L(s) = 1 | + (−0.720 + 1.21i)2-s + 2.66i·3-s + (−0.963 − 1.75i)4-s + 2.77i·5-s + (−3.24 − 1.91i)6-s − 7-s + (2.82 + 0.0896i)8-s − 4.09·9-s + (−3.37 − 1.99i)10-s + 2.30i·11-s + (4.66 − 2.56i)12-s − i·13-s + (0.720 − 1.21i)14-s − 7.38·15-s + (−2.14 + 3.37i)16-s − 6.69·17-s + ⋯ |
L(s) = 1 | + (−0.509 + 0.860i)2-s + 1.53i·3-s + (−0.481 − 0.876i)4-s + 1.24i·5-s + (−1.32 − 0.782i)6-s − 0.377·7-s + (0.999 + 0.0316i)8-s − 1.36·9-s + (−1.06 − 0.631i)10-s + 0.695i·11-s + (1.34 − 0.740i)12-s − 0.277i·13-s + (0.192 − 0.325i)14-s − 1.90·15-s + (−0.536 + 0.844i)16-s − 1.62·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 728 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0316 + 0.999i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 728 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.0316 + 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.448666 - 0.463117i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.448666 - 0.463117i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.720 - 1.21i)T \) |
| 7 | \( 1 + T \) |
| 13 | \( 1 + iT \) |
good | 3 | \( 1 - 2.66iT - 3T^{2} \) |
| 5 | \( 1 - 2.77iT - 5T^{2} \) |
| 11 | \( 1 - 2.30iT - 11T^{2} \) |
| 17 | \( 1 + 6.69T + 17T^{2} \) |
| 19 | \( 1 + 2.40iT - 19T^{2} \) |
| 23 | \( 1 - 5.02T + 23T^{2} \) |
| 29 | \( 1 - 4.22iT - 29T^{2} \) |
| 31 | \( 1 + 6.52T + 31T^{2} \) |
| 37 | \( 1 + 7.64iT - 37T^{2} \) |
| 41 | \( 1 + 1.66T + 41T^{2} \) |
| 43 | \( 1 - 4.89iT - 43T^{2} \) |
| 47 | \( 1 - 13.5T + 47T^{2} \) |
| 53 | \( 1 + 0.579iT - 53T^{2} \) |
| 59 | \( 1 - 10.2iT - 59T^{2} \) |
| 61 | \( 1 - 7.92iT - 61T^{2} \) |
| 67 | \( 1 + 6.80iT - 67T^{2} \) |
| 71 | \( 1 - 7.75T + 71T^{2} \) |
| 73 | \( 1 + 5.71T + 73T^{2} \) |
| 79 | \( 1 - 12.0T + 79T^{2} \) |
| 83 | \( 1 + 0.262iT - 83T^{2} \) |
| 89 | \( 1 + 14.0T + 89T^{2} \) |
| 97 | \( 1 + 15.9T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.92435558244894969882413043443, −10.13347009494807516262376978059, −9.205537280530645178759103009597, −8.883906218663343648507733961318, −7.30013255032283337389521799438, −6.85104947385383207514445031568, −5.71663344054454279315410372678, −4.75476753819466220336343954631, −3.86921940629653005875680099710, −2.57983669295091150985408068382,
0.40339681764492041515788544571, 1.48182192802350843761637781079, 2.52345162044110351999803994466, 3.95924167838012573616005125392, 5.18309081753246790477516277657, 6.44433787778470579719516356690, 7.29674763438832992353721548408, 8.321043290083674204071552751840, 8.755596145586211555186487308329, 9.519925999810569349363036106896