L(s) = 1 | + (−0.809 − 0.587i)2-s + (−0.309 + 0.951i)3-s + (0.309 + 0.951i)4-s + (0.809 − 0.587i)6-s + (0.309 − 0.951i)8-s + (−0.809 − 0.587i)9-s − 12-s + (−4.85 − 3.52i)13-s + (−0.809 + 0.587i)16-s + (4.85 − 3.52i)17-s + (0.309 + 0.951i)18-s + (1.85 − 5.70i)19-s + 6·23-s + (0.809 + 0.587i)24-s + (−1.54 + 4.75i)25-s + (1.85 + 5.70i)26-s + ⋯ |
L(s) = 1 | + (−0.572 − 0.415i)2-s + (−0.178 + 0.549i)3-s + (0.154 + 0.475i)4-s + (0.330 − 0.239i)6-s + (0.109 − 0.336i)8-s + (−0.269 − 0.195i)9-s − 0.288·12-s + (−1.34 − 0.978i)13-s + (−0.202 + 0.146i)16-s + (1.17 − 0.855i)17-s + (0.0728 + 0.224i)18-s + (0.425 − 1.30i)19-s + 1.25·23-s + (0.165 + 0.119i)24-s + (−0.309 + 0.951i)25-s + (0.363 + 1.11i)26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 726 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.530 + 0.847i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 726 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.530 + 0.847i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.811706 - 0.449787i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.811706 - 0.449787i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.809 + 0.587i)T \) |
| 3 | \( 1 + (0.309 - 0.951i)T \) |
| 11 | \( 1 \) |
good | 5 | \( 1 + (1.54 - 4.75i)T^{2} \) |
| 7 | \( 1 + (-5.66 + 4.11i)T^{2} \) |
| 13 | \( 1 + (4.85 + 3.52i)T + (4.01 + 12.3i)T^{2} \) |
| 17 | \( 1 + (-4.85 + 3.52i)T + (5.25 - 16.1i)T^{2} \) |
| 19 | \( 1 + (-1.85 + 5.70i)T + (-15.3 - 11.1i)T^{2} \) |
| 23 | \( 1 - 6T + 23T^{2} \) |
| 29 | \( 1 + (-1.85 - 5.70i)T + (-23.4 + 17.0i)T^{2} \) |
| 31 | \( 1 + (3.23 + 2.35i)T + (9.57 + 29.4i)T^{2} \) |
| 37 | \( 1 + (0.618 + 1.90i)T + (-29.9 + 21.7i)T^{2} \) |
| 41 | \( 1 + (-1.85 + 5.70i)T + (-33.1 - 24.0i)T^{2} \) |
| 43 | \( 1 - 6T + 43T^{2} \) |
| 47 | \( 1 + (-1.85 + 5.70i)T + (-38.0 - 27.6i)T^{2} \) |
| 53 | \( 1 + (-9.70 - 7.05i)T + (16.3 + 50.4i)T^{2} \) |
| 59 | \( 1 + (3.70 + 11.4i)T + (-47.7 + 34.6i)T^{2} \) |
| 61 | \( 1 + (4.85 - 3.52i)T + (18.8 - 58.0i)T^{2} \) |
| 67 | \( 1 - 4T + 67T^{2} \) |
| 71 | \( 1 + (-4.85 + 3.52i)T + (21.9 - 67.5i)T^{2} \) |
| 73 | \( 1 + (3.70 + 11.4i)T + (-59.0 + 42.9i)T^{2} \) |
| 79 | \( 1 + (9.70 + 7.05i)T + (24.4 + 75.1i)T^{2} \) |
| 83 | \( 1 + (25.6 - 78.9i)T^{2} \) |
| 89 | \( 1 + 6T + 89T^{2} \) |
| 97 | \( 1 + (-8.09 - 5.87i)T + (29.9 + 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.28754807334576343804349448515, −9.379939171466437942410073782622, −8.949803625671351266705920804326, −7.48681324372664095851158235385, −7.21470240606940323090862669380, −5.48318922982578825324048252486, −4.93452786249802920145580765404, −3.43075621527987525255836391950, −2.61411192013216134478651136062, −0.67127629307202107240389362033,
1.27380738764506849492894004922, 2.58488732123375591164228831450, 4.20771125128313108507751941814, 5.43727253820577733392520736357, 6.22181870961698285942269078337, 7.23249475353295942279467358422, 7.79279733559829037980161029844, 8.708268335824072860533124381955, 9.747168378507475502308117010753, 10.26586510151714165025822704890