Newspace parameters
Level: | \( N \) | \(=\) | \( 728 = 2^{3} \cdot 7 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 728.c (of order \(2\), degree \(1\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(5.81310926715\) |
Analytic rank: | \(0\) |
Dimension: | \(34\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
365.1 | −1.41239 | − | 0.0717634i | 1.60179i | 1.98970 | + | 0.202716i | − | 2.04118i | 0.114950 | − | 2.26236i | −1.00000 | −2.79569 | − | 0.429102i | 0.434268 | −0.146482 | + | 2.88295i | |||||||
365.2 | −1.41239 | + | 0.0717634i | − | 1.60179i | 1.98970 | − | 0.202716i | 2.04118i | 0.114950 | + | 2.26236i | −1.00000 | −2.79569 | + | 0.429102i | 0.434268 | −0.146482 | − | 2.88295i | |||||||
365.3 | −1.23674 | − | 0.685911i | 0.302261i | 1.05905 | + | 1.69659i | 1.42871i | 0.207324 | − | 0.373818i | −1.00000 | −0.146067 | − | 2.82465i | 2.90864 | 0.979968 | − | 1.76694i | ||||||||
365.4 | −1.23674 | + | 0.685911i | − | 0.302261i | 1.05905 | − | 1.69659i | − | 1.42871i | 0.207324 | + | 0.373818i | −1.00000 | −0.146067 | + | 2.82465i | 2.90864 | 0.979968 | + | 1.76694i | ||||||
365.5 | −1.14018 | − | 0.836660i | 2.38465i | 0.600001 | + | 1.90788i | 1.59665i | 1.99514 | − | 2.71892i | −1.00000 | 0.912139 | − | 2.67731i | −2.68654 | 1.33585 | − | 1.82046i | ||||||||
365.6 | −1.14018 | + | 0.836660i | − | 2.38465i | 0.600001 | − | 1.90788i | − | 1.59665i | 1.99514 | + | 2.71892i | −1.00000 | 0.912139 | + | 2.67731i | −2.68654 | 1.33585 | + | 1.82046i | ||||||
365.7 | −1.11456 | − | 0.870498i | − | 2.73244i | 0.484466 | + | 1.94044i | 4.29306i | −2.37859 | + | 3.04546i | −1.00000 | 1.14918 | − | 2.58445i | −4.46625 | 3.73710 | − | 4.78486i | |||||||
365.8 | −1.11456 | + | 0.870498i | 2.73244i | 0.484466 | − | 1.94044i | − | 4.29306i | −2.37859 | − | 3.04546i | −1.00000 | 1.14918 | + | 2.58445i | −4.46625 | 3.73710 | + | 4.78486i | |||||||
365.9 | −0.720007 | − | 1.21721i | − | 2.66332i | −0.963179 | + | 1.75279i | − | 2.77422i | −3.24180 | + | 1.91761i | −1.00000 | 2.82701 | − | 0.0896372i | −4.09325 | −3.37680 | + | 1.99746i | ||||||
365.10 | −0.720007 | + | 1.21721i | 2.66332i | −0.963179 | − | 1.75279i | 2.77422i | −3.24180 | − | 1.91761i | −1.00000 | 2.82701 | + | 0.0896372i | −4.09325 | −3.37680 | − | 1.99746i | ||||||||
365.11 | −0.687700 | − | 1.23575i | 3.16783i | −1.05414 | + | 1.69965i | − | 1.11795i | 3.91463 | − | 2.17851i | −1.00000 | 2.82526 | + | 0.133800i | −7.03512 | −1.38150 | + | 0.768812i | |||||||
365.12 | −0.687700 | + | 1.23575i | − | 3.16783i | −1.05414 | − | 1.69965i | 1.11795i | 3.91463 | + | 2.17851i | −1.00000 | 2.82526 | − | 0.133800i | −7.03512 | −1.38150 | − | 0.768812i | |||||||
365.13 | −0.624850 | − | 1.26869i | − | 1.12898i | −1.21912 | + | 1.58548i | 0.544172i | −1.43232 | + | 0.705444i | −1.00000 | 2.77324 | + | 0.556000i | 1.72540 | 0.690383 | − | 0.340026i | |||||||
365.14 | −0.624850 | + | 1.26869i | 1.12898i | −1.21912 | − | 1.58548i | − | 0.544172i | −1.43232 | − | 0.705444i | −1.00000 | 2.77324 | − | 0.556000i | 1.72540 | 0.690383 | + | 0.340026i | |||||||
365.15 | −0.106298 | − | 1.41021i | 1.65437i | −1.97740 | + | 0.299806i | − | 2.15163i | 2.33302 | − | 0.175857i | −1.00000 | 0.632984 | + | 2.75669i | 0.263045 | −3.03425 | + | 0.228714i | |||||||
365.16 | −0.106298 | + | 1.41021i | − | 1.65437i | −1.97740 | − | 0.299806i | 2.15163i | 2.33302 | + | 0.175857i | −1.00000 | 0.632984 | − | 2.75669i | 0.263045 | −3.03425 | − | 0.228714i | |||||||
365.17 | 0.182514 | − | 1.40239i | − | 0.275879i | −1.93338 | − | 0.511911i | − | 3.61620i | −0.386890 | − | 0.0503520i | −1.00000 | −1.07077 | + | 2.61791i | 2.92389 | −5.07131 | − | 0.660008i | ||||||
365.18 | 0.182514 | + | 1.40239i | 0.275879i | −1.93338 | + | 0.511911i | 3.61620i | −0.386890 | + | 0.0503520i | −1.00000 | −1.07077 | − | 2.61791i | 2.92389 | −5.07131 | + | 0.660008i | ||||||||
365.19 | 0.220384 | − | 1.39694i | − | 1.54889i | −1.90286 | − | 0.615724i | 3.27466i | −2.16370 | − | 0.341350i | −1.00000 | −1.27949 | + | 2.52248i | 0.600939 | 4.57450 | + | 0.721683i | |||||||
365.20 | 0.220384 | + | 1.39694i | 1.54889i | −1.90286 | + | 0.615724i | − | 3.27466i | −2.16370 | + | 0.341350i | −1.00000 | −1.27949 | − | 2.52248i | 0.600939 | 4.57450 | − | 0.721683i | |||||||
See all 34 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
8.b | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 728.2.c.a | ✓ | 34 |
4.b | odd | 2 | 1 | 2912.2.c.a | 34 | ||
8.b | even | 2 | 1 | inner | 728.2.c.a | ✓ | 34 |
8.d | odd | 2 | 1 | 2912.2.c.a | 34 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
728.2.c.a | ✓ | 34 | 1.a | even | 1 | 1 | trivial |
728.2.c.a | ✓ | 34 | 8.b | even | 2 | 1 | inner |
2912.2.c.a | 34 | 4.b | odd | 2 | 1 | ||
2912.2.c.a | 34 | 8.d | odd | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3}^{34} + 64 T_{3}^{32} + 1838 T_{3}^{30} + 31312 T_{3}^{28} + 352481 T_{3}^{26} + 2764784 T_{3}^{24} + \cdots + 1024 \)
acting on \(S_{2}^{\mathrm{new}}(728, [\chi])\).