Properties

Label 726.2.e.c.493.1
Level $726$
Weight $2$
Character 726.493
Analytic conductor $5.797$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [726,2,Mod(487,726)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(726, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 8])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("726.487"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 726 = 2 \cdot 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 726.e (of order \(5\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-1,-1,-1,0,-1,2,-1,-1,10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(10)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.79713918674\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 66)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 493.1
Root \(-0.309017 - 0.951057i\) of defining polynomial
Character \(\chi\) \(=\) 726.493
Dual form 726.2.e.c.511.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.309017 - 0.951057i) q^{2} +(-0.809017 + 0.587785i) q^{3} +(-0.809017 - 0.587785i) q^{4} +(1.11803 + 3.44095i) q^{5} +(0.309017 + 0.951057i) q^{6} +(0.500000 + 0.363271i) q^{7} +(-0.809017 + 0.587785i) q^{8} +(0.309017 - 0.951057i) q^{9} +3.61803 q^{10} +1.00000 q^{12} +(-1.00000 + 3.07768i) q^{13} +(0.500000 - 0.363271i) q^{14} +(-2.92705 - 2.12663i) q^{15} +(0.309017 + 0.951057i) q^{16} +(-1.23607 - 3.80423i) q^{17} +(-0.809017 - 0.587785i) q^{18} +(-4.61803 + 3.35520i) q^{19} +(1.11803 - 3.44095i) q^{20} -0.618034 q^{21} -5.70820 q^{23} +(0.309017 - 0.951057i) q^{24} +(-6.54508 + 4.75528i) q^{25} +(2.61803 + 1.90211i) q^{26} +(0.309017 + 0.951057i) q^{27} +(-0.190983 - 0.587785i) q^{28} +(5.54508 + 4.02874i) q^{29} +(-2.92705 + 2.12663i) q^{30} +(-1.04508 + 3.21644i) q^{31} +1.00000 q^{32} -4.00000 q^{34} +(-0.690983 + 2.12663i) q^{35} +(-0.809017 + 0.587785i) q^{36} +(7.23607 + 5.25731i) q^{37} +(1.76393 + 5.42882i) q^{38} +(-1.00000 - 3.07768i) q^{39} +(-2.92705 - 2.12663i) q^{40} +(-4.61803 + 3.35520i) q^{41} +(-0.190983 + 0.587785i) q^{42} +4.76393 q^{43} +3.61803 q^{45} +(-1.76393 + 5.42882i) q^{46} +(-3.23607 + 2.35114i) q^{47} +(-0.809017 - 0.587785i) q^{48} +(-2.04508 - 6.29412i) q^{49} +(2.50000 + 7.69421i) q^{50} +(3.23607 + 2.35114i) q^{51} +(2.61803 - 1.90211i) q^{52} +(0.427051 - 1.31433i) q^{53} +1.00000 q^{54} -0.618034 q^{56} +(1.76393 - 5.42882i) q^{57} +(5.54508 - 4.02874i) q^{58} +(-8.35410 - 6.06961i) q^{59} +(1.11803 + 3.44095i) q^{60} +(1.14590 + 3.52671i) q^{61} +(2.73607 + 1.98787i) q^{62} +(0.500000 - 0.363271i) q^{63} +(0.309017 - 0.951057i) q^{64} -11.7082 q^{65} +4.94427 q^{67} +(-1.23607 + 3.80423i) q^{68} +(4.61803 - 3.35520i) q^{69} +(1.80902 + 1.31433i) q^{70} +(1.85410 + 5.70634i) q^{71} +(0.309017 + 0.951057i) q^{72} +(11.7812 + 8.55951i) q^{73} +(7.23607 - 5.25731i) q^{74} +(2.50000 - 7.69421i) q^{75} +5.70820 q^{76} -3.23607 q^{78} +(2.11803 - 6.51864i) q^{79} +(-2.92705 + 2.12663i) q^{80} +(-0.809017 - 0.587785i) q^{81} +(1.76393 + 5.42882i) q^{82} +(-0.500000 - 1.53884i) q^{83} +(0.500000 + 0.363271i) q^{84} +(11.7082 - 8.50651i) q^{85} +(1.47214 - 4.53077i) q^{86} -6.85410 q^{87} +6.76393 q^{89} +(1.11803 - 3.44095i) q^{90} +(-1.61803 + 1.17557i) q^{91} +(4.61803 + 3.35520i) q^{92} +(-1.04508 - 3.21644i) q^{93} +(1.23607 + 3.80423i) q^{94} +(-16.7082 - 12.1392i) q^{95} +(-0.809017 + 0.587785i) q^{96} +(-2.97214 + 9.14729i) q^{97} -6.61803 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - q^{2} - q^{3} - q^{4} - q^{6} + 2 q^{7} - q^{8} - q^{9} + 10 q^{10} + 4 q^{12} - 4 q^{13} + 2 q^{14} - 5 q^{15} - q^{16} + 4 q^{17} - q^{18} - 14 q^{19} + 2 q^{21} + 4 q^{23} - q^{24} - 15 q^{25}+ \cdots - 22 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/726\mathbb{Z}\right)^\times\).

\(n\) \(485\) \(607\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.309017 0.951057i 0.218508 0.672499i
\(3\) −0.809017 + 0.587785i −0.467086 + 0.339358i
\(4\) −0.809017 0.587785i −0.404508 0.293893i
\(5\) 1.11803 + 3.44095i 0.500000 + 1.53884i 0.809017 + 0.587785i \(0.200000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(6\) 0.309017 + 0.951057i 0.126156 + 0.388267i
\(7\) 0.500000 + 0.363271i 0.188982 + 0.137304i 0.678253 0.734828i \(-0.262737\pi\)
−0.489271 + 0.872132i \(0.662737\pi\)
\(8\) −0.809017 + 0.587785i −0.286031 + 0.207813i
\(9\) 0.309017 0.951057i 0.103006 0.317019i
\(10\) 3.61803 1.14412
\(11\) 0 0
\(12\) 1.00000 0.288675
\(13\) −1.00000 + 3.07768i −0.277350 + 0.853596i 0.711238 + 0.702951i \(0.248135\pi\)
−0.988588 + 0.150644i \(0.951865\pi\)
\(14\) 0.500000 0.363271i 0.133631 0.0970883i
\(15\) −2.92705 2.12663i −0.755761 0.549093i
\(16\) 0.309017 + 0.951057i 0.0772542 + 0.237764i
\(17\) −1.23607 3.80423i −0.299791 0.922660i −0.981570 0.191103i \(-0.938794\pi\)
0.681780 0.731558i \(-0.261206\pi\)
\(18\) −0.809017 0.587785i −0.190687 0.138542i
\(19\) −4.61803 + 3.35520i −1.05945 + 0.769735i −0.973986 0.226606i \(-0.927237\pi\)
−0.0854632 + 0.996341i \(0.527237\pi\)
\(20\) 1.11803 3.44095i 0.250000 0.769421i
\(21\) −0.618034 −0.134866
\(22\) 0 0
\(23\) −5.70820 −1.19024 −0.595121 0.803636i \(-0.702896\pi\)
−0.595121 + 0.803636i \(0.702896\pi\)
\(24\) 0.309017 0.951057i 0.0630778 0.194134i
\(25\) −6.54508 + 4.75528i −1.30902 + 0.951057i
\(26\) 2.61803 + 1.90211i 0.513439 + 0.373035i
\(27\) 0.309017 + 0.951057i 0.0594703 + 0.183031i
\(28\) −0.190983 0.587785i −0.0360924 0.111081i
\(29\) 5.54508 + 4.02874i 1.02970 + 0.748118i 0.968248 0.249992i \(-0.0804280\pi\)
0.0614485 + 0.998110i \(0.480428\pi\)
\(30\) −2.92705 + 2.12663i −0.534404 + 0.388267i
\(31\) −1.04508 + 3.21644i −0.187703 + 0.577690i −0.999984 0.00557557i \(-0.998225\pi\)
0.812282 + 0.583265i \(0.198225\pi\)
\(32\) 1.00000 0.176777
\(33\) 0 0
\(34\) −4.00000 −0.685994
\(35\) −0.690983 + 2.12663i −0.116797 + 0.359466i
\(36\) −0.809017 + 0.587785i −0.134836 + 0.0979642i
\(37\) 7.23607 + 5.25731i 1.18960 + 0.864297i 0.993222 0.116231i \(-0.0370814\pi\)
0.196380 + 0.980528i \(0.437081\pi\)
\(38\) 1.76393 + 5.42882i 0.286148 + 0.880672i
\(39\) −1.00000 3.07768i −0.160128 0.492824i
\(40\) −2.92705 2.12663i −0.462807 0.336249i
\(41\) −4.61803 + 3.35520i −0.721216 + 0.523994i −0.886772 0.462206i \(-0.847058\pi\)
0.165557 + 0.986200i \(0.447058\pi\)
\(42\) −0.190983 + 0.587785i −0.0294693 + 0.0906972i
\(43\) 4.76393 0.726493 0.363246 0.931693i \(-0.381668\pi\)
0.363246 + 0.931693i \(0.381668\pi\)
\(44\) 0 0
\(45\) 3.61803 0.539345
\(46\) −1.76393 + 5.42882i −0.260078 + 0.800437i
\(47\) −3.23607 + 2.35114i −0.472029 + 0.342949i −0.798232 0.602351i \(-0.794231\pi\)
0.326202 + 0.945300i \(0.394231\pi\)
\(48\) −0.809017 0.587785i −0.116772 0.0848395i
\(49\) −2.04508 6.29412i −0.292155 0.899161i
\(50\) 2.50000 + 7.69421i 0.353553 + 1.08813i
\(51\) 3.23607 + 2.35114i 0.453140 + 0.329226i
\(52\) 2.61803 1.90211i 0.363056 0.263776i
\(53\) 0.427051 1.31433i 0.0586600 0.180537i −0.917433 0.397890i \(-0.869742\pi\)
0.976093 + 0.217354i \(0.0697424\pi\)
\(54\) 1.00000 0.136083
\(55\) 0 0
\(56\) −0.618034 −0.0825883
\(57\) 1.76393 5.42882i 0.233639 0.719065i
\(58\) 5.54508 4.02874i 0.728105 0.528999i
\(59\) −8.35410 6.06961i −1.08761 0.790196i −0.108617 0.994084i \(-0.534642\pi\)
−0.978994 + 0.203888i \(0.934642\pi\)
\(60\) 1.11803 + 3.44095i 0.144338 + 0.444225i
\(61\) 1.14590 + 3.52671i 0.146717 + 0.451549i 0.997228 0.0744087i \(-0.0237069\pi\)
−0.850511 + 0.525958i \(0.823707\pi\)
\(62\) 2.73607 + 1.98787i 0.347481 + 0.252460i
\(63\) 0.500000 0.363271i 0.0629941 0.0457679i
\(64\) 0.309017 0.951057i 0.0386271 0.118882i
\(65\) −11.7082 −1.45222
\(66\) 0 0
\(67\) 4.94427 0.604039 0.302019 0.953302i \(-0.402339\pi\)
0.302019 + 0.953302i \(0.402339\pi\)
\(68\) −1.23607 + 3.80423i −0.149895 + 0.461330i
\(69\) 4.61803 3.35520i 0.555946 0.403918i
\(70\) 1.80902 + 1.31433i 0.216219 + 0.157092i
\(71\) 1.85410 + 5.70634i 0.220041 + 0.677218i 0.998757 + 0.0498409i \(0.0158714\pi\)
−0.778716 + 0.627377i \(0.784129\pi\)
\(72\) 0.309017 + 0.951057i 0.0364180 + 0.112083i
\(73\) 11.7812 + 8.55951i 1.37888 + 1.00181i 0.996984 + 0.0776093i \(0.0247287\pi\)
0.381896 + 0.924205i \(0.375271\pi\)
\(74\) 7.23607 5.25731i 0.841176 0.611150i
\(75\) 2.50000 7.69421i 0.288675 0.888451i
\(76\) 5.70820 0.654776
\(77\) 0 0
\(78\) −3.23607 −0.366413
\(79\) 2.11803 6.51864i 0.238297 0.733404i −0.758369 0.651825i \(-0.774004\pi\)
0.996667 0.0815791i \(-0.0259963\pi\)
\(80\) −2.92705 + 2.12663i −0.327254 + 0.237764i
\(81\) −0.809017 0.587785i −0.0898908 0.0653095i
\(82\) 1.76393 + 5.42882i 0.194794 + 0.599513i
\(83\) −0.500000 1.53884i −0.0548821 0.168910i 0.919858 0.392251i \(-0.128304\pi\)
−0.974740 + 0.223341i \(0.928304\pi\)
\(84\) 0.500000 + 0.363271i 0.0545545 + 0.0396361i
\(85\) 11.7082 8.50651i 1.26993 0.922660i
\(86\) 1.47214 4.53077i 0.158745 0.488565i
\(87\) −6.85410 −0.734837
\(88\) 0 0
\(89\) 6.76393 0.716975 0.358488 0.933534i \(-0.383293\pi\)
0.358488 + 0.933534i \(0.383293\pi\)
\(90\) 1.11803 3.44095i 0.117851 0.362708i
\(91\) −1.61803 + 1.17557i −0.169616 + 0.123233i
\(92\) 4.61803 + 3.35520i 0.481463 + 0.349804i
\(93\) −1.04508 3.21644i −0.108370 0.333529i
\(94\) 1.23607 + 3.80423i 0.127491 + 0.392376i
\(95\) −16.7082 12.1392i −1.71423 1.24546i
\(96\) −0.809017 + 0.587785i −0.0825700 + 0.0599906i
\(97\) −2.97214 + 9.14729i −0.301775 + 0.928767i 0.679086 + 0.734058i \(0.262376\pi\)
−0.980861 + 0.194709i \(0.937624\pi\)
\(98\) −6.61803 −0.668522
\(99\) 0 0
\(100\) 8.09017 0.809017
\(101\) 0.645898 1.98787i 0.0642693 0.197800i −0.913766 0.406242i \(-0.866839\pi\)
0.978035 + 0.208441i \(0.0668391\pi\)
\(102\) 3.23607 2.35114i 0.320418 0.232798i
\(103\) 7.97214 + 5.79210i 0.785518 + 0.570712i 0.906630 0.421927i \(-0.138646\pi\)
−0.121112 + 0.992639i \(0.538646\pi\)
\(104\) −1.00000 3.07768i −0.0980581 0.301792i
\(105\) −0.690983 2.12663i −0.0674330 0.207538i
\(106\) −1.11803 0.812299i −0.108593 0.0788975i
\(107\) 0.881966 0.640786i 0.0852629 0.0619471i −0.544337 0.838867i \(-0.683219\pi\)
0.629600 + 0.776919i \(0.283219\pi\)
\(108\) 0.309017 0.951057i 0.0297352 0.0915155i
\(109\) 2.94427 0.282010 0.141005 0.990009i \(-0.454967\pi\)
0.141005 + 0.990009i \(0.454967\pi\)
\(110\) 0 0
\(111\) −8.94427 −0.848953
\(112\) −0.190983 + 0.587785i −0.0180462 + 0.0555405i
\(113\) −5.61803 + 4.08174i −0.528500 + 0.383978i −0.819796 0.572655i \(-0.805913\pi\)
0.291296 + 0.956633i \(0.405913\pi\)
\(114\) −4.61803 3.35520i −0.432519 0.314243i
\(115\) −6.38197 19.6417i −0.595121 1.83160i
\(116\) −2.11803 6.51864i −0.196655 0.605240i
\(117\) 2.61803 + 1.90211i 0.242037 + 0.175850i
\(118\) −8.35410 + 6.06961i −0.769057 + 0.558753i
\(119\) 0.763932 2.35114i 0.0700295 0.215529i
\(120\) 3.61803 0.330280
\(121\) 0 0
\(122\) 3.70820 0.335725
\(123\) 1.76393 5.42882i 0.159048 0.489501i
\(124\) 2.73607 1.98787i 0.245706 0.178516i
\(125\) −9.04508 6.57164i −0.809017 0.587785i
\(126\) −0.190983 0.587785i −0.0170141 0.0523641i
\(127\) −1.23607 3.80423i −0.109683 0.337570i 0.881118 0.472897i \(-0.156792\pi\)
−0.990801 + 0.135326i \(0.956792\pi\)
\(128\) −0.809017 0.587785i −0.0715077 0.0519534i
\(129\) −3.85410 + 2.80017i −0.339335 + 0.246541i
\(130\) −3.61803 + 11.1352i −0.317323 + 0.976618i
\(131\) −3.85410 −0.336734 −0.168367 0.985724i \(-0.553849\pi\)
−0.168367 + 0.985724i \(0.553849\pi\)
\(132\) 0 0
\(133\) −3.52786 −0.305905
\(134\) 1.52786 4.70228i 0.131987 0.406215i
\(135\) −2.92705 + 2.12663i −0.251920 + 0.183031i
\(136\) 3.23607 + 2.35114i 0.277491 + 0.201609i
\(137\) −4.38197 13.4863i −0.374377 1.15221i −0.943898 0.330236i \(-0.892872\pi\)
0.569522 0.821976i \(-0.307128\pi\)
\(138\) −1.76393 5.42882i −0.150156 0.462132i
\(139\) −12.7082 9.23305i −1.07790 0.783137i −0.100581 0.994929i \(-0.532070\pi\)
−0.977315 + 0.211792i \(0.932070\pi\)
\(140\) 1.80902 1.31433i 0.152890 0.111081i
\(141\) 1.23607 3.80423i 0.104096 0.320374i
\(142\) 6.00000 0.503509
\(143\) 0 0
\(144\) 1.00000 0.0833333
\(145\) −7.66312 + 23.5847i −0.636387 + 1.95860i
\(146\) 11.7812 8.55951i 0.975015 0.708390i
\(147\) 5.35410 + 3.88998i 0.441599 + 0.320840i
\(148\) −2.76393 8.50651i −0.227194 0.699231i
\(149\) −1.86475 5.73910i −0.152766 0.470165i 0.845162 0.534511i \(-0.179504\pi\)
−0.997928 + 0.0643455i \(0.979504\pi\)
\(150\) −6.54508 4.75528i −0.534404 0.388267i
\(151\) 16.0172 11.6372i 1.30346 0.947021i 0.303480 0.952838i \(-0.401851\pi\)
0.999983 + 0.00581658i \(0.00185149\pi\)
\(152\) 1.76393 5.42882i 0.143074 0.440336i
\(153\) −4.00000 −0.323381
\(154\) 0 0
\(155\) −12.2361 −0.982825
\(156\) −1.00000 + 3.07768i −0.0800641 + 0.246412i
\(157\) 14.5623 10.5801i 1.16220 0.844387i 0.172144 0.985072i \(-0.444931\pi\)
0.990054 + 0.140685i \(0.0449305\pi\)
\(158\) −5.54508 4.02874i −0.441143 0.320509i
\(159\) 0.427051 + 1.31433i 0.0338673 + 0.104233i
\(160\) 1.11803 + 3.44095i 0.0883883 + 0.272031i
\(161\) −2.85410 2.07363i −0.224935 0.163425i
\(162\) −0.809017 + 0.587785i −0.0635624 + 0.0461808i
\(163\) 0.145898 0.449028i 0.0114276 0.0351706i −0.945180 0.326549i \(-0.894114\pi\)
0.956608 + 0.291379i \(0.0941140\pi\)
\(164\) 5.70820 0.445736
\(165\) 0 0
\(166\) −1.61803 −0.125584
\(167\) 1.94427 5.98385i 0.150452 0.463044i −0.847219 0.531243i \(-0.821725\pi\)
0.997672 + 0.0681985i \(0.0217251\pi\)
\(168\) 0.500000 0.363271i 0.0385758 0.0280270i
\(169\) 2.04508 + 1.48584i 0.157314 + 0.114295i
\(170\) −4.47214 13.7638i −0.342997 1.05564i
\(171\) 1.76393 + 5.42882i 0.134891 + 0.415153i
\(172\) −3.85410 2.80017i −0.293873 0.213511i
\(173\) −11.5902 + 8.42075i −0.881184 + 0.640218i −0.933565 0.358409i \(-0.883319\pi\)
0.0523802 + 0.998627i \(0.483319\pi\)
\(174\) −2.11803 + 6.51864i −0.160568 + 0.494177i
\(175\) −5.00000 −0.377964
\(176\) 0 0
\(177\) 10.3262 0.776168
\(178\) 2.09017 6.43288i 0.156665 0.482165i
\(179\) 15.0172 10.9106i 1.12244 0.815500i 0.137863 0.990451i \(-0.455977\pi\)
0.984577 + 0.174951i \(0.0559767\pi\)
\(180\) −2.92705 2.12663i −0.218169 0.158509i
\(181\) 6.61803 + 20.3682i 0.491915 + 1.51396i 0.821710 + 0.569905i \(0.193020\pi\)
−0.329796 + 0.944052i \(0.606980\pi\)
\(182\) 0.618034 + 1.90211i 0.0458117 + 0.140994i
\(183\) −3.00000 2.17963i −0.221766 0.161123i
\(184\) 4.61803 3.35520i 0.340446 0.247348i
\(185\) −10.0000 + 30.7768i −0.735215 + 2.26276i
\(186\) −3.38197 −0.247978
\(187\) 0 0
\(188\) 4.00000 0.291730
\(189\) −0.190983 + 0.587785i −0.0138920 + 0.0427551i
\(190\) −16.7082 + 12.1392i −1.21214 + 0.880672i
\(191\) 2.47214 + 1.79611i 0.178877 + 0.129962i 0.673621 0.739077i \(-0.264738\pi\)
−0.494744 + 0.869039i \(0.664738\pi\)
\(192\) 0.309017 + 0.951057i 0.0223014 + 0.0686366i
\(193\) 1.42705 + 4.39201i 0.102721 + 0.316144i 0.989189 0.146647i \(-0.0468481\pi\)
−0.886468 + 0.462791i \(0.846848\pi\)
\(194\) 7.78115 + 5.65334i 0.558654 + 0.405886i
\(195\) 9.47214 6.88191i 0.678314 0.492824i
\(196\) −2.04508 + 6.29412i −0.146077 + 0.449580i
\(197\) 25.5066 1.81727 0.908634 0.417593i \(-0.137126\pi\)
0.908634 + 0.417593i \(0.137126\pi\)
\(198\) 0 0
\(199\) −0.381966 −0.0270769 −0.0135384 0.999908i \(-0.504310\pi\)
−0.0135384 + 0.999908i \(0.504310\pi\)
\(200\) 2.50000 7.69421i 0.176777 0.544063i
\(201\) −4.00000 + 2.90617i −0.282138 + 0.204985i
\(202\) −1.69098 1.22857i −0.118977 0.0864420i
\(203\) 1.30902 + 4.02874i 0.0918750 + 0.282762i
\(204\) −1.23607 3.80423i −0.0865421 0.266349i
\(205\) −16.7082 12.1392i −1.16695 0.847840i
\(206\) 7.97214 5.79210i 0.555445 0.403554i
\(207\) −1.76393 + 5.42882i −0.122602 + 0.377329i
\(208\) −3.23607 −0.224381
\(209\) 0 0
\(210\) −2.23607 −0.154303
\(211\) 2.85410 8.78402i 0.196484 0.604717i −0.803472 0.595343i \(-0.797016\pi\)
0.999956 0.00937395i \(-0.00298386\pi\)
\(212\) −1.11803 + 0.812299i −0.0767869 + 0.0557889i
\(213\) −4.85410 3.52671i −0.332598 0.241646i
\(214\) −0.336881 1.03681i −0.0230287 0.0708751i
\(215\) 5.32624 + 16.3925i 0.363246 + 1.11796i
\(216\) −0.809017 0.587785i −0.0550466 0.0399937i
\(217\) −1.69098 + 1.22857i −0.114791 + 0.0834008i
\(218\) 0.909830 2.80017i 0.0616215 0.189651i
\(219\) −14.5623 −0.984029
\(220\) 0 0
\(221\) 12.9443 0.870726
\(222\) −2.76393 + 8.50651i −0.185503 + 0.570919i
\(223\) 1.07295 0.779543i 0.0718500 0.0522021i −0.551280 0.834320i \(-0.685861\pi\)
0.623130 + 0.782118i \(0.285861\pi\)
\(224\) 0.500000 + 0.363271i 0.0334077 + 0.0242721i
\(225\) 2.50000 + 7.69421i 0.166667 + 0.512947i
\(226\) 2.14590 + 6.60440i 0.142743 + 0.439318i
\(227\) 4.07295 + 2.95917i 0.270331 + 0.196407i 0.714689 0.699442i \(-0.246568\pi\)
−0.444358 + 0.895849i \(0.646568\pi\)
\(228\) −4.61803 + 3.35520i −0.305837 + 0.222203i
\(229\) −1.67376 + 5.15131i −0.110605 + 0.340408i −0.991005 0.133824i \(-0.957274\pi\)
0.880400 + 0.474232i \(0.157274\pi\)
\(230\) −20.6525 −1.36178
\(231\) 0 0
\(232\) −6.85410 −0.449994
\(233\) 5.23607 16.1150i 0.343026 1.05573i −0.619606 0.784913i \(-0.712708\pi\)
0.962632 0.270813i \(-0.0872925\pi\)
\(234\) 2.61803 1.90211i 0.171146 0.124345i
\(235\) −11.7082 8.50651i −0.763759 0.554903i
\(236\) 3.19098 + 9.82084i 0.207715 + 0.639282i
\(237\) 2.11803 + 6.51864i 0.137581 + 0.423431i
\(238\) −2.00000 1.45309i −0.129641 0.0941895i
\(239\) −6.09017 + 4.42477i −0.393940 + 0.286214i −0.767068 0.641565i \(-0.778285\pi\)
0.373128 + 0.927780i \(0.378285\pi\)
\(240\) 1.11803 3.44095i 0.0721688 0.222113i
\(241\) −8.61803 −0.555136 −0.277568 0.960706i \(-0.589528\pi\)
−0.277568 + 0.960706i \(0.589528\pi\)
\(242\) 0 0
\(243\) 1.00000 0.0641500
\(244\) 1.14590 3.52671i 0.0733586 0.225775i
\(245\) 19.3713 14.0741i 1.23759 0.899161i
\(246\) −4.61803 3.35520i −0.294435 0.213920i
\(247\) −5.70820 17.5680i −0.363204 1.11783i
\(248\) −1.04508 3.21644i −0.0663630 0.204244i
\(249\) 1.30902 + 0.951057i 0.0829556 + 0.0602708i
\(250\) −9.04508 + 6.57164i −0.572061 + 0.415627i
\(251\) 4.73607 14.5761i 0.298938 0.920036i −0.682932 0.730482i \(-0.739296\pi\)
0.981870 0.189555i \(-0.0607044\pi\)
\(252\) −0.618034 −0.0389325
\(253\) 0 0
\(254\) −4.00000 −0.250982
\(255\) −4.47214 + 13.7638i −0.280056 + 0.861924i
\(256\) −0.809017 + 0.587785i −0.0505636 + 0.0367366i
\(257\) −6.70820 4.87380i −0.418446 0.304019i 0.358566 0.933504i \(-0.383266\pi\)
−0.777012 + 0.629485i \(0.783266\pi\)
\(258\) 1.47214 + 4.53077i 0.0916512 + 0.282073i
\(259\) 1.70820 + 5.25731i 0.106143 + 0.326673i
\(260\) 9.47214 + 6.88191i 0.587437 + 0.426798i
\(261\) 5.54508 4.02874i 0.343232 0.249373i
\(262\) −1.19098 + 3.66547i −0.0735792 + 0.226453i
\(263\) 17.2361 1.06282 0.531411 0.847114i \(-0.321662\pi\)
0.531411 + 0.847114i \(0.321662\pi\)
\(264\) 0 0
\(265\) 5.00000 0.307148
\(266\) −1.09017 + 3.35520i −0.0668426 + 0.205720i
\(267\) −5.47214 + 3.97574i −0.334889 + 0.243311i
\(268\) −4.00000 2.90617i −0.244339 0.177523i
\(269\) 1.85410 + 5.70634i 0.113047 + 0.347922i 0.991535 0.129843i \(-0.0414473\pi\)
−0.878488 + 0.477764i \(0.841447\pi\)
\(270\) 1.11803 + 3.44095i 0.0680414 + 0.209410i
\(271\) 21.4164 + 15.5599i 1.30095 + 0.945199i 0.999964 0.00842890i \(-0.00268304\pi\)
0.300990 + 0.953627i \(0.402683\pi\)
\(272\) 3.23607 2.35114i 0.196215 0.142559i
\(273\) 0.618034 1.90211i 0.0374051 0.115121i
\(274\) −14.1803 −0.856666
\(275\) 0 0
\(276\) −5.70820 −0.343594
\(277\) −4.85410 + 14.9394i −0.291655 + 0.897621i 0.692670 + 0.721255i \(0.256434\pi\)
−0.984325 + 0.176366i \(0.943566\pi\)
\(278\) −12.7082 + 9.23305i −0.762187 + 0.553762i
\(279\) 2.73607 + 1.98787i 0.163804 + 0.119011i
\(280\) −0.690983 2.12663i −0.0412941 0.127090i
\(281\) −6.56231 20.1967i −0.391474 1.20483i −0.931673 0.363297i \(-0.881651\pi\)
0.540199 0.841537i \(-0.318349\pi\)
\(282\) −3.23607 2.35114i −0.192705 0.140008i
\(283\) −6.09017 + 4.42477i −0.362023 + 0.263025i −0.753895 0.656994i \(-0.771827\pi\)
0.391872 + 0.920020i \(0.371827\pi\)
\(284\) 1.85410 5.70634i 0.110021 0.338609i
\(285\) 20.6525 1.22335
\(286\) 0 0
\(287\) −3.52786 −0.208243
\(288\) 0.309017 0.951057i 0.0182090 0.0560415i
\(289\) 0.809017 0.587785i 0.0475892 0.0345756i
\(290\) 20.0623 + 14.5761i 1.17810 + 0.855939i
\(291\) −2.97214 9.14729i −0.174230 0.536224i
\(292\) −4.50000 13.8496i −0.263343 0.810485i
\(293\) 4.35410 + 3.16344i 0.254369 + 0.184810i 0.707661 0.706552i \(-0.249750\pi\)
−0.453292 + 0.891362i \(0.649750\pi\)
\(294\) 5.35410 3.88998i 0.312258 0.226868i
\(295\) 11.5451 35.5321i 0.672181 2.06876i
\(296\) −8.94427 −0.519875
\(297\) 0 0
\(298\) −6.03444 −0.349566
\(299\) 5.70820 17.5680i 0.330114 1.01599i
\(300\) −6.54508 + 4.75528i −0.377881 + 0.274546i
\(301\) 2.38197 + 1.73060i 0.137294 + 0.0997501i
\(302\) −6.11803 18.8294i −0.352053 1.08351i
\(303\) 0.645898 + 1.98787i 0.0371059 + 0.114200i
\(304\) −4.61803 3.35520i −0.264862 0.192434i
\(305\) −10.8541 + 7.88597i −0.621504 + 0.451549i
\(306\) −1.23607 + 3.80423i −0.0706613 + 0.217473i
\(307\) 17.2361 0.983714 0.491857 0.870676i \(-0.336318\pi\)
0.491857 + 0.870676i \(0.336318\pi\)
\(308\) 0 0
\(309\) −9.85410 −0.560580
\(310\) −3.78115 + 11.6372i −0.214755 + 0.660948i
\(311\) −13.3262 + 9.68208i −0.755662 + 0.549020i −0.897577 0.440859i \(-0.854674\pi\)
0.141915 + 0.989879i \(0.454674\pi\)
\(312\) 2.61803 + 1.90211i 0.148217 + 0.107686i
\(313\) 6.79180 + 20.9030i 0.383895 + 1.18151i 0.937279 + 0.348581i \(0.113336\pi\)
−0.553384 + 0.832926i \(0.686664\pi\)
\(314\) −5.56231 17.1190i −0.313899 0.966082i
\(315\) 1.80902 + 1.31433i 0.101927 + 0.0740540i
\(316\) −5.54508 + 4.02874i −0.311935 + 0.226634i
\(317\) −2.79837 + 8.61251i −0.157172 + 0.483727i −0.998375 0.0569940i \(-0.981848\pi\)
0.841202 + 0.540721i \(0.181848\pi\)
\(318\) 1.38197 0.0774968
\(319\) 0 0
\(320\) 3.61803 0.202254
\(321\) −0.336881 + 1.03681i −0.0188029 + 0.0578693i
\(322\) −2.85410 + 2.07363i −0.159053 + 0.115559i
\(323\) 18.4721 + 13.4208i 1.02782 + 0.746753i
\(324\) 0.309017 + 0.951057i 0.0171676 + 0.0528365i
\(325\) −8.09017 24.8990i −0.448762 1.38115i
\(326\) −0.381966 0.277515i −0.0211551 0.0153701i
\(327\) −2.38197 + 1.73060i −0.131723 + 0.0957024i
\(328\) 1.76393 5.42882i 0.0973969 0.299757i
\(329\) −2.47214 −0.136293
\(330\) 0 0
\(331\) −16.3607 −0.899264 −0.449632 0.893214i \(-0.648445\pi\)
−0.449632 + 0.893214i \(0.648445\pi\)
\(332\) −0.500000 + 1.53884i −0.0274411 + 0.0844549i
\(333\) 7.23607 5.25731i 0.396534 0.288099i
\(334\) −5.09017 3.69822i −0.278522 0.202358i
\(335\) 5.52786 + 17.0130i 0.302019 + 0.929520i
\(336\) −0.190983 0.587785i −0.0104190 0.0320663i
\(337\) 16.0902 + 11.6902i 0.876487 + 0.636805i 0.932320 0.361635i \(-0.117781\pi\)
−0.0558324 + 0.998440i \(0.517781\pi\)
\(338\) 2.04508 1.48584i 0.111238 0.0808191i
\(339\) 2.14590 6.60440i 0.116549 0.358702i
\(340\) −14.4721 −0.784862
\(341\) 0 0
\(342\) 5.70820 0.308664
\(343\) 2.60081 8.00448i 0.140431 0.432201i
\(344\) −3.85410 + 2.80017i −0.207799 + 0.150975i
\(345\) 16.7082 + 12.1392i 0.899539 + 0.653554i
\(346\) 4.42705 + 13.6251i 0.238000 + 0.732488i
\(347\) 10.6074 + 32.6462i 0.569435 + 1.75254i 0.654393 + 0.756155i \(0.272924\pi\)
−0.0849581 + 0.996385i \(0.527076\pi\)
\(348\) 5.54508 + 4.02874i 0.297248 + 0.215963i
\(349\) −9.94427 + 7.22494i −0.532305 + 0.386742i −0.821219 0.570613i \(-0.806706\pi\)
0.288914 + 0.957355i \(0.406706\pi\)
\(350\) −1.54508 + 4.75528i −0.0825883 + 0.254181i
\(351\) −3.23607 −0.172729
\(352\) 0 0
\(353\) 6.76393 0.360008 0.180004 0.983666i \(-0.442389\pi\)
0.180004 + 0.983666i \(0.442389\pi\)
\(354\) 3.19098 9.82084i 0.169599 0.521972i
\(355\) −17.5623 + 12.7598i −0.932110 + 0.677218i
\(356\) −5.47214 3.97574i −0.290023 0.210714i
\(357\) 0.763932 + 2.35114i 0.0404316 + 0.124436i
\(358\) −5.73607 17.6538i −0.303161 0.933032i
\(359\) −22.7984 16.5640i −1.20325 0.874214i −0.208651 0.977990i \(-0.566907\pi\)
−0.994601 + 0.103776i \(0.966907\pi\)
\(360\) −2.92705 + 2.12663i −0.154269 + 0.112083i
\(361\) 4.19756 12.9188i 0.220924 0.679935i
\(362\) 21.4164 1.12562
\(363\) 0 0
\(364\) 2.00000 0.104828
\(365\) −16.2812 + 50.1082i −0.852194 + 2.62278i
\(366\) −3.00000 + 2.17963i −0.156813 + 0.113931i
\(367\) 15.3992 + 11.1882i 0.803831 + 0.584017i 0.912036 0.410111i \(-0.134510\pi\)
−0.108204 + 0.994129i \(0.534510\pi\)
\(368\) −1.76393 5.42882i −0.0919513 0.282997i
\(369\) 1.76393 + 5.42882i 0.0918266 + 0.282613i
\(370\) 26.1803 + 19.0211i 1.36105 + 0.988861i
\(371\) 0.690983 0.502029i 0.0358741 0.0260640i
\(372\) −1.04508 + 3.21644i −0.0541851 + 0.166765i
\(373\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(374\) 0 0
\(375\) 11.1803 0.577350
\(376\) 1.23607 3.80423i 0.0637453 0.196188i
\(377\) −17.9443 + 13.0373i −0.924177 + 0.671454i
\(378\) 0.500000 + 0.363271i 0.0257172 + 0.0186847i
\(379\) 8.09017 + 24.8990i 0.415564 + 1.27897i 0.911745 + 0.410756i \(0.134735\pi\)
−0.496181 + 0.868219i \(0.665265\pi\)
\(380\) 6.38197 + 19.6417i 0.327388 + 1.00760i
\(381\) 3.23607 + 2.35114i 0.165789 + 0.120453i
\(382\) 2.47214 1.79611i 0.126485 0.0918971i
\(383\) 7.50658 23.1029i 0.383568 1.18050i −0.553945 0.832553i \(-0.686878\pi\)
0.937514 0.347949i \(-0.113122\pi\)
\(384\) 1.00000 0.0510310
\(385\) 0 0
\(386\) 4.61803 0.235052
\(387\) 1.47214 4.53077i 0.0748329 0.230312i
\(388\) 7.78115 5.65334i 0.395028 0.287005i
\(389\) −15.3262 11.1352i −0.777071 0.564575i 0.127027 0.991899i \(-0.459456\pi\)
−0.904099 + 0.427324i \(0.859456\pi\)
\(390\) −3.61803 11.1352i −0.183206 0.563851i
\(391\) 7.05573 + 21.7153i 0.356824 + 1.09819i
\(392\) 5.35410 + 3.88998i 0.270423 + 0.196474i
\(393\) 3.11803 2.26538i 0.157284 0.114274i
\(394\) 7.88197 24.2582i 0.397088 1.22211i
\(395\) 24.7984 1.24774
\(396\) 0 0
\(397\) 4.94427 0.248146 0.124073 0.992273i \(-0.460404\pi\)
0.124073 + 0.992273i \(0.460404\pi\)
\(398\) −0.118034 + 0.363271i −0.00591651 + 0.0182091i
\(399\) 2.85410 2.07363i 0.142884 0.103811i
\(400\) −6.54508 4.75528i −0.327254 0.237764i
\(401\) −0.527864 1.62460i −0.0263603 0.0811286i 0.937011 0.349300i \(-0.113581\pi\)
−0.963371 + 0.268171i \(0.913581\pi\)
\(402\) 1.52786 + 4.70228i 0.0762029 + 0.234529i
\(403\) −8.85410 6.43288i −0.441054 0.320445i
\(404\) −1.69098 + 1.22857i −0.0841295 + 0.0611237i
\(405\) 1.11803 3.44095i 0.0555556 0.170982i
\(406\) 4.23607 0.210233
\(407\) 0 0
\(408\) −4.00000 −0.198030
\(409\) 9.26393 28.5115i 0.458072 1.40980i −0.409418 0.912347i \(-0.634268\pi\)
0.867490 0.497454i \(-0.165732\pi\)
\(410\) −16.7082 + 12.1392i −0.825159 + 0.599513i
\(411\) 11.4721 + 8.33499i 0.565879 + 0.411135i
\(412\) −3.04508 9.37181i −0.150021 0.461716i
\(413\) −1.97214 6.06961i −0.0970425 0.298666i
\(414\) 4.61803 + 3.35520i 0.226964 + 0.164899i
\(415\) 4.73607 3.44095i 0.232484 0.168910i
\(416\) −1.00000 + 3.07768i −0.0490290 + 0.150896i
\(417\) 15.7082 0.769234
\(418\) 0 0
\(419\) 12.0902 0.590643 0.295322 0.955398i \(-0.404573\pi\)
0.295322 + 0.955398i \(0.404573\pi\)
\(420\) −0.690983 + 2.12663i −0.0337165 + 0.103769i
\(421\) 7.76393 5.64083i 0.378391 0.274917i −0.382291 0.924042i \(-0.624865\pi\)
0.760682 + 0.649125i \(0.224865\pi\)
\(422\) −7.47214 5.42882i −0.363738 0.264271i
\(423\) 1.23607 + 3.80423i 0.0600997 + 0.184968i
\(424\) 0.427051 + 1.31433i 0.0207394 + 0.0638294i
\(425\) 26.1803 + 19.0211i 1.26993 + 0.922660i
\(426\) −4.85410 + 3.52671i −0.235182 + 0.170870i
\(427\) −0.708204 + 2.17963i −0.0342724 + 0.105480i
\(428\) −1.09017 −0.0526954
\(429\) 0 0
\(430\) 17.2361 0.831197
\(431\) −10.5279 + 32.4014i −0.507109 + 1.56072i 0.290086 + 0.957001i \(0.406316\pi\)
−0.797195 + 0.603722i \(0.793684\pi\)
\(432\) −0.809017 + 0.587785i −0.0389238 + 0.0282798i
\(433\) −5.97214 4.33901i −0.287003 0.208520i 0.434963 0.900448i \(-0.356761\pi\)
−0.721966 + 0.691929i \(0.756761\pi\)
\(434\) 0.645898 + 1.98787i 0.0310041 + 0.0954208i
\(435\) −7.66312 23.5847i −0.367418 1.13080i
\(436\) −2.38197 1.73060i −0.114075 0.0828807i
\(437\) 26.3607 19.1522i 1.26100 0.916172i
\(438\) −4.50000 + 13.8496i −0.215018 + 0.661758i
\(439\) −29.9230 −1.42815 −0.714073 0.700071i \(-0.753152\pi\)
−0.714073 + 0.700071i \(0.753152\pi\)
\(440\) 0 0
\(441\) −6.61803 −0.315144
\(442\) 4.00000 12.3107i 0.190261 0.585562i
\(443\) −0.118034 + 0.0857567i −0.00560796 + 0.00407442i −0.590586 0.806975i \(-0.701103\pi\)
0.584978 + 0.811049i \(0.301103\pi\)
\(444\) 7.23607 + 5.25731i 0.343409 + 0.249501i
\(445\) 7.56231 + 23.2744i 0.358488 + 1.10331i
\(446\) −0.409830 1.26133i −0.0194060 0.0597256i
\(447\) 4.88197 + 3.54696i 0.230909 + 0.167765i
\(448\) 0.500000 0.363271i 0.0236228 0.0171630i
\(449\) 0.145898 0.449028i 0.00688535 0.0211909i −0.947555 0.319593i \(-0.896454\pi\)
0.954440 + 0.298402i \(0.0964537\pi\)
\(450\) 8.09017 0.381374
\(451\) 0 0
\(452\) 6.94427 0.326631
\(453\) −6.11803 + 18.8294i −0.287450 + 0.884681i
\(454\) 4.07295 2.95917i 0.191153 0.138881i
\(455\) −5.85410 4.25325i −0.274445 0.199396i
\(456\) 1.76393 + 5.42882i 0.0826037 + 0.254228i
\(457\) 8.68034 + 26.7153i 0.406049 + 1.24969i 0.920016 + 0.391881i \(0.128175\pi\)
−0.513967 + 0.857810i \(0.671825\pi\)
\(458\) 4.38197 + 3.18368i 0.204756 + 0.148764i
\(459\) 3.23607 2.35114i 0.151047 0.109742i
\(460\) −6.38197 + 19.6417i −0.297561 + 0.915798i
\(461\) −22.0000 −1.02464 −0.512321 0.858794i \(-0.671214\pi\)
−0.512321 + 0.858794i \(0.671214\pi\)
\(462\) 0 0
\(463\) −7.74265 −0.359831 −0.179916 0.983682i \(-0.557582\pi\)
−0.179916 + 0.983682i \(0.557582\pi\)
\(464\) −2.11803 + 6.51864i −0.0983273 + 0.302620i
\(465\) 9.89919 7.19218i 0.459064 0.333529i
\(466\) −13.7082 9.95959i −0.635020 0.461369i
\(467\) 3.95492 + 12.1720i 0.183012 + 0.563252i 0.999908 0.0135319i \(-0.00430748\pi\)
−0.816897 + 0.576784i \(0.804307\pi\)
\(468\) −1.00000 3.07768i −0.0462250 0.142266i
\(469\) 2.47214 + 1.79611i 0.114153 + 0.0829367i
\(470\) −11.7082 + 8.50651i −0.540059 + 0.392376i
\(471\) −5.56231 + 17.1190i −0.256298 + 0.788803i
\(472\) 10.3262 0.475304
\(473\) 0 0
\(474\) 6.85410 0.314819
\(475\) 14.2705 43.9201i 0.654776 2.01519i
\(476\) −2.00000 + 1.45309i −0.0916698 + 0.0666020i
\(477\) −1.11803 0.812299i −0.0511913 0.0371926i
\(478\) 2.32624 + 7.15942i 0.106400 + 0.327464i
\(479\) −2.70820 8.33499i −0.123741 0.380836i 0.869929 0.493178i \(-0.164165\pi\)
−0.993670 + 0.112342i \(0.964165\pi\)
\(480\) −2.92705 2.12663i −0.133601 0.0970668i
\(481\) −23.4164 + 17.0130i −1.06770 + 0.775727i
\(482\) −2.66312 + 8.19624i −0.121302 + 0.373328i
\(483\) 3.52786 0.160523
\(484\) 0 0
\(485\) −34.7984 −1.58011
\(486\) 0.309017 0.951057i 0.0140173 0.0431408i
\(487\) −2.50000 + 1.81636i −0.113286 + 0.0823070i −0.642986 0.765878i \(-0.722305\pi\)
0.529700 + 0.848185i \(0.322305\pi\)
\(488\) −3.00000 2.17963i −0.135804 0.0986671i
\(489\) 0.145898 + 0.449028i 0.00659774 + 0.0203057i
\(490\) −7.39919 22.7724i −0.334261 1.02875i
\(491\) −23.7082 17.2250i −1.06994 0.777354i −0.0940355 0.995569i \(-0.529977\pi\)
−0.975901 + 0.218215i \(0.929977\pi\)
\(492\) −4.61803 + 3.35520i −0.208197 + 0.151264i
\(493\) 8.47214 26.0746i 0.381566 1.17434i
\(494\) −18.4721 −0.831101
\(495\) 0 0
\(496\) −3.38197 −0.151855
\(497\) −1.14590 + 3.52671i −0.0514006 + 0.158195i
\(498\) 1.30902 0.951057i 0.0586585 0.0426179i
\(499\) −30.1803 21.9273i −1.35106 0.981601i −0.998958 0.0456382i \(-0.985468\pi\)
−0.352100 0.935963i \(-0.614532\pi\)
\(500\) 3.45492 + 10.6331i 0.154508 + 0.475528i
\(501\) 1.94427 + 5.98385i 0.0868637 + 0.267339i
\(502\) −12.3992 9.00854i −0.553403 0.402071i
\(503\) −3.70820 + 2.69417i −0.165341 + 0.120127i −0.667379 0.744719i \(-0.732584\pi\)
0.502038 + 0.864846i \(0.332584\pi\)
\(504\) −0.190983 + 0.587785i −0.00850706 + 0.0261820i
\(505\) 7.56231 0.336518
\(506\) 0 0
\(507\) −2.52786 −0.112266
\(508\) −1.23607 + 3.80423i −0.0548416 + 0.168785i
\(509\) −18.8262 + 13.6781i −0.834458 + 0.606269i −0.920817 0.389995i \(-0.872477\pi\)
0.0863588 + 0.996264i \(0.472477\pi\)
\(510\) 11.7082 + 8.50651i 0.518448 + 0.376675i
\(511\) 2.78115 + 8.55951i 0.123031 + 0.378650i
\(512\) 0.309017 + 0.951057i 0.0136568 + 0.0420312i
\(513\) −4.61803 3.35520i −0.203891 0.148136i
\(514\) −6.70820 + 4.87380i −0.295886 + 0.214974i
\(515\) −11.0172 + 33.9075i −0.485477 + 1.49414i
\(516\) 4.76393 0.209720
\(517\) 0 0
\(518\) 5.52786 0.242880
\(519\) 4.42705 13.6251i 0.194326 0.598074i
\(520\) 9.47214 6.88191i 0.415381 0.301792i
\(521\) 22.6525 + 16.4580i 0.992423 + 0.721038i 0.960450 0.278451i \(-0.0898211\pi\)
0.0319726 + 0.999489i \(0.489821\pi\)
\(522\) −2.11803 6.51864i −0.0927038 0.285313i
\(523\) −4.52786 13.9353i −0.197990 0.609350i −0.999929 0.0119436i \(-0.996198\pi\)
0.801939 0.597406i \(-0.203802\pi\)
\(524\) 3.11803 + 2.26538i 0.136212 + 0.0989638i
\(525\) 4.04508 2.93893i 0.176542 0.128265i
\(526\) 5.32624 16.3925i 0.232235 0.714746i
\(527\) 13.5279 0.589283
\(528\) 0 0
\(529\) 9.58359 0.416678
\(530\) 1.54508 4.75528i 0.0671142 0.206556i
\(531\) −8.35410 + 6.06961i −0.362537 + 0.263399i
\(532\) 2.85410 + 2.07363i 0.123741 + 0.0899031i
\(533\) −5.70820 17.5680i −0.247250 0.760957i
\(534\) 2.09017 + 6.43288i 0.0904505 + 0.278378i
\(535\) 3.19098 + 2.31838i 0.137958 + 0.100233i
\(536\) −4.00000 + 2.90617i −0.172774 + 0.125527i
\(537\) −5.73607 + 17.6538i −0.247530 + 0.761818i
\(538\) 6.00000 0.258678
\(539\) 0 0
\(540\) 3.61803 0.155695
\(541\) 1.38197 4.25325i 0.0594154 0.182862i −0.916944 0.399017i \(-0.869352\pi\)
0.976359 + 0.216155i \(0.0693516\pi\)
\(542\) 21.4164 15.5599i 0.919913 0.668356i
\(543\) −17.3262 12.5882i −0.743540 0.540213i
\(544\) −1.23607 3.80423i −0.0529960 0.163105i
\(545\) 3.29180 + 10.1311i 0.141005 + 0.433969i
\(546\) −1.61803 1.17557i −0.0692455 0.0503098i
\(547\) −34.8885 + 25.3480i −1.49173 + 1.08380i −0.518191 + 0.855265i \(0.673395\pi\)
−0.973535 + 0.228538i \(0.926605\pi\)
\(548\) −4.38197 + 13.4863i −0.187188 + 0.576106i
\(549\) 3.70820 0.158262
\(550\) 0 0
\(551\) −39.1246 −1.66676
\(552\) −1.76393 + 5.42882i −0.0750779 + 0.231066i
\(553\) 3.42705 2.48990i 0.145733 0.105881i
\(554\) 12.7082 + 9.23305i 0.539920 + 0.392275i
\(555\) −10.0000 30.7768i −0.424476 1.30640i
\(556\) 4.85410 + 14.9394i 0.205860 + 0.633571i
\(557\) −1.88197 1.36733i −0.0797415 0.0579356i 0.547200 0.837002i \(-0.315694\pi\)
−0.626942 + 0.779066i \(0.715694\pi\)
\(558\) 2.73607 1.98787i 0.115827 0.0841532i
\(559\) −4.76393 + 14.6619i −0.201493 + 0.620131i
\(560\) −2.23607 −0.0944911
\(561\) 0 0
\(562\) −21.2361 −0.895789
\(563\) −2.47214 + 7.60845i −0.104188 + 0.320658i −0.989539 0.144265i \(-0.953918\pi\)
0.885351 + 0.464923i \(0.153918\pi\)
\(564\) −3.23607 + 2.35114i −0.136263 + 0.0990009i
\(565\) −20.3262 14.7679i −0.855131 0.621289i
\(566\) 2.32624 + 7.15942i 0.0977791 + 0.300933i
\(567\) −0.190983 0.587785i −0.00802053 0.0246847i
\(568\) −4.85410 3.52671i −0.203674 0.147978i
\(569\) −6.09017 + 4.42477i −0.255313 + 0.185496i −0.708078 0.706134i \(-0.750438\pi\)
0.452765 + 0.891630i \(0.350438\pi\)
\(570\) 6.38197 19.6417i 0.267311 0.822699i
\(571\) −32.6525 −1.36646 −0.683232 0.730202i \(-0.739426\pi\)
−0.683232 + 0.730202i \(0.739426\pi\)
\(572\) 0 0
\(573\) −3.05573 −0.127655
\(574\) −1.09017 + 3.35520i −0.0455028 + 0.140043i
\(575\) 37.3607 27.1441i 1.55805 1.13199i
\(576\) −0.809017 0.587785i −0.0337090 0.0244911i
\(577\) −14.7533 45.4060i −0.614187 1.89027i −0.413037 0.910714i \(-0.635532\pi\)
−0.201150 0.979560i \(-0.564468\pi\)
\(578\) −0.309017 0.951057i −0.0128534 0.0395587i
\(579\) −3.73607 2.71441i −0.155266 0.112807i
\(580\) 20.0623 14.5761i 0.833042 0.605240i
\(581\) 0.309017 0.951057i 0.0128202 0.0394565i
\(582\) −9.61803 −0.398680
\(583\) 0 0
\(584\) −14.5623 −0.602593
\(585\) −3.61803 + 11.1352i −0.149587 + 0.460382i
\(586\) 4.35410 3.16344i 0.179866 0.130681i
\(587\) 37.0517 + 26.9196i 1.52929 + 1.11109i 0.956634 + 0.291292i \(0.0940853\pi\)
0.572652 + 0.819799i \(0.305915\pi\)
\(588\) −2.04508 6.29412i −0.0843379 0.259565i
\(589\) −5.96556 18.3601i −0.245807 0.756515i
\(590\) −30.2254 21.9601i −1.24436 0.904081i
\(591\) −20.6353 + 14.9924i −0.848821 + 0.616705i
\(592\) −2.76393 + 8.50651i −0.113597 + 0.349615i
\(593\) −27.8885 −1.14525 −0.572623 0.819819i \(-0.694074\pi\)
−0.572623 + 0.819819i \(0.694074\pi\)
\(594\) 0 0
\(595\) 8.94427 0.366679
\(596\) −1.86475 + 5.73910i −0.0763829 + 0.235083i
\(597\) 0.309017 0.224514i 0.0126472 0.00918875i
\(598\) −14.9443 10.8576i −0.611117 0.444002i
\(599\) −3.81966 11.7557i −0.156067 0.480325i 0.842200 0.539165i \(-0.181260\pi\)
−0.998267 + 0.0588396i \(0.981260\pi\)
\(600\) 2.50000 + 7.69421i 0.102062 + 0.314115i
\(601\) −7.20820 5.23707i −0.294029 0.213624i 0.430984 0.902359i \(-0.358166\pi\)
−0.725013 + 0.688735i \(0.758166\pi\)
\(602\) 2.38197 1.73060i 0.0970817 0.0705340i
\(603\) 1.52786 4.70228i 0.0622194 0.191492i
\(604\) −19.7984 −0.805584
\(605\) 0 0
\(606\) 2.09017 0.0849073
\(607\) −10.1803 + 31.3319i −0.413207 + 1.27172i 0.500637 + 0.865657i \(0.333099\pi\)
−0.913845 + 0.406064i \(0.866901\pi\)
\(608\) −4.61803 + 3.35520i −0.187286 + 0.136071i
\(609\) −3.42705 2.48990i −0.138871 0.100896i
\(610\) 4.14590 + 12.7598i 0.167863 + 0.516628i
\(611\) −4.00000 12.3107i −0.161823 0.498039i
\(612\) 3.23607 + 2.35114i 0.130810 + 0.0950392i
\(613\) 28.0344 20.3682i 1.13230 0.822664i 0.146272 0.989244i \(-0.453272\pi\)
0.986028 + 0.166580i \(0.0532724\pi\)
\(614\) 5.32624 16.3925i 0.214949 0.661546i
\(615\) 20.6525 0.832788
\(616\) 0 0
\(617\) 25.1246 1.01148 0.505739 0.862686i \(-0.331220\pi\)
0.505739 + 0.862686i \(0.331220\pi\)
\(618\) −3.04508 + 9.37181i −0.122491 + 0.376989i
\(619\) −3.23607 + 2.35114i −0.130069 + 0.0945003i −0.650917 0.759149i \(-0.725616\pi\)
0.520849 + 0.853649i \(0.325616\pi\)
\(620\) 9.89919 + 7.19218i 0.397561 + 0.288845i
\(621\) −1.76393 5.42882i −0.0707842 0.217851i
\(622\) 5.09017 + 15.6659i 0.204097 + 0.628147i
\(623\) 3.38197 + 2.45714i 0.135496 + 0.0984433i
\(624\) 2.61803 1.90211i 0.104805 0.0761455i
\(625\) 0 0
\(626\) 21.9787 0.878446
\(627\) 0 0
\(628\) −18.0000 −0.718278
\(629\) 11.0557 34.0260i 0.440821 1.35671i
\(630\) 1.80902 1.31433i 0.0720730 0.0523641i
\(631\) −22.0172 15.9964i −0.876492 0.636809i 0.0558293 0.998440i \(-0.482220\pi\)
−0.932321 + 0.361632i \(0.882220\pi\)
\(632\) 2.11803 + 6.51864i 0.0842509 + 0.259298i
\(633\) 2.85410 + 8.78402i 0.113440 + 0.349134i
\(634\) 7.32624 + 5.32282i 0.290962 + 0.211396i
\(635\) 11.7082 8.50651i 0.464626 0.337570i
\(636\) 0.427051 1.31433i 0.0169337 0.0521165i
\(637\) 21.4164 0.848549
\(638\) 0 0
\(639\) 6.00000 0.237356
\(640\) 1.11803 3.44095i 0.0441942 0.136016i
\(641\) −1.76393 + 1.28157i −0.0696711 + 0.0506190i −0.622076 0.782957i \(-0.713710\pi\)
0.552405 + 0.833576i \(0.313710\pi\)
\(642\) 0.881966 + 0.640786i 0.0348084 + 0.0252898i
\(643\) 1.85410 + 5.70634i 0.0731186 + 0.225036i 0.980936 0.194329i \(-0.0622528\pi\)
−0.907818 + 0.419365i \(0.862253\pi\)
\(644\) 1.09017 + 3.35520i 0.0429587 + 0.132213i
\(645\) −13.9443 10.1311i −0.549055 0.398912i
\(646\) 18.4721 13.4208i 0.726776 0.528034i
\(647\) −5.18034 + 15.9434i −0.203660 + 0.626802i 0.796106 + 0.605158i \(0.206890\pi\)
−0.999766 + 0.0216438i \(0.993110\pi\)
\(648\) 1.00000 0.0392837
\(649\) 0 0
\(650\) −26.1803 −1.02688
\(651\) 0.645898 1.98787i 0.0253147 0.0779108i
\(652\) −0.381966 + 0.277515i −0.0149589 + 0.0108683i
\(653\) −13.3992 9.73508i −0.524351 0.380963i 0.293890 0.955839i \(-0.405050\pi\)
−0.818240 + 0.574876i \(0.805050\pi\)
\(654\) 0.909830 + 2.80017i 0.0355772 + 0.109495i
\(655\) −4.30902 13.2618i −0.168367 0.518181i
\(656\) −4.61803 3.35520i −0.180304 0.130998i
\(657\) 11.7812 8.55951i 0.459627 0.333938i
\(658\) −0.763932 + 2.35114i −0.0297812 + 0.0916570i
\(659\) 18.9230 0.737135 0.368567 0.929601i \(-0.379848\pi\)
0.368567 + 0.929601i \(0.379848\pi\)
\(660\) 0 0
\(661\) 37.5967 1.46234 0.731172 0.682193i \(-0.238974\pi\)
0.731172 + 0.682193i \(0.238974\pi\)
\(662\) −5.05573 + 15.5599i −0.196496 + 0.604754i
\(663\) −10.4721 + 7.60845i −0.406704 + 0.295488i
\(664\) 1.30902 + 0.951057i 0.0507997 + 0.0369082i
\(665\) −3.94427 12.1392i −0.152952 0.470739i
\(666\) −2.76393 8.50651i −0.107100 0.329620i
\(667\) −31.6525 22.9969i −1.22559 0.890442i
\(668\) −5.09017 + 3.69822i −0.196945 + 0.143089i
\(669\) −0.409830 + 1.26133i −0.0158449 + 0.0487657i
\(670\) 17.8885 0.691095
\(671\) 0 0
\(672\) −0.618034 −0.0238412
\(673\) 10.7361 33.0422i 0.413845 1.27368i −0.499435 0.866351i \(-0.666459\pi\)
0.913280 0.407333i \(-0.133541\pi\)
\(674\) 16.0902 11.6902i 0.619770 0.450289i
\(675\) −6.54508 4.75528i −0.251920 0.183031i
\(676\) −0.781153 2.40414i −0.0300443 0.0924670i
\(677\) −13.6418 41.9852i −0.524298 1.61362i −0.765699 0.643199i \(-0.777607\pi\)
0.241401 0.970425i \(-0.422393\pi\)
\(678\) −5.61803 4.08174i −0.215759 0.156758i
\(679\) −4.80902 + 3.49396i −0.184553 + 0.134086i
\(680\) −4.47214 + 13.7638i −0.171499 + 0.527818i
\(681\) −5.03444 −0.192920
\(682\) 0 0
\(683\) 41.4508 1.58607 0.793036 0.609174i \(-0.208499\pi\)
0.793036 + 0.609174i \(0.208499\pi\)
\(684\) 1.76393 5.42882i 0.0674456 0.207576i
\(685\) 41.5066 30.1563i 1.58588 1.15221i
\(686\) −6.80902 4.94704i −0.259969 0.188879i
\(687\) −1.67376 5.15131i −0.0638580 0.196535i
\(688\) 1.47214 + 4.53077i 0.0561247 + 0.172734i
\(689\) 3.61803 + 2.62866i 0.137836 + 0.100144i
\(690\) 16.7082 12.1392i 0.636070 0.462132i
\(691\) −10.8541 + 33.4055i −0.412909 + 1.27080i 0.501198 + 0.865333i \(0.332893\pi\)
−0.914107 + 0.405472i \(0.867107\pi\)
\(692\) 14.3262 0.544602
\(693\) 0 0
\(694\) 34.3262 1.30301
\(695\) 17.5623 54.0512i 0.666176 2.05028i
\(696\) 5.54508 4.02874i 0.210186 0.152709i
\(697\) 18.4721 + 13.4208i 0.699682 + 0.508349i
\(698\) 3.79837 + 11.6902i 0.143771 + 0.442480i
\(699\) 5.23607 + 16.1150i 0.198046 + 0.609524i
\(700\) 4.04508 + 2.93893i 0.152890 + 0.111081i
\(701\) 41.9787 30.4993i 1.58551 1.15194i 0.675505 0.737356i \(-0.263926\pi\)
0.910009 0.414588i \(-0.136074\pi\)
\(702\) −1.00000 + 3.07768i −0.0377426 + 0.116160i
\(703\) −51.0557 −1.92560
\(704\) 0 0
\(705\) 14.4721 0.545052
\(706\) 2.09017 6.43288i 0.0786646 0.242105i
\(707\) 1.04508 0.759299i 0.0393045 0.0285564i
\(708\) −8.35410 6.06961i −0.313966 0.228110i
\(709\) −10.0557 30.9483i −0.377651 1.16229i −0.941673 0.336530i \(-0.890747\pi\)
0.564022 0.825760i \(-0.309253\pi\)
\(710\) 6.70820 + 20.6457i 0.251754 + 0.774820i
\(711\) −5.54508 4.02874i −0.207957 0.151090i
\(712\) −5.47214 + 3.97574i −0.205077 + 0.148997i
\(713\) 5.96556 18.3601i 0.223412 0.687591i
\(714\) 2.47214 0.0925174
\(715\) 0 0
\(716\) −18.5623 −0.693706
\(717\) 2.32624 7.15942i 0.0868749 0.267374i
\(718\) −22.7984 + 16.5640i −0.850828 + 0.618163i
\(719\) −15.3262 11.1352i −0.571572 0.415272i 0.264104 0.964494i \(-0.414924\pi\)
−0.835676 + 0.549223i \(0.814924\pi\)
\(720\) 1.11803 + 3.44095i 0.0416667 + 0.128237i
\(721\) 1.88197 + 5.79210i 0.0700881 + 0.215709i
\(722\) −10.9894 7.98424i −0.408982 0.297142i
\(723\) 6.97214 5.06555i 0.259297 0.188390i
\(724\) 6.61803 20.3682i 0.245957 0.756979i
\(725\) −55.4508 −2.05939
\(726\) 0 0
\(727\) −4.58359 −0.169996 −0.0849980 0.996381i \(-0.527088\pi\)
−0.0849980 + 0.996381i \(0.527088\pi\)
\(728\) 0.618034 1.90211i 0.0229059 0.0704970i
\(729\) −0.809017 + 0.587785i −0.0299636 + 0.0217698i
\(730\) 42.6246 + 30.9686i 1.57761 + 1.14620i
\(731\) −5.88854 18.1231i −0.217796 0.670306i
\(732\) 1.14590 + 3.52671i 0.0423536 + 0.130351i
\(733\) 15.1803 + 11.0292i 0.560699 + 0.407371i 0.831715 0.555203i \(-0.187360\pi\)
−0.271016 + 0.962575i \(0.587360\pi\)
\(734\) 15.3992 11.1882i 0.568394 0.412963i
\(735\) −7.39919 + 22.7724i −0.272923 + 0.839971i
\(736\) −5.70820 −0.210407
\(737\) 0 0
\(738\) 5.70820 0.210122
\(739\) −13.1246 + 40.3934i −0.482797 + 1.48590i 0.352350 + 0.935868i \(0.385383\pi\)
−0.835147 + 0.550027i \(0.814617\pi\)
\(740\) 26.1803 19.0211i 0.962408 0.699231i
\(741\) 14.9443 + 10.8576i 0.548992 + 0.398866i
\(742\) −0.263932 0.812299i −0.00968925 0.0298204i
\(743\) 13.2705 + 40.8424i 0.486848 + 1.49836i 0.829287 + 0.558823i \(0.188747\pi\)
−0.342439 + 0.939540i \(0.611253\pi\)
\(744\) 2.73607 + 1.98787i 0.100309 + 0.0728788i
\(745\) 17.6631 12.8330i 0.647127 0.470165i
\(746\) 0 0
\(747\) −1.61803 −0.0592008
\(748\) 0 0
\(749\) 0.673762 0.0246187
\(750\) 3.45492 10.6331i 0.126156 0.388267i
\(751\) −28.1803 + 20.4742i −1.02832 + 0.747115i −0.967971 0.251063i \(-0.919220\pi\)
−0.0603444 + 0.998178i \(0.519220\pi\)
\(752\) −3.23607 2.35114i −0.118007 0.0857373i
\(753\) 4.73607 + 14.5761i 0.172592 + 0.531183i
\(754\) 6.85410 + 21.0948i 0.249612 + 0.768226i
\(755\) 57.9508 + 42.1038i 2.10905 + 1.53231i
\(756\) 0.500000 0.363271i 0.0181848 0.0132120i
\(757\) −7.21478 + 22.2048i −0.262226 + 0.807048i 0.730094 + 0.683347i \(0.239476\pi\)
−0.992320 + 0.123701i \(0.960524\pi\)
\(758\) 26.1803 0.950913
\(759\) 0 0
\(760\) 20.6525 0.749144
\(761\) −9.83282 + 30.2623i −0.356439 + 1.09701i 0.598731 + 0.800950i \(0.295672\pi\)
−0.955170 + 0.296057i \(0.904328\pi\)
\(762\) 3.23607 2.35114i 0.117230 0.0851729i
\(763\) 1.47214 + 1.06957i 0.0532949 + 0.0387210i
\(764\) −0.944272 2.90617i −0.0341626 0.105142i
\(765\) −4.47214 13.7638i −0.161690 0.497632i
\(766\) −19.6525 14.2784i −0.710073 0.515898i
\(767\) 27.0344 19.6417i 0.976157 0.709220i
\(768\) 0.309017 0.951057i 0.0111507 0.0343183i
\(769\) 21.4377 0.773063 0.386532 0.922276i \(-0.373673\pi\)
0.386532 + 0.922276i \(0.373673\pi\)
\(770\) 0 0
\(771\) 8.29180 0.298622
\(772\) 1.42705 4.39201i 0.0513607 0.158072i
\(773\) −10.4894 + 7.62096i −0.377276 + 0.274107i −0.760222 0.649664i \(-0.774910\pi\)
0.382946 + 0.923771i \(0.374910\pi\)
\(774\) −3.85410 2.80017i −0.138533 0.100650i
\(775\) −8.45492 26.0216i −0.303710 0.934722i
\(776\) −2.97214 9.14729i −0.106693 0.328369i
\(777\) −4.47214 3.24920i −0.160437 0.116564i
\(778\) −15.3262 + 11.1352i −0.549472 + 0.399215i
\(779\) 10.0689 30.9888i 0.360755 1.11029i
\(780\) −11.7082 −0.419221
\(781\) 0 0
\(782\) 22.8328 0.816500
\(783\) −2.11803 + 6.51864i −0.0756924 + 0.232957i
\(784\) 5.35410 3.88998i 0.191218 0.138928i
\(785\) 52.6869 + 38.2793i 1.88048 + 1.36625i
\(786\) −1.19098 3.66547i −0.0424810 0.130743i
\(787\) −10.4164 32.0584i −0.371305 1.14276i −0.945938 0.324348i \(-0.894855\pi\)
0.574633 0.818411i \(-0.305145\pi\)
\(788\) −20.6353 14.9924i −0.735101 0.534082i
\(789\) −13.9443 + 10.1311i −0.496429 + 0.360677i
\(790\) 7.66312 23.5847i 0.272642 0.839104i
\(791\) −4.29180 −0.152599
\(792\) 0 0
\(793\) −12.0000 −0.426132
\(794\) 1.52786 4.70228i 0.0542219 0.166878i
\(795\) −4.04508 + 2.93893i −0.143464 + 0.104233i
\(796\) 0.309017 + 0.224514i 0.0109528 + 0.00795769i
\(797\) −9.77458 30.0830i −0.346233 1.06560i −0.960920 0.276825i \(-0.910718\pi\)
0.614687 0.788771i \(-0.289282\pi\)
\(798\) −1.09017 3.35520i −0.0385916 0.118773i
\(799\) 12.9443 + 9.40456i 0.457935 + 0.332710i
\(800\) −6.54508 + 4.75528i −0.231404 + 0.168125i
\(801\) 2.09017 6.43288i 0.0738525 0.227295i
\(802\) −1.70820 −0.0603188
\(803\) 0 0
\(804\) 4.94427 0.174371
\(805\) 3.94427 12.1392i 0.139017 0.427851i
\(806\) −8.85410 + 6.43288i −0.311872 + 0.226589i
\(807\) −4.85410 3.52671i −0.170872 0.124146i
\(808\) 0.645898 + 1.98787i 0.0227226 + 0.0699330i
\(809\) 6.47214 + 19.9192i 0.227548 + 0.700321i 0.998023 + 0.0628508i \(0.0200192\pi\)
−0.770475 + 0.637471i \(0.779981\pi\)
\(810\) −2.92705 2.12663i −0.102846 0.0747221i
\(811\) 35.7426 25.9686i 1.25509 0.911879i 0.256588 0.966521i \(-0.417402\pi\)
0.998506 + 0.0546417i \(0.0174016\pi\)
\(812\) 1.30902 4.02874i 0.0459375 0.141381i
\(813\) −26.4721 −0.928418
\(814\) 0 0
\(815\) 1.70820 0.0598358
\(816\) −1.23607 + 3.80423i −0.0432710 + 0.133175i
\(817\) −22.0000 + 15.9839i −0.769683 + 0.559207i
\(818\) −24.2533 17.6210i −0.847996 0.616105i
\(819\) 0.618034 + 1.90211i 0.0215959 + 0.0664652i
\(820\) 6.38197 + 19.6417i 0.222868 + 0.685917i
\(821\) 19.7705 + 14.3641i 0.689996 + 0.501311i 0.876659 0.481113i \(-0.159767\pi\)
−0.186663 + 0.982424i \(0.559767\pi\)
\(822\) 11.4721 8.33499i 0.400137 0.290716i
\(823\) 5.29837 16.3067i 0.184690 0.568416i −0.815253 0.579105i \(-0.803402\pi\)
0.999943 + 0.0106882i \(0.00340224\pi\)
\(824\) −9.85410 −0.343284
\(825\) 0 0
\(826\) −6.38197 −0.222057
\(827\) −13.7533 + 42.3283i −0.478249 + 1.47190i 0.363277 + 0.931681i \(0.381658\pi\)
−0.841526 + 0.540217i \(0.818342\pi\)
\(828\) 4.61803 3.35520i 0.160488 0.116601i
\(829\) −40.2705 29.2582i −1.39865 1.01618i −0.994853 0.101333i \(-0.967689\pi\)
−0.403800 0.914847i \(-0.632311\pi\)
\(830\) −1.80902 5.56758i −0.0627919 0.193254i
\(831\) −4.85410 14.9394i −0.168387 0.518242i
\(832\) 2.61803 + 1.90211i 0.0907640 + 0.0659439i
\(833\) −21.4164 + 15.5599i −0.742035 + 0.539120i
\(834\) 4.85410 14.9394i 0.168084 0.517309i
\(835\) 22.7639 0.787778
\(836\) 0 0
\(837\) −3.38197 −0.116898
\(838\) 3.73607 11.4984i 0.129060 0.397207i
\(839\) 20.2361 14.7024i 0.698627 0.507582i −0.180858 0.983509i \(-0.557887\pi\)
0.879485 + 0.475927i \(0.157887\pi\)
\(840\) 1.80902 + 1.31433i 0.0624170 + 0.0453486i
\(841\) 5.55573 + 17.0988i 0.191577 + 0.589613i
\(842\) −2.96556 9.12705i −0.102200 0.314539i
\(843\) 17.1803 + 12.4822i 0.591722 + 0.429911i
\(844\) −7.47214 + 5.42882i −0.257202 + 0.186868i
\(845\) −2.82624 + 8.69827i −0.0972255 + 0.299229i
\(846\) 4.00000 0.137523
\(847\) 0 0
\(848\) 1.38197 0.0474569
\(849\) 2.32624 7.15942i 0.0798363 0.245711i
\(850\) 26.1803 19.0211i 0.897978 0.652419i
\(851\) −41.3050 30.0098i −1.41592 1.02872i
\(852\) 1.85410 + 5.70634i 0.0635205 + 0.195496i
\(853\) −4.18034 12.8658i −0.143132 0.440515i 0.853634 0.520873i \(-0.174394\pi\)
−0.996766 + 0.0803580i \(0.974394\pi\)
\(854\) 1.85410 + 1.34708i 0.0634461 + 0.0460963i
\(855\) −16.7082 + 12.1392i −0.571409 + 0.415153i
\(856\) −0.336881 + 1.03681i −0.0115144 + 0.0354375i
\(857\) −20.1803 −0.689347 −0.344674 0.938723i \(-0.612010\pi\)
−0.344674 + 0.938723i \(0.612010\pi\)
\(858\) 0 0
\(859\) −51.9574 −1.77276 −0.886382 0.462954i \(-0.846789\pi\)
−0.886382 + 0.462954i \(0.846789\pi\)
\(860\) 5.32624 16.3925i 0.181623 0.558979i
\(861\) 2.85410 2.07363i 0.0972675 0.0706690i
\(862\) 27.5623 + 20.0252i 0.938776 + 0.682061i
\(863\) 2.20163 + 6.77591i 0.0749442 + 0.230655i 0.981510 0.191409i \(-0.0613058\pi\)
−0.906566 + 0.422064i \(0.861306\pi\)
\(864\) 0.309017 + 0.951057i 0.0105130 + 0.0323556i
\(865\) −41.9336 30.4666i −1.42579 1.03589i
\(866\) −5.97214 + 4.33901i −0.202941 + 0.147446i
\(867\) −0.309017 + 0.951057i −0.0104948 + 0.0322996i
\(868\) 2.09017 0.0709450
\(869\) 0 0
\(870\) −24.7984 −0.840744
\(871\) −4.94427 + 15.2169i −0.167530 + 0.515605i
\(872\) −2.38197 + 1.73060i −0.0806635 + 0.0586055i
\(873\) 7.78115 + 5.65334i 0.263352 + 0.191337i
\(874\) −10.0689 30.9888i −0.340585 1.04821i
\(875\) −2.13525 6.57164i −0.0721848 0.222162i
\(876\) 11.7812 + 8.55951i 0.398048 + 0.289199i
\(877\) −23.3262 + 16.9475i −0.787671 + 0.572277i −0.907271 0.420546i \(-0.861839\pi\)
0.119600 + 0.992822i \(0.461839\pi\)
\(878\) −9.24671 + 28.4585i −0.312061 + 0.960426i
\(879\) −5.38197 −0.181529
\(880\) 0 0
\(881\) −24.0689 −0.810901 −0.405451 0.914117i \(-0.632885\pi\)
−0.405451 + 0.914117i \(0.632885\pi\)
\(882\) −2.04508 + 6.29412i −0.0688616 + 0.211934i
\(883\) 45.7426 33.2340i 1.53936 1.11841i 0.588629 0.808403i \(-0.299668\pi\)
0.950734 0.310009i \(-0.100332\pi\)
\(884\) −10.4721 7.60845i −0.352216 0.255900i
\(885\) 11.5451 + 35.5321i 0.388084 + 1.19440i
\(886\) 0.0450850 + 0.138757i 0.00151466 + 0.00466164i
\(887\) −47.7426 34.6871i −1.60304 1.16468i −0.881352 0.472460i \(-0.843366\pi\)
−0.721689 0.692217i \(-0.756634\pi\)
\(888\) 7.23607 5.25731i 0.242827 0.176424i
\(889\) 0.763932 2.35114i 0.0256215 0.0788547i
\(890\) 24.4721 0.820308
\(891\) 0 0
\(892\) −1.32624 −0.0444057
\(893\) 7.05573 21.7153i 0.236111 0.726675i
\(894\) 4.88197 3.54696i 0.163277 0.118628i
\(895\) 54.3328 + 39.4751i 1.81615 + 1.31951i
\(896\) −0.190983 0.587785i −0.00638029 0.0196365i
\(897\) 5.70820 + 17.5680i 0.190591 + 0.586580i
\(898\) −0.381966 0.277515i −0.0127464 0.00926078i
\(899\) −18.7533 + 13.6251i −0.625457 + 0.454421i
\(900\) 2.50000 7.69421i 0.0833333 0.256474i
\(901\) −5.52786 −0.184160
\(902\) 0 0
\(903\) −2.94427 −0.0979792
\(904\) 2.14590 6.60440i 0.0713715 0.219659i
\(905\) −62.6869 + 45.5447i −2.08378 + 1.51396i
\(906\) 16.0172 + 11.6372i 0.532137 + 0.386620i
\(907\) −0.527864 1.62460i −0.0175274 0.0539439i 0.941910 0.335865i \(-0.109028\pi\)
−0.959438 + 0.281921i \(0.909028\pi\)
\(908\) −1.55573 4.78804i −0.0516286 0.158897i
\(909\) −1.69098 1.22857i −0.0560864 0.0407491i
\(910\) −5.85410 + 4.25325i −0.194062 + 0.140994i
\(911\) 8.20163 25.2420i 0.271732 0.836305i −0.718334 0.695699i \(-0.755095\pi\)
0.990066 0.140606i \(-0.0449052\pi\)
\(912\) 5.70820 0.189018
\(913\) 0 0
\(914\) 28.0902 0.929140
\(915\) 4.14590 12.7598i 0.137059 0.421825i
\(916\) 4.38197 3.18368i 0.144784 0.105192i
\(917\) −1.92705 1.40008i −0.0636368 0.0462349i
\(918\) −1.23607 3.80423i −0.0407963 0.125558i
\(919\) −15.3541 47.2551i −0.506485 1.55880i −0.798260 0.602314i \(-0.794246\pi\)
0.291774 0.956487i \(-0.405754\pi\)
\(920\) 16.7082 + 12.1392i 0.550853 + 0.400218i
\(921\) −13.9443 + 10.1311i −0.459479 + 0.333831i
\(922\) −6.79837 + 20.9232i −0.223893 + 0.689070i
\(923\) −19.4164 −0.639099
\(924\) 0 0
\(925\) −72.3607 −2.37920
\(926\) −2.39261 + 7.36369i −0.0786260 + 0.241986i
\(927\) 7.97214 5.79210i 0.261839 0.190237i
\(928\) 5.54508 + 4.02874i 0.182026 + 0.132250i
\(929\) 8.09017 + 24.8990i 0.265430 + 0.816909i 0.991594 + 0.129388i \(0.0413012\pi\)
−0.726164 + 0.687521i \(0.758699\pi\)
\(930\) −3.78115 11.6372i −0.123989 0.381599i
\(931\) 30.5623 + 22.2048i 1.00164 + 0.727733i
\(932\) −13.7082 + 9.95959i −0.449027 + 0.326237i
\(933\) 5.09017 15.6659i 0.166645 0.512880i
\(934\) 12.7984 0.418776
\(935\) 0 0
\(936\) −3.23607 −0.105774
\(937\) −1.06637 + 3.28195i −0.0348368 + 0.107217i −0.966963 0.254917i \(-0.917952\pi\)
0.932126 + 0.362134i \(0.117952\pi\)
\(938\) 2.47214 1.79611i 0.0807181 0.0586451i
\(939\) −17.7812 12.9188i −0.580266 0.421588i
\(940\) 4.47214 + 13.7638i 0.145865 + 0.448926i
\(941\) −11.6738 35.9281i −0.380554 1.17122i −0.939655 0.342124i \(-0.888854\pi\)
0.559101 0.829100i \(-0.311146\pi\)
\(942\) 14.5623 + 10.5801i 0.474466 + 0.344719i
\(943\) 26.3607 19.1522i 0.858422 0.623680i
\(944\) 3.19098 9.82084i 0.103858 0.319641i
\(945\) −2.23607 −0.0727393
\(946\) 0 0
\(947\) 31.9230 1.03736 0.518679 0.854969i \(-0.326424\pi\)
0.518679 + 0.854969i \(0.326424\pi\)
\(948\) 2.11803 6.51864i 0.0687905 0.211716i
\(949\) −38.1246 + 27.6992i −1.23758 + 0.899153i
\(950\) −37.3607 27.1441i −1.21214 0.880672i
\(951\) −2.79837 8.61251i −0.0907435 0.279280i
\(952\) 0.763932 + 2.35114i 0.0247592 + 0.0762009i
\(953\) −14.1803 10.3026i −0.459346 0.333735i 0.333929 0.942598i \(-0.391626\pi\)
−0.793275 + 0.608864i \(0.791626\pi\)
\(954\) −1.11803 + 0.812299i −0.0361977 + 0.0262992i
\(955\) −3.41641 + 10.5146i −0.110552 + 0.340245i
\(956\) 7.52786 0.243469
\(957\) 0 0
\(958\) −8.76393 −0.283150
\(959\) 2.70820 8.33499i 0.0874525 0.269151i
\(960\) −2.92705 + 2.12663i −0.0944702 + 0.0686366i
\(961\) 15.8262 + 11.4984i 0.510524 + 0.370917i
\(962\) 8.94427 + 27.5276i 0.288375 + 0.887527i
\(963\) −0.336881 1.03681i −0.0108558 0.0334108i
\(964\) 6.97214 + 5.06555i 0.224557 + 0.163150i
\(965\) −13.5172 + 9.82084i −0.435135 + 0.316144i
\(966\) 1.09017 3.35520i 0.0350756 0.107952i
\(967\) 19.6180 0.630873 0.315437 0.948947i \(-0.397849\pi\)
0.315437 + 0.948947i \(0.397849\pi\)
\(968\) 0 0
\(969\) −22.8328 −0.733496
\(970\) −10.7533 + 33.0952i −0.345267 + 1.06262i
\(971\) 4.47214 3.24920i 0.143518 0.104272i −0.513710 0.857964i \(-0.671729\pi\)
0.657227 + 0.753692i \(0.271729\pi\)
\(972\) −0.809017 0.587785i −0.0259492 0.0188532i
\(973\) −3.00000 9.23305i −0.0961756 0.295998i
\(974\) 0.954915 + 2.93893i 0.0305975 + 0.0941693i
\(975\) 21.1803 + 15.3884i 0.678314 + 0.492824i
\(976\) −3.00000 + 2.17963i −0.0960277 + 0.0697682i
\(977\) −5.87539 + 18.0826i −0.187970 + 0.578513i −0.999987 0.00512122i \(-0.998370\pi\)
0.812017 + 0.583634i \(0.198370\pi\)
\(978\) 0.472136 0.0150972
\(979\) 0 0
\(980\) −23.9443 −0.764872
\(981\) 0.909830 2.80017i 0.0290486 0.0894025i
\(982\) −23.7082 + 17.2250i −0.756559 + 0.549672i
\(983\) 15.8541 + 11.5187i 0.505667 + 0.367389i 0.811178 0.584800i \(-0.198827\pi\)
−0.305510 + 0.952189i \(0.598827\pi\)
\(984\) 1.76393 + 5.42882i 0.0562321 + 0.173065i
\(985\) 28.5172 + 87.7670i 0.908634 + 2.79649i
\(986\) −22.1803 16.1150i −0.706366 0.513205i
\(987\) 2.00000 1.45309i 0.0636607 0.0462522i
\(988\) −5.70820 + 17.5680i −0.181602 + 0.558914i
\(989\) −27.1935 −0.864703
\(990\) 0 0
\(991\) 55.3951 1.75968 0.879842 0.475266i \(-0.157648\pi\)
0.879842 + 0.475266i \(0.157648\pi\)
\(992\) −1.04508 + 3.21644i −0.0331815 + 0.102122i
\(993\) 13.2361 9.61657i 0.420034 0.305173i
\(994\) 3.00000 + 2.17963i 0.0951542 + 0.0691336i
\(995\) −0.427051 1.31433i −0.0135384 0.0416670i
\(996\) −0.500000 1.53884i −0.0158431 0.0487601i
\(997\) 19.9443 + 14.4904i 0.631641 + 0.458914i 0.856968 0.515369i \(-0.172345\pi\)
−0.225327 + 0.974283i \(0.572345\pi\)
\(998\) −30.1803 + 21.9273i −0.955342 + 0.694097i
\(999\) −2.76393 + 8.50651i −0.0874469 + 0.269134i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 726.2.e.c.493.1 4
11.2 odd 10 726.2.e.j.487.1 4
11.3 even 5 726.2.e.a.565.1 4
11.4 even 5 726.2.a.m.1.2 2
11.5 even 5 inner 726.2.e.c.511.1 4
11.6 odd 10 66.2.e.b.49.1 yes 4
11.7 odd 10 726.2.a.k.1.2 2
11.8 odd 10 726.2.e.j.565.1 4
11.9 even 5 726.2.e.a.487.1 4
11.10 odd 2 66.2.e.b.31.1 4
33.17 even 10 198.2.f.a.181.1 4
33.26 odd 10 2178.2.a.o.1.1 2
33.29 even 10 2178.2.a.v.1.1 2
33.32 even 2 198.2.f.a.163.1 4
44.7 even 10 5808.2.a.bz.1.2 2
44.15 odd 10 5808.2.a.by.1.2 2
44.39 even 10 528.2.y.g.49.1 4
44.43 even 2 528.2.y.g.97.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
66.2.e.b.31.1 4 11.10 odd 2
66.2.e.b.49.1 yes 4 11.6 odd 10
198.2.f.a.163.1 4 33.32 even 2
198.2.f.a.181.1 4 33.17 even 10
528.2.y.g.49.1 4 44.39 even 10
528.2.y.g.97.1 4 44.43 even 2
726.2.a.k.1.2 2 11.7 odd 10
726.2.a.m.1.2 2 11.4 even 5
726.2.e.a.487.1 4 11.9 even 5
726.2.e.a.565.1 4 11.3 even 5
726.2.e.c.493.1 4 1.1 even 1 trivial
726.2.e.c.511.1 4 11.5 even 5 inner
726.2.e.j.487.1 4 11.2 odd 10
726.2.e.j.565.1 4 11.8 odd 10
2178.2.a.o.1.1 2 33.26 odd 10
2178.2.a.v.1.1 2 33.29 even 10
5808.2.a.by.1.2 2 44.15 odd 10
5808.2.a.bz.1.2 2 44.7 even 10