0 0
\(837\) 18.9872i 0.656295i
\(838\) 0 0
\(839\) −28.8041 −0.994429 −0.497215 0.867628i \(-0.665644\pi\)
−0.497215 + 0.867628i \(0.665644\pi\)
\(840\) 0 0
\(841\) 11.1815 0.385568
\(842\) 0 0
\(843\) − 89.0064i − 3.06554i
\(844\) 0 0
\(845\) − 2.77422i − 0.0954361i
\(846\) 0 0
\(847\) 5.68598 0.195373
\(848\) 0 0
\(849\) 61.6784 2.11680
\(850\) 0 0
\(851\) 38.4381i 1.31764i
\(852\) 0 0
\(853\) − 34.6783i − 1.18736i −0.804700 0.593681i \(-0.797674\pi\)
0.804700 0.593681i \(-0.202326\pi\)
\(854\) 0 0
\(855\) 27.2964 0.933519
\(856\) 0 0
\(857\) 3.12688 0.106812 0.0534062 0.998573i \(-0.482992\pi\)
0.0534062 + 0.998573i \(0.482992\pi\)
\(858\) 0 0
\(859\) − 36.7898i − 1.25525i −0.778515 0.627626i \(-0.784027\pi\)
0.778515 0.627626i \(-0.215973\pi\)
\(860\) 0 0
\(861\) 4.44740i 0.151567i
\(862\) 0 0
\(863\) −16.4365 −0.559506 −0.279753 0.960072i \(-0.590253\pi\)
−0.279753 + 0.960072i \(0.590253\pi\)
\(864\) 0 0
\(865\) −15.0271 −0.510936
\(866\) 0 0
\(867\) − 74.1743i − 2.51909i
\(868\) 0 0
\(869\) 27.7865i 0.942591i
\(870\) 0 0
\(871\) 6.80101 0.230444
\(872\) 0 0
\(873\) 65.2393 2.20802
\(874\) 0 0
\(875\) 6.39098i 0.216055i
\(876\) 0 0
\(877\) − 10.0167i − 0.338240i −0.985595 0.169120i \(-0.945908\pi\)
0.985595 0.169120i \(-0.0540925\pi\)
\(878\) 0 0
\(879\) −53.9394 −1.81933
\(880\) 0 0
\(881\) 20.3551 0.685779 0.342890 0.939376i \(-0.388594\pi\)
0.342890 + 0.939376i \(0.388594\pi\)
\(882\) 0 0
\(883\) 16.8609i 0.567415i 0.958911 + 0.283707i \(0.0915644\pi\)
−0.958911 + 0.283707i \(0.908436\pi\)
\(884\) 0 0
\(885\) − 75.4769i − 2.53713i
\(886\) 0 0
\(887\) −3.98272 −0.133727 −0.0668633 0.997762i \(-0.521299\pi\)
−0.0668633 + 0.997762i \(0.521299\pi\)
\(888\) 0 0
\(889\) 9.95073 0.333737
\(890\) 0 0
\(891\) 10.4312i 0.349457i
\(892\) 0 0
\(893\) − 32.5337i − 1.08870i
\(894\) 0 0
\(895\) 18.8563 0.630297
\(896\) 0 0
\(897\) 13.3912 0.447119
\(898\) 0 0
\(899\) 27.5267i 0.918065i
\(900\) 0 0
\(901\) 3.88141i 0.129308i
\(902\) 0 0
\(903\) −13.0495 −0.434261
\(904\) 0 0
\(905\) −41.3842 −1.37566
\(906\) 0 0
\(907\) 16.0034i 0.531385i 0.964058 + 0.265692i \(0.0856005\pi\)
−0.964058 + 0.265692i \(0.914399\pi\)
\(908\) 0 0
\(909\) 48.3351i 1.60317i
\(910\) 0 0
\(911\) −5.85697 −0.194050 −0.0970250 0.995282i \(-0.530933\pi\)
−0.0970250 + 0.995282i \(0.530933\pi\)
\(912\) 0 0
\(913\) 0.605256 0.0200310
\(914\) 0 0
\(915\) 58.5248i 1.93477i
\(916\) 0 0
\(917\) − 0.170370i − 0.00562611i
\(918\) 0 0
\(919\) 34.9195 1.15189 0.575943 0.817490i \(-0.304635\pi\)
0.575943 + 0.817490i \(0.304635\pi\)
\(920\) 0 0
\(921\) 30.5175 1.00559
\(922\) 0 0
\(923\) 7.75298i 0.255193i
\(924\) 0 0
\(925\) 20.6126i 0.677738i
\(926\) 0 0
\(927\) −11.4628 −0.376487
\(928\) 0 0
\(929\) −43.0245 −1.41159 −0.705794 0.708417i \(-0.749410\pi\)
−0.705794 + 0.708417i \(0.749410\pi\)
\(930\) 0 0
\(931\) 2.40379i 0.0787810i
\(932\) 0 0
\(933\) 19.1191i 0.625932i
\(934\) 0 0
\(935\) −42.8287 −1.40065
\(936\) 0 0
\(937\) −0.552460 −0.0180481 −0.00902404 0.999959i \(-0.502872\pi\)
−0.00902404 + 0.999959i \(0.502872\pi\)
\(938\) 0 0
\(939\) − 74.8711i − 2.44333i
\(940\) 0 0
\(941\) 54.7997i 1.78642i 0.449641 + 0.893210i \(0.351552\pi\)
−0.449641 + 0.893210i \(0.648448\pi\)
\(942\) 0 0
\(943\) 8.39615 0.273416
\(944\) 0 0
\(945\) −8.07765 −0.262766
\(946\) 0 0
\(947\) 33.7873i 1.09794i 0.835843 + 0.548969i \(0.184980\pi\)
−0.835843 + 0.548969i \(0.815020\pi\)
\(948\) 0 0
\(949\) 5.71664i 0.185570i
\(950\) 0 0
\(951\) −41.6907 −1.35191
\(952\) 0 0
\(953\) 15.2367 0.493565 0.246782 0.969071i \(-0.420627\pi\)
0.246782 + 0.969071i \(0.420627\pi\)
\(954\) 0 0
\(955\) 37.6022i 1.21678i
\(956\) 0 0
\(957\) − 25.9161i − 0.837750i
\(958\) 0 0
\(959\) −21.3225 −0.688539
\(960\) 0 0
\(961\) 11.5241 0.371745
\(962\) 0 0
\(963\) 11.4777i 0.369865i
\(964\) 0 0
\(965\) − 12.7993i − 0.412023i
\(966\) 0 0
\(967\) 14.5570 0.468121 0.234060 0.972222i \(-0.424799\pi\)
0.234060 + 0.972222i \(0.424799\pi\)
\(968\) 0 0
\(969\) −42.8748 −1.37734
\(970\) 0 0
\(971\) − 11.6461i − 0.373742i −0.982384 0.186871i \(-0.940165\pi\)
0.982384 0.186871i \(-0.0598346\pi\)
\(972\) 0 0
\(973\) − 2.75623i − 0.0883608i
\(974\) 0 0
\(975\) 7.18109 0.229979
\(976\) 0 0
\(977\) 58.9341 1.88547 0.942734 0.333545i \(-0.108245\pi\)
0.942734 + 0.333545i \(0.108245\pi\)
\(978\) 0 0
\(979\) 32.3724i 1.03463i
\(980\) 0 0
\(981\) − 37.7828i − 1.20631i
\(982\) 0 0
\(983\) 58.3762 1.86191 0.930957 0.365130i \(-0.118975\pi\)
0.930957 + 0.365130i \(0.118975\pi\)
\(984\) 0 0
\(985\) 14.4552 0.460581
\(986\) 0 0
\(987\) 36.0462i 1.14736i
\(988\) 0 0
\(989\) 24.6359i 0.783377i
\(990\) 0 0
\(991\) 4.43349 0.140834 0.0704172 0.997518i \(-0.477567\pi\)
0.0704172 + 0.997518i \(0.477567\pi\)
\(992\) 0 0
\(993\) 45.7465 1.45172
\(994\) 0 0
\(995\) − 66.0312i − 2.09333i
\(996\) 0 0
\(997\) − 19.9632i − 0.632241i −0.948719 0.316121i \(-0.897620\pi\)
0.948719 0.316121i \(-0.102380\pi\)
\(998\) 0 0
\(999\) 22.2592 0.704249
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2912.2.c.a.1457.5 34
4.3 odd 2 728.2.c.a.365.10 yes 34
8.3 odd 2 728.2.c.a.365.9 34
8.5 even 2 inner 2912.2.c.a.1457.30 34
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
728.2.c.a.365.9 34 8.3 odd 2
728.2.c.a.365.10 yes 34 4.3 odd 2
2912.2.c.a.1457.5 34 1.1 even 1 trivial
2912.2.c.a.1457.30 34 8.5 even 2 inner