Properties

Label 726.2.e.h.511.1
Level $726$
Weight $2$
Character 726.511
Analytic conductor $5.797$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [726,2,Mod(487,726)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(726, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 8])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("726.487"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 726 = 2 \cdot 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 726.e (of order \(5\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-1,1,-1,0,1,0,-1,-1,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(10)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.79713918674\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 511.1
Root \(-0.309017 + 0.951057i\) of defining polynomial
Character \(\chi\) \(=\) 726.511
Dual form 726.2.e.h.493.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.309017 + 0.951057i) q^{2} +(0.809017 + 0.587785i) q^{3} +(-0.809017 + 0.587785i) q^{4} +(-0.309017 + 0.951057i) q^{6} +(-0.809017 - 0.587785i) q^{8} +(0.309017 + 0.951057i) q^{9} -1.00000 q^{12} +(1.85410 + 5.70634i) q^{13} +(0.309017 - 0.951057i) q^{16} +(-1.85410 + 5.70634i) q^{17} +(-0.809017 + 0.587785i) q^{18} +(-4.85410 - 3.52671i) q^{19} +6.00000 q^{23} +(-0.309017 - 0.951057i) q^{24} +(4.04508 + 2.93893i) q^{25} +(-4.85410 + 3.52671i) q^{26} +(-0.309017 + 0.951057i) q^{27} +(-4.85410 + 3.52671i) q^{29} +(1.23607 + 3.80423i) q^{31} +1.00000 q^{32} -6.00000 q^{34} +(-0.809017 - 0.587785i) q^{36} +(1.61803 - 1.17557i) q^{37} +(1.85410 - 5.70634i) q^{38} +(-1.85410 + 5.70634i) q^{39} +(-4.85410 - 3.52671i) q^{41} +6.00000 q^{43} +(1.85410 + 5.70634i) q^{46} +(-4.85410 - 3.52671i) q^{47} +(0.809017 - 0.587785i) q^{48} +(-2.16312 + 6.65740i) q^{49} +(-1.54508 + 4.75528i) q^{50} +(-4.85410 + 3.52671i) q^{51} +(-4.85410 - 3.52671i) q^{52} +(-3.70820 - 11.4127i) q^{53} -1.00000 q^{54} +(-1.85410 - 5.70634i) q^{57} +(-4.85410 - 3.52671i) q^{58} +(9.70820 - 7.05342i) q^{59} +(1.85410 - 5.70634i) q^{61} +(-3.23607 + 2.35114i) q^{62} +(0.309017 + 0.951057i) q^{64} +4.00000 q^{67} +(-1.85410 - 5.70634i) q^{68} +(4.85410 + 3.52671i) q^{69} +(-1.85410 + 5.70634i) q^{71} +(0.309017 - 0.951057i) q^{72} +(9.70820 - 7.05342i) q^{73} +(1.61803 + 1.17557i) q^{74} +(1.54508 + 4.75528i) q^{75} +6.00000 q^{76} -6.00000 q^{78} +(3.70820 + 11.4127i) q^{79} +(-0.809017 + 0.587785i) q^{81} +(1.85410 - 5.70634i) q^{82} +(1.85410 + 5.70634i) q^{86} -6.00000 q^{87} -6.00000 q^{89} +(-4.85410 + 3.52671i) q^{92} +(-1.23607 + 3.80423i) q^{93} +(1.85410 - 5.70634i) q^{94} +(0.809017 + 0.587785i) q^{96} +(-3.09017 - 9.51057i) q^{97} -7.00000 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - q^{2} + q^{3} - q^{4} + q^{6} - q^{8} - q^{9} - 4 q^{12} - 6 q^{13} - q^{16} + 6 q^{17} - q^{18} - 6 q^{19} + 24 q^{23} + q^{24} + 5 q^{25} - 6 q^{26} + q^{27} - 6 q^{29} - 4 q^{31} + 4 q^{32}+ \cdots - 28 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/726\mathbb{Z}\right)^\times\).

\(n\) \(485\) \(607\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.309017 + 0.951057i 0.218508 + 0.672499i
\(3\) 0.809017 + 0.587785i 0.467086 + 0.339358i
\(4\) −0.809017 + 0.587785i −0.404508 + 0.293893i
\(5\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(6\) −0.309017 + 0.951057i −0.126156 + 0.388267i
\(7\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(8\) −0.809017 0.587785i −0.286031 0.207813i
\(9\) 0.309017 + 0.951057i 0.103006 + 0.317019i
\(10\) 0 0
\(11\) 0 0
\(12\) −1.00000 −0.288675
\(13\) 1.85410 + 5.70634i 0.514235 + 1.58265i 0.784669 + 0.619915i \(0.212833\pi\)
−0.270434 + 0.962739i \(0.587167\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0.309017 0.951057i 0.0772542 0.237764i
\(17\) −1.85410 + 5.70634i −0.449686 + 1.38399i 0.427576 + 0.903979i \(0.359367\pi\)
−0.877262 + 0.480011i \(0.840633\pi\)
\(18\) −0.809017 + 0.587785i −0.190687 + 0.138542i
\(19\) −4.85410 3.52671i −1.11361 0.809083i −0.130379 0.991464i \(-0.541620\pi\)
−0.983228 + 0.182381i \(0.941620\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 6.00000 1.25109 0.625543 0.780189i \(-0.284877\pi\)
0.625543 + 0.780189i \(0.284877\pi\)
\(24\) −0.309017 0.951057i −0.0630778 0.194134i
\(25\) 4.04508 + 2.93893i 0.809017 + 0.587785i
\(26\) −4.85410 + 3.52671i −0.951968 + 0.691645i
\(27\) −0.309017 + 0.951057i −0.0594703 + 0.183031i
\(28\) 0 0
\(29\) −4.85410 + 3.52671i −0.901384 + 0.654894i −0.938821 0.344405i \(-0.888081\pi\)
0.0374370 + 0.999299i \(0.488081\pi\)
\(30\) 0 0
\(31\) 1.23607 + 3.80423i 0.222004 + 0.683259i 0.998582 + 0.0532375i \(0.0169540\pi\)
−0.776578 + 0.630022i \(0.783046\pi\)
\(32\) 1.00000 0.176777
\(33\) 0 0
\(34\) −6.00000 −1.02899
\(35\) 0 0
\(36\) −0.809017 0.587785i −0.134836 0.0979642i
\(37\) 1.61803 1.17557i 0.266003 0.193263i −0.446786 0.894641i \(-0.647432\pi\)
0.712789 + 0.701378i \(0.247432\pi\)
\(38\) 1.85410 5.70634i 0.300775 0.925690i
\(39\) −1.85410 + 5.70634i −0.296894 + 0.913746i
\(40\) 0 0
\(41\) −4.85410 3.52671i −0.758083 0.550780i 0.140238 0.990118i \(-0.455213\pi\)
−0.898322 + 0.439338i \(0.855213\pi\)
\(42\) 0 0
\(43\) 6.00000 0.914991 0.457496 0.889212i \(-0.348747\pi\)
0.457496 + 0.889212i \(0.348747\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 1.85410 + 5.70634i 0.273372 + 0.841354i
\(47\) −4.85410 3.52671i −0.708044 0.514424i 0.174498 0.984657i \(-0.444170\pi\)
−0.882542 + 0.470234i \(0.844170\pi\)
\(48\) 0.809017 0.587785i 0.116772 0.0848395i
\(49\) −2.16312 + 6.65740i −0.309017 + 0.951057i
\(50\) −1.54508 + 4.75528i −0.218508 + 0.672499i
\(51\) −4.85410 + 3.52671i −0.679710 + 0.493838i
\(52\) −4.85410 3.52671i −0.673143 0.489067i
\(53\) −3.70820 11.4127i −0.509361 1.56765i −0.793313 0.608814i \(-0.791646\pi\)
0.283952 0.958838i \(-0.408354\pi\)
\(54\) −1.00000 −0.136083
\(55\) 0 0
\(56\) 0 0
\(57\) −1.85410 5.70634i −0.245582 0.755823i
\(58\) −4.85410 3.52671i −0.637375 0.463080i
\(59\) 9.70820 7.05342i 1.26390 0.918277i 0.264958 0.964260i \(-0.414642\pi\)
0.998942 + 0.0459824i \(0.0146418\pi\)
\(60\) 0 0
\(61\) 1.85410 5.70634i 0.237393 0.730622i −0.759401 0.650622i \(-0.774508\pi\)
0.996795 0.0799995i \(-0.0254919\pi\)
\(62\) −3.23607 + 2.35114i −0.410981 + 0.298595i
\(63\) 0 0
\(64\) 0.309017 + 0.951057i 0.0386271 + 0.118882i
\(65\) 0 0
\(66\) 0 0
\(67\) 4.00000 0.488678 0.244339 0.969690i \(-0.421429\pi\)
0.244339 + 0.969690i \(0.421429\pi\)
\(68\) −1.85410 5.70634i −0.224843 0.691995i
\(69\) 4.85410 + 3.52671i 0.584365 + 0.424566i
\(70\) 0 0
\(71\) −1.85410 + 5.70634i −0.220041 + 0.677218i 0.778716 + 0.627377i \(0.215871\pi\)
−0.998757 + 0.0498409i \(0.984129\pi\)
\(72\) 0.309017 0.951057i 0.0364180 0.112083i
\(73\) 9.70820 7.05342i 1.13626 0.825541i 0.149666 0.988737i \(-0.452180\pi\)
0.986594 + 0.163196i \(0.0521803\pi\)
\(74\) 1.61803 + 1.17557i 0.188093 + 0.136657i
\(75\) 1.54508 + 4.75528i 0.178411 + 0.549093i
\(76\) 6.00000 0.688247
\(77\) 0 0
\(78\) −6.00000 −0.679366
\(79\) 3.70820 + 11.4127i 0.417206 + 1.28403i 0.910263 + 0.414030i \(0.135879\pi\)
−0.493058 + 0.869997i \(0.664121\pi\)
\(80\) 0 0
\(81\) −0.809017 + 0.587785i −0.0898908 + 0.0653095i
\(82\) 1.85410 5.70634i 0.204751 0.630160i
\(83\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 1.85410 + 5.70634i 0.199933 + 0.615330i
\(87\) −6.00000 −0.643268
\(88\) 0 0
\(89\) −6.00000 −0.635999 −0.317999 0.948091i \(-0.603011\pi\)
−0.317999 + 0.948091i \(0.603011\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −4.85410 + 3.52671i −0.506075 + 0.367685i
\(93\) −1.23607 + 3.80423i −0.128174 + 0.394480i
\(94\) 1.85410 5.70634i 0.191236 0.588564i
\(95\) 0 0
\(96\) 0.809017 + 0.587785i 0.0825700 + 0.0599906i
\(97\) −3.09017 9.51057i −0.313759 0.965652i −0.976262 0.216592i \(-0.930506\pi\)
0.662503 0.749059i \(-0.269494\pi\)
\(98\) −7.00000 −0.707107
\(99\) 0 0
\(100\) −5.00000 −0.500000
\(101\) −1.85410 5.70634i −0.184490 0.567802i 0.815449 0.578829i \(-0.196490\pi\)
−0.999939 + 0.0110267i \(0.996490\pi\)
\(102\) −4.85410 3.52671i −0.480628 0.349196i
\(103\) 3.23607 2.35114i 0.318859 0.231665i −0.416829 0.908985i \(-0.636859\pi\)
0.735689 + 0.677320i \(0.236859\pi\)
\(104\) 1.85410 5.70634i 0.181810 0.559553i
\(105\) 0 0
\(106\) 9.70820 7.05342i 0.942944 0.685089i
\(107\) 9.70820 + 7.05342i 0.938527 + 0.681880i 0.948066 0.318074i \(-0.103036\pi\)
−0.00953827 + 0.999955i \(0.503036\pi\)
\(108\) −0.309017 0.951057i −0.0297352 0.0915155i
\(109\) 6.00000 0.574696 0.287348 0.957826i \(-0.407226\pi\)
0.287348 + 0.957826i \(0.407226\pi\)
\(110\) 0 0
\(111\) 2.00000 0.189832
\(112\) 0 0
\(113\) −4.85410 3.52671i −0.456636 0.331765i 0.335575 0.942014i \(-0.391070\pi\)
−0.792210 + 0.610249i \(0.791070\pi\)
\(114\) 4.85410 3.52671i 0.454628 0.330307i
\(115\) 0 0
\(116\) 1.85410 5.70634i 0.172149 0.529820i
\(117\) −4.85410 + 3.52671i −0.448762 + 0.326045i
\(118\) 9.70820 + 7.05342i 0.893713 + 0.649320i
\(119\) 0 0
\(120\) 0 0
\(121\) 0 0
\(122\) 6.00000 0.543214
\(123\) −1.85410 5.70634i −0.167179 0.514523i
\(124\) −3.23607 2.35114i −0.290607 0.211139i
\(125\) 0 0
\(126\) 0 0
\(127\) 3.70820 11.4127i 0.329050 1.01271i −0.640529 0.767934i \(-0.721285\pi\)
0.969579 0.244778i \(-0.0787150\pi\)
\(128\) −0.809017 + 0.587785i −0.0715077 + 0.0519534i
\(129\) 4.85410 + 3.52671i 0.427380 + 0.310510i
\(130\) 0 0
\(131\) −12.0000 −1.04844 −0.524222 0.851581i \(-0.675644\pi\)
−0.524222 + 0.851581i \(0.675644\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 1.23607 + 3.80423i 0.106780 + 0.328635i
\(135\) 0 0
\(136\) 4.85410 3.52671i 0.416236 0.302413i
\(137\) −1.85410 + 5.70634i −0.158407 + 0.487525i −0.998490 0.0549317i \(-0.982506\pi\)
0.840083 + 0.542457i \(0.182506\pi\)
\(138\) −1.85410 + 5.70634i −0.157832 + 0.485756i
\(139\) 14.5623 10.5801i 1.23516 0.897395i 0.237893 0.971291i \(-0.423543\pi\)
0.997266 + 0.0738961i \(0.0235433\pi\)
\(140\) 0 0
\(141\) −1.85410 5.70634i −0.156144 0.480560i
\(142\) −6.00000 −0.503509
\(143\) 0 0
\(144\) 1.00000 0.0833333
\(145\) 0 0
\(146\) 9.70820 + 7.05342i 0.803457 + 0.583745i
\(147\) −5.66312 + 4.11450i −0.467086 + 0.339358i
\(148\) −0.618034 + 1.90211i −0.0508021 + 0.156353i
\(149\) 1.85410 5.70634i 0.151894 0.467482i −0.845939 0.533280i \(-0.820959\pi\)
0.997833 + 0.0657982i \(0.0209593\pi\)
\(150\) −4.04508 + 2.93893i −0.330280 + 0.239962i
\(151\) 9.70820 + 7.05342i 0.790042 + 0.573999i 0.907976 0.419022i \(-0.137627\pi\)
−0.117934 + 0.993021i \(0.537627\pi\)
\(152\) 1.85410 + 5.70634i 0.150388 + 0.462845i
\(153\) −6.00000 −0.485071
\(154\) 0 0
\(155\) 0 0
\(156\) −1.85410 5.70634i −0.148447 0.456873i
\(157\) 11.3262 + 8.22899i 0.903932 + 0.656745i 0.939473 0.342623i \(-0.111315\pi\)
−0.0355408 + 0.999368i \(0.511315\pi\)
\(158\) −9.70820 + 7.05342i −0.772343 + 0.561140i
\(159\) 3.70820 11.4127i 0.294080 0.905084i
\(160\) 0 0
\(161\) 0 0
\(162\) −0.809017 0.587785i −0.0635624 0.0461808i
\(163\) 6.18034 + 19.0211i 0.484082 + 1.48985i 0.833307 + 0.552811i \(0.186445\pi\)
−0.349225 + 0.937039i \(0.613555\pi\)
\(164\) 6.00000 0.468521
\(165\) 0 0
\(166\) 0 0
\(167\) −7.41641 22.8254i −0.573899 1.76628i −0.639898 0.768459i \(-0.721024\pi\)
0.0659996 0.997820i \(-0.478976\pi\)
\(168\) 0 0
\(169\) −18.6074 + 13.5191i −1.43134 + 1.03993i
\(170\) 0 0
\(171\) 1.85410 5.70634i 0.141787 0.436375i
\(172\) −4.85410 + 3.52671i −0.370122 + 0.268909i
\(173\) 14.5623 + 10.5801i 1.10715 + 0.804393i 0.982213 0.187772i \(-0.0601265\pi\)
0.124939 + 0.992164i \(0.460127\pi\)
\(174\) −1.85410 5.70634i −0.140559 0.432596i
\(175\) 0 0
\(176\) 0 0
\(177\) 12.0000 0.901975
\(178\) −1.85410 5.70634i −0.138971 0.427708i
\(179\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(180\) 0 0
\(181\) 0.618034 1.90211i 0.0459381 0.141383i −0.925457 0.378854i \(-0.876318\pi\)
0.971395 + 0.237471i \(0.0763184\pi\)
\(182\) 0 0
\(183\) 4.85410 3.52671i 0.358826 0.260702i
\(184\) −4.85410 3.52671i −0.357849 0.259993i
\(185\) 0 0
\(186\) −4.00000 −0.293294
\(187\) 0 0
\(188\) 6.00000 0.437595
\(189\) 0 0
\(190\) 0 0
\(191\) 14.5623 10.5801i 1.05369 0.765552i 0.0807805 0.996732i \(-0.474259\pi\)
0.972911 + 0.231180i \(0.0742587\pi\)
\(192\) −0.309017 + 0.951057i −0.0223014 + 0.0686366i
\(193\) 3.70820 11.4127i 0.266922 0.821503i −0.724322 0.689462i \(-0.757847\pi\)
0.991244 0.132041i \(-0.0421529\pi\)
\(194\) 8.09017 5.87785i 0.580840 0.422005i
\(195\) 0 0
\(196\) −2.16312 6.65740i −0.154508 0.475528i
\(197\) −6.00000 −0.427482 −0.213741 0.976890i \(-0.568565\pi\)
−0.213741 + 0.976890i \(0.568565\pi\)
\(198\) 0 0
\(199\) 16.0000 1.13421 0.567105 0.823646i \(-0.308063\pi\)
0.567105 + 0.823646i \(0.308063\pi\)
\(200\) −1.54508 4.75528i −0.109254 0.336249i
\(201\) 3.23607 + 2.35114i 0.228255 + 0.165837i
\(202\) 4.85410 3.52671i 0.341533 0.248139i
\(203\) 0 0
\(204\) 1.85410 5.70634i 0.129813 0.399524i
\(205\) 0 0
\(206\) 3.23607 + 2.35114i 0.225468 + 0.163812i
\(207\) 1.85410 + 5.70634i 0.128869 + 0.396618i
\(208\) 6.00000 0.416025
\(209\) 0 0
\(210\) 0 0
\(211\) −1.85410 5.70634i −0.127642 0.392841i 0.866731 0.498775i \(-0.166217\pi\)
−0.994373 + 0.105934i \(0.966217\pi\)
\(212\) 9.70820 + 7.05342i 0.666762 + 0.484431i
\(213\) −4.85410 + 3.52671i −0.332598 + 0.241646i
\(214\) −3.70820 + 11.4127i −0.253488 + 0.780155i
\(215\) 0 0
\(216\) 0.809017 0.587785i 0.0550466 0.0399937i
\(217\) 0 0
\(218\) 1.85410 + 5.70634i 0.125576 + 0.386482i
\(219\) 12.0000 0.810885
\(220\) 0 0
\(221\) −36.0000 −2.42162
\(222\) 0.618034 + 1.90211i 0.0414797 + 0.127661i
\(223\) −6.47214 4.70228i −0.433406 0.314888i 0.349603 0.936898i \(-0.386316\pi\)
−0.783009 + 0.622010i \(0.786316\pi\)
\(224\) 0 0
\(225\) −1.54508 + 4.75528i −0.103006 + 0.317019i
\(226\) 1.85410 5.70634i 0.123333 0.379580i
\(227\) −9.70820 + 7.05342i −0.644356 + 0.468152i −0.861344 0.508022i \(-0.830377\pi\)
0.216988 + 0.976174i \(0.430377\pi\)
\(228\) 4.85410 + 3.52671i 0.321471 + 0.233562i
\(229\) −4.32624 13.3148i −0.285886 0.879866i −0.986132 0.165964i \(-0.946926\pi\)
0.700246 0.713902i \(-0.253074\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 6.00000 0.393919
\(233\) 1.85410 + 5.70634i 0.121466 + 0.373835i 0.993241 0.116073i \(-0.0370306\pi\)
−0.871774 + 0.489907i \(0.837031\pi\)
\(234\) −4.85410 3.52671i −0.317323 0.230548i
\(235\) 0 0
\(236\) −3.70820 + 11.4127i −0.241384 + 0.742902i
\(237\) −3.70820 + 11.4127i −0.240874 + 0.741333i
\(238\) 0 0
\(239\) −19.4164 14.1068i −1.25594 0.912496i −0.257392 0.966307i \(-0.582863\pi\)
−0.998551 + 0.0538111i \(0.982863\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(242\) 0 0
\(243\) −1.00000 −0.0641500
\(244\) 1.85410 + 5.70634i 0.118697 + 0.365311i
\(245\) 0 0
\(246\) 4.85410 3.52671i 0.309486 0.224855i
\(247\) 11.1246 34.2380i 0.707842 2.17851i
\(248\) 1.23607 3.80423i 0.0784904 0.241569i
\(249\) 0 0
\(250\) 0 0
\(251\) 7.41641 + 22.8254i 0.468120 + 1.44072i 0.855017 + 0.518601i \(0.173547\pi\)
−0.386897 + 0.922123i \(0.626453\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 12.0000 0.752947
\(255\) 0 0
\(256\) −0.809017 0.587785i −0.0505636 0.0367366i
\(257\) −14.5623 + 10.5801i −0.908372 + 0.659971i −0.940603 0.339510i \(-0.889739\pi\)
0.0322308 + 0.999480i \(0.489739\pi\)
\(258\) −1.85410 + 5.70634i −0.115431 + 0.355261i
\(259\) 0 0
\(260\) 0 0
\(261\) −4.85410 3.52671i −0.300461 0.218298i
\(262\) −3.70820 11.4127i −0.229094 0.705078i
\(263\) 24.0000 1.47990 0.739952 0.672660i \(-0.234848\pi\)
0.739952 + 0.672660i \(0.234848\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −4.85410 3.52671i −0.297066 0.215831i
\(268\) −3.23607 + 2.35114i −0.197674 + 0.143619i
\(269\) 3.70820 11.4127i 0.226093 0.695843i −0.772086 0.635519i \(-0.780786\pi\)
0.998179 0.0603247i \(-0.0192136\pi\)
\(270\) 0 0
\(271\) −9.70820 + 7.05342i −0.589731 + 0.428465i −0.842219 0.539135i \(-0.818751\pi\)
0.252488 + 0.967600i \(0.418751\pi\)
\(272\) 4.85410 + 3.52671i 0.294323 + 0.213838i
\(273\) 0 0
\(274\) −6.00000 −0.362473
\(275\) 0 0
\(276\) −6.00000 −0.361158
\(277\) −1.85410 5.70634i −0.111402 0.342861i 0.879777 0.475386i \(-0.157691\pi\)
−0.991180 + 0.132525i \(0.957691\pi\)
\(278\) 14.5623 + 10.5801i 0.873389 + 0.634554i
\(279\) −3.23607 + 2.35114i −0.193738 + 0.140759i
\(280\) 0 0
\(281\) 1.85410 5.70634i 0.110606 0.340412i −0.880399 0.474234i \(-0.842725\pi\)
0.991005 + 0.133822i \(0.0427251\pi\)
\(282\) 4.85410 3.52671i 0.289058 0.210013i
\(283\) −4.85410 3.52671i −0.288546 0.209641i 0.434090 0.900869i \(-0.357070\pi\)
−0.722637 + 0.691228i \(0.757070\pi\)
\(284\) −1.85410 5.70634i −0.110021 0.338609i
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0.309017 + 0.951057i 0.0182090 + 0.0560415i
\(289\) −15.3713 11.1679i −0.904195 0.656936i
\(290\) 0 0
\(291\) 3.09017 9.51057i 0.181149 0.557519i
\(292\) −3.70820 + 11.4127i −0.217006 + 0.667876i
\(293\) 24.2705 17.6336i 1.41790 1.03016i 0.425784 0.904825i \(-0.359998\pi\)
0.992114 0.125339i \(-0.0400018\pi\)
\(294\) −5.66312 4.11450i −0.330280 0.239962i
\(295\) 0 0
\(296\) −2.00000 −0.116248
\(297\) 0 0
\(298\) 6.00000 0.347571
\(299\) 11.1246 + 34.2380i 0.643353 + 1.98004i
\(300\) −4.04508 2.93893i −0.233543 0.169679i
\(301\) 0 0
\(302\) −3.70820 + 11.4127i −0.213383 + 0.656726i
\(303\) 1.85410 5.70634i 0.106515 0.327821i
\(304\) −4.85410 + 3.52671i −0.278402 + 0.202271i
\(305\) 0 0
\(306\) −1.85410 5.70634i −0.105992 0.326210i
\(307\) −18.0000 −1.02731 −0.513657 0.857996i \(-0.671710\pi\)
−0.513657 + 0.857996i \(0.671710\pi\)
\(308\) 0 0
\(309\) 4.00000 0.227552
\(310\) 0 0
\(311\) −4.85410 3.52671i −0.275251 0.199981i 0.441592 0.897216i \(-0.354414\pi\)
−0.716843 + 0.697234i \(0.754414\pi\)
\(312\) 4.85410 3.52671i 0.274809 0.199661i
\(313\) −8.03444 + 24.7275i −0.454134 + 1.39768i 0.418016 + 0.908440i \(0.362726\pi\)
−0.872149 + 0.489240i \(0.837274\pi\)
\(314\) −4.32624 + 13.3148i −0.244144 + 0.751397i
\(315\) 0 0
\(316\) −9.70820 7.05342i −0.546129 0.396786i
\(317\) −3.70820 11.4127i −0.208273 0.641000i −0.999563 0.0295583i \(-0.990590\pi\)
0.791290 0.611442i \(-0.209410\pi\)
\(318\) 12.0000 0.672927
\(319\) 0 0
\(320\) 0 0
\(321\) 3.70820 + 11.4127i 0.206972 + 0.636994i
\(322\) 0 0
\(323\) 29.1246 21.1603i 1.62054 1.17739i
\(324\) 0.309017 0.951057i 0.0171676 0.0528365i
\(325\) −9.27051 + 28.5317i −0.514235 + 1.58265i
\(326\) −16.1803 + 11.7557i −0.896146 + 0.651088i
\(327\) 4.85410 + 3.52671i 0.268432 + 0.195028i
\(328\) 1.85410 + 5.70634i 0.102376 + 0.315080i
\(329\) 0 0
\(330\) 0 0
\(331\) −28.0000 −1.53902 −0.769510 0.638635i \(-0.779499\pi\)
−0.769510 + 0.638635i \(0.779499\pi\)
\(332\) 0 0
\(333\) 1.61803 + 1.17557i 0.0886677 + 0.0644209i
\(334\) 19.4164 14.1068i 1.06242 0.771892i
\(335\) 0 0
\(336\) 0 0
\(337\) −29.1246 + 21.1603i −1.58652 + 1.15267i −0.677814 + 0.735233i \(0.737073\pi\)
−0.908704 + 0.417440i \(0.862927\pi\)
\(338\) −18.6074 13.5191i −1.01211 0.735340i
\(339\) −1.85410 5.70634i −0.100701 0.309926i
\(340\) 0 0
\(341\) 0 0
\(342\) 6.00000 0.324443
\(343\) 0 0
\(344\) −4.85410 3.52671i −0.261716 0.190148i
\(345\) 0 0
\(346\) −5.56231 + 17.1190i −0.299031 + 0.920324i
\(347\) −7.41641 + 22.8254i −0.398134 + 1.22533i 0.528361 + 0.849020i \(0.322807\pi\)
−0.926494 + 0.376309i \(0.877193\pi\)
\(348\) 4.85410 3.52671i 0.260207 0.189052i
\(349\) −14.5623 10.5801i −0.779502 0.566342i 0.125327 0.992115i \(-0.460002\pi\)
−0.904830 + 0.425774i \(0.860002\pi\)
\(350\) 0 0
\(351\) −6.00000 −0.320256
\(352\) 0 0
\(353\) −30.0000 −1.59674 −0.798369 0.602168i \(-0.794304\pi\)
−0.798369 + 0.602168i \(0.794304\pi\)
\(354\) 3.70820 + 11.4127i 0.197089 + 0.606577i
\(355\) 0 0
\(356\) 4.85410 3.52671i 0.257267 0.186915i
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(360\) 0 0
\(361\) 5.25329 + 16.1680i 0.276489 + 0.850945i
\(362\) 2.00000 0.105118
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 4.85410 + 3.52671i 0.253728 + 0.184344i
\(367\) −6.47214 + 4.70228i −0.337843 + 0.245457i −0.743751 0.668457i \(-0.766955\pi\)
0.405908 + 0.913914i \(0.366955\pi\)
\(368\) 1.85410 5.70634i 0.0966517 0.297463i
\(369\) 1.85410 5.70634i 0.0965207 0.297060i
\(370\) 0 0
\(371\) 0 0
\(372\) −1.23607 3.80423i −0.0640871 0.197240i
\(373\) −6.00000 −0.310668 −0.155334 0.987862i \(-0.549645\pi\)
−0.155334 + 0.987862i \(0.549645\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 1.85410 + 5.70634i 0.0956180 + 0.294282i
\(377\) −29.1246 21.1603i −1.49999 1.08981i
\(378\) 0 0
\(379\) 6.18034 19.0211i 0.317463 0.977050i −0.657266 0.753659i \(-0.728287\pi\)
0.974729 0.223391i \(-0.0717128\pi\)
\(380\) 0 0
\(381\) 9.70820 7.05342i 0.497366 0.361358i
\(382\) 14.5623 + 10.5801i 0.745072 + 0.541327i
\(383\) −5.56231 17.1190i −0.284221 0.874741i −0.986631 0.162969i \(-0.947893\pi\)
0.702411 0.711772i \(-0.252107\pi\)
\(384\) −1.00000 −0.0510310
\(385\) 0 0
\(386\) 12.0000 0.610784
\(387\) 1.85410 + 5.70634i 0.0942493 + 0.290070i
\(388\) 8.09017 + 5.87785i 0.410716 + 0.298403i
\(389\) −19.4164 + 14.1068i −0.984451 + 0.715245i −0.958699 0.284423i \(-0.908198\pi\)
−0.0257520 + 0.999668i \(0.508198\pi\)
\(390\) 0 0
\(391\) −11.1246 + 34.2380i −0.562596 + 1.73149i
\(392\) 5.66312 4.11450i 0.286031 0.207813i
\(393\) −9.70820 7.05342i −0.489714 0.355798i
\(394\) −1.85410 5.70634i −0.0934083 0.287481i
\(395\) 0 0
\(396\) 0 0
\(397\) 2.00000 0.100377 0.0501886 0.998740i \(-0.484018\pi\)
0.0501886 + 0.998740i \(0.484018\pi\)
\(398\) 4.94427 + 15.2169i 0.247834 + 0.762754i
\(399\) 0 0
\(400\) 4.04508 2.93893i 0.202254 0.146946i
\(401\) −1.85410 + 5.70634i −0.0925894 + 0.284961i −0.986618 0.163049i \(-0.947867\pi\)
0.894029 + 0.448010i \(0.147867\pi\)
\(402\) −1.23607 + 3.80423i −0.0616495 + 0.189738i
\(403\) −19.4164 + 14.1068i −0.967200 + 0.702712i
\(404\) 4.85410 + 3.52671i 0.241501 + 0.175460i
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 6.00000 0.297044
\(409\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(410\) 0 0
\(411\) −4.85410 + 3.52671i −0.239435 + 0.173960i
\(412\) −1.23607 + 3.80423i −0.0608967 + 0.187421i
\(413\) 0 0
\(414\) −4.85410 + 3.52671i −0.238566 + 0.173328i
\(415\) 0 0
\(416\) 1.85410 + 5.70634i 0.0909048 + 0.279776i
\(417\) 18.0000 0.881464
\(418\) 0 0
\(419\) 24.0000 1.17248 0.586238 0.810139i \(-0.300608\pi\)
0.586238 + 0.810139i \(0.300608\pi\)
\(420\) 0 0
\(421\) 21.0344 + 15.2824i 1.02516 + 0.744819i 0.967333 0.253507i \(-0.0815842\pi\)
0.0578225 + 0.998327i \(0.481584\pi\)
\(422\) 4.85410 3.52671i 0.236294 0.171678i
\(423\) 1.85410 5.70634i 0.0901495 0.277452i
\(424\) −3.70820 + 11.4127i −0.180086 + 0.554249i
\(425\) −24.2705 + 17.6336i −1.17729 + 0.855353i
\(426\) −4.85410 3.52671i −0.235182 0.170870i
\(427\) 0 0
\(428\) −12.0000 −0.580042
\(429\) 0 0
\(430\) 0 0
\(431\) 7.41641 + 22.8254i 0.357236 + 1.09946i 0.954702 + 0.297564i \(0.0961743\pi\)
−0.597466 + 0.801894i \(0.703826\pi\)
\(432\) 0.809017 + 0.587785i 0.0389238 + 0.0282798i
\(433\) −1.61803 + 1.17557i −0.0777578 + 0.0564943i −0.625985 0.779835i \(-0.715303\pi\)
0.548227 + 0.836329i \(0.315303\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −4.85410 + 3.52671i −0.232469 + 0.168899i
\(437\) −29.1246 21.1603i −1.39322 1.01223i
\(438\) 3.70820 + 11.4127i 0.177185 + 0.545319i
\(439\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(440\) 0 0
\(441\) −7.00000 −0.333333
\(442\) −11.1246 34.2380i −0.529144 1.62854i
\(443\) 9.70820 + 7.05342i 0.461251 + 0.335118i 0.794022 0.607889i \(-0.207984\pi\)
−0.332771 + 0.943008i \(0.607984\pi\)
\(444\) −1.61803 + 1.17557i −0.0767885 + 0.0557901i
\(445\) 0 0
\(446\) 2.47214 7.60845i 0.117059 0.360271i
\(447\) 4.85410 3.52671i 0.229591 0.166808i
\(448\) 0 0
\(449\) 1.85410 + 5.70634i 0.0875005 + 0.269299i 0.985227 0.171255i \(-0.0547822\pi\)
−0.897726 + 0.440554i \(0.854782\pi\)
\(450\) −5.00000 −0.235702
\(451\) 0 0
\(452\) 6.00000 0.282216
\(453\) 3.70820 + 11.4127i 0.174227 + 0.536214i
\(454\) −9.70820 7.05342i −0.455629 0.331034i
\(455\) 0 0
\(456\) −1.85410 + 5.70634i −0.0868263 + 0.267224i
\(457\) −7.41641 + 22.8254i −0.346925 + 1.06773i 0.613620 + 0.789601i \(0.289713\pi\)
−0.960545 + 0.278124i \(0.910287\pi\)
\(458\) 11.3262 8.22899i 0.529240 0.384516i
\(459\) −4.85410 3.52671i −0.226570 0.164613i
\(460\) 0 0
\(461\) 18.0000 0.838344 0.419172 0.907907i \(-0.362320\pi\)
0.419172 + 0.907907i \(0.362320\pi\)
\(462\) 0 0
\(463\) −4.00000 −0.185896 −0.0929479 0.995671i \(-0.529629\pi\)
−0.0929479 + 0.995671i \(0.529629\pi\)
\(464\) 1.85410 + 5.70634i 0.0860745 + 0.264910i
\(465\) 0 0
\(466\) −4.85410 + 3.52671i −0.224862 + 0.163372i
\(467\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(468\) 1.85410 5.70634i 0.0857059 0.263776i
\(469\) 0 0
\(470\) 0 0
\(471\) 4.32624 + 13.3148i 0.199343 + 0.613513i
\(472\) −12.0000 −0.552345
\(473\) 0 0
\(474\) −12.0000 −0.551178
\(475\) −9.27051 28.5317i −0.425360 1.30912i
\(476\) 0 0
\(477\) 9.70820 7.05342i 0.444508 0.322954i
\(478\) 7.41641 22.8254i 0.339219 1.04401i
\(479\) 7.41641 22.8254i 0.338864 1.04292i −0.625923 0.779885i \(-0.715277\pi\)
0.964787 0.263032i \(-0.0847225\pi\)
\(480\) 0 0
\(481\) 9.70820 + 7.05342i 0.442656 + 0.321608i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) −0.309017 0.951057i −0.0140173 0.0431408i
\(487\) −12.9443 9.40456i −0.586561 0.426161i 0.254523 0.967067i \(-0.418082\pi\)
−0.841083 + 0.540905i \(0.818082\pi\)
\(488\) −4.85410 + 3.52671i −0.219735 + 0.159647i
\(489\) −6.18034 + 19.0211i −0.279485 + 0.860165i
\(490\) 0 0
\(491\) 29.1246 21.1603i 1.31438 0.954950i 0.314391 0.949293i \(-0.398200\pi\)
0.999984 0.00565610i \(-0.00180040\pi\)
\(492\) 4.85410 + 3.52671i 0.218840 + 0.158996i
\(493\) −11.1246 34.2380i −0.501027 1.54200i
\(494\) 36.0000 1.61972
\(495\) 0 0
\(496\) 4.00000 0.179605
\(497\) 0 0
\(498\) 0 0
\(499\) −3.23607 + 2.35114i −0.144866 + 0.105252i −0.657858 0.753142i \(-0.728537\pi\)
0.512992 + 0.858394i \(0.328537\pi\)
\(500\) 0 0
\(501\) 7.41641 22.8254i 0.331341 1.01976i
\(502\) −19.4164 + 14.1068i −0.866597 + 0.629619i
\(503\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −23.0000 −1.02147
\(508\) 3.70820 + 11.4127i 0.164525 + 0.506356i
\(509\) 9.70820 + 7.05342i 0.430309 + 0.312637i 0.781772 0.623564i \(-0.214316\pi\)
−0.351464 + 0.936202i \(0.614316\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0.309017 0.951057i 0.0136568 0.0420312i
\(513\) 4.85410 3.52671i 0.214314 0.155708i
\(514\) −14.5623 10.5801i −0.642316 0.466670i
\(515\) 0 0
\(516\) −6.00000 −0.264135
\(517\) 0 0
\(518\) 0 0
\(519\) 5.56231 + 17.1190i 0.244158 + 0.751441i
\(520\) 0 0
\(521\) −33.9787 + 24.6870i −1.48863 + 1.08156i −0.513990 + 0.857796i \(0.671833\pi\)
−0.974644 + 0.223760i \(0.928167\pi\)
\(522\) 1.85410 5.70634i 0.0811518 0.249760i
\(523\) 1.85410 5.70634i 0.0810742 0.249521i −0.902301 0.431107i \(-0.858123\pi\)
0.983375 + 0.181586i \(0.0581231\pi\)
\(524\) 9.70820 7.05342i 0.424105 0.308130i
\(525\) 0 0
\(526\) 7.41641 + 22.8254i 0.323371 + 0.995233i
\(527\) −24.0000 −1.04546
\(528\) 0 0
\(529\) 13.0000 0.565217
\(530\) 0 0
\(531\) 9.70820 + 7.05342i 0.421300 + 0.306092i
\(532\) 0 0
\(533\) 11.1246 34.2380i 0.481860 1.48301i
\(534\) 1.85410 5.70634i 0.0802348 0.246937i
\(535\) 0 0
\(536\) −3.23607 2.35114i −0.139777 0.101554i
\(537\) 0 0
\(538\) 12.0000 0.517357
\(539\) 0 0
\(540\) 0 0
\(541\) −5.56231 17.1190i −0.239142 0.736004i −0.996545 0.0830560i \(-0.973532\pi\)
0.757403 0.652948i \(-0.226468\pi\)
\(542\) −9.70820 7.05342i −0.417003 0.302970i
\(543\) 1.61803 1.17557i 0.0694365 0.0504486i
\(544\) −1.85410 + 5.70634i −0.0794940 + 0.244657i
\(545\) 0 0
\(546\) 0 0
\(547\) 4.85410 + 3.52671i 0.207546 + 0.150791i 0.686703 0.726938i \(-0.259057\pi\)
−0.479156 + 0.877730i \(0.659057\pi\)
\(548\) −1.85410 5.70634i −0.0792033 0.243763i
\(549\) 6.00000 0.256074
\(550\) 0 0
\(551\) 36.0000 1.53365
\(552\) −1.85410 5.70634i −0.0789158 0.242878i
\(553\) 0 0
\(554\) 4.85410 3.52671i 0.206231 0.149836i
\(555\) 0 0
\(556\) −5.56231 + 17.1190i −0.235894 + 0.726008i
\(557\) −14.5623 + 10.5801i −0.617025 + 0.448295i −0.851881 0.523735i \(-0.824538\pi\)
0.234856 + 0.972030i \(0.424538\pi\)
\(558\) −3.23607 2.35114i −0.136994 0.0995317i
\(559\) 11.1246 + 34.2380i 0.470521 + 1.44811i
\(560\) 0 0
\(561\) 0 0
\(562\) 6.00000 0.253095
\(563\) −7.41641 22.8254i −0.312564 0.961974i −0.976745 0.214402i \(-0.931220\pi\)
0.664181 0.747572i \(-0.268780\pi\)
\(564\) 4.85410 + 3.52671i 0.204395 + 0.148501i
\(565\) 0 0
\(566\) 1.85410 5.70634i 0.0779337 0.239855i
\(567\) 0 0
\(568\) 4.85410 3.52671i 0.203674 0.147978i
\(569\) 24.2705 + 17.6336i 1.01747 + 0.739237i 0.965763 0.259425i \(-0.0835330\pi\)
0.0517094 + 0.998662i \(0.483533\pi\)
\(570\) 0 0
\(571\) 18.0000 0.753277 0.376638 0.926360i \(-0.377080\pi\)
0.376638 + 0.926360i \(0.377080\pi\)
\(572\) 0 0
\(573\) 18.0000 0.751961
\(574\) 0 0
\(575\) 24.2705 + 17.6336i 1.01215 + 0.735370i
\(576\) −0.809017 + 0.587785i −0.0337090 + 0.0244911i
\(577\) −11.7426 + 36.1401i −0.488853 + 1.50453i 0.337470 + 0.941336i \(0.390429\pi\)
−0.826322 + 0.563198i \(0.809571\pi\)
\(578\) 5.87132 18.0701i 0.244215 0.751616i
\(579\) 9.70820 7.05342i 0.403459 0.293130i
\(580\) 0 0
\(581\) 0 0
\(582\) 10.0000 0.414513
\(583\) 0 0
\(584\) −12.0000 −0.496564
\(585\) 0 0
\(586\) 24.2705 + 17.6336i 1.00261 + 0.728436i
\(587\) 9.70820 7.05342i 0.400700 0.291126i −0.369126 0.929379i \(-0.620343\pi\)
0.769826 + 0.638254i \(0.220343\pi\)
\(588\) 2.16312 6.65740i 0.0892055 0.274546i
\(589\) 7.41641 22.8254i 0.305588 0.940502i
\(590\) 0 0
\(591\) −4.85410 3.52671i −0.199671 0.145070i
\(592\) −0.618034 1.90211i −0.0254010 0.0781764i
\(593\) 6.00000 0.246390 0.123195 0.992382i \(-0.460686\pi\)
0.123195 + 0.992382i \(0.460686\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 1.85410 + 5.70634i 0.0759470 + 0.233741i
\(597\) 12.9443 + 9.40456i 0.529774 + 0.384903i
\(598\) −29.1246 + 21.1603i −1.19099 + 0.865308i
\(599\) −5.56231 + 17.1190i −0.227270 + 0.699464i 0.770784 + 0.637097i \(0.219865\pi\)
−0.998053 + 0.0623671i \(0.980135\pi\)
\(600\) 1.54508 4.75528i 0.0630778 0.194134i
\(601\) 19.4164 14.1068i 0.792012 0.575430i −0.116548 0.993185i \(-0.537183\pi\)
0.908560 + 0.417755i \(0.137183\pi\)
\(602\) 0 0
\(603\) 1.23607 + 3.80423i 0.0503366 + 0.154920i
\(604\) −12.0000 −0.488273
\(605\) 0 0
\(606\) 6.00000 0.243733
\(607\) −11.1246 34.2380i −0.451534 1.38968i −0.875156 0.483840i \(-0.839242\pi\)
0.423622 0.905839i \(-0.360758\pi\)
\(608\) −4.85410 3.52671i −0.196860 0.143027i
\(609\) 0 0
\(610\) 0 0
\(611\) 11.1246 34.2380i 0.450054 1.38512i
\(612\) 4.85410 3.52671i 0.196215 0.142559i
\(613\) 33.9787 + 24.6870i 1.37239 + 0.997098i 0.997546 + 0.0700086i \(0.0223027\pi\)
0.374841 + 0.927089i \(0.377697\pi\)
\(614\) −5.56231 17.1190i −0.224476 0.690867i
\(615\) 0 0
\(616\) 0 0
\(617\) 30.0000 1.20775 0.603877 0.797077i \(-0.293622\pi\)
0.603877 + 0.797077i \(0.293622\pi\)
\(618\) 1.23607 + 3.80423i 0.0497219 + 0.153028i
\(619\) 22.6525 + 16.4580i 0.910480 + 0.661502i 0.941136 0.338028i \(-0.109760\pi\)
−0.0306563 + 0.999530i \(0.509760\pi\)
\(620\) 0 0
\(621\) −1.85410 + 5.70634i −0.0744025 + 0.228988i
\(622\) 1.85410 5.70634i 0.0743427 0.228803i
\(623\) 0 0
\(624\) 4.85410 + 3.52671i 0.194320 + 0.141181i
\(625\) 7.72542 + 23.7764i 0.309017 + 0.951057i
\(626\) −26.0000 −1.03917
\(627\) 0 0
\(628\) −14.0000 −0.558661
\(629\) 3.70820 + 11.4127i 0.147856 + 0.455053i
\(630\) 0 0
\(631\) 16.1803 11.7557i 0.644129 0.467987i −0.217137 0.976141i \(-0.569672\pi\)
0.861266 + 0.508154i \(0.169672\pi\)
\(632\) 3.70820 11.4127i 0.147504 0.453972i
\(633\) 1.85410 5.70634i 0.0736939 0.226807i
\(634\) 9.70820 7.05342i 0.385562 0.280127i
\(635\) 0 0
\(636\) 3.70820 + 11.4127i 0.147040 + 0.452542i
\(637\) −42.0000 −1.66410
\(638\) 0 0
\(639\) −6.00000 −0.237356
\(640\) 0 0
\(641\) −24.2705 17.6336i −0.958628 0.696484i −0.00579592 0.999983i \(-0.501845\pi\)
−0.952832 + 0.303500i \(0.901845\pi\)
\(642\) −9.70820 + 7.05342i −0.383152 + 0.278376i
\(643\) −1.23607 + 3.80423i −0.0487458 + 0.150024i −0.972467 0.233042i \(-0.925132\pi\)
0.923721 + 0.383066i \(0.125132\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 29.1246 + 21.1603i 1.14589 + 0.832540i
\(647\) −12.9787 39.9444i −0.510246 1.57038i −0.791769 0.610821i \(-0.790840\pi\)
0.281523 0.959555i \(-0.409160\pi\)
\(648\) 1.00000 0.0392837
\(649\) 0 0
\(650\) −30.0000 −1.17670
\(651\) 0 0
\(652\) −16.1803 11.7557i −0.633671 0.460389i
\(653\) 19.4164 14.1068i 0.759823 0.552044i −0.139033 0.990288i \(-0.544399\pi\)
0.898856 + 0.438244i \(0.144399\pi\)
\(654\) −1.85410 + 5.70634i −0.0725011 + 0.223136i
\(655\) 0 0
\(656\) −4.85410 + 3.52671i −0.189521 + 0.137695i
\(657\) 9.70820 + 7.05342i 0.378753 + 0.275180i
\(658\) 0 0
\(659\) 24.0000 0.934907 0.467454 0.884018i \(-0.345171\pi\)
0.467454 + 0.884018i \(0.345171\pi\)
\(660\) 0 0
\(661\) −14.0000 −0.544537 −0.272268 0.962221i \(-0.587774\pi\)
−0.272268 + 0.962221i \(0.587774\pi\)
\(662\) −8.65248 26.6296i −0.336288 1.03499i
\(663\) −29.1246 21.1603i −1.13111 0.821797i
\(664\) 0 0
\(665\) 0 0
\(666\) −0.618034 + 1.90211i −0.0239483 + 0.0737054i
\(667\) −29.1246 + 21.1603i −1.12771 + 0.819329i
\(668\) 19.4164 + 14.1068i 0.751243 + 0.545810i
\(669\) −2.47214 7.60845i −0.0955783 0.294160i
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −3.70820 11.4127i −0.142941 0.439926i 0.853800 0.520602i \(-0.174292\pi\)
−0.996740 + 0.0806753i \(0.974292\pi\)
\(674\) −29.1246 21.1603i −1.12184 0.815063i
\(675\) −4.04508 + 2.93893i −0.155695 + 0.113119i
\(676\) 7.10739 21.8743i 0.273361 0.841319i
\(677\) −1.85410 + 5.70634i −0.0712589 + 0.219312i −0.980343 0.197300i \(-0.936783\pi\)
0.909084 + 0.416612i \(0.136783\pi\)
\(678\) 4.85410 3.52671i 0.186421 0.135443i
\(679\) 0 0
\(680\) 0 0
\(681\) −12.0000 −0.459841
\(682\) 0 0
\(683\) 24.0000 0.918334 0.459167 0.888350i \(-0.348148\pi\)
0.459167 + 0.888350i \(0.348148\pi\)
\(684\) 1.85410 + 5.70634i 0.0708934 + 0.218187i
\(685\) 0 0
\(686\) 0 0
\(687\) 4.32624 13.3148i 0.165056 0.507991i
\(688\) 1.85410 5.70634i 0.0706870 0.217552i
\(689\) 58.2492 42.3205i 2.21912 1.61228i
\(690\) 0 0
\(691\) −8.65248 26.6296i −0.329156 1.01304i −0.969530 0.244974i \(-0.921221\pi\)
0.640374 0.768063i \(-0.278779\pi\)
\(692\) −18.0000 −0.684257
\(693\) 0 0
\(694\) −24.0000 −0.911028
\(695\) 0 0
\(696\) 4.85410 + 3.52671i 0.183994 + 0.133680i
\(697\) 29.1246 21.1603i 1.10317 0.801502i
\(698\) 5.56231 17.1190i 0.210536 0.647964i
\(699\) −1.85410 + 5.70634i −0.0701286 + 0.215834i
\(700\) 0 0
\(701\) 4.85410 + 3.52671i 0.183337 + 0.133202i 0.675668 0.737206i \(-0.263855\pi\)
−0.492331 + 0.870408i \(0.663855\pi\)
\(702\) −1.85410 5.70634i −0.0699786 0.215372i
\(703\) −12.0000 −0.452589
\(704\) 0 0
\(705\) 0 0
\(706\) −9.27051 28.5317i −0.348900 1.07380i
\(707\) 0 0
\(708\) −9.70820 + 7.05342i −0.364857 + 0.265084i
\(709\) 3.09017 9.51057i 0.116054 0.357177i −0.876112 0.482108i \(-0.839871\pi\)
0.992165 + 0.124932i \(0.0398711\pi\)
\(710\) 0 0
\(711\) −9.70820 + 7.05342i −0.364086 + 0.264524i
\(712\) 4.85410 + 3.52671i 0.181915 + 0.132169i
\(713\) 7.41641 + 22.8254i 0.277747 + 0.854816i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −7.41641 22.8254i −0.276971 0.852429i
\(718\) 0 0
\(719\) −14.5623 + 10.5801i −0.543082 + 0.394572i −0.825229 0.564799i \(-0.808954\pi\)
0.282146 + 0.959371i \(0.408954\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −13.7533 + 9.99235i −0.511844 + 0.371877i
\(723\) 0 0
\(724\) 0.618034 + 1.90211i 0.0229691 + 0.0706915i
\(725\) −30.0000 −1.11417
\(726\) 0 0
\(727\) −8.00000 −0.296704 −0.148352 0.988935i \(-0.547397\pi\)
−0.148352 + 0.988935i \(0.547397\pi\)
\(728\) 0 0
\(729\) −0.809017 0.587785i −0.0299636 0.0217698i
\(730\) 0 0
\(731\) −11.1246 + 34.2380i −0.411459 + 1.26634i
\(732\) −1.85410 + 5.70634i −0.0685296 + 0.210912i
\(733\) −4.85410 + 3.52671i −0.179290 + 0.130262i −0.673811 0.738904i \(-0.735344\pi\)
0.494520 + 0.869166i \(0.335344\pi\)
\(734\) −6.47214 4.70228i −0.238891 0.173564i
\(735\) 0 0
\(736\) 6.00000 0.221163
\(737\) 0 0
\(738\) 6.00000 0.220863
\(739\) 9.27051 + 28.5317i 0.341021 + 1.04956i 0.963679 + 0.267062i \(0.0860527\pi\)
−0.622658 + 0.782494i \(0.713947\pi\)
\(740\) 0 0
\(741\) 29.1246 21.1603i 1.06992 0.777342i
\(742\) 0 0
\(743\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(744\) 3.23607 2.35114i 0.118640 0.0861970i
\(745\) 0 0
\(746\) −1.85410 5.70634i −0.0678835 0.208924i
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −3.23607 2.35114i −0.118086 0.0857944i 0.527175 0.849757i \(-0.323251\pi\)
−0.645261 + 0.763962i \(0.723251\pi\)
\(752\) −4.85410 + 3.52671i −0.177011 + 0.128606i
\(753\) −7.41641 + 22.8254i −0.270269 + 0.831802i
\(754\) 11.1246 34.2380i 0.405134 1.24688i
\(755\) 0 0
\(756\) 0 0
\(757\) −0.618034 1.90211i −0.0224628 0.0691335i 0.939197 0.343380i \(-0.111572\pi\)
−0.961660 + 0.274246i \(0.911572\pi\)
\(758\) 20.0000 0.726433
\(759\) 0 0
\(760\) 0 0
\(761\) −1.85410 5.70634i −0.0672111 0.206855i 0.911810 0.410612i \(-0.134685\pi\)
−0.979022 + 0.203757i \(0.934685\pi\)
\(762\) 9.70820 + 7.05342i 0.351691 + 0.255519i
\(763\) 0 0
\(764\) −5.56231 + 17.1190i −0.201237 + 0.619344i
\(765\) 0 0
\(766\) 14.5623 10.5801i 0.526157 0.382276i
\(767\) 58.2492 + 42.3205i 2.10326 + 1.52811i
\(768\) −0.309017 0.951057i −0.0111507 0.0343183i
\(769\) −12.0000 −0.432731 −0.216366 0.976312i \(-0.569420\pi\)
−0.216366 + 0.976312i \(0.569420\pi\)
\(770\) 0 0
\(771\) −18.0000 −0.648254
\(772\) 3.70820 + 11.4127i 0.133461 + 0.410751i
\(773\) 29.1246 + 21.1603i 1.04754 + 0.761082i 0.971743 0.236041i \(-0.0758501\pi\)
0.0757965 + 0.997123i \(0.475850\pi\)
\(774\) −4.85410 + 3.52671i −0.174477 + 0.126765i
\(775\) −6.18034 + 19.0211i −0.222004 + 0.683259i
\(776\) −3.09017 + 9.51057i −0.110931 + 0.341409i
\(777\) 0 0
\(778\) −19.4164 14.1068i −0.696112 0.505755i
\(779\) 11.1246 + 34.2380i 0.398581 + 1.22670i
\(780\) 0 0
\(781\) 0 0
\(782\) −36.0000 −1.28736
\(783\) −1.85410 5.70634i −0.0662602 0.203928i
\(784\) 5.66312 + 4.11450i 0.202254 + 0.146946i
\(785\) 0 0
\(786\) 3.70820 11.4127i 0.132267 0.407077i
\(787\) 1.85410 5.70634i 0.0660916 0.203409i −0.912557 0.408949i \(-0.865895\pi\)
0.978649 + 0.205540i \(0.0658952\pi\)
\(788\) 4.85410 3.52671i 0.172920 0.125634i
\(789\) 19.4164 + 14.1068i 0.691242 + 0.502217i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 36.0000 1.27840
\(794\) 0.618034 + 1.90211i 0.0219332 + 0.0675035i
\(795\) 0 0
\(796\) −12.9443 + 9.40456i −0.458798 + 0.333336i
\(797\) 14.8328 45.6507i 0.525405 1.61703i −0.238108 0.971239i \(-0.576527\pi\)
0.763513 0.645792i \(-0.223473\pi\)
\(798\) 0 0
\(799\) 29.1246 21.1603i 1.03035 0.748597i
\(800\) 4.04508 + 2.93893i 0.143015 + 0.103907i
\(801\) −1.85410 5.70634i −0.0655115 0.201624i
\(802\) −6.00000 −0.211867
\(803\) 0 0
\(804\) −4.00000 −0.141069
\(805\) 0 0
\(806\) −19.4164 14.1068i −0.683914 0.496892i
\(807\) 9.70820 7.05342i 0.341745 0.248292i
\(808\) −1.85410 + 5.70634i −0.0652271 + 0.200748i
\(809\) 5.56231 17.1190i 0.195560 0.601873i −0.804409 0.594075i \(-0.797518\pi\)
0.999970 0.00779717i \(-0.00248194\pi\)
\(810\) 0 0
\(811\) 4.85410 + 3.52671i 0.170451 + 0.123840i 0.669740 0.742596i \(-0.266406\pi\)
−0.499289 + 0.866435i \(0.666406\pi\)
\(812\) 0 0
\(813\) −12.0000 −0.420858
\(814\) 0 0
\(815\) 0 0
\(816\) 1.85410 + 5.70634i 0.0649066 + 0.199762i
\(817\) −29.1246 21.1603i −1.01894 0.740304i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −33.9787 + 24.6870i −1.18587 + 0.861582i −0.992821 0.119609i \(-0.961836\pi\)
−0.193044 + 0.981190i \(0.561836\pi\)
\(822\) −4.85410 3.52671i −0.169306 0.123008i
\(823\) −12.3607 38.0423i −0.430866 1.32607i −0.897264 0.441495i \(-0.854448\pi\)
0.466398 0.884575i \(-0.345552\pi\)
\(824\) −4.00000 −0.139347
\(825\) 0 0
\(826\) 0 0
\(827\) −14.8328 45.6507i −0.515788 1.58743i −0.781844 0.623474i \(-0.785721\pi\)
0.266057 0.963957i \(-0.414279\pi\)
\(828\) −4.85410 3.52671i −0.168692 0.122562i
\(829\) 27.5066 19.9847i 0.955343 0.694097i 0.00327844 0.999995i \(-0.498956\pi\)
0.952064 + 0.305897i \(0.0989564\pi\)
\(830\) 0 0
\(831\) 1.85410 5.70634i 0.0643181 0.197951i
\(832\) −4.85410 + 3.52671i −0.168286 + 0.122267i
\(833\) −33.9787 24.6870i −1.17729 0.855353i
\(834\) 5.56231 + 17.1190i 0.192607 + 0.592783i
\(835\) 0 0
\(836\) 0 0
\(837\) −4.00000 −0.138260
\(838\) 7.41641 + 22.8254i 0.256196 + 0.788489i
\(839\) 24.2705 + 17.6336i 0.837911 + 0.608778i 0.921786 0.387698i \(-0.126730\pi\)
−0.0838753 + 0.996476i \(0.526730\pi\)
\(840\) 0 0
\(841\) 2.16312 6.65740i 0.0745903 0.229565i
\(842\) −8.03444 + 24.7275i −0.276885 + 0.852165i
\(843\) 4.85410 3.52671i 0.167184 0.121466i
\(844\) 4.85410 + 3.52671i 0.167085 + 0.121394i
\(845\) 0 0
\(846\) 6.00000 0.206284
\(847\) 0 0
\(848\) −12.0000 −0.412082
\(849\) −1.85410 5.70634i −0.0636326 0.195841i
\(850\) −24.2705 17.6336i −0.832472 0.604826i
\(851\) 9.70820 7.05342i 0.332793 0.241788i
\(852\) 1.85410 5.70634i 0.0635205 0.195496i
\(853\) 9.27051 28.5317i 0.317416 0.976907i −0.657332 0.753601i \(-0.728315\pi\)
0.974748 0.223306i \(-0.0716848\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −3.70820 11.4127i −0.126744 0.390077i
\(857\) 18.0000 0.614868 0.307434 0.951569i \(-0.400530\pi\)
0.307434 + 0.951569i \(0.400530\pi\)
\(858\) 0 0
\(859\) −4.00000 −0.136478 −0.0682391 0.997669i \(-0.521738\pi\)
−0.0682391 + 0.997669i \(0.521738\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −19.4164 + 14.1068i −0.661325 + 0.480481i
\(863\) −16.6869 + 51.3571i −0.568029 + 1.74821i 0.0907454 + 0.995874i \(0.471075\pi\)
−0.658775 + 0.752340i \(0.728925\pi\)
\(864\) −0.309017 + 0.951057i −0.0105130 + 0.0323556i
\(865\) 0 0
\(866\) −1.61803 1.17557i −0.0549830 0.0399475i
\(867\) −5.87132 18.0701i −0.199401 0.613692i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 7.41641 + 22.8254i 0.251295 + 0.773408i
\(872\) −4.85410 3.52671i −0.164381 0.119430i
\(873\) 8.09017 5.87785i 0.273811 0.198935i
\(874\) 11.1246 34.2380i 0.376296 1.15812i
\(875\) 0 0
\(876\) −9.70820 + 7.05342i −0.328010 + 0.238313i
\(877\) −14.5623 10.5801i −0.491734 0.357266i 0.314117 0.949384i \(-0.398292\pi\)
−0.805851 + 0.592119i \(0.798292\pi\)
\(878\) 0 0
\(879\) 30.0000 1.01187
\(880\) 0 0
\(881\) −18.0000 −0.606435 −0.303218 0.952921i \(-0.598061\pi\)
−0.303218 + 0.952921i \(0.598061\pi\)
\(882\) −2.16312 6.65740i −0.0728360 0.224166i
\(883\) −42.0689 30.5648i −1.41573 1.02859i −0.992458 0.122586i \(-0.960881\pi\)
−0.423273 0.906002i \(-0.639119\pi\)
\(884\) 29.1246 21.1603i 0.979567 0.711697i
\(885\) 0 0
\(886\) −3.70820 + 11.4127i −0.124580 + 0.383416i
\(887\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(888\) −1.61803 1.17557i −0.0542977 0.0394496i
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 8.00000 0.267860
\(893\) 11.1246 + 34.2380i 0.372271 + 1.14573i
\(894\) 4.85410 + 3.52671i 0.162345 + 0.117951i
\(895\) 0 0
\(896\) 0 0
\(897\) −11.1246 + 34.2380i −0.371440 + 1.14317i
\(898\) −4.85410 + 3.52671i −0.161983 + 0.117688i
\(899\) −19.4164 14.1068i −0.647573 0.470490i
\(900\) −1.54508 4.75528i −0.0515028 0.158509i
\(901\) 72.0000 2.39867
\(902\) 0 0
\(903\) 0 0
\(904\) 1.85410 + 5.70634i 0.0616665 + 0.189790i
\(905\) 0 0
\(906\) −9.70820 + 7.05342i −0.322533 + 0.234334i
\(907\) −8.65248 + 26.6296i −0.287301 + 0.884221i 0.698399 + 0.715709i \(0.253896\pi\)
−0.985700 + 0.168512i \(0.946104\pi\)
\(908\) 3.70820 11.4127i 0.123061 0.378743i
\(909\) 4.85410 3.52671i 0.161000 0.116974i
\(910\) 0 0
\(911\) −1.85410 5.70634i −0.0614291 0.189059i 0.915632 0.402017i \(-0.131691\pi\)
−0.977062 + 0.212957i \(0.931691\pi\)
\(912\) −6.00000 −0.198680
\(913\) 0 0
\(914\) −24.0000 −0.793849
\(915\) 0 0
\(916\) 11.3262 + 8.22899i 0.374229 + 0.271894i
\(917\) 0 0
\(918\) 1.85410 5.70634i 0.0611945 0.188337i
\(919\) 11.1246 34.2380i 0.366967 1.12941i −0.581773 0.813351i \(-0.697641\pi\)
0.948740 0.316057i \(-0.102359\pi\)
\(920\) 0 0
\(921\) −14.5623 10.5801i −0.479844 0.348627i
\(922\) 5.56231 + 17.1190i 0.183185 + 0.563785i
\(923\) −36.0000 −1.18495
\(924\) 0 0
\(925\) 10.0000 0.328798
\(926\) −1.23607 3.80423i −0.0406197 0.125015i
\(927\) 3.23607 + 2.35114i 0.106286 + 0.0772216i
\(928\) −4.85410 + 3.52671i −0.159344 + 0.115770i
\(929\) −1.85410 + 5.70634i −0.0608311 + 0.187219i −0.976854 0.213907i \(-0.931381\pi\)
0.916023 + 0.401126i \(0.131381\pi\)
\(930\) 0 0
\(931\) 33.9787 24.6870i 1.11361 0.809083i
\(932\) −4.85410 3.52671i −0.159001 0.115521i
\(933\) −1.85410 5.70634i −0.0607006 0.186817i
\(934\) 0 0
\(935\) 0 0
\(936\) 6.00000 0.196116
\(937\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(938\) 0 0
\(939\) −21.0344 + 15.2824i −0.686433 + 0.498723i
\(940\) 0 0
\(941\) −9.27051 + 28.5317i −0.302210 + 0.930107i 0.678494 + 0.734606i \(0.262633\pi\)
−0.980704 + 0.195500i \(0.937367\pi\)
\(942\) −11.3262 + 8.22899i −0.369029 + 0.268115i
\(943\) −29.1246 21.1603i −0.948428 0.689073i
\(944\) −3.70820 11.4127i −0.120692 0.371451i
\(945\) 0 0
\(946\) 0 0
\(947\) 36.0000 1.16984 0.584921 0.811090i \(-0.301125\pi\)
0.584921 + 0.811090i \(0.301125\pi\)
\(948\) −3.70820 11.4127i −0.120437 0.370667i
\(949\) 58.2492 + 42.3205i 1.89085 + 1.37378i
\(950\) 24.2705 17.6336i 0.787439 0.572108i
\(951\) 3.70820 11.4127i 0.120247 0.370081i
\(952\) 0 0
\(953\) −14.5623 + 10.5801i −0.471719 + 0.342724i −0.798111 0.602510i \(-0.794167\pi\)
0.326392 + 0.945235i \(0.394167\pi\)
\(954\) 9.70820 + 7.05342i 0.314315 + 0.228363i
\(955\) 0 0
\(956\) 24.0000 0.776215
\(957\) 0 0
\(958\) 24.0000 0.775405
\(959\) 0 0
\(960\) 0 0
\(961\) 12.1353 8.81678i 0.391460 0.284412i
\(962\) −3.70820 + 11.4127i −0.119557 + 0.367960i
\(963\) −3.70820 + 11.4127i −0.119495 + 0.367768i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −12.0000 −0.385894 −0.192947 0.981209i \(-0.561805\pi\)
−0.192947 + 0.981209i \(0.561805\pi\)
\(968\) 0 0
\(969\) 36.0000 1.15649
\(970\) 0 0
\(971\) 9.70820 + 7.05342i 0.311551 + 0.226355i 0.732562 0.680701i \(-0.238325\pi\)
−0.421011 + 0.907056i \(0.638325\pi\)
\(972\) 0.809017 0.587785i 0.0259492 0.0188532i
\(973\) 0 0
\(974\) 4.94427 15.2169i 0.158425 0.487581i
\(975\) −24.2705 + 17.6336i −0.777278 + 0.564726i
\(976\) −4.85410 3.52671i −0.155376 0.112887i
\(977\) 12.9787 + 39.9444i 0.415226 + 1.27793i 0.912049 + 0.410082i \(0.134500\pi\)
−0.496823 + 0.867852i \(0.665500\pi\)
\(978\) −20.0000 −0.639529
\(979\) 0 0
\(980\) 0 0
\(981\) 1.85410 + 5.70634i 0.0591969 + 0.182189i
\(982\) 29.1246 + 21.1603i 0.929404 + 0.675251i
\(983\) −24.2705 + 17.6336i −0.774109 + 0.562423i −0.903205 0.429209i \(-0.858792\pi\)
0.129096 + 0.991632i \(0.458792\pi\)
\(984\) −1.85410 + 5.70634i −0.0591066 + 0.181911i
\(985\) 0 0
\(986\) 29.1246 21.1603i 0.927517 0.673880i
\(987\) 0 0
\(988\) 11.1246 + 34.2380i 0.353921 + 1.08926i
\(989\) 36.0000 1.14473
\(990\) 0 0
\(991\) −20.0000 −0.635321 −0.317660 0.948205i \(-0.602897\pi\)
−0.317660 + 0.948205i \(0.602897\pi\)
\(992\) 1.23607 + 3.80423i 0.0392452 + 0.120784i
\(993\) −22.6525 16.4580i −0.718855 0.522278i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −14.5623 + 10.5801i −0.461193 + 0.335076i −0.793999 0.607919i \(-0.792005\pi\)
0.332806 + 0.942995i \(0.392005\pi\)
\(998\) −3.23607 2.35114i −0.102436 0.0744241i
\(999\) 0.618034 + 1.90211i 0.0195537 + 0.0601802i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 726.2.e.h.511.1 4
11.2 odd 10 726.2.e.p.493.1 4
11.3 even 5 726.2.a.g.1.1 yes 1
11.4 even 5 inner 726.2.e.h.487.1 4
11.5 even 5 inner 726.2.e.h.565.1 4
11.6 odd 10 726.2.e.p.565.1 4
11.7 odd 10 726.2.e.p.487.1 4
11.8 odd 10 726.2.a.b.1.1 1
11.9 even 5 inner 726.2.e.h.493.1 4
11.10 odd 2 726.2.e.p.511.1 4
33.8 even 10 2178.2.a.i.1.1 1
33.14 odd 10 2178.2.a.c.1.1 1
44.3 odd 10 5808.2.a.bb.1.1 1
44.19 even 10 5808.2.a.ba.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
726.2.a.b.1.1 1 11.8 odd 10
726.2.a.g.1.1 yes 1 11.3 even 5
726.2.e.h.487.1 4 11.4 even 5 inner
726.2.e.h.493.1 4 11.9 even 5 inner
726.2.e.h.511.1 4 1.1 even 1 trivial
726.2.e.h.565.1 4 11.5 even 5 inner
726.2.e.p.487.1 4 11.7 odd 10
726.2.e.p.493.1 4 11.2 odd 10
726.2.e.p.511.1 4 11.10 odd 2
726.2.e.p.565.1 4 11.6 odd 10
2178.2.a.c.1.1 1 33.14 odd 10
2178.2.a.i.1.1 1 33.8 even 10
5808.2.a.ba.1.1 1 44.19 even 10
5808.2.a.bb.1.1 1 44.3 odd 10