Properties

Label 726.2.e.h.565.1
Level $726$
Weight $2$
Character 726.565
Analytic conductor $5.797$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [726,2,Mod(487,726)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(726, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 8])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("726.487"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 726 = 2 \cdot 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 726.e (of order \(5\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-1,1,-1,0,1,0,-1,-1,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(10)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.79713918674\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 565.1
Root \(0.809017 - 0.587785i\) of defining polynomial
Character \(\chi\) \(=\) 726.565
Dual form 726.2.e.h.487.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.809017 - 0.587785i) q^{2} +(-0.309017 + 0.951057i) q^{3} +(0.309017 + 0.951057i) q^{4} +(0.809017 - 0.587785i) q^{6} +(0.309017 - 0.951057i) q^{8} +(-0.809017 - 0.587785i) q^{9} -1.00000 q^{12} +(-4.85410 - 3.52671i) q^{13} +(-0.809017 + 0.587785i) q^{16} +(4.85410 - 3.52671i) q^{17} +(0.309017 + 0.951057i) q^{18} +(1.85410 - 5.70634i) q^{19} +6.00000 q^{23} +(0.809017 + 0.587785i) q^{24} +(-1.54508 + 4.75528i) q^{25} +(1.85410 + 5.70634i) q^{26} +(0.809017 - 0.587785i) q^{27} +(1.85410 + 5.70634i) q^{29} +(-3.23607 - 2.35114i) q^{31} +1.00000 q^{32} -6.00000 q^{34} +(0.309017 - 0.951057i) q^{36} +(-0.618034 - 1.90211i) q^{37} +(-4.85410 + 3.52671i) q^{38} +(4.85410 - 3.52671i) q^{39} +(1.85410 - 5.70634i) q^{41} +6.00000 q^{43} +(-4.85410 - 3.52671i) q^{46} +(1.85410 - 5.70634i) q^{47} +(-0.309017 - 0.951057i) q^{48} +(5.66312 - 4.11450i) q^{49} +(4.04508 - 2.93893i) q^{50} +(1.85410 + 5.70634i) q^{51} +(1.85410 - 5.70634i) q^{52} +(9.70820 + 7.05342i) q^{53} -1.00000 q^{54} +(4.85410 + 3.52671i) q^{57} +(1.85410 - 5.70634i) q^{58} +(-3.70820 - 11.4127i) q^{59} +(-4.85410 + 3.52671i) q^{61} +(1.23607 + 3.80423i) q^{62} +(-0.809017 - 0.587785i) q^{64} +4.00000 q^{67} +(4.85410 + 3.52671i) q^{68} +(-1.85410 + 5.70634i) q^{69} +(4.85410 - 3.52671i) q^{71} +(-0.809017 + 0.587785i) q^{72} +(-3.70820 - 11.4127i) q^{73} +(-0.618034 + 1.90211i) q^{74} +(-4.04508 - 2.93893i) q^{75} +6.00000 q^{76} -6.00000 q^{78} +(-9.70820 - 7.05342i) q^{79} +(0.309017 + 0.951057i) q^{81} +(-4.85410 + 3.52671i) q^{82} +(-4.85410 - 3.52671i) q^{86} -6.00000 q^{87} -6.00000 q^{89} +(1.85410 + 5.70634i) q^{92} +(3.23607 - 2.35114i) q^{93} +(-4.85410 + 3.52671i) q^{94} +(-0.309017 + 0.951057i) q^{96} +(8.09017 + 5.87785i) q^{97} -7.00000 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - q^{2} + q^{3} - q^{4} + q^{6} - q^{8} - q^{9} - 4 q^{12} - 6 q^{13} - q^{16} + 6 q^{17} - q^{18} - 6 q^{19} + 24 q^{23} + q^{24} + 5 q^{25} - 6 q^{26} + q^{27} - 6 q^{29} - 4 q^{31} + 4 q^{32}+ \cdots - 28 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/726\mathbb{Z}\right)^\times\).

\(n\) \(485\) \(607\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.809017 0.587785i −0.572061 0.415627i
\(3\) −0.309017 + 0.951057i −0.178411 + 0.549093i
\(4\) 0.309017 + 0.951057i 0.154508 + 0.475528i
\(5\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(6\) 0.809017 0.587785i 0.330280 0.239962i
\(7\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(8\) 0.309017 0.951057i 0.109254 0.336249i
\(9\) −0.809017 0.587785i −0.269672 0.195928i
\(10\) 0 0
\(11\) 0 0
\(12\) −1.00000 −0.288675
\(13\) −4.85410 3.52671i −1.34629 0.978134i −0.999187 0.0403050i \(-0.987167\pi\)
−0.347098 0.937829i \(-0.612833\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −0.809017 + 0.587785i −0.202254 + 0.146946i
\(17\) 4.85410 3.52671i 1.17729 0.855353i 0.185429 0.982658i \(-0.440633\pi\)
0.991864 + 0.127304i \(0.0406325\pi\)
\(18\) 0.309017 + 0.951057i 0.0728360 + 0.224166i
\(19\) 1.85410 5.70634i 0.425360 1.30912i −0.477289 0.878746i \(-0.658380\pi\)
0.902649 0.430377i \(-0.141620\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 6.00000 1.25109 0.625543 0.780189i \(-0.284877\pi\)
0.625543 + 0.780189i \(0.284877\pi\)
\(24\) 0.809017 + 0.587785i 0.165140 + 0.119981i
\(25\) −1.54508 + 4.75528i −0.309017 + 0.951057i
\(26\) 1.85410 + 5.70634i 0.363619 + 1.11911i
\(27\) 0.809017 0.587785i 0.155695 0.113119i
\(28\) 0 0
\(29\) 1.85410 + 5.70634i 0.344298 + 1.05964i 0.961958 + 0.273196i \(0.0880806\pi\)
−0.617660 + 0.786445i \(0.711919\pi\)
\(30\) 0 0
\(31\) −3.23607 2.35114i −0.581215 0.422277i 0.257947 0.966159i \(-0.416954\pi\)
−0.839162 + 0.543882i \(0.816954\pi\)
\(32\) 1.00000 0.176777
\(33\) 0 0
\(34\) −6.00000 −1.02899
\(35\) 0 0
\(36\) 0.309017 0.951057i 0.0515028 0.158509i
\(37\) −0.618034 1.90211i −0.101604 0.312705i 0.887314 0.461165i \(-0.152568\pi\)
−0.988918 + 0.148460i \(0.952568\pi\)
\(38\) −4.85410 + 3.52671i −0.787439 + 0.572108i
\(39\) 4.85410 3.52671i 0.777278 0.564726i
\(40\) 0 0
\(41\) 1.85410 5.70634i 0.289562 0.891180i −0.695432 0.718592i \(-0.744787\pi\)
0.984994 0.172588i \(-0.0552131\pi\)
\(42\) 0 0
\(43\) 6.00000 0.914991 0.457496 0.889212i \(-0.348747\pi\)
0.457496 + 0.889212i \(0.348747\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) −4.85410 3.52671i −0.715698 0.519985i
\(47\) 1.85410 5.70634i 0.270449 0.832355i −0.719939 0.694037i \(-0.755830\pi\)
0.990388 0.138318i \(-0.0441696\pi\)
\(48\) −0.309017 0.951057i −0.0446028 0.137273i
\(49\) 5.66312 4.11450i 0.809017 0.587785i
\(50\) 4.04508 2.93893i 0.572061 0.415627i
\(51\) 1.85410 + 5.70634i 0.259626 + 0.799047i
\(52\) 1.85410 5.70634i 0.257118 0.791327i
\(53\) 9.70820 + 7.05342i 1.33352 + 0.968862i 0.999656 + 0.0262426i \(0.00835424\pi\)
0.333869 + 0.942620i \(0.391646\pi\)
\(54\) −1.00000 −0.136083
\(55\) 0 0
\(56\) 0 0
\(57\) 4.85410 + 3.52671i 0.642942 + 0.467124i
\(58\) 1.85410 5.70634i 0.243456 0.749279i
\(59\) −3.70820 11.4127i −0.482767 1.48580i −0.835189 0.549963i \(-0.814642\pi\)
0.352422 0.935841i \(-0.385358\pi\)
\(60\) 0 0
\(61\) −4.85410 + 3.52671i −0.621504 + 0.451549i −0.853447 0.521180i \(-0.825492\pi\)
0.231942 + 0.972730i \(0.425492\pi\)
\(62\) 1.23607 + 3.80423i 0.156981 + 0.483137i
\(63\) 0 0
\(64\) −0.809017 0.587785i −0.101127 0.0734732i
\(65\) 0 0
\(66\) 0 0
\(67\) 4.00000 0.488678 0.244339 0.969690i \(-0.421429\pi\)
0.244339 + 0.969690i \(0.421429\pi\)
\(68\) 4.85410 + 3.52671i 0.588646 + 0.427677i
\(69\) −1.85410 + 5.70634i −0.223208 + 0.686963i
\(70\) 0 0
\(71\) 4.85410 3.52671i 0.576076 0.418544i −0.261231 0.965276i \(-0.584129\pi\)
0.837307 + 0.546733i \(0.184129\pi\)
\(72\) −0.809017 + 0.587785i −0.0953436 + 0.0692712i
\(73\) −3.70820 11.4127i −0.434012 1.33575i −0.894095 0.447877i \(-0.852180\pi\)
0.460083 0.887876i \(-0.347820\pi\)
\(74\) −0.618034 + 1.90211i −0.0718450 + 0.221116i
\(75\) −4.04508 2.93893i −0.467086 0.339358i
\(76\) 6.00000 0.688247
\(77\) 0 0
\(78\) −6.00000 −0.679366
\(79\) −9.70820 7.05342i −1.09226 0.793572i −0.112479 0.993654i \(-0.535879\pi\)
−0.979779 + 0.200082i \(0.935879\pi\)
\(80\) 0 0
\(81\) 0.309017 + 0.951057i 0.0343352 + 0.105673i
\(82\) −4.85410 + 3.52671i −0.536046 + 0.389460i
\(83\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −4.85410 3.52671i −0.523431 0.380295i
\(87\) −6.00000 −0.643268
\(88\) 0 0
\(89\) −6.00000 −0.635999 −0.317999 0.948091i \(-0.603011\pi\)
−0.317999 + 0.948091i \(0.603011\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 1.85410 + 5.70634i 0.193303 + 0.594927i
\(93\) 3.23607 2.35114i 0.335565 0.243802i
\(94\) −4.85410 + 3.52671i −0.500662 + 0.363753i
\(95\) 0 0
\(96\) −0.309017 + 0.951057i −0.0315389 + 0.0970668i
\(97\) 8.09017 + 5.87785i 0.821432 + 0.596806i 0.917122 0.398606i \(-0.130506\pi\)
−0.0956901 + 0.995411i \(0.530506\pi\)
\(98\) −7.00000 −0.707107
\(99\) 0 0
\(100\) −5.00000 −0.500000
\(101\) 4.85410 + 3.52671i 0.483001 + 0.350921i 0.802486 0.596670i \(-0.203510\pi\)
−0.319485 + 0.947591i \(0.603510\pi\)
\(102\) 1.85410 5.70634i 0.183583 0.565012i
\(103\) −1.23607 3.80423i −0.121793 0.374842i 0.871510 0.490378i \(-0.163141\pi\)
−0.993303 + 0.115536i \(0.963141\pi\)
\(104\) −4.85410 + 3.52671i −0.475984 + 0.345823i
\(105\) 0 0
\(106\) −3.70820 11.4127i −0.360173 1.10850i
\(107\) −3.70820 + 11.4127i −0.358486 + 1.10331i 0.595475 + 0.803374i \(0.296964\pi\)
−0.953961 + 0.299932i \(0.903036\pi\)
\(108\) 0.809017 + 0.587785i 0.0778477 + 0.0565597i
\(109\) 6.00000 0.574696 0.287348 0.957826i \(-0.407226\pi\)
0.287348 + 0.957826i \(0.407226\pi\)
\(110\) 0 0
\(111\) 2.00000 0.189832
\(112\) 0 0
\(113\) 1.85410 5.70634i 0.174419 0.536807i −0.825187 0.564859i \(-0.808930\pi\)
0.999606 + 0.0280521i \(0.00893043\pi\)
\(114\) −1.85410 5.70634i −0.173653 0.534448i
\(115\) 0 0
\(116\) −4.85410 + 3.52671i −0.450692 + 0.327447i
\(117\) 1.85410 + 5.70634i 0.171412 + 0.527551i
\(118\) −3.70820 + 11.4127i −0.341368 + 1.05062i
\(119\) 0 0
\(120\) 0 0
\(121\) 0 0
\(122\) 6.00000 0.543214
\(123\) 4.85410 + 3.52671i 0.437680 + 0.317993i
\(124\) 1.23607 3.80423i 0.111002 0.341630i
\(125\) 0 0
\(126\) 0 0
\(127\) −9.70820 + 7.05342i −0.861464 + 0.625890i −0.928283 0.371875i \(-0.878715\pi\)
0.0668190 + 0.997765i \(0.478715\pi\)
\(128\) 0.309017 + 0.951057i 0.0273135 + 0.0840623i
\(129\) −1.85410 + 5.70634i −0.163245 + 0.502415i
\(130\) 0 0
\(131\) −12.0000 −1.04844 −0.524222 0.851581i \(-0.675644\pi\)
−0.524222 + 0.851581i \(0.675644\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −3.23607 2.35114i −0.279554 0.203108i
\(135\) 0 0
\(136\) −1.85410 5.70634i −0.158988 0.489315i
\(137\) 4.85410 3.52671i 0.414714 0.301307i −0.360794 0.932646i \(-0.617494\pi\)
0.775507 + 0.631338i \(0.217494\pi\)
\(138\) 4.85410 3.52671i 0.413209 0.300214i
\(139\) −5.56231 17.1190i −0.471789 1.45202i −0.850240 0.526395i \(-0.823543\pi\)
0.378452 0.925621i \(-0.376457\pi\)
\(140\) 0 0
\(141\) 4.85410 + 3.52671i 0.408789 + 0.297003i
\(142\) −6.00000 −0.503509
\(143\) 0 0
\(144\) 1.00000 0.0833333
\(145\) 0 0
\(146\) −3.70820 + 11.4127i −0.306893 + 0.944520i
\(147\) 2.16312 + 6.65740i 0.178411 + 0.549093i
\(148\) 1.61803 1.17557i 0.133002 0.0966313i
\(149\) −4.85410 + 3.52671i −0.397664 + 0.288919i −0.768589 0.639743i \(-0.779041\pi\)
0.370925 + 0.928663i \(0.379041\pi\)
\(150\) 1.54508 + 4.75528i 0.126156 + 0.388267i
\(151\) −3.70820 + 11.4127i −0.301769 + 0.928751i 0.679094 + 0.734052i \(0.262373\pi\)
−0.980863 + 0.194699i \(0.937627\pi\)
\(152\) −4.85410 3.52671i −0.393720 0.286054i
\(153\) −6.00000 −0.485071
\(154\) 0 0
\(155\) 0 0
\(156\) 4.85410 + 3.52671i 0.388639 + 0.282363i
\(157\) −4.32624 + 13.3148i −0.345271 + 1.06264i 0.616167 + 0.787616i \(0.288685\pi\)
−0.961438 + 0.275020i \(0.911315\pi\)
\(158\) 3.70820 + 11.4127i 0.295009 + 0.907944i
\(159\) −9.70820 + 7.05342i −0.769911 + 0.559373i
\(160\) 0 0
\(161\) 0 0
\(162\) 0.309017 0.951057i 0.0242787 0.0747221i
\(163\) −16.1803 11.7557i −1.26734 0.920778i −0.268249 0.963350i \(-0.586445\pi\)
−0.999093 + 0.0425718i \(0.986445\pi\)
\(164\) 6.00000 0.468521
\(165\) 0 0
\(166\) 0 0
\(167\) 19.4164 + 14.1068i 1.50249 + 1.09162i 0.969378 + 0.245574i \(0.0789764\pi\)
0.533109 + 0.846047i \(0.321024\pi\)
\(168\) 0 0
\(169\) 7.10739 + 21.8743i 0.546722 + 1.68264i
\(170\) 0 0
\(171\) −4.85410 + 3.52671i −0.371202 + 0.269694i
\(172\) 1.85410 + 5.70634i 0.141374 + 0.435104i
\(173\) −5.56231 + 17.1190i −0.422894 + 1.30153i 0.482102 + 0.876115i \(0.339873\pi\)
−0.904996 + 0.425420i \(0.860127\pi\)
\(174\) 4.85410 + 3.52671i 0.367989 + 0.267359i
\(175\) 0 0
\(176\) 0 0
\(177\) 12.0000 0.901975
\(178\) 4.85410 + 3.52671i 0.363830 + 0.264338i
\(179\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(180\) 0 0
\(181\) −1.61803 + 1.17557i −0.120268 + 0.0873795i −0.646293 0.763089i \(-0.723682\pi\)
0.526026 + 0.850469i \(0.323682\pi\)
\(182\) 0 0
\(183\) −1.85410 5.70634i −0.137059 0.421825i
\(184\) 1.85410 5.70634i 0.136686 0.420677i
\(185\) 0 0
\(186\) −4.00000 −0.293294
\(187\) 0 0
\(188\) 6.00000 0.437595
\(189\) 0 0
\(190\) 0 0
\(191\) −5.56231 17.1190i −0.402474 1.23869i −0.922986 0.384834i \(-0.874259\pi\)
0.520511 0.853855i \(-0.325741\pi\)
\(192\) 0.809017 0.587785i 0.0583858 0.0424197i
\(193\) −9.70820 + 7.05342i −0.698812 + 0.507716i −0.879545 0.475816i \(-0.842153\pi\)
0.180733 + 0.983532i \(0.442153\pi\)
\(194\) −3.09017 9.51057i −0.221861 0.682819i
\(195\) 0 0
\(196\) 5.66312 + 4.11450i 0.404508 + 0.293893i
\(197\) −6.00000 −0.427482 −0.213741 0.976890i \(-0.568565\pi\)
−0.213741 + 0.976890i \(0.568565\pi\)
\(198\) 0 0
\(199\) 16.0000 1.13421 0.567105 0.823646i \(-0.308063\pi\)
0.567105 + 0.823646i \(0.308063\pi\)
\(200\) 4.04508 + 2.93893i 0.286031 + 0.207813i
\(201\) −1.23607 + 3.80423i −0.0871855 + 0.268329i
\(202\) −1.85410 5.70634i −0.130454 0.401497i
\(203\) 0 0
\(204\) −4.85410 + 3.52671i −0.339855 + 0.246919i
\(205\) 0 0
\(206\) −1.23607 + 3.80423i −0.0861209 + 0.265053i
\(207\) −4.85410 3.52671i −0.337383 0.245123i
\(208\) 6.00000 0.416025
\(209\) 0 0
\(210\) 0 0
\(211\) 4.85410 + 3.52671i 0.334170 + 0.242789i 0.742198 0.670181i \(-0.233783\pi\)
−0.408028 + 0.912969i \(0.633783\pi\)
\(212\) −3.70820 + 11.4127i −0.254680 + 0.783826i
\(213\) 1.85410 + 5.70634i 0.127041 + 0.390992i
\(214\) 9.70820 7.05342i 0.663639 0.482162i
\(215\) 0 0
\(216\) −0.309017 0.951057i −0.0210259 0.0647112i
\(217\) 0 0
\(218\) −4.85410 3.52671i −0.328761 0.238859i
\(219\) 12.0000 0.810885
\(220\) 0 0
\(221\) −36.0000 −2.42162
\(222\) −1.61803 1.17557i −0.108595 0.0788991i
\(223\) 2.47214 7.60845i 0.165546 0.509500i −0.833530 0.552475i \(-0.813684\pi\)
0.999076 + 0.0429750i \(0.0136836\pi\)
\(224\) 0 0
\(225\) 4.04508 2.93893i 0.269672 0.195928i
\(226\) −4.85410 + 3.52671i −0.322890 + 0.234593i
\(227\) 3.70820 + 11.4127i 0.246122 + 0.757486i 0.995450 + 0.0952867i \(0.0303768\pi\)
−0.749328 + 0.662199i \(0.769623\pi\)
\(228\) −1.85410 + 5.70634i −0.122791 + 0.377912i
\(229\) 11.3262 + 8.22899i 0.748459 + 0.543787i 0.895349 0.445366i \(-0.146926\pi\)
−0.146890 + 0.989153i \(0.546926\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 6.00000 0.393919
\(233\) −4.85410 3.52671i −0.318003 0.231043i 0.417320 0.908760i \(-0.362969\pi\)
−0.735323 + 0.677717i \(0.762969\pi\)
\(234\) 1.85410 5.70634i 0.121206 0.373035i
\(235\) 0 0
\(236\) 9.70820 7.05342i 0.631950 0.459139i
\(237\) 9.70820 7.05342i 0.630616 0.458169i
\(238\) 0 0
\(239\) 7.41641 22.8254i 0.479728 1.47645i −0.359747 0.933050i \(-0.617137\pi\)
0.839474 0.543400i \(-0.182863\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(242\) 0 0
\(243\) −1.00000 −0.0641500
\(244\) −4.85410 3.52671i −0.310752 0.225775i
\(245\) 0 0
\(246\) −1.85410 5.70634i −0.118213 0.363823i
\(247\) −29.1246 + 21.1603i −1.85315 + 1.34640i
\(248\) −3.23607 + 2.35114i −0.205491 + 0.149298i
\(249\) 0 0
\(250\) 0 0
\(251\) −19.4164 14.1068i −1.22555 0.890416i −0.229004 0.973425i \(-0.573547\pi\)
−0.996549 + 0.0830092i \(0.973547\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 12.0000 0.752947
\(255\) 0 0
\(256\) 0.309017 0.951057i 0.0193136 0.0594410i
\(257\) 5.56231 + 17.1190i 0.346967 + 1.06785i 0.960522 + 0.278203i \(0.0897388\pi\)
−0.613555 + 0.789652i \(0.710261\pi\)
\(258\) 4.85410 3.52671i 0.302203 0.219563i
\(259\) 0 0
\(260\) 0 0
\(261\) 1.85410 5.70634i 0.114766 0.353214i
\(262\) 9.70820 + 7.05342i 0.599775 + 0.435762i
\(263\) 24.0000 1.47990 0.739952 0.672660i \(-0.234848\pi\)
0.739952 + 0.672660i \(0.234848\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 1.85410 5.70634i 0.113469 0.349222i
\(268\) 1.23607 + 3.80423i 0.0755049 + 0.232380i
\(269\) −9.70820 + 7.05342i −0.591920 + 0.430055i −0.843002 0.537911i \(-0.819214\pi\)
0.251082 + 0.967966i \(0.419214\pi\)
\(270\) 0 0
\(271\) 3.70820 + 11.4127i 0.225257 + 0.693271i 0.998265 + 0.0588746i \(0.0187512\pi\)
−0.773008 + 0.634396i \(0.781249\pi\)
\(272\) −1.85410 + 5.70634i −0.112421 + 0.345998i
\(273\) 0 0
\(274\) −6.00000 −0.362473
\(275\) 0 0
\(276\) −6.00000 −0.361158
\(277\) 4.85410 + 3.52671i 0.291655 + 0.211900i 0.723985 0.689816i \(-0.242309\pi\)
−0.432330 + 0.901715i \(0.642309\pi\)
\(278\) −5.56231 + 17.1190i −0.333605 + 1.02673i
\(279\) 1.23607 + 3.80423i 0.0740015 + 0.227753i
\(280\) 0 0
\(281\) −4.85410 + 3.52671i −0.289571 + 0.210386i −0.723081 0.690763i \(-0.757275\pi\)
0.433510 + 0.901149i \(0.357275\pi\)
\(282\) −1.85410 5.70634i −0.110410 0.339808i
\(283\) 1.85410 5.70634i 0.110215 0.339207i −0.880704 0.473667i \(-0.842930\pi\)
0.990919 + 0.134460i \(0.0429301\pi\)
\(284\) 4.85410 + 3.52671i 0.288038 + 0.209272i
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) −0.809017 0.587785i −0.0476718 0.0346356i
\(289\) 5.87132 18.0701i 0.345372 1.06295i
\(290\) 0 0
\(291\) −8.09017 + 5.87785i −0.474254 + 0.344566i
\(292\) 9.70820 7.05342i 0.568130 0.412770i
\(293\) −9.27051 28.5317i −0.541589 1.66684i −0.728965 0.684551i \(-0.759998\pi\)
0.187376 0.982288i \(-0.440002\pi\)
\(294\) 2.16312 6.65740i 0.126156 0.388267i
\(295\) 0 0
\(296\) −2.00000 −0.116248
\(297\) 0 0
\(298\) 6.00000 0.347571
\(299\) −29.1246 21.1603i −1.68432 1.22373i
\(300\) 1.54508 4.75528i 0.0892055 0.274546i
\(301\) 0 0
\(302\) 9.70820 7.05342i 0.558644 0.405879i
\(303\) −4.85410 + 3.52671i −0.278861 + 0.202604i
\(304\) 1.85410 + 5.70634i 0.106340 + 0.327281i
\(305\) 0 0
\(306\) 4.85410 + 3.52671i 0.277491 + 0.201609i
\(307\) −18.0000 −1.02731 −0.513657 0.857996i \(-0.671710\pi\)
−0.513657 + 0.857996i \(0.671710\pi\)
\(308\) 0 0
\(309\) 4.00000 0.227552
\(310\) 0 0
\(311\) 1.85410 5.70634i 0.105136 0.323577i −0.884626 0.466301i \(-0.845586\pi\)
0.989762 + 0.142724i \(0.0455863\pi\)
\(312\) −1.85410 5.70634i −0.104968 0.323058i
\(313\) 21.0344 15.2824i 1.18894 0.863813i 0.195785 0.980647i \(-0.437274\pi\)
0.993152 + 0.116834i \(0.0372744\pi\)
\(314\) 11.3262 8.22899i 0.639177 0.464389i
\(315\) 0 0
\(316\) 3.70820 11.4127i 0.208603 0.642013i
\(317\) 9.70820 + 7.05342i 0.545267 + 0.396160i 0.826037 0.563615i \(-0.190590\pi\)
−0.280770 + 0.959775i \(0.590590\pi\)
\(318\) 12.0000 0.672927
\(319\) 0 0
\(320\) 0 0
\(321\) −9.70820 7.05342i −0.541859 0.393684i
\(322\) 0 0
\(323\) −11.1246 34.2380i −0.618990 1.90506i
\(324\) −0.809017 + 0.587785i −0.0449454 + 0.0326547i
\(325\) 24.2705 17.6336i 1.34629 0.978134i
\(326\) 6.18034 + 19.0211i 0.342297 + 1.05348i
\(327\) −1.85410 + 5.70634i −0.102532 + 0.315561i
\(328\) −4.85410 3.52671i −0.268023 0.194730i
\(329\) 0 0
\(330\) 0 0
\(331\) −28.0000 −1.53902 −0.769510 0.638635i \(-0.779499\pi\)
−0.769510 + 0.638635i \(0.779499\pi\)
\(332\) 0 0
\(333\) −0.618034 + 1.90211i −0.0338681 + 0.104235i
\(334\) −7.41641 22.8254i −0.405808 1.24895i
\(335\) 0 0
\(336\) 0 0
\(337\) 11.1246 + 34.2380i 0.605996 + 1.86506i 0.489792 + 0.871839i \(0.337073\pi\)
0.116204 + 0.993225i \(0.462927\pi\)
\(338\) 7.10739 21.8743i 0.386591 1.18981i
\(339\) 4.85410 + 3.52671i 0.263639 + 0.191545i
\(340\) 0 0
\(341\) 0 0
\(342\) 6.00000 0.324443
\(343\) 0 0
\(344\) 1.85410 5.70634i 0.0999665 0.307665i
\(345\) 0 0
\(346\) 14.5623 10.5801i 0.782874 0.568792i
\(347\) 19.4164 14.1068i 1.04233 0.757295i 0.0715889 0.997434i \(-0.477193\pi\)
0.970739 + 0.240139i \(0.0771930\pi\)
\(348\) −1.85410 5.70634i −0.0993903 0.305892i
\(349\) 5.56231 17.1190i 0.297743 0.916360i −0.684543 0.728973i \(-0.739998\pi\)
0.982286 0.187387i \(-0.0600019\pi\)
\(350\) 0 0
\(351\) −6.00000 −0.320256
\(352\) 0 0
\(353\) −30.0000 −1.59674 −0.798369 0.602168i \(-0.794304\pi\)
−0.798369 + 0.602168i \(0.794304\pi\)
\(354\) −9.70820 7.05342i −0.515985 0.374885i
\(355\) 0 0
\(356\) −1.85410 5.70634i −0.0982672 0.302435i
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(360\) 0 0
\(361\) −13.7533 9.99235i −0.723857 0.525913i
\(362\) 2.00000 0.105118
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) −1.85410 + 5.70634i −0.0969155 + 0.298275i
\(367\) 2.47214 + 7.60845i 0.129044 + 0.397158i 0.994616 0.103627i \(-0.0330448\pi\)
−0.865572 + 0.500785i \(0.833045\pi\)
\(368\) −4.85410 + 3.52671i −0.253038 + 0.183843i
\(369\) −4.85410 + 3.52671i −0.252694 + 0.183593i
\(370\) 0 0
\(371\) 0 0
\(372\) 3.23607 + 2.35114i 0.167782 + 0.121901i
\(373\) −6.00000 −0.310668 −0.155334 0.987862i \(-0.549645\pi\)
−0.155334 + 0.987862i \(0.549645\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) −4.85410 3.52671i −0.250331 0.181876i
\(377\) 11.1246 34.2380i 0.572947 1.76335i
\(378\) 0 0
\(379\) −16.1803 + 11.7557i −0.831128 + 0.603850i −0.919878 0.392204i \(-0.871713\pi\)
0.0887501 + 0.996054i \(0.471713\pi\)
\(380\) 0 0
\(381\) −3.70820 11.4127i −0.189977 0.584689i
\(382\) −5.56231 + 17.1190i −0.284592 + 0.875885i
\(383\) 14.5623 + 10.5801i 0.744099 + 0.540620i 0.893992 0.448083i \(-0.147893\pi\)
−0.149893 + 0.988702i \(0.547893\pi\)
\(384\) −1.00000 −0.0510310
\(385\) 0 0
\(386\) 12.0000 0.610784
\(387\) −4.85410 3.52671i −0.246748 0.179273i
\(388\) −3.09017 + 9.51057i −0.156880 + 0.482826i
\(389\) 7.41641 + 22.8254i 0.376027 + 1.15729i 0.942783 + 0.333406i \(0.108198\pi\)
−0.566756 + 0.823885i \(0.691802\pi\)
\(390\) 0 0
\(391\) 29.1246 21.1603i 1.47289 1.07012i
\(392\) −2.16312 6.65740i −0.109254 0.336249i
\(393\) 3.70820 11.4127i 0.187054 0.575693i
\(394\) 4.85410 + 3.52671i 0.244546 + 0.177673i
\(395\) 0 0
\(396\) 0 0
\(397\) 2.00000 0.100377 0.0501886 0.998740i \(-0.484018\pi\)
0.0501886 + 0.998740i \(0.484018\pi\)
\(398\) −12.9443 9.40456i −0.648838 0.471408i
\(399\) 0 0
\(400\) −1.54508 4.75528i −0.0772542 0.237764i
\(401\) 4.85410 3.52671i 0.242402 0.176116i −0.459951 0.887945i \(-0.652133\pi\)
0.702353 + 0.711829i \(0.252133\pi\)
\(402\) 3.23607 2.35114i 0.161400 0.117264i
\(403\) 7.41641 + 22.8254i 0.369438 + 1.13701i
\(404\) −1.85410 + 5.70634i −0.0922450 + 0.283901i
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 6.00000 0.297044
\(409\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(410\) 0 0
\(411\) 1.85410 + 5.70634i 0.0914561 + 0.281473i
\(412\) 3.23607 2.35114i 0.159430 0.115832i
\(413\) 0 0
\(414\) 1.85410 + 5.70634i 0.0911241 + 0.280451i
\(415\) 0 0
\(416\) −4.85410 3.52671i −0.237992 0.172911i
\(417\) 18.0000 0.881464
\(418\) 0 0
\(419\) 24.0000 1.17248 0.586238 0.810139i \(-0.300608\pi\)
0.586238 + 0.810139i \(0.300608\pi\)
\(420\) 0 0
\(421\) −8.03444 + 24.7275i −0.391575 + 1.20514i 0.540022 + 0.841651i \(0.318416\pi\)
−0.931597 + 0.363492i \(0.881584\pi\)
\(422\) −1.85410 5.70634i −0.0902563 0.277780i
\(423\) −4.85410 + 3.52671i −0.236015 + 0.171475i
\(424\) 9.70820 7.05342i 0.471472 0.342545i
\(425\) 9.27051 + 28.5317i 0.449686 + 1.38399i
\(426\) 1.85410 5.70634i 0.0898315 0.276473i
\(427\) 0 0
\(428\) −12.0000 −0.580042
\(429\) 0 0
\(430\) 0 0
\(431\) −19.4164 14.1068i −0.935255 0.679503i 0.0120185 0.999928i \(-0.496174\pi\)
−0.947274 + 0.320425i \(0.896174\pi\)
\(432\) −0.309017 + 0.951057i −0.0148676 + 0.0457577i
\(433\) 0.618034 + 1.90211i 0.0297008 + 0.0914097i 0.964808 0.262955i \(-0.0846971\pi\)
−0.935107 + 0.354365i \(0.884697\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 1.85410 + 5.70634i 0.0887954 + 0.273284i
\(437\) 11.1246 34.2380i 0.532162 1.63783i
\(438\) −9.70820 7.05342i −0.463876 0.337026i
\(439\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(440\) 0 0
\(441\) −7.00000 −0.333333
\(442\) 29.1246 + 21.1603i 1.38532 + 1.00649i
\(443\) −3.70820 + 11.4127i −0.176182 + 0.542233i −0.999685 0.0250786i \(-0.992016\pi\)
0.823503 + 0.567311i \(0.192016\pi\)
\(444\) 0.618034 + 1.90211i 0.0293306 + 0.0902703i
\(445\) 0 0
\(446\) −6.47214 + 4.70228i −0.306465 + 0.222660i
\(447\) −1.85410 5.70634i −0.0876960 0.269901i
\(448\) 0 0
\(449\) −4.85410 3.52671i −0.229079 0.166436i 0.467325 0.884086i \(-0.345218\pi\)
−0.696404 + 0.717650i \(0.745218\pi\)
\(450\) −5.00000 −0.235702
\(451\) 0 0
\(452\) 6.00000 0.282216
\(453\) −9.70820 7.05342i −0.456131 0.331399i
\(454\) 3.70820 11.4127i 0.174035 0.535624i
\(455\) 0 0
\(456\) 4.85410 3.52671i 0.227314 0.165153i
\(457\) 19.4164 14.1068i 0.908261 0.659890i −0.0323133 0.999478i \(-0.510287\pi\)
0.940575 + 0.339587i \(0.110287\pi\)
\(458\) −4.32624 13.3148i −0.202152 0.622159i
\(459\) 1.85410 5.70634i 0.0865421 0.266349i
\(460\) 0 0
\(461\) 18.0000 0.838344 0.419172 0.907907i \(-0.362320\pi\)
0.419172 + 0.907907i \(0.362320\pi\)
\(462\) 0 0
\(463\) −4.00000 −0.185896 −0.0929479 0.995671i \(-0.529629\pi\)
−0.0929479 + 0.995671i \(0.529629\pi\)
\(464\) −4.85410 3.52671i −0.225346 0.163723i
\(465\) 0 0
\(466\) 1.85410 + 5.70634i 0.0858896 + 0.264341i
\(467\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(468\) −4.85410 + 3.52671i −0.224381 + 0.163022i
\(469\) 0 0
\(470\) 0 0
\(471\) −11.3262 8.22899i −0.521885 0.379172i
\(472\) −12.0000 −0.552345
\(473\) 0 0
\(474\) −12.0000 −0.551178
\(475\) 24.2705 + 17.6336i 1.11361 + 0.809083i
\(476\) 0 0
\(477\) −3.70820 11.4127i −0.169787 0.522551i
\(478\) −19.4164 + 14.1068i −0.888086 + 0.645232i
\(479\) −19.4164 + 14.1068i −0.887158 + 0.644558i −0.935136 0.354290i \(-0.884723\pi\)
0.0479772 + 0.998848i \(0.484723\pi\)
\(480\) 0 0
\(481\) −3.70820 + 11.4127i −0.169080 + 0.520373i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0.809017 + 0.587785i 0.0366978 + 0.0266625i
\(487\) 4.94427 15.2169i 0.224046 0.689544i −0.774341 0.632769i \(-0.781918\pi\)
0.998387 0.0567748i \(-0.0180817\pi\)
\(488\) 1.85410 + 5.70634i 0.0839313 + 0.258314i
\(489\) 16.1803 11.7557i 0.731700 0.531611i
\(490\) 0 0
\(491\) −11.1246 34.2380i −0.502047 1.54514i −0.805679 0.592352i \(-0.798200\pi\)
0.303633 0.952789i \(-0.401800\pi\)
\(492\) −1.85410 + 5.70634i −0.0835894 + 0.257262i
\(493\) 29.1246 + 21.1603i 1.31171 + 0.953011i
\(494\) 36.0000 1.61972
\(495\) 0 0
\(496\) 4.00000 0.179605
\(497\) 0 0
\(498\) 0 0
\(499\) 1.23607 + 3.80423i 0.0553340 + 0.170301i 0.974904 0.222626i \(-0.0714628\pi\)
−0.919570 + 0.392926i \(0.871463\pi\)
\(500\) 0 0
\(501\) −19.4164 + 14.1068i −0.867461 + 0.630247i
\(502\) 7.41641 + 22.8254i 0.331010 + 1.01875i
\(503\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −23.0000 −1.02147
\(508\) −9.70820 7.05342i −0.430732 0.312945i
\(509\) −3.70820 + 11.4127i −0.164363 + 0.505858i −0.998989 0.0449597i \(-0.985684\pi\)
0.834626 + 0.550818i \(0.185684\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −0.809017 + 0.587785i −0.0357538 + 0.0259767i
\(513\) −1.85410 5.70634i −0.0818606 0.251941i
\(514\) 5.56231 17.1190i 0.245343 0.755087i
\(515\) 0 0
\(516\) −6.00000 −0.264135
\(517\) 0 0
\(518\) 0 0
\(519\) −14.5623 10.5801i −0.639214 0.464416i
\(520\) 0 0
\(521\) 12.9787 + 39.9444i 0.568608 + 1.74999i 0.656981 + 0.753907i \(0.271833\pi\)
−0.0883730 + 0.996087i \(0.528167\pi\)
\(522\) −4.85410 + 3.52671i −0.212458 + 0.154360i
\(523\) −4.85410 + 3.52671i −0.212255 + 0.154212i −0.688833 0.724920i \(-0.741877\pi\)
0.476578 + 0.879132i \(0.341877\pi\)
\(524\) −3.70820 11.4127i −0.161994 0.498565i
\(525\) 0 0
\(526\) −19.4164 14.1068i −0.846596 0.615088i
\(527\) −24.0000 −1.04546
\(528\) 0 0
\(529\) 13.0000 0.565217
\(530\) 0 0
\(531\) −3.70820 + 11.4127i −0.160922 + 0.495268i
\(532\) 0 0
\(533\) −29.1246 + 21.1603i −1.26153 + 0.916553i
\(534\) −4.85410 + 3.52671i −0.210058 + 0.152616i
\(535\) 0 0
\(536\) 1.23607 3.80423i 0.0533900 0.164318i
\(537\) 0 0
\(538\) 12.0000 0.517357
\(539\) 0 0
\(540\) 0 0
\(541\) 14.5623 + 10.5801i 0.626082 + 0.454876i 0.855041 0.518561i \(-0.173532\pi\)
−0.228958 + 0.973436i \(0.573532\pi\)
\(542\) 3.70820 11.4127i 0.159281 0.490217i
\(543\) −0.618034 1.90211i −0.0265224 0.0816275i
\(544\) 4.85410 3.52671i 0.208118 0.151207i
\(545\) 0 0
\(546\) 0 0
\(547\) −1.85410 + 5.70634i −0.0792757 + 0.243985i −0.982838 0.184472i \(-0.940943\pi\)
0.903562 + 0.428457i \(0.140943\pi\)
\(548\) 4.85410 + 3.52671i 0.207357 + 0.150654i
\(549\) 6.00000 0.256074
\(550\) 0 0
\(551\) 36.0000 1.53365
\(552\) 4.85410 + 3.52671i 0.206604 + 0.150107i
\(553\) 0 0
\(554\) −1.85410 5.70634i −0.0787732 0.242439i
\(555\) 0 0
\(556\) 14.5623 10.5801i 0.617579 0.448698i
\(557\) 5.56231 + 17.1190i 0.235682 + 0.725356i 0.997030 + 0.0770122i \(0.0245380\pi\)
−0.761348 + 0.648344i \(0.775462\pi\)
\(558\) 1.23607 3.80423i 0.0523269 0.161046i
\(559\) −29.1246 21.1603i −1.23184 0.894984i
\(560\) 0 0
\(561\) 0 0
\(562\) 6.00000 0.253095
\(563\) 19.4164 + 14.1068i 0.818304 + 0.594533i 0.916226 0.400661i \(-0.131220\pi\)
−0.0979222 + 0.995194i \(0.531220\pi\)
\(564\) −1.85410 + 5.70634i −0.0780718 + 0.240280i
\(565\) 0 0
\(566\) −4.85410 + 3.52671i −0.204033 + 0.148239i
\(567\) 0 0
\(568\) −1.85410 5.70634i −0.0777964 0.239433i
\(569\) −9.27051 + 28.5317i −0.388640 + 1.19611i 0.545165 + 0.838329i \(0.316467\pi\)
−0.933805 + 0.357782i \(0.883533\pi\)
\(570\) 0 0
\(571\) 18.0000 0.753277 0.376638 0.926360i \(-0.377080\pi\)
0.376638 + 0.926360i \(0.377080\pi\)
\(572\) 0 0
\(573\) 18.0000 0.751961
\(574\) 0 0
\(575\) −9.27051 + 28.5317i −0.386607 + 1.18985i
\(576\) 0.309017 + 0.951057i 0.0128757 + 0.0396274i
\(577\) 30.7426 22.3358i 1.27983 0.929853i 0.280285 0.959917i \(-0.409571\pi\)
0.999548 + 0.0300636i \(0.00957099\pi\)
\(578\) −15.3713 + 11.1679i −0.639363 + 0.464524i
\(579\) −3.70820 11.4127i −0.154108 0.474295i
\(580\) 0 0
\(581\) 0 0
\(582\) 10.0000 0.414513
\(583\) 0 0
\(584\) −12.0000 −0.496564
\(585\) 0 0
\(586\) −9.27051 + 28.5317i −0.382961 + 1.17863i
\(587\) −3.70820 11.4127i −0.153054 0.471052i 0.844905 0.534917i \(-0.179657\pi\)
−0.997959 + 0.0638654i \(0.979657\pi\)
\(588\) −5.66312 + 4.11450i −0.233543 + 0.169679i
\(589\) −19.4164 + 14.1068i −0.800039 + 0.581262i
\(590\) 0 0
\(591\) 1.85410 5.70634i 0.0762676 0.234727i
\(592\) 1.61803 + 1.17557i 0.0665008 + 0.0483157i
\(593\) 6.00000 0.246390 0.123195 0.992382i \(-0.460686\pi\)
0.123195 + 0.992382i \(0.460686\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −4.85410 3.52671i −0.198832 0.144460i
\(597\) −4.94427 + 15.2169i −0.202356 + 0.622786i
\(598\) 11.1246 + 34.2380i 0.454919 + 1.40010i
\(599\) 14.5623 10.5801i 0.595000 0.432293i −0.249101 0.968478i \(-0.580135\pi\)
0.844101 + 0.536185i \(0.180135\pi\)
\(600\) −4.04508 + 2.93893i −0.165140 + 0.119981i
\(601\) −7.41641 22.8254i −0.302522 0.931066i −0.980590 0.196067i \(-0.937183\pi\)
0.678069 0.734998i \(-0.262817\pi\)
\(602\) 0 0
\(603\) −3.23607 2.35114i −0.131783 0.0957459i
\(604\) −12.0000 −0.488273
\(605\) 0 0
\(606\) 6.00000 0.243733
\(607\) 29.1246 + 21.1603i 1.18213 + 0.858869i 0.992410 0.122969i \(-0.0392416\pi\)
0.189721 + 0.981838i \(0.439242\pi\)
\(608\) 1.85410 5.70634i 0.0751938 0.231423i
\(609\) 0 0
\(610\) 0 0
\(611\) −29.1246 + 21.1603i −1.17826 + 0.856053i
\(612\) −1.85410 5.70634i −0.0749476 0.230665i
\(613\) −12.9787 + 39.9444i −0.524205 + 1.61334i 0.241677 + 0.970357i \(0.422303\pi\)
−0.765882 + 0.642981i \(0.777697\pi\)
\(614\) 14.5623 + 10.5801i 0.587687 + 0.426979i
\(615\) 0 0
\(616\) 0 0
\(617\) 30.0000 1.20775 0.603877 0.797077i \(-0.293622\pi\)
0.603877 + 0.797077i \(0.293622\pi\)
\(618\) −3.23607 2.35114i −0.130174 0.0945768i
\(619\) −8.65248 + 26.6296i −0.347772 + 1.07033i 0.612310 + 0.790617i \(0.290240\pi\)
−0.960083 + 0.279716i \(0.909760\pi\)
\(620\) 0 0
\(621\) 4.85410 3.52671i 0.194788 0.141522i
\(622\) −4.85410 + 3.52671i −0.194632 + 0.141408i
\(623\) 0 0
\(624\) −1.85410 + 5.70634i −0.0742235 + 0.228436i
\(625\) −20.2254 14.6946i −0.809017 0.587785i
\(626\) −26.0000 −1.03917
\(627\) 0 0
\(628\) −14.0000 −0.558661
\(629\) −9.70820 7.05342i −0.387091 0.281238i
\(630\) 0 0
\(631\) −6.18034 19.0211i −0.246035 0.757219i −0.995464 0.0951345i \(-0.969672\pi\)
0.749429 0.662085i \(-0.230328\pi\)
\(632\) −9.70820 + 7.05342i −0.386172 + 0.280570i
\(633\) −4.85410 + 3.52671i −0.192933 + 0.140174i
\(634\) −3.70820 11.4127i −0.147272 0.453255i
\(635\) 0 0
\(636\) −9.70820 7.05342i −0.384955 0.279686i
\(637\) −42.0000 −1.66410
\(638\) 0 0
\(639\) −6.00000 −0.237356
\(640\) 0 0
\(641\) 9.27051 28.5317i 0.366163 1.12693i −0.583086 0.812410i \(-0.698155\pi\)
0.949250 0.314524i \(-0.101845\pi\)
\(642\) 3.70820 + 11.4127i 0.146351 + 0.450422i
\(643\) 3.23607 2.35114i 0.127618 0.0927200i −0.522145 0.852857i \(-0.674868\pi\)
0.649763 + 0.760137i \(0.274868\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −11.1246 + 34.2380i −0.437692 + 1.34708i
\(647\) 33.9787 + 24.6870i 1.33584 + 0.970545i 0.999586 + 0.0287744i \(0.00916045\pi\)
0.336255 + 0.941771i \(0.390840\pi\)
\(648\) 1.00000 0.0392837
\(649\) 0 0
\(650\) −30.0000 −1.17670
\(651\) 0 0
\(652\) 6.18034 19.0211i 0.242041 0.744925i
\(653\) −7.41641 22.8254i −0.290226 0.893225i −0.984783 0.173787i \(-0.944399\pi\)
0.694557 0.719438i \(-0.255601\pi\)
\(654\) 4.85410 3.52671i 0.189810 0.137905i
\(655\) 0 0
\(656\) 1.85410 + 5.70634i 0.0723905 + 0.222795i
\(657\) −3.70820 + 11.4127i −0.144671 + 0.445251i
\(658\) 0 0
\(659\) 24.0000 0.934907 0.467454 0.884018i \(-0.345171\pi\)
0.467454 + 0.884018i \(0.345171\pi\)
\(660\) 0 0
\(661\) −14.0000 −0.544537 −0.272268 0.962221i \(-0.587774\pi\)
−0.272268 + 0.962221i \(0.587774\pi\)
\(662\) 22.6525 + 16.4580i 0.880413 + 0.639658i
\(663\) 11.1246 34.2380i 0.432044 1.32970i
\(664\) 0 0
\(665\) 0 0
\(666\) 1.61803 1.17557i 0.0626975 0.0455524i
\(667\) 11.1246 + 34.2380i 0.430747 + 1.32570i
\(668\) −7.41641 + 22.8254i −0.286949 + 0.883140i
\(669\) 6.47214 + 4.70228i 0.250227 + 0.181801i
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 9.70820 + 7.05342i 0.374224 + 0.271889i 0.758960 0.651137i \(-0.225708\pi\)
−0.384736 + 0.923026i \(0.625708\pi\)
\(674\) 11.1246 34.2380i 0.428504 1.31880i
\(675\) 1.54508 + 4.75528i 0.0594703 + 0.183031i
\(676\) −18.6074 + 13.5191i −0.715669 + 0.519964i
\(677\) 4.85410 3.52671i 0.186558 0.135543i −0.490586 0.871393i \(-0.663217\pi\)
0.677144 + 0.735850i \(0.263217\pi\)
\(678\) −1.85410 5.70634i −0.0712064 0.219151i
\(679\) 0 0
\(680\) 0 0
\(681\) −12.0000 −0.459841
\(682\) 0 0
\(683\) 24.0000 0.918334 0.459167 0.888350i \(-0.348148\pi\)
0.459167 + 0.888350i \(0.348148\pi\)
\(684\) −4.85410 3.52671i −0.185601 0.134847i
\(685\) 0 0
\(686\) 0 0
\(687\) −11.3262 + 8.22899i −0.432123 + 0.313956i
\(688\) −4.85410 + 3.52671i −0.185061 + 0.134455i
\(689\) −22.2492 68.4761i −0.847628 2.60873i
\(690\) 0 0
\(691\) 22.6525 + 16.4580i 0.861741 + 0.626091i 0.928358 0.371687i \(-0.121221\pi\)
−0.0666172 + 0.997779i \(0.521221\pi\)
\(692\) −18.0000 −0.684257
\(693\) 0 0
\(694\) −24.0000 −0.911028
\(695\) 0 0
\(696\) −1.85410 + 5.70634i −0.0702796 + 0.216298i
\(697\) −11.1246 34.2380i −0.421375 1.29686i
\(698\) −14.5623 + 10.5801i −0.551191 + 0.400464i
\(699\) 4.85410 3.52671i 0.183599 0.133392i
\(700\) 0 0
\(701\) −1.85410 + 5.70634i −0.0700285 + 0.215525i −0.979946 0.199264i \(-0.936145\pi\)
0.909917 + 0.414790i \(0.136145\pi\)
\(702\) 4.85410 + 3.52671i 0.183206 + 0.133107i
\(703\) −12.0000 −0.452589
\(704\) 0 0
\(705\) 0 0
\(706\) 24.2705 + 17.6336i 0.913433 + 0.663648i
\(707\) 0 0
\(708\) 3.70820 + 11.4127i 0.139363 + 0.428915i
\(709\) −8.09017 + 5.87785i −0.303833 + 0.220747i −0.729246 0.684252i \(-0.760129\pi\)
0.425413 + 0.904999i \(0.360129\pi\)
\(710\) 0 0
\(711\) 3.70820 + 11.4127i 0.139069 + 0.428009i
\(712\) −1.85410 + 5.70634i −0.0694854 + 0.213854i
\(713\) −19.4164 14.1068i −0.727150 0.528306i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 19.4164 + 14.1068i 0.725119 + 0.526830i
\(718\) 0 0
\(719\) 5.56231 + 17.1190i 0.207439 + 0.638432i 0.999604 + 0.0281252i \(0.00895370\pi\)
−0.792165 + 0.610306i \(0.791046\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 5.25329 + 16.1680i 0.195507 + 0.601709i
\(723\) 0 0
\(724\) −1.61803 1.17557i −0.0601338 0.0436897i
\(725\) −30.0000 −1.11417
\(726\) 0 0
\(727\) −8.00000 −0.296704 −0.148352 0.988935i \(-0.547397\pi\)
−0.148352 + 0.988935i \(0.547397\pi\)
\(728\) 0 0
\(729\) 0.309017 0.951057i 0.0114451 0.0352243i
\(730\) 0 0
\(731\) 29.1246 21.1603i 1.07721 0.782641i
\(732\) 4.85410 3.52671i 0.179413 0.130351i
\(733\) 1.85410 + 5.70634i 0.0684828 + 0.210768i 0.979441 0.201730i \(-0.0646563\pi\)
−0.910958 + 0.412498i \(0.864656\pi\)
\(734\) 2.47214 7.60845i 0.0912482 0.280833i
\(735\) 0 0
\(736\) 6.00000 0.221163
\(737\) 0 0
\(738\) 6.00000 0.220863
\(739\) −24.2705 17.6336i −0.892805 0.648661i 0.0438028 0.999040i \(-0.486053\pi\)
−0.936608 + 0.350379i \(0.886053\pi\)
\(740\) 0 0
\(741\) −11.1246 34.2380i −0.408673 1.25777i
\(742\) 0 0
\(743\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(744\) −1.23607 3.80423i −0.0453165 0.139470i
\(745\) 0 0
\(746\) 4.85410 + 3.52671i 0.177721 + 0.129122i
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 1.23607 3.80423i 0.0451048 0.138818i −0.925968 0.377602i \(-0.876749\pi\)
0.971073 + 0.238784i \(0.0767487\pi\)
\(752\) 1.85410 + 5.70634i 0.0676121 + 0.208089i
\(753\) 19.4164 14.1068i 0.707573 0.514082i
\(754\) −29.1246 + 21.1603i −1.06066 + 0.770612i
\(755\) 0 0
\(756\) 0 0
\(757\) 1.61803 + 1.17557i 0.0588084 + 0.0427268i 0.616801 0.787119i \(-0.288428\pi\)
−0.557993 + 0.829846i \(0.688428\pi\)
\(758\) 20.0000 0.726433
\(759\) 0 0
\(760\) 0 0
\(761\) 4.85410 + 3.52671i 0.175961 + 0.127843i 0.672280 0.740297i \(-0.265315\pi\)
−0.496319 + 0.868140i \(0.665315\pi\)
\(762\) −3.70820 + 11.4127i −0.134334 + 0.413438i
\(763\) 0 0
\(764\) 14.5623 10.5801i 0.526846 0.382776i
\(765\) 0 0
\(766\) −5.56231 17.1190i −0.200974 0.618535i
\(767\) −22.2492 + 68.4761i −0.803373 + 2.47253i
\(768\) 0.809017 + 0.587785i 0.0291929 + 0.0212099i
\(769\) −12.0000 −0.432731 −0.216366 0.976312i \(-0.569420\pi\)
−0.216366 + 0.976312i \(0.569420\pi\)
\(770\) 0 0
\(771\) −18.0000 −0.648254
\(772\) −9.70820 7.05342i −0.349406 0.253858i
\(773\) −11.1246 + 34.2380i −0.400124 + 1.23146i 0.524774 + 0.851242i \(0.324150\pi\)
−0.924898 + 0.380215i \(0.875850\pi\)
\(774\) 1.85410 + 5.70634i 0.0666443 + 0.205110i
\(775\) 16.1803 11.7557i 0.581215 0.422277i
\(776\) 8.09017 5.87785i 0.290420 0.211003i
\(777\) 0 0
\(778\) 7.41641 22.8254i 0.265891 0.818329i
\(779\) −29.1246 21.1603i −1.04350 0.758145i
\(780\) 0 0
\(781\) 0 0
\(782\) −36.0000 −1.28736
\(783\) 4.85410 + 3.52671i 0.173471 + 0.126034i
\(784\) −2.16312 + 6.65740i −0.0772542 + 0.237764i
\(785\) 0 0
\(786\) −9.70820 + 7.05342i −0.346280 + 0.251587i
\(787\) −4.85410 + 3.52671i −0.173030 + 0.125714i −0.670930 0.741521i \(-0.734105\pi\)
0.497900 + 0.867235i \(0.334105\pi\)
\(788\) −1.85410 5.70634i −0.0660496 0.203280i
\(789\) −7.41641 + 22.8254i −0.264031 + 0.812604i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 36.0000 1.27840
\(794\) −1.61803 1.17557i −0.0574219 0.0417194i
\(795\) 0 0
\(796\) 4.94427 + 15.2169i 0.175245 + 0.539349i
\(797\) −38.8328 + 28.2137i −1.37553 + 0.999380i −0.378247 + 0.925705i \(0.623473\pi\)
−0.997282 + 0.0736754i \(0.976527\pi\)
\(798\) 0 0
\(799\) −11.1246 34.2380i −0.393560 1.21125i
\(800\) −1.54508 + 4.75528i −0.0546270 + 0.168125i
\(801\) 4.85410 + 3.52671i 0.171511 + 0.124610i
\(802\) −6.00000 −0.211867
\(803\) 0 0
\(804\) −4.00000 −0.141069
\(805\) 0 0
\(806\) 7.41641 22.8254i 0.261232 0.803989i
\(807\) −3.70820 11.4127i −0.130535 0.401745i
\(808\) 4.85410 3.52671i 0.170767 0.124069i
\(809\) −14.5623 + 10.5801i −0.511983 + 0.371978i −0.813575 0.581459i \(-0.802482\pi\)
0.301592 + 0.953437i \(0.402482\pi\)
\(810\) 0 0
\(811\) −1.85410 + 5.70634i −0.0651063 + 0.200377i −0.978318 0.207109i \(-0.933594\pi\)
0.913211 + 0.407486i \(0.133594\pi\)
\(812\) 0 0
\(813\) −12.0000 −0.420858
\(814\) 0 0
\(815\) 0 0
\(816\) −4.85410 3.52671i −0.169928 0.123460i
\(817\) 11.1246 34.2380i 0.389201 1.19784i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 12.9787 + 39.9444i 0.452960 + 1.39407i 0.873513 + 0.486800i \(0.161836\pi\)
−0.420553 + 0.907268i \(0.638164\pi\)
\(822\) 1.85410 5.70634i 0.0646692 0.199031i
\(823\) 32.3607 + 23.5114i 1.12802 + 0.819556i 0.985406 0.170222i \(-0.0544484\pi\)
0.142617 + 0.989778i \(0.454448\pi\)
\(824\) −4.00000 −0.139347
\(825\) 0 0
\(826\) 0 0
\(827\) 38.8328 + 28.2137i 1.35035 + 0.981086i 0.998994 + 0.0448440i \(0.0142791\pi\)
0.351355 + 0.936242i \(0.385721\pi\)
\(828\) 1.85410 5.70634i 0.0644345 0.198309i
\(829\) −10.5066 32.3359i −0.364909 1.12307i −0.950038 0.312133i \(-0.898956\pi\)
0.585130 0.810940i \(-0.301044\pi\)
\(830\) 0 0
\(831\) −4.85410 + 3.52671i −0.168387 + 0.122340i
\(832\) 1.85410 + 5.70634i 0.0642794 + 0.197832i
\(833\) 12.9787 39.9444i 0.449686 1.38399i
\(834\) −14.5623 10.5801i −0.504251 0.366360i
\(835\) 0 0
\(836\) 0 0
\(837\) −4.00000 −0.138260
\(838\) −19.4164 14.1068i −0.670729 0.487313i
\(839\) −9.27051 + 28.5317i −0.320054 + 0.985024i 0.653571 + 0.756866i \(0.273270\pi\)
−0.973624 + 0.228158i \(0.926730\pi\)
\(840\) 0 0
\(841\) −5.66312 + 4.11450i −0.195280 + 0.141879i
\(842\) 21.0344 15.2824i 0.724895 0.526667i
\(843\) −1.85410 5.70634i −0.0638587 0.196537i
\(844\) −1.85410 + 5.70634i −0.0638208 + 0.196420i
\(845\) 0 0
\(846\) 6.00000 0.206284
\(847\) 0 0
\(848\) −12.0000 −0.412082
\(849\) 4.85410 + 3.52671i 0.166592 + 0.121036i
\(850\) 9.27051 28.5317i 0.317976 0.978629i
\(851\) −3.70820 11.4127i −0.127116 0.391222i
\(852\) −4.85410 + 3.52671i −0.166299 + 0.120823i
\(853\) −24.2705 + 17.6336i −0.831006 + 0.603762i −0.919844 0.392285i \(-0.871685\pi\)
0.0888375 + 0.996046i \(0.471685\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 9.70820 + 7.05342i 0.331820 + 0.241081i
\(857\) 18.0000 0.614868 0.307434 0.951569i \(-0.400530\pi\)
0.307434 + 0.951569i \(0.400530\pi\)
\(858\) 0 0
\(859\) −4.00000 −0.136478 −0.0682391 0.997669i \(-0.521738\pi\)
−0.0682391 + 0.997669i \(0.521738\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 7.41641 + 22.8254i 0.252604 + 0.777435i
\(863\) 43.6869 31.7404i 1.48712 1.08046i 0.511946 0.859018i \(-0.328925\pi\)
0.975174 0.221438i \(-0.0710750\pi\)
\(864\) 0.809017 0.587785i 0.0275233 0.0199969i
\(865\) 0 0
\(866\) 0.618034 1.90211i 0.0210016 0.0646364i
\(867\) 15.3713 + 11.1679i 0.522037 + 0.379282i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) −19.4164 14.1068i −0.657900 0.477992i
\(872\) 1.85410 5.70634i 0.0627878 0.193241i
\(873\) −3.09017 9.51057i −0.104586 0.321884i
\(874\) −29.1246 + 21.1603i −0.985155 + 0.715757i
\(875\) 0 0
\(876\) 3.70820 + 11.4127i 0.125289 + 0.385599i
\(877\) 5.56231 17.1190i 0.187826 0.578068i −0.812160 0.583435i \(-0.801708\pi\)
0.999986 + 0.00536681i \(0.00170832\pi\)
\(878\) 0 0
\(879\) 30.0000 1.01187
\(880\) 0 0
\(881\) −18.0000 −0.606435 −0.303218 0.952921i \(-0.598061\pi\)
−0.303218 + 0.952921i \(0.598061\pi\)
\(882\) 5.66312 + 4.11450i 0.190687 + 0.138542i
\(883\) 16.0689 49.4549i 0.540761 1.66429i −0.190100 0.981765i \(-0.560881\pi\)
0.730861 0.682526i \(-0.239119\pi\)
\(884\) −11.1246 34.2380i −0.374161 1.15155i
\(885\) 0 0
\(886\) 9.70820 7.05342i 0.326153 0.236964i
\(887\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(888\) 0.618034 1.90211i 0.0207399 0.0638307i
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 8.00000 0.267860
\(893\) −29.1246 21.1603i −0.974618 0.708101i
\(894\) −1.85410 + 5.70634i −0.0620104 + 0.190849i
\(895\) 0 0
\(896\) 0 0
\(897\) 29.1246 21.1603i 0.972442 0.706521i
\(898\) 1.85410 + 5.70634i 0.0618722 + 0.190423i
\(899\) 7.41641 22.8254i 0.247351 0.761268i
\(900\) 4.04508 + 2.93893i 0.134836 + 0.0979642i
\(901\) 72.0000 2.39867
\(902\) 0 0
\(903\) 0 0
\(904\) −4.85410 3.52671i −0.161445 0.117297i
\(905\) 0 0
\(906\) 3.70820 + 11.4127i 0.123197 + 0.379161i
\(907\) 22.6525 16.4580i 0.752163 0.546478i −0.144333 0.989529i \(-0.546104\pi\)
0.896497 + 0.443051i \(0.146104\pi\)
\(908\) −9.70820 + 7.05342i −0.322178 + 0.234076i
\(909\) −1.85410 5.70634i −0.0614967 0.189267i
\(910\) 0 0
\(911\) 4.85410 + 3.52671i 0.160824 + 0.116845i 0.665286 0.746588i \(-0.268309\pi\)
−0.504463 + 0.863433i \(0.668309\pi\)
\(912\) −6.00000 −0.198680
\(913\) 0 0
\(914\) −24.0000 −0.793849
\(915\) 0 0
\(916\) −4.32624 + 13.3148i −0.142943 + 0.439933i
\(917\) 0 0
\(918\) −4.85410 + 3.52671i −0.160209 + 0.116399i
\(919\) −29.1246 + 21.1603i −0.960732 + 0.698013i −0.953321 0.301960i \(-0.902359\pi\)
−0.00741159 + 0.999973i \(0.502359\pi\)
\(920\) 0 0
\(921\) 5.56231 17.1190i 0.183284 0.564091i
\(922\) −14.5623 10.5801i −0.479584 0.348438i
\(923\) −36.0000 −1.18495
\(924\) 0 0
\(925\) 10.0000 0.328798
\(926\) 3.23607 + 2.35114i 0.106344 + 0.0772633i
\(927\) −1.23607 + 3.80423i −0.0405978 + 0.124947i
\(928\) 1.85410 + 5.70634i 0.0608639 + 0.187320i
\(929\) 4.85410 3.52671i 0.159258 0.115708i −0.505302 0.862942i \(-0.668619\pi\)
0.664560 + 0.747235i \(0.268619\pi\)
\(930\) 0 0
\(931\) −12.9787 39.9444i −0.425360 1.30912i
\(932\) 1.85410 5.70634i 0.0607331 0.186917i
\(933\) 4.85410 + 3.52671i 0.158916 + 0.115459i
\(934\) 0 0
\(935\) 0 0
\(936\) 6.00000 0.196116
\(937\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(938\) 0 0
\(939\) 8.03444 + 24.7275i 0.262194 + 0.806950i
\(940\) 0 0
\(941\) 24.2705 17.6336i 0.791196 0.574838i −0.117122 0.993118i \(-0.537367\pi\)
0.908318 + 0.418280i \(0.137367\pi\)
\(942\) 4.32624 + 13.3148i 0.140956 + 0.433819i
\(943\) 11.1246 34.2380i 0.362267 1.11494i
\(944\) 9.70820 + 7.05342i 0.315975 + 0.229569i
\(945\) 0 0
\(946\) 0 0
\(947\) 36.0000 1.16984 0.584921 0.811090i \(-0.301125\pi\)
0.584921 + 0.811090i \(0.301125\pi\)
\(948\) 9.70820 + 7.05342i 0.315308 + 0.229085i
\(949\) −22.2492 + 68.4761i −0.722240 + 2.22283i
\(950\) −9.27051 28.5317i −0.300775 0.925690i
\(951\) −9.70820 + 7.05342i −0.314810 + 0.228723i
\(952\) 0 0
\(953\) 5.56231 + 17.1190i 0.180181 + 0.554539i 0.999832 0.0183233i \(-0.00583282\pi\)
−0.819651 + 0.572863i \(0.805833\pi\)
\(954\) −3.70820 + 11.4127i −0.120058 + 0.369499i
\(955\) 0 0
\(956\) 24.0000 0.776215
\(957\) 0 0
\(958\) 24.0000 0.775405
\(959\) 0 0
\(960\) 0 0
\(961\) −4.63525 14.2658i −0.149524 0.460189i
\(962\) 9.70820 7.05342i 0.313005 0.227411i
\(963\) 9.70820 7.05342i 0.312842 0.227293i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −12.0000 −0.385894 −0.192947 0.981209i \(-0.561805\pi\)
−0.192947 + 0.981209i \(0.561805\pi\)
\(968\) 0 0
\(969\) 36.0000 1.15649
\(970\) 0 0
\(971\) −3.70820 + 11.4127i −0.119002 + 0.366250i −0.992761 0.120109i \(-0.961675\pi\)
0.873759 + 0.486360i \(0.161675\pi\)
\(972\) −0.309017 0.951057i −0.00991172 0.0305052i
\(973\) 0 0
\(974\) −12.9443 + 9.40456i −0.414761 + 0.301342i
\(975\) 9.27051 + 28.5317i 0.296894 + 0.913746i
\(976\) 1.85410 5.70634i 0.0593484 0.182655i
\(977\) −33.9787 24.6870i −1.08708 0.789806i −0.108172 0.994132i \(-0.534500\pi\)
−0.978903 + 0.204326i \(0.934500\pi\)
\(978\) −20.0000 −0.639529
\(979\) 0 0
\(980\) 0 0
\(981\) −4.85410 3.52671i −0.154980 0.112599i
\(982\) −11.1246 + 34.2380i −0.355001 + 1.09258i
\(983\) 9.27051 + 28.5317i 0.295683 + 0.910020i 0.982991 + 0.183653i \(0.0587924\pi\)
−0.687308 + 0.726366i \(0.741208\pi\)
\(984\) 4.85410 3.52671i 0.154743 0.112427i
\(985\) 0 0
\(986\) −11.1246 34.2380i −0.354280 1.09036i
\(987\) 0 0
\(988\) −29.1246 21.1603i −0.926577 0.673198i
\(989\) 36.0000 1.14473
\(990\) 0 0
\(991\) −20.0000 −0.635321 −0.317660 0.948205i \(-0.602897\pi\)
−0.317660 + 0.948205i \(0.602897\pi\)
\(992\) −3.23607 2.35114i −0.102745 0.0746488i
\(993\) 8.65248 26.6296i 0.274578 0.845064i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 5.56231 + 17.1190i 0.176160 + 0.542165i 0.999685 0.0251159i \(-0.00799548\pi\)
−0.823525 + 0.567281i \(0.807995\pi\)
\(998\) 1.23607 3.80423i 0.0391270 0.120421i
\(999\) −1.61803 1.17557i −0.0511923 0.0371934i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 726.2.e.h.565.1 4
11.2 odd 10 726.2.e.p.511.1 4
11.3 even 5 inner 726.2.e.h.487.1 4
11.4 even 5 inner 726.2.e.h.493.1 4
11.5 even 5 726.2.a.g.1.1 yes 1
11.6 odd 10 726.2.a.b.1.1 1
11.7 odd 10 726.2.e.p.493.1 4
11.8 odd 10 726.2.e.p.487.1 4
11.9 even 5 inner 726.2.e.h.511.1 4
11.10 odd 2 726.2.e.p.565.1 4
33.5 odd 10 2178.2.a.c.1.1 1
33.17 even 10 2178.2.a.i.1.1 1
44.27 odd 10 5808.2.a.bb.1.1 1
44.39 even 10 5808.2.a.ba.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
726.2.a.b.1.1 1 11.6 odd 10
726.2.a.g.1.1 yes 1 11.5 even 5
726.2.e.h.487.1 4 11.3 even 5 inner
726.2.e.h.493.1 4 11.4 even 5 inner
726.2.e.h.511.1 4 11.9 even 5 inner
726.2.e.h.565.1 4 1.1 even 1 trivial
726.2.e.p.487.1 4 11.8 odd 10
726.2.e.p.493.1 4 11.7 odd 10
726.2.e.p.511.1 4 11.2 odd 10
726.2.e.p.565.1 4 11.10 odd 2
2178.2.a.c.1.1 1 33.5 odd 10
2178.2.a.i.1.1 1 33.17 even 10
5808.2.a.ba.1.1 1 44.39 even 10
5808.2.a.bb.1.1 1 44.27 odd 10