Properties

Label 726.2.e.a.487.1
Level $726$
Weight $2$
Character 726.487
Analytic conductor $5.797$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [726,2,Mod(487,726)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(726, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 8])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("726.487"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 726 = 2 \cdot 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 726.e (of order \(5\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-1,-1,-1,-5,-1,-3,-1,-1,10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(10)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.79713918674\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 66)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 487.1
Root \(0.809017 + 0.587785i\) of defining polynomial
Character \(\chi\) \(=\) 726.487
Dual form 726.2.e.a.565.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.809017 + 0.587785i) q^{2} +(0.309017 + 0.951057i) q^{3} +(0.309017 - 0.951057i) q^{4} +(-2.92705 - 2.12663i) q^{5} +(-0.809017 - 0.587785i) q^{6} +(-0.190983 + 0.587785i) q^{7} +(0.309017 + 0.951057i) q^{8} +(-0.809017 + 0.587785i) q^{9} +3.61803 q^{10} +1.00000 q^{12} +(2.61803 - 1.90211i) q^{13} +(-0.190983 - 0.587785i) q^{14} +(1.11803 - 3.44095i) q^{15} +(-0.809017 - 0.587785i) q^{16} +(3.23607 + 2.35114i) q^{17} +(0.309017 - 0.951057i) q^{18} +(1.76393 + 5.42882i) q^{19} +(-2.92705 + 2.12663i) q^{20} -0.618034 q^{21} -5.70820 q^{23} +(-0.809017 + 0.587785i) q^{24} +(2.50000 + 7.69421i) q^{25} +(-1.00000 + 3.07768i) q^{26} +(-0.809017 - 0.587785i) q^{27} +(0.500000 + 0.363271i) q^{28} +(-2.11803 + 6.51864i) q^{29} +(1.11803 + 3.44095i) q^{30} +(2.73607 - 1.98787i) q^{31} +1.00000 q^{32} -4.00000 q^{34} +(1.80902 - 1.31433i) q^{35} +(0.309017 + 0.951057i) q^{36} +(-2.76393 + 8.50651i) q^{37} +(-4.61803 - 3.35520i) q^{38} +(2.61803 + 1.90211i) q^{39} +(1.11803 - 3.44095i) q^{40} +(1.76393 + 5.42882i) q^{41} +(0.500000 - 0.363271i) q^{42} +4.76393 q^{43} +3.61803 q^{45} +(4.61803 - 3.35520i) q^{46} +(1.23607 + 3.80423i) q^{47} +(0.309017 - 0.951057i) q^{48} +(5.35410 + 3.88998i) q^{49} +(-6.54508 - 4.75528i) q^{50} +(-1.23607 + 3.80423i) q^{51} +(-1.00000 - 3.07768i) q^{52} +(-1.11803 + 0.812299i) q^{53} +1.00000 q^{54} -0.618034 q^{56} +(-4.61803 + 3.35520i) q^{57} +(-2.11803 - 6.51864i) q^{58} +(3.19098 - 9.82084i) q^{59} +(-2.92705 - 2.12663i) q^{60} +(-3.00000 - 2.17963i) q^{61} +(-1.04508 + 3.21644i) q^{62} +(-0.190983 - 0.587785i) q^{63} +(-0.809017 + 0.587785i) q^{64} -11.7082 q^{65} +4.94427 q^{67} +(3.23607 - 2.35114i) q^{68} +(-1.76393 - 5.42882i) q^{69} +(-0.690983 + 2.12663i) q^{70} +(-4.85410 - 3.52671i) q^{71} +(-0.809017 - 0.587785i) q^{72} +(-4.50000 + 13.8496i) q^{73} +(-2.76393 - 8.50651i) q^{74} +(-6.54508 + 4.75528i) q^{75} +5.70820 q^{76} -3.23607 q^{78} +(-5.54508 + 4.02874i) q^{79} +(1.11803 + 3.44095i) q^{80} +(0.309017 - 0.951057i) q^{81} +(-4.61803 - 3.35520i) q^{82} +(1.30902 + 0.951057i) q^{83} +(-0.190983 + 0.587785i) q^{84} +(-4.47214 - 13.7638i) q^{85} +(-3.85410 + 2.80017i) q^{86} -6.85410 q^{87} +6.76393 q^{89} +(-2.92705 + 2.12663i) q^{90} +(0.618034 + 1.90211i) q^{91} +(-1.76393 + 5.42882i) q^{92} +(2.73607 + 1.98787i) q^{93} +(-3.23607 - 2.35114i) q^{94} +(6.38197 - 19.6417i) q^{95} +(0.309017 + 0.951057i) q^{96} +(7.78115 - 5.65334i) q^{97} -6.61803 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - q^{2} - q^{3} - q^{4} - 5 q^{5} - q^{6} - 3 q^{7} - q^{8} - q^{9} + 10 q^{10} + 4 q^{12} + 6 q^{13} - 3 q^{14} - q^{16} + 4 q^{17} - q^{18} + 16 q^{19} - 5 q^{20} + 2 q^{21} + 4 q^{23} - q^{24}+ \cdots - 22 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/726\mathbb{Z}\right)^\times\).

\(n\) \(485\) \(607\)
\(\chi(n)\) \(1\) \(e\left(\frac{4}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.809017 + 0.587785i −0.572061 + 0.415627i
\(3\) 0.309017 + 0.951057i 0.178411 + 0.549093i
\(4\) 0.309017 0.951057i 0.154508 0.475528i
\(5\) −2.92705 2.12663i −1.30902 0.951057i −0.309017 0.951057i \(-0.600000\pi\)
−1.00000 \(\pi\)
\(6\) −0.809017 0.587785i −0.330280 0.239962i
\(7\) −0.190983 + 0.587785i −0.0721848 + 0.222162i −0.980640 0.195821i \(-0.937263\pi\)
0.908455 + 0.417983i \(0.137263\pi\)
\(8\) 0.309017 + 0.951057i 0.109254 + 0.336249i
\(9\) −0.809017 + 0.587785i −0.269672 + 0.195928i
\(10\) 3.61803 1.14412
\(11\) 0 0
\(12\) 1.00000 0.288675
\(13\) 2.61803 1.90211i 0.726112 0.527551i −0.162219 0.986755i \(-0.551865\pi\)
0.888331 + 0.459204i \(0.151865\pi\)
\(14\) −0.190983 0.587785i −0.0510424 0.157092i
\(15\) 1.11803 3.44095i 0.288675 0.888451i
\(16\) −0.809017 0.587785i −0.202254 0.146946i
\(17\) 3.23607 + 2.35114i 0.784862 + 0.570235i 0.906434 0.422347i \(-0.138794\pi\)
−0.121572 + 0.992583i \(0.538794\pi\)
\(18\) 0.309017 0.951057i 0.0728360 0.224166i
\(19\) 1.76393 + 5.42882i 0.404674 + 1.24546i 0.921167 + 0.389167i \(0.127237\pi\)
−0.516494 + 0.856291i \(0.672763\pi\)
\(20\) −2.92705 + 2.12663i −0.654508 + 0.475528i
\(21\) −0.618034 −0.134866
\(22\) 0 0
\(23\) −5.70820 −1.19024 −0.595121 0.803636i \(-0.702896\pi\)
−0.595121 + 0.803636i \(0.702896\pi\)
\(24\) −0.809017 + 0.587785i −0.165140 + 0.119981i
\(25\) 2.50000 + 7.69421i 0.500000 + 1.53884i
\(26\) −1.00000 + 3.07768i −0.196116 + 0.603583i
\(27\) −0.809017 0.587785i −0.155695 0.113119i
\(28\) 0.500000 + 0.363271i 0.0944911 + 0.0686518i
\(29\) −2.11803 + 6.51864i −0.393309 + 1.21048i 0.536962 + 0.843607i \(0.319572\pi\)
−0.930271 + 0.366874i \(0.880428\pi\)
\(30\) 1.11803 + 3.44095i 0.204124 + 0.628230i
\(31\) 2.73607 1.98787i 0.491412 0.357032i −0.314315 0.949319i \(-0.601775\pi\)
0.805727 + 0.592287i \(0.201775\pi\)
\(32\) 1.00000 0.176777
\(33\) 0 0
\(34\) −4.00000 −0.685994
\(35\) 1.80902 1.31433i 0.305780 0.222162i
\(36\) 0.309017 + 0.951057i 0.0515028 + 0.158509i
\(37\) −2.76393 + 8.50651i −0.454388 + 1.39846i 0.417465 + 0.908693i \(0.362919\pi\)
−0.871853 + 0.489768i \(0.837081\pi\)
\(38\) −4.61803 3.35520i −0.749144 0.544285i
\(39\) 2.61803 + 1.90211i 0.419221 + 0.304582i
\(40\) 1.11803 3.44095i 0.176777 0.544063i
\(41\) 1.76393 + 5.42882i 0.275480 + 0.847840i 0.989092 + 0.147299i \(0.0470579\pi\)
−0.713612 + 0.700541i \(0.752942\pi\)
\(42\) 0.500000 0.363271i 0.0771517 0.0560540i
\(43\) 4.76393 0.726493 0.363246 0.931693i \(-0.381668\pi\)
0.363246 + 0.931693i \(0.381668\pi\)
\(44\) 0 0
\(45\) 3.61803 0.539345
\(46\) 4.61803 3.35520i 0.680892 0.494697i
\(47\) 1.23607 + 3.80423i 0.180299 + 0.554903i 0.999836 0.0181233i \(-0.00576913\pi\)
−0.819537 + 0.573027i \(0.805769\pi\)
\(48\) 0.309017 0.951057i 0.0446028 0.137273i
\(49\) 5.35410 + 3.88998i 0.764872 + 0.555712i
\(50\) −6.54508 4.75528i −0.925615 0.672499i
\(51\) −1.23607 + 3.80423i −0.173084 + 0.532698i
\(52\) −1.00000 3.07768i −0.138675 0.426798i
\(53\) −1.11803 + 0.812299i −0.153574 + 0.111578i −0.661919 0.749576i \(-0.730258\pi\)
0.508345 + 0.861154i \(0.330258\pi\)
\(54\) 1.00000 0.136083
\(55\) 0 0
\(56\) −0.618034 −0.0825883
\(57\) −4.61803 + 3.35520i −0.611674 + 0.444407i
\(58\) −2.11803 6.51864i −0.278111 0.855939i
\(59\) 3.19098 9.82084i 0.415431 1.27856i −0.496435 0.868074i \(-0.665358\pi\)
0.911865 0.410490i \(-0.134642\pi\)
\(60\) −2.92705 2.12663i −0.377881 0.274546i
\(61\) −3.00000 2.17963i −0.384111 0.279073i 0.378927 0.925426i \(-0.376293\pi\)
−0.763038 + 0.646354i \(0.776293\pi\)
\(62\) −1.04508 + 3.21644i −0.132726 + 0.408488i
\(63\) −0.190983 0.587785i −0.0240616 0.0740540i
\(64\) −0.809017 + 0.587785i −0.101127 + 0.0734732i
\(65\) −11.7082 −1.45222
\(66\) 0 0
\(67\) 4.94427 0.604039 0.302019 0.953302i \(-0.402339\pi\)
0.302019 + 0.953302i \(0.402339\pi\)
\(68\) 3.23607 2.35114i 0.392431 0.285118i
\(69\) −1.76393 5.42882i −0.212352 0.653554i
\(70\) −0.690983 + 2.12663i −0.0825883 + 0.254181i
\(71\) −4.85410 3.52671i −0.576076 0.418544i 0.261231 0.965276i \(-0.415871\pi\)
−0.837307 + 0.546733i \(0.815871\pi\)
\(72\) −0.809017 0.587785i −0.0953436 0.0692712i
\(73\) −4.50000 + 13.8496i −0.526685 + 1.62097i 0.234274 + 0.972171i \(0.424729\pi\)
−0.760959 + 0.648800i \(0.775271\pi\)
\(74\) −2.76393 8.50651i −0.321301 0.988861i
\(75\) −6.54508 + 4.75528i −0.755761 + 0.549093i
\(76\) 5.70820 0.654776
\(77\) 0 0
\(78\) −3.23607 −0.366413
\(79\) −5.54508 + 4.02874i −0.623871 + 0.453269i −0.854271 0.519827i \(-0.825996\pi\)
0.230401 + 0.973096i \(0.425996\pi\)
\(80\) 1.11803 + 3.44095i 0.125000 + 0.384710i
\(81\) 0.309017 0.951057i 0.0343352 0.105673i
\(82\) −4.61803 3.35520i −0.509977 0.370520i
\(83\) 1.30902 + 0.951057i 0.143683 + 0.104392i 0.657305 0.753625i \(-0.271696\pi\)
−0.513621 + 0.858017i \(0.671696\pi\)
\(84\) −0.190983 + 0.587785i −0.0208380 + 0.0641326i
\(85\) −4.47214 13.7638i −0.485071 1.49290i
\(86\) −3.85410 + 2.80017i −0.415599 + 0.301950i
\(87\) −6.85410 −0.734837
\(88\) 0 0
\(89\) 6.76393 0.716975 0.358488 0.933534i \(-0.383293\pi\)
0.358488 + 0.933534i \(0.383293\pi\)
\(90\) −2.92705 + 2.12663i −0.308538 + 0.224166i
\(91\) 0.618034 + 1.90211i 0.0647876 + 0.199396i
\(92\) −1.76393 + 5.42882i −0.183903 + 0.565994i
\(93\) 2.73607 + 1.98787i 0.283717 + 0.206132i
\(94\) −3.23607 2.35114i −0.333775 0.242502i
\(95\) 6.38197 19.6417i 0.654776 2.01519i
\(96\) 0.309017 + 0.951057i 0.0315389 + 0.0970668i
\(97\) 7.78115 5.65334i 0.790056 0.574010i −0.117924 0.993023i \(-0.537624\pi\)
0.907980 + 0.419013i \(0.137624\pi\)
\(98\) −6.61803 −0.668522
\(99\) 0 0
\(100\) 8.09017 0.809017
\(101\) −1.69098 + 1.22857i −0.168259 + 0.122247i −0.668728 0.743507i \(-0.733161\pi\)
0.500469 + 0.865754i \(0.333161\pi\)
\(102\) −1.23607 3.80423i −0.122389 0.376675i
\(103\) −3.04508 + 9.37181i −0.300041 + 0.923432i 0.681440 + 0.731874i \(0.261354\pi\)
−0.981481 + 0.191558i \(0.938646\pi\)
\(104\) 2.61803 + 1.90211i 0.256719 + 0.186518i
\(105\) 1.80902 + 1.31433i 0.176542 + 0.128265i
\(106\) 0.427051 1.31433i 0.0414789 0.127659i
\(107\) −0.336881 1.03681i −0.0325675 0.100233i 0.933451 0.358704i \(-0.116781\pi\)
−0.966019 + 0.258471i \(0.916781\pi\)
\(108\) −0.809017 + 0.587785i −0.0778477 + 0.0565597i
\(109\) 2.94427 0.282010 0.141005 0.990009i \(-0.454967\pi\)
0.141005 + 0.990009i \(0.454967\pi\)
\(110\) 0 0
\(111\) −8.94427 −0.848953
\(112\) 0.500000 0.363271i 0.0472456 0.0343259i
\(113\) 2.14590 + 6.60440i 0.201869 + 0.621289i 0.999827 + 0.0185766i \(0.00591346\pi\)
−0.797958 + 0.602713i \(0.794087\pi\)
\(114\) 1.76393 5.42882i 0.165207 0.508456i
\(115\) 16.7082 + 12.1392i 1.55805 + 1.13199i
\(116\) 5.54508 + 4.02874i 0.514848 + 0.374059i
\(117\) −1.00000 + 3.07768i −0.0924500 + 0.284532i
\(118\) 3.19098 + 9.82084i 0.293754 + 0.904081i
\(119\) −2.00000 + 1.45309i −0.183340 + 0.133204i
\(120\) 3.61803 0.330280
\(121\) 0 0
\(122\) 3.70820 0.335725
\(123\) −4.61803 + 3.35520i −0.416394 + 0.302528i
\(124\) −1.04508 3.21644i −0.0938514 0.288845i
\(125\) 3.45492 10.6331i 0.309017 0.951057i
\(126\) 0.500000 + 0.363271i 0.0445435 + 0.0323628i
\(127\) 3.23607 + 2.35114i 0.287155 + 0.208630i 0.722032 0.691860i \(-0.243208\pi\)
−0.434877 + 0.900490i \(0.643208\pi\)
\(128\) 0.309017 0.951057i 0.0273135 0.0840623i
\(129\) 1.47214 + 4.53077i 0.129614 + 0.398912i
\(130\) 9.47214 6.88191i 0.830761 0.603583i
\(131\) −3.85410 −0.336734 −0.168367 0.985724i \(-0.553849\pi\)
−0.168367 + 0.985724i \(0.553849\pi\)
\(132\) 0 0
\(133\) −3.52786 −0.305905
\(134\) −4.00000 + 2.90617i −0.345547 + 0.251055i
\(135\) 1.11803 + 3.44095i 0.0962250 + 0.296150i
\(136\) −1.23607 + 3.80423i −0.105992 + 0.326210i
\(137\) 11.4721 + 8.33499i 0.980131 + 0.712107i 0.957738 0.287643i \(-0.0928715\pi\)
0.0223929 + 0.999749i \(0.492872\pi\)
\(138\) 4.61803 + 3.35520i 0.393113 + 0.285613i
\(139\) 4.85410 14.9394i 0.411720 1.26714i −0.503433 0.864034i \(-0.667930\pi\)
0.915152 0.403108i \(-0.132070\pi\)
\(140\) −0.690983 2.12663i −0.0583987 0.179733i
\(141\) −3.23607 + 2.35114i −0.272526 + 0.198002i
\(142\) 6.00000 0.503509
\(143\) 0 0
\(144\) 1.00000 0.0833333
\(145\) 20.0623 14.5761i 1.66608 1.21048i
\(146\) −4.50000 13.8496i −0.372423 1.14620i
\(147\) −2.04508 + 6.29412i −0.168676 + 0.519131i
\(148\) 7.23607 + 5.25731i 0.594801 + 0.432148i
\(149\) 4.88197 + 3.54696i 0.399946 + 0.290578i 0.769519 0.638624i \(-0.220496\pi\)
−0.369573 + 0.929202i \(0.620496\pi\)
\(150\) 2.50000 7.69421i 0.204124 0.628230i
\(151\) −6.11803 18.8294i −0.497879 1.53231i −0.812422 0.583070i \(-0.801851\pi\)
0.314544 0.949243i \(-0.398149\pi\)
\(152\) −4.61803 + 3.35520i −0.374572 + 0.272143i
\(153\) −4.00000 −0.323381
\(154\) 0 0
\(155\) −12.2361 −0.982825
\(156\) 2.61803 1.90211i 0.209610 0.152291i
\(157\) −5.56231 17.1190i −0.443920 1.36625i −0.883663 0.468123i \(-0.844931\pi\)
0.439743 0.898124i \(-0.355069\pi\)
\(158\) 2.11803 6.51864i 0.168502 0.518595i
\(159\) −1.11803 0.812299i −0.0886659 0.0644195i
\(160\) −2.92705 2.12663i −0.231404 0.168125i
\(161\) 1.09017 3.35520i 0.0859174 0.264427i
\(162\) 0.309017 + 0.951057i 0.0242787 + 0.0747221i
\(163\) −0.381966 + 0.277515i −0.0299179 + 0.0217366i −0.602644 0.798010i \(-0.705886\pi\)
0.572726 + 0.819747i \(0.305886\pi\)
\(164\) 5.70820 0.445736
\(165\) 0 0
\(166\) −1.61803 −0.125584
\(167\) −5.09017 + 3.69822i −0.393889 + 0.286177i −0.767047 0.641591i \(-0.778275\pi\)
0.373158 + 0.927768i \(0.378275\pi\)
\(168\) −0.190983 0.587785i −0.0147347 0.0453486i
\(169\) −0.781153 + 2.40414i −0.0600887 + 0.184934i
\(170\) 11.7082 + 8.50651i 0.897978 + 0.652419i
\(171\) −4.61803 3.35520i −0.353150 0.256578i
\(172\) 1.47214 4.53077i 0.112249 0.345468i
\(173\) 4.42705 + 13.6251i 0.336582 + 1.03589i 0.965937 + 0.258776i \(0.0833192\pi\)
−0.629355 + 0.777118i \(0.716681\pi\)
\(174\) 5.54508 4.02874i 0.420372 0.305418i
\(175\) −5.00000 −0.377964
\(176\) 0 0
\(177\) 10.3262 0.776168
\(178\) −5.47214 + 3.97574i −0.410154 + 0.297994i
\(179\) −5.73607 17.6538i −0.428734 1.31951i −0.899373 0.437181i \(-0.855977\pi\)
0.470639 0.882326i \(-0.344023\pi\)
\(180\) 1.11803 3.44095i 0.0833333 0.256474i
\(181\) −17.3262 12.5882i −1.28785 0.935677i −0.288090 0.957603i \(-0.593020\pi\)
−0.999760 + 0.0219263i \(0.993020\pi\)
\(182\) −1.61803 1.17557i −0.119937 0.0871391i
\(183\) 1.14590 3.52671i 0.0847072 0.260702i
\(184\) −1.76393 5.42882i −0.130039 0.400218i
\(185\) 26.1803 19.0211i 1.92482 1.39846i
\(186\) −3.38197 −0.247978
\(187\) 0 0
\(188\) 4.00000 0.291730
\(189\) 0.500000 0.363271i 0.0363696 0.0264241i
\(190\) 6.38197 + 19.6417i 0.462996 + 1.42496i
\(191\) −0.944272 + 2.90617i −0.0683251 + 0.210283i −0.979389 0.201981i \(-0.935262\pi\)
0.911064 + 0.412264i \(0.135262\pi\)
\(192\) −0.809017 0.587785i −0.0583858 0.0424197i
\(193\) −3.73607 2.71441i −0.268928 0.195388i 0.445146 0.895458i \(-0.353152\pi\)
−0.714074 + 0.700070i \(0.753152\pi\)
\(194\) −2.97214 + 9.14729i −0.213387 + 0.656737i
\(195\) −3.61803 11.1352i −0.259093 0.797406i
\(196\) 5.35410 3.88998i 0.382436 0.277856i
\(197\) 25.5066 1.81727 0.908634 0.417593i \(-0.137126\pi\)
0.908634 + 0.417593i \(0.137126\pi\)
\(198\) 0 0
\(199\) −0.381966 −0.0270769 −0.0135384 0.999908i \(-0.504310\pi\)
−0.0135384 + 0.999908i \(0.504310\pi\)
\(200\) −6.54508 + 4.75528i −0.462807 + 0.336249i
\(201\) 1.52786 + 4.70228i 0.107767 + 0.331673i
\(202\) 0.645898 1.98787i 0.0454452 0.139866i
\(203\) −3.42705 2.48990i −0.240532 0.174757i
\(204\) 3.23607 + 2.35114i 0.226570 + 0.164613i
\(205\) 6.38197 19.6417i 0.445736 1.37183i
\(206\) −3.04508 9.37181i −0.212161 0.652965i
\(207\) 4.61803 3.35520i 0.320976 0.233202i
\(208\) −3.23607 −0.224381
\(209\) 0 0
\(210\) −2.23607 −0.154303
\(211\) −7.47214 + 5.42882i −0.514403 + 0.373736i −0.814491 0.580176i \(-0.802984\pi\)
0.300088 + 0.953911i \(0.402984\pi\)
\(212\) 0.427051 + 1.31433i 0.0293300 + 0.0902684i
\(213\) 1.85410 5.70634i 0.127041 0.390992i
\(214\) 0.881966 + 0.640786i 0.0602900 + 0.0438032i
\(215\) −13.9443 10.1311i −0.950991 0.690936i
\(216\) 0.309017 0.951057i 0.0210259 0.0647112i
\(217\) 0.645898 + 1.98787i 0.0438464 + 0.134945i
\(218\) −2.38197 + 1.73060i −0.161327 + 0.117211i
\(219\) −14.5623 −0.984029
\(220\) 0 0
\(221\) 12.9443 0.870726
\(222\) 7.23607 5.25731i 0.485653 0.352848i
\(223\) −0.409830 1.26133i −0.0274443 0.0844647i 0.936396 0.350945i \(-0.114139\pi\)
−0.963840 + 0.266480i \(0.914139\pi\)
\(224\) −0.190983 + 0.587785i −0.0127606 + 0.0392731i
\(225\) −6.54508 4.75528i −0.436339 0.317019i
\(226\) −5.61803 4.08174i −0.373706 0.271513i
\(227\) −1.55573 + 4.78804i −0.103257 + 0.317793i −0.989317 0.145777i \(-0.953432\pi\)
0.886060 + 0.463570i \(0.153432\pi\)
\(228\) 1.76393 + 5.42882i 0.116819 + 0.359533i
\(229\) 4.38197 3.18368i 0.289568 0.210384i −0.433512 0.901148i \(-0.642726\pi\)
0.723080 + 0.690764i \(0.242726\pi\)
\(230\) −20.6525 −1.36178
\(231\) 0 0
\(232\) −6.85410 −0.449994
\(233\) −13.7082 + 9.95959i −0.898054 + 0.652475i −0.937966 0.346729i \(-0.887292\pi\)
0.0399112 + 0.999203i \(0.487292\pi\)
\(234\) −1.00000 3.07768i −0.0653720 0.201194i
\(235\) 4.47214 13.7638i 0.291730 0.897853i
\(236\) −8.35410 6.06961i −0.543806 0.395098i
\(237\) −5.54508 4.02874i −0.360192 0.261695i
\(238\) 0.763932 2.35114i 0.0495184 0.152402i
\(239\) 2.32624 + 7.15942i 0.150472 + 0.463105i 0.997674 0.0681660i \(-0.0217147\pi\)
−0.847202 + 0.531271i \(0.821715\pi\)
\(240\) −2.92705 + 2.12663i −0.188940 + 0.137273i
\(241\) −8.61803 −0.555136 −0.277568 0.960706i \(-0.589528\pi\)
−0.277568 + 0.960706i \(0.589528\pi\)
\(242\) 0 0
\(243\) 1.00000 0.0641500
\(244\) −3.00000 + 2.17963i −0.192055 + 0.139536i
\(245\) −7.39919 22.7724i −0.472717 1.45487i
\(246\) 1.76393 5.42882i 0.112464 0.346129i
\(247\) 14.9443 + 10.8576i 0.950881 + 0.690856i
\(248\) 2.73607 + 1.98787i 0.173740 + 0.126230i
\(249\) −0.500000 + 1.53884i −0.0316862 + 0.0975201i
\(250\) 3.45492 + 10.6331i 0.218508 + 0.672499i
\(251\) −12.3992 + 9.00854i −0.782630 + 0.568614i −0.905767 0.423776i \(-0.860704\pi\)
0.123137 + 0.992390i \(0.460704\pi\)
\(252\) −0.618034 −0.0389325
\(253\) 0 0
\(254\) −4.00000 −0.250982
\(255\) 11.7082 8.50651i 0.733196 0.532698i
\(256\) 0.309017 + 0.951057i 0.0193136 + 0.0594410i
\(257\) 2.56231 7.88597i 0.159832 0.491913i −0.838786 0.544461i \(-0.816734\pi\)
0.998618 + 0.0525479i \(0.0167342\pi\)
\(258\) −3.85410 2.80017i −0.239946 0.174331i
\(259\) −4.47214 3.24920i −0.277885 0.201895i
\(260\) −3.61803 + 11.1352i −0.224381 + 0.690574i
\(261\) −2.11803 6.51864i −0.131103 0.403494i
\(262\) 3.11803 2.26538i 0.192633 0.139956i
\(263\) 17.2361 1.06282 0.531411 0.847114i \(-0.321662\pi\)
0.531411 + 0.847114i \(0.321662\pi\)
\(264\) 0 0
\(265\) 5.00000 0.307148
\(266\) 2.85410 2.07363i 0.174996 0.127142i
\(267\) 2.09017 + 6.43288i 0.127916 + 0.393686i
\(268\) 1.52786 4.70228i 0.0933292 0.287238i
\(269\) −4.85410 3.52671i −0.295960 0.215027i 0.429889 0.902882i \(-0.358553\pi\)
−0.725849 + 0.687854i \(0.758553\pi\)
\(270\) −2.92705 2.12663i −0.178135 0.129422i
\(271\) −8.18034 + 25.1765i −0.496920 + 1.52936i 0.317022 + 0.948418i \(0.397317\pi\)
−0.813943 + 0.580945i \(0.802683\pi\)
\(272\) −1.23607 3.80423i −0.0749476 0.230665i
\(273\) −1.61803 + 1.17557i −0.0979279 + 0.0711488i
\(274\) −14.1803 −0.856666
\(275\) 0 0
\(276\) −5.70820 −0.343594
\(277\) 12.7082 9.23305i 0.763562 0.554760i −0.136439 0.990648i \(-0.543566\pi\)
0.900001 + 0.435888i \(0.143566\pi\)
\(278\) 4.85410 + 14.9394i 0.291130 + 0.896005i
\(279\) −1.04508 + 3.21644i −0.0625676 + 0.192563i
\(280\) 1.80902 + 1.31433i 0.108109 + 0.0785461i
\(281\) 17.1803 + 12.4822i 1.02489 + 0.744628i 0.967280 0.253711i \(-0.0816511\pi\)
0.0576130 + 0.998339i \(0.481651\pi\)
\(282\) 1.23607 3.80423i 0.0736068 0.226538i
\(283\) 2.32624 + 7.15942i 0.138280 + 0.425584i 0.996086 0.0883911i \(-0.0281725\pi\)
−0.857805 + 0.513975i \(0.828173\pi\)
\(284\) −4.85410 + 3.52671i −0.288038 + 0.209272i
\(285\) 20.6525 1.22335
\(286\) 0 0
\(287\) −3.52786 −0.208243
\(288\) −0.809017 + 0.587785i −0.0476718 + 0.0346356i
\(289\) −0.309017 0.951057i −0.0181775 0.0559445i
\(290\) −7.66312 + 23.5847i −0.449994 + 1.38494i
\(291\) 7.78115 + 5.65334i 0.456139 + 0.331405i
\(292\) 11.7812 + 8.55951i 0.689440 + 0.500907i
\(293\) −1.66312 + 5.11855i −0.0971604 + 0.299029i −0.987811 0.155660i \(-0.950250\pi\)
0.890650 + 0.454689i \(0.150250\pi\)
\(294\) −2.04508 6.29412i −0.119272 0.367081i
\(295\) −30.2254 + 21.9601i −1.75979 + 1.27856i
\(296\) −8.94427 −0.519875
\(297\) 0 0
\(298\) −6.03444 −0.349566
\(299\) −14.9443 + 10.8576i −0.864250 + 0.627914i
\(300\) 2.50000 + 7.69421i 0.144338 + 0.444225i
\(301\) −0.909830 + 2.80017i −0.0524417 + 0.161399i
\(302\) 16.0172 + 11.6372i 0.921687 + 0.669645i
\(303\) −1.69098 1.22857i −0.0971444 0.0705796i
\(304\) 1.76393 5.42882i 0.101168 0.311364i
\(305\) 4.14590 + 12.7598i 0.237393 + 0.730622i
\(306\) 3.23607 2.35114i 0.184994 0.134406i
\(307\) 17.2361 0.983714 0.491857 0.870676i \(-0.336318\pi\)
0.491857 + 0.870676i \(0.336318\pi\)
\(308\) 0 0
\(309\) −9.85410 −0.560580
\(310\) 9.89919 7.19218i 0.562236 0.408488i
\(311\) 5.09017 + 15.6659i 0.288637 + 0.888334i 0.985285 + 0.170920i \(0.0546740\pi\)
−0.696648 + 0.717413i \(0.745326\pi\)
\(312\) −1.00000 + 3.07768i −0.0566139 + 0.174240i
\(313\) −17.7812 12.9188i −1.00505 0.730212i −0.0418851 0.999122i \(-0.513336\pi\)
−0.963165 + 0.268911i \(0.913336\pi\)
\(314\) 14.5623 + 10.5801i 0.821798 + 0.597072i
\(315\) −0.690983 + 2.12663i −0.0389325 + 0.119822i
\(316\) 2.11803 + 6.51864i 0.119149 + 0.366702i
\(317\) 7.32624 5.32282i 0.411483 0.298960i −0.362719 0.931898i \(-0.618152\pi\)
0.774202 + 0.632939i \(0.218152\pi\)
\(318\) 1.38197 0.0774968
\(319\) 0 0
\(320\) 3.61803 0.202254
\(321\) 0.881966 0.640786i 0.0492265 0.0357652i
\(322\) 1.09017 + 3.35520i 0.0607528 + 0.186978i
\(323\) −7.05573 + 21.7153i −0.392591 + 1.20827i
\(324\) −0.809017 0.587785i −0.0449454 0.0326547i
\(325\) 21.1803 + 15.3884i 1.17487 + 0.853596i
\(326\) 0.145898 0.449028i 0.00808054 0.0248694i
\(327\) 0.909830 + 2.80017i 0.0503137 + 0.154850i
\(328\) −4.61803 + 3.35520i −0.254988 + 0.185260i
\(329\) −2.47214 −0.136293
\(330\) 0 0
\(331\) −16.3607 −0.899264 −0.449632 0.893214i \(-0.648445\pi\)
−0.449632 + 0.893214i \(0.648445\pi\)
\(332\) 1.30902 0.951057i 0.0718416 0.0521960i
\(333\) −2.76393 8.50651i −0.151463 0.466154i
\(334\) 1.94427 5.98385i 0.106386 0.327422i
\(335\) −14.4721 10.5146i −0.790697 0.574475i
\(336\) 0.500000 + 0.363271i 0.0272772 + 0.0198181i
\(337\) −6.14590 + 18.9151i −0.334788 + 1.03037i 0.632038 + 0.774938i \(0.282219\pi\)
−0.966826 + 0.255435i \(0.917781\pi\)
\(338\) −0.781153 2.40414i −0.0424891 0.130768i
\(339\) −5.61803 + 4.08174i −0.305130 + 0.221690i
\(340\) −14.4721 −0.784862
\(341\) 0 0
\(342\) 5.70820 0.308664
\(343\) −6.80902 + 4.94704i −0.367652 + 0.267115i
\(344\) 1.47214 + 4.53077i 0.0793723 + 0.244283i
\(345\) −6.38197 + 19.6417i −0.343594 + 1.05747i
\(346\) −11.5902 8.42075i −0.623091 0.452702i
\(347\) −27.7705 20.1765i −1.49080 1.08313i −0.973871 0.227100i \(-0.927076\pi\)
−0.516928 0.856029i \(-0.672924\pi\)
\(348\) −2.11803 + 6.51864i −0.113539 + 0.349436i
\(349\) 3.79837 + 11.6902i 0.203322 + 0.625762i 0.999778 + 0.0210649i \(0.00670568\pi\)
−0.796456 + 0.604697i \(0.793294\pi\)
\(350\) 4.04508 2.93893i 0.216219 0.157092i
\(351\) −3.23607 −0.172729
\(352\) 0 0
\(353\) 6.76393 0.360008 0.180004 0.983666i \(-0.442389\pi\)
0.180004 + 0.983666i \(0.442389\pi\)
\(354\) −8.35410 + 6.06961i −0.444016 + 0.322596i
\(355\) 6.70820 + 20.6457i 0.356034 + 1.09576i
\(356\) 2.09017 6.43288i 0.110779 0.340942i
\(357\) −2.00000 1.45309i −0.105851 0.0769054i
\(358\) 15.0172 + 10.9106i 0.793685 + 0.576646i
\(359\) 8.70820 26.8011i 0.459601 1.41451i −0.406046 0.913853i \(-0.633093\pi\)
0.865647 0.500655i \(-0.166907\pi\)
\(360\) 1.11803 + 3.44095i 0.0589256 + 0.181354i
\(361\) −10.9894 + 7.98424i −0.578387 + 0.420223i
\(362\) 21.4164 1.12562
\(363\) 0 0
\(364\) 2.00000 0.104828
\(365\) 42.6246 30.9686i 2.23107 1.62097i
\(366\) 1.14590 + 3.52671i 0.0598970 + 0.184344i
\(367\) −5.88197 + 18.1028i −0.307036 + 0.944960i 0.671873 + 0.740666i \(0.265490\pi\)
−0.978910 + 0.204294i \(0.934510\pi\)
\(368\) 4.61803 + 3.35520i 0.240732 + 0.174902i
\(369\) −4.61803 3.35520i −0.240405 0.174665i
\(370\) −10.0000 + 30.7768i −0.519875 + 1.60001i
\(371\) −0.263932 0.812299i −0.0137027 0.0421725i
\(372\) 2.73607 1.98787i 0.141859 0.103066i
\(373\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(374\) 0 0
\(375\) 11.1803 0.577350
\(376\) −3.23607 + 2.35114i −0.166887 + 0.121251i
\(377\) 6.85410 + 21.0948i 0.353004 + 1.08644i
\(378\) −0.190983 + 0.587785i −0.00982311 + 0.0302324i
\(379\) −21.1803 15.3884i −1.08796 0.790450i −0.108907 0.994052i \(-0.534735\pi\)
−0.979054 + 0.203602i \(0.934735\pi\)
\(380\) −16.7082 12.1392i −0.857113 0.622729i
\(381\) −1.23607 + 3.80423i −0.0633257 + 0.194896i
\(382\) −0.944272 2.90617i −0.0483132 0.148693i
\(383\) −19.6525 + 14.2784i −1.00419 + 0.729590i −0.962983 0.269560i \(-0.913122\pi\)
−0.0412111 + 0.999150i \(0.513122\pi\)
\(384\) 1.00000 0.0510310
\(385\) 0 0
\(386\) 4.61803 0.235052
\(387\) −3.85410 + 2.80017i −0.195915 + 0.142341i
\(388\) −2.97214 9.14729i −0.150887 0.464383i
\(389\) 5.85410 18.0171i 0.296815 0.913502i −0.685791 0.727798i \(-0.740544\pi\)
0.982606 0.185703i \(-0.0594564\pi\)
\(390\) 9.47214 + 6.88191i 0.479640 + 0.348479i
\(391\) −18.4721 13.4208i −0.934176 0.678719i
\(392\) −2.04508 + 6.29412i −0.103292 + 0.317901i
\(393\) −1.19098 3.66547i −0.0600771 0.184898i
\(394\) −20.6353 + 14.9924i −1.03959 + 0.755306i
\(395\) 24.7984 1.24774
\(396\) 0 0
\(397\) 4.94427 0.248146 0.124073 0.992273i \(-0.460404\pi\)
0.124073 + 0.992273i \(0.460404\pi\)
\(398\) 0.309017 0.224514i 0.0154896 0.0112539i
\(399\) −1.09017 3.35520i −0.0545768 0.167970i
\(400\) 2.50000 7.69421i 0.125000 0.384710i
\(401\) 1.38197 + 1.00406i 0.0690121 + 0.0501402i 0.621756 0.783211i \(-0.286419\pi\)
−0.552744 + 0.833351i \(0.686419\pi\)
\(402\) −4.00000 2.90617i −0.199502 0.144947i
\(403\) 3.38197 10.4086i 0.168468 0.518490i
\(404\) 0.645898 + 1.98787i 0.0321346 + 0.0989002i
\(405\) −2.92705 + 2.12663i −0.145446 + 0.105673i
\(406\) 4.23607 0.210233
\(407\) 0 0
\(408\) −4.00000 −0.198030
\(409\) −24.2533 + 17.6210i −1.19925 + 0.871305i −0.994211 0.107449i \(-0.965732\pi\)
−0.205037 + 0.978754i \(0.565732\pi\)
\(410\) 6.38197 + 19.6417i 0.315183 + 0.970033i
\(411\) −4.38197 + 13.4863i −0.216146 + 0.665230i
\(412\) 7.97214 + 5.79210i 0.392759 + 0.285356i
\(413\) 5.16312 + 3.75123i 0.254060 + 0.184586i
\(414\) −1.76393 + 5.42882i −0.0866925 + 0.266812i
\(415\) −1.80902 5.56758i −0.0888012 0.273302i
\(416\) 2.61803 1.90211i 0.128360 0.0932588i
\(417\) 15.7082 0.769234
\(418\) 0 0
\(419\) 12.0902 0.590643 0.295322 0.955398i \(-0.404573\pi\)
0.295322 + 0.955398i \(0.404573\pi\)
\(420\) 1.80902 1.31433i 0.0882710 0.0641326i
\(421\) −2.96556 9.12705i −0.144532 0.444825i 0.852418 0.522861i \(-0.175135\pi\)
−0.996951 + 0.0780356i \(0.975135\pi\)
\(422\) 2.85410 8.78402i 0.138936 0.427600i
\(423\) −3.23607 2.35114i −0.157343 0.114316i
\(424\) −1.11803 0.812299i −0.0542965 0.0394487i
\(425\) −10.0000 + 30.7768i −0.485071 + 1.49290i
\(426\) 1.85410 + 5.70634i 0.0898315 + 0.276473i
\(427\) 1.85410 1.34708i 0.0897263 0.0651900i
\(428\) −1.09017 −0.0526954
\(429\) 0 0
\(430\) 17.2361 0.831197
\(431\) 27.5623 20.0252i 1.32763 0.964579i 0.327826 0.944738i \(-0.393684\pi\)
0.999803 0.0198414i \(-0.00631612\pi\)
\(432\) 0.309017 + 0.951057i 0.0148676 + 0.0457577i
\(433\) 2.28115 7.02067i 0.109625 0.337392i −0.881163 0.472813i \(-0.843239\pi\)
0.990788 + 0.135421i \(0.0432387\pi\)
\(434\) −1.69098 1.22857i −0.0811698 0.0589733i
\(435\) 20.0623 + 14.5761i 0.961914 + 0.698871i
\(436\) 0.909830 2.80017i 0.0435730 0.134104i
\(437\) −10.0689 30.9888i −0.481660 1.48240i
\(438\) 11.7812 8.55951i 0.562925 0.408989i
\(439\) −29.9230 −1.42815 −0.714073 0.700071i \(-0.753152\pi\)
−0.714073 + 0.700071i \(0.753152\pi\)
\(440\) 0 0
\(441\) −6.61803 −0.315144
\(442\) −10.4721 + 7.60845i −0.498109 + 0.361897i
\(443\) 0.0450850 + 0.138757i 0.00214205 + 0.00659256i 0.952122 0.305719i \(-0.0988968\pi\)
−0.949980 + 0.312311i \(0.898897\pi\)
\(444\) −2.76393 + 8.50651i −0.131170 + 0.403701i
\(445\) −19.7984 14.3844i −0.938533 0.681884i
\(446\) 1.07295 + 0.779543i 0.0508056 + 0.0369124i
\(447\) −1.86475 + 5.73910i −0.0881994 + 0.271450i
\(448\) −0.190983 0.587785i −0.00902310 0.0277702i
\(449\) −0.381966 + 0.277515i −0.0180261 + 0.0130967i −0.596762 0.802418i \(-0.703546\pi\)
0.578736 + 0.815515i \(0.303546\pi\)
\(450\) 8.09017 0.381374
\(451\) 0 0
\(452\) 6.94427 0.326631
\(453\) 16.0172 11.6372i 0.752555 0.546763i
\(454\) −1.55573 4.78804i −0.0730139 0.224714i
\(455\) 2.23607 6.88191i 0.104828 0.322629i
\(456\) −4.61803 3.35520i −0.216259 0.157122i
\(457\) −22.7254 16.5110i −1.06305 0.772351i −0.0884002 0.996085i \(-0.528175\pi\)
−0.974650 + 0.223734i \(0.928175\pi\)
\(458\) −1.67376 + 5.15131i −0.0782098 + 0.240705i
\(459\) −1.23607 3.80423i −0.0576947 0.177566i
\(460\) 16.7082 12.1392i 0.779024 0.565994i
\(461\) −22.0000 −1.02464 −0.512321 0.858794i \(-0.671214\pi\)
−0.512321 + 0.858794i \(0.671214\pi\)
\(462\) 0 0
\(463\) −7.74265 −0.359831 −0.179916 0.983682i \(-0.557582\pi\)
−0.179916 + 0.983682i \(0.557582\pi\)
\(464\) 5.54508 4.02874i 0.257424 0.187030i
\(465\) −3.78115 11.6372i −0.175347 0.539662i
\(466\) 5.23607 16.1150i 0.242556 0.746511i
\(467\) −10.3541 7.52270i −0.479131 0.348109i 0.321858 0.946788i \(-0.395693\pi\)
−0.800989 + 0.598679i \(0.795693\pi\)
\(468\) 2.61803 + 1.90211i 0.121019 + 0.0879252i
\(469\) −0.944272 + 2.90617i −0.0436024 + 0.134194i
\(470\) 4.47214 + 13.7638i 0.206284 + 0.634878i
\(471\) 14.5623 10.5801i 0.670996 0.487507i
\(472\) 10.3262 0.475304
\(473\) 0 0
\(474\) 6.85410 0.314819
\(475\) −37.3607 + 27.1441i −1.71423 + 1.24546i
\(476\) 0.763932 + 2.35114i 0.0350148 + 0.107764i
\(477\) 0.427051 1.31433i 0.0195533 0.0601789i
\(478\) −6.09017 4.42477i −0.278558 0.202384i
\(479\) 7.09017 + 5.15131i 0.323958 + 0.235369i 0.737863 0.674951i \(-0.235835\pi\)
−0.413904 + 0.910320i \(0.635835\pi\)
\(480\) 1.11803 3.44095i 0.0510310 0.157057i
\(481\) 8.94427 + 27.5276i 0.407824 + 1.25515i
\(482\) 6.97214 5.06555i 0.317572 0.230730i
\(483\) 3.52786 0.160523
\(484\) 0 0
\(485\) −34.7984 −1.58011
\(486\) −0.809017 + 0.587785i −0.0366978 + 0.0266625i
\(487\) 0.954915 + 2.93893i 0.0432713 + 0.133175i 0.970358 0.241671i \(-0.0776954\pi\)
−0.927087 + 0.374846i \(0.877695\pi\)
\(488\) 1.14590 3.52671i 0.0518724 0.159647i
\(489\) −0.381966 0.277515i −0.0172731 0.0125496i
\(490\) 19.3713 + 14.0741i 0.875107 + 0.635803i
\(491\) 9.05573 27.8707i 0.408679 1.25779i −0.509104 0.860705i \(-0.670023\pi\)
0.917784 0.397081i \(-0.129977\pi\)
\(492\) 1.76393 + 5.42882i 0.0795242 + 0.244750i
\(493\) −22.1803 + 16.1150i −0.998952 + 0.725781i
\(494\) −18.4721 −0.831101
\(495\) 0 0
\(496\) −3.38197 −0.151855
\(497\) 3.00000 2.17963i 0.134568 0.0977697i
\(498\) −0.500000 1.53884i −0.0224055 0.0689571i
\(499\) 11.5279 35.4791i 0.516058 1.58826i −0.265290 0.964169i \(-0.585468\pi\)
0.781349 0.624095i \(-0.214532\pi\)
\(500\) −9.04508 6.57164i −0.404508 0.293893i
\(501\) −5.09017 3.69822i −0.227412 0.165225i
\(502\) 4.73607 14.5761i 0.211381 0.650564i
\(503\) 1.41641 + 4.35926i 0.0631545 + 0.194370i 0.977655 0.210215i \(-0.0674163\pi\)
−0.914501 + 0.404584i \(0.867416\pi\)
\(504\) 0.500000 0.363271i 0.0222718 0.0161814i
\(505\) 7.56231 0.336518
\(506\) 0 0
\(507\) −2.52786 −0.112266
\(508\) 3.23607 2.35114i 0.143577 0.104315i
\(509\) 7.19098 + 22.1316i 0.318735 + 0.980965i 0.974190 + 0.225730i \(0.0724769\pi\)
−0.655455 + 0.755234i \(0.727523\pi\)
\(510\) −4.47214 + 13.7638i −0.198030 + 0.609472i
\(511\) −7.28115 5.29007i −0.322099 0.234019i
\(512\) −0.809017 0.587785i −0.0357538 0.0259767i
\(513\) 1.76393 5.42882i 0.0778795 0.239688i
\(514\) 2.56231 + 7.88597i 0.113018 + 0.347835i
\(515\) 28.8435 20.9560i 1.27099 0.923432i
\(516\) 4.76393 0.209720
\(517\) 0 0
\(518\) 5.52786 0.242880
\(519\) −11.5902 + 8.42075i −0.508752 + 0.369630i
\(520\) −3.61803 11.1352i −0.158661 0.488309i
\(521\) −8.65248 + 26.6296i −0.379072 + 1.16666i 0.561618 + 0.827396i \(0.310179\pi\)
−0.940690 + 0.339267i \(0.889821\pi\)
\(522\) 5.54508 + 4.02874i 0.242702 + 0.176333i
\(523\) 11.8541 + 8.61251i 0.518344 + 0.376599i 0.815980 0.578081i \(-0.196198\pi\)
−0.297636 + 0.954679i \(0.596198\pi\)
\(524\) −1.19098 + 3.66547i −0.0520283 + 0.160127i
\(525\) −1.54508 4.75528i −0.0674330 0.207538i
\(526\) −13.9443 + 10.1311i −0.607999 + 0.441737i
\(527\) 13.5279 0.589283
\(528\) 0 0
\(529\) 9.58359 0.416678
\(530\) −4.04508 + 2.93893i −0.175707 + 0.127659i
\(531\) 3.19098 + 9.82084i 0.138477 + 0.426188i
\(532\) −1.09017 + 3.35520i −0.0472649 + 0.145466i
\(533\) 14.9443 + 10.8576i 0.647308 + 0.470297i
\(534\) −5.47214 3.97574i −0.236802 0.172047i
\(535\) −1.21885 + 3.75123i −0.0526954 + 0.162180i
\(536\) 1.52786 + 4.70228i 0.0659937 + 0.203108i
\(537\) 15.0172 10.9106i 0.648041 0.470829i
\(538\) 6.00000 0.258678
\(539\) 0 0
\(540\) 3.61803 0.155695
\(541\) −3.61803 + 2.62866i −0.155551 + 0.113015i −0.662838 0.748762i \(-0.730648\pi\)
0.507287 + 0.861777i \(0.330648\pi\)
\(542\) −8.18034 25.1765i −0.351376 1.08142i
\(543\) 6.61803 20.3682i 0.284007 0.874084i
\(544\) 3.23607 + 2.35114i 0.138745 + 0.100804i
\(545\) −8.61803 6.26137i −0.369156 0.268208i
\(546\) 0.618034 1.90211i 0.0264494 0.0814029i
\(547\) 13.3262 + 41.0139i 0.569789 + 1.75363i 0.653275 + 0.757121i \(0.273395\pi\)
−0.0834863 + 0.996509i \(0.526605\pi\)
\(548\) 11.4721 8.33499i 0.490065 0.356053i
\(549\) 3.70820 0.158262
\(550\) 0 0
\(551\) −39.1246 −1.66676
\(552\) 4.61803 3.35520i 0.196557 0.142807i
\(553\) −1.30902 4.02874i −0.0556651 0.171319i
\(554\) −4.85410 + 14.9394i −0.206231 + 0.634714i
\(555\) 26.1803 + 19.0211i 1.11129 + 0.807402i
\(556\) −12.7082 9.23305i −0.538948 0.391569i
\(557\) 0.718847 2.21238i 0.0304585 0.0937417i −0.934672 0.355512i \(-0.884306\pi\)
0.965130 + 0.261771i \(0.0843064\pi\)
\(558\) −1.04508 3.21644i −0.0442420 0.136163i
\(559\) 12.4721 9.06154i 0.527515 0.383262i
\(560\) −2.23607 −0.0944911
\(561\) 0 0
\(562\) −21.2361 −0.895789
\(563\) 6.47214 4.70228i 0.272768 0.198178i −0.442989 0.896527i \(-0.646082\pi\)
0.715757 + 0.698350i \(0.246082\pi\)
\(564\) 1.23607 + 3.80423i 0.0520479 + 0.160187i
\(565\) 7.76393 23.8949i 0.326631 1.00527i
\(566\) −6.09017 4.42477i −0.255989 0.185987i
\(567\) 0.500000 + 0.363271i 0.0209980 + 0.0152560i
\(568\) 1.85410 5.70634i 0.0777964 0.239433i
\(569\) 2.32624 + 7.15942i 0.0975210 + 0.300139i 0.987902 0.155076i \(-0.0495624\pi\)
−0.890382 + 0.455215i \(0.849562\pi\)
\(570\) −16.7082 + 12.1392i −0.699830 + 0.508456i
\(571\) −32.6525 −1.36646 −0.683232 0.730202i \(-0.739426\pi\)
−0.683232 + 0.730202i \(0.739426\pi\)
\(572\) 0 0
\(573\) −3.05573 −0.127655
\(574\) 2.85410 2.07363i 0.119128 0.0865515i
\(575\) −14.2705 43.9201i −0.595121 1.83160i
\(576\) 0.309017 0.951057i 0.0128757 0.0396274i
\(577\) 38.6246 + 28.0624i 1.60796 + 1.16825i 0.869458 + 0.494006i \(0.164468\pi\)
0.738505 + 0.674248i \(0.235532\pi\)
\(578\) 0.809017 + 0.587785i 0.0336507 + 0.0244486i
\(579\) 1.42705 4.39201i 0.0593062 0.182526i
\(580\) −7.66312 23.5847i −0.318194 0.979299i
\(581\) −0.809017 + 0.587785i −0.0335637 + 0.0243854i
\(582\) −9.61803 −0.398680
\(583\) 0 0
\(584\) −14.5623 −0.602593
\(585\) 9.47214 6.88191i 0.391625 0.284532i
\(586\) −1.66312 5.11855i −0.0687028 0.211446i
\(587\) −14.1525 + 43.5568i −0.584135 + 1.79778i 0.0185806 + 0.999827i \(0.494085\pi\)
−0.602716 + 0.797956i \(0.705915\pi\)
\(588\) 5.35410 + 3.88998i 0.220799 + 0.160420i
\(589\) 15.6180 + 11.3472i 0.643530 + 0.467552i
\(590\) 11.5451 35.5321i 0.475304 1.46283i
\(591\) 7.88197 + 24.2582i 0.324221 + 0.997849i
\(592\) 7.23607 5.25731i 0.297401 0.216074i
\(593\) −27.8885 −1.14525 −0.572623 0.819819i \(-0.694074\pi\)
−0.572623 + 0.819819i \(0.694074\pi\)
\(594\) 0 0
\(595\) 8.94427 0.366679
\(596\) 4.88197 3.54696i 0.199973 0.145289i
\(597\) −0.118034 0.363271i −0.00483081 0.0148677i
\(598\) 5.70820 17.5680i 0.233426 0.718411i
\(599\) 10.0000 + 7.26543i 0.408589 + 0.296857i 0.773030 0.634369i \(-0.218740\pi\)
−0.364441 + 0.931226i \(0.618740\pi\)
\(600\) −6.54508 4.75528i −0.267202 0.194134i
\(601\) 2.75329 8.47375i 0.112309 0.345652i −0.879067 0.476698i \(-0.841834\pi\)
0.991376 + 0.131046i \(0.0418336\pi\)
\(602\) −0.909830 2.80017i −0.0370819 0.114126i
\(603\) −4.00000 + 2.90617i −0.162893 + 0.118348i
\(604\) −19.7984 −0.805584
\(605\) 0 0
\(606\) 2.09017 0.0849073
\(607\) 26.6525 19.3642i 1.08179 0.785967i 0.103796 0.994599i \(-0.466901\pi\)
0.977994 + 0.208632i \(0.0669010\pi\)
\(608\) 1.76393 + 5.42882i 0.0715369 + 0.220168i
\(609\) 1.30902 4.02874i 0.0530440 0.163253i
\(610\) −10.8541 7.88597i −0.439470 0.319293i
\(611\) 10.4721 + 7.60845i 0.423657 + 0.307805i
\(612\) −1.23607 + 3.80423i −0.0499651 + 0.153777i
\(613\) −10.7082 32.9565i −0.432500 1.33110i −0.895627 0.444807i \(-0.853272\pi\)
0.463126 0.886292i \(-0.346728\pi\)
\(614\) −13.9443 + 10.1311i −0.562745 + 0.408858i
\(615\) 20.6525 0.832788
\(616\) 0 0
\(617\) 25.1246 1.01148 0.505739 0.862686i \(-0.331220\pi\)
0.505739 + 0.862686i \(0.331220\pi\)
\(618\) 7.97214 5.79210i 0.320686 0.232992i
\(619\) 1.23607 + 3.80423i 0.0496818 + 0.152905i 0.972820 0.231565i \(-0.0743845\pi\)
−0.923138 + 0.384469i \(0.874384\pi\)
\(620\) −3.78115 + 11.6372i −0.151855 + 0.467361i
\(621\) 4.61803 + 3.35520i 0.185315 + 0.134639i
\(622\) −13.3262 9.68208i −0.534333 0.388216i
\(623\) −1.29180 + 3.97574i −0.0517547 + 0.159285i
\(624\) −1.00000 3.07768i −0.0400320 0.123206i
\(625\) 0 0
\(626\) 21.9787 0.878446
\(627\) 0 0
\(628\) −18.0000 −0.718278
\(629\) −28.9443 + 21.0292i −1.15408 + 0.838491i
\(630\) −0.690983 2.12663i −0.0275294 0.0847268i
\(631\) 8.40983 25.8828i 0.334790 1.03038i −0.632035 0.774940i \(-0.717780\pi\)
0.966825 0.255438i \(-0.0822197\pi\)
\(632\) −5.54508 4.02874i −0.220572 0.160255i
\(633\) −7.47214 5.42882i −0.296991 0.215776i
\(634\) −2.79837 + 8.61251i −0.111138 + 0.342046i
\(635\) −4.47214 13.7638i −0.177471 0.546201i
\(636\) −1.11803 + 0.812299i −0.0443329 + 0.0322098i
\(637\) 21.4164 0.848549
\(638\) 0 0
\(639\) 6.00000 0.237356
\(640\) −2.92705 + 2.12663i −0.115702 + 0.0840623i
\(641\) 0.673762 + 2.07363i 0.0266120 + 0.0819033i 0.963480 0.267779i \(-0.0862896\pi\)
−0.936868 + 0.349682i \(0.886290\pi\)
\(642\) −0.336881 + 1.03681i −0.0132956 + 0.0409198i
\(643\) −4.85410 3.52671i −0.191427 0.139080i 0.487944 0.872875i \(-0.337747\pi\)
−0.679371 + 0.733795i \(0.737747\pi\)
\(644\) −2.85410 2.07363i −0.112467 0.0817123i
\(645\) 5.32624 16.3925i 0.209720 0.645453i
\(646\) −7.05573 21.7153i −0.277604 0.854377i
\(647\) 13.5623 9.85359i 0.533189 0.387385i −0.288360 0.957522i \(-0.593110\pi\)
0.821549 + 0.570137i \(0.193110\pi\)
\(648\) 1.00000 0.0392837
\(649\) 0 0
\(650\) −26.1803 −1.02688
\(651\) −1.69098 + 1.22857i −0.0662748 + 0.0481515i
\(652\) 0.145898 + 0.449028i 0.00571381 + 0.0175853i
\(653\) 5.11803 15.7517i 0.200284 0.616411i −0.799590 0.600546i \(-0.794950\pi\)
0.999874 0.0158649i \(-0.00505018\pi\)
\(654\) −2.38197 1.73060i −0.0931422 0.0676718i
\(655\) 11.2812 + 8.19624i 0.440791 + 0.320253i
\(656\) 1.76393 5.42882i 0.0688700 0.211960i
\(657\) −4.50000 13.8496i −0.175562 0.540323i
\(658\) 2.00000 1.45309i 0.0779681 0.0566472i
\(659\) 18.9230 0.737135 0.368567 0.929601i \(-0.379848\pi\)
0.368567 + 0.929601i \(0.379848\pi\)
\(660\) 0 0
\(661\) 37.5967 1.46234 0.731172 0.682193i \(-0.238974\pi\)
0.731172 + 0.682193i \(0.238974\pi\)
\(662\) 13.2361 9.61657i 0.514434 0.373758i
\(663\) 4.00000 + 12.3107i 0.155347 + 0.478109i
\(664\) −0.500000 + 1.53884i −0.0194038 + 0.0597186i
\(665\) 10.3262 + 7.50245i 0.400434 + 0.290933i
\(666\) 7.23607 + 5.25731i 0.280392 + 0.203717i
\(667\) 12.0902 37.2097i 0.468133 1.44077i
\(668\) 1.94427 + 5.98385i 0.0752261 + 0.231522i
\(669\) 1.07295 0.779543i 0.0414826 0.0301389i
\(670\) 17.8885 0.691095
\(671\) 0 0
\(672\) −0.618034 −0.0238412
\(673\) −28.1074 + 20.4212i −1.08346 + 0.787180i −0.978283 0.207274i \(-0.933541\pi\)
−0.105177 + 0.994453i \(0.533541\pi\)
\(674\) −6.14590 18.9151i −0.236731 0.728584i
\(675\) 2.50000 7.69421i 0.0962250 0.296150i
\(676\) 2.04508 + 1.48584i 0.0786571 + 0.0571477i
\(677\) 35.7148 + 25.9483i 1.37263 + 0.997274i 0.997526 + 0.0702918i \(0.0223930\pi\)
0.375104 + 0.926983i \(0.377607\pi\)
\(678\) 2.14590 6.60440i 0.0824127 0.253640i
\(679\) 1.83688 + 5.65334i 0.0704930 + 0.216955i
\(680\) 11.7082 8.50651i 0.448989 0.326210i
\(681\) −5.03444 −0.192920
\(682\) 0 0
\(683\) 41.4508 1.58607 0.793036 0.609174i \(-0.208499\pi\)
0.793036 + 0.609174i \(0.208499\pi\)
\(684\) −4.61803 + 3.35520i −0.176575 + 0.128289i
\(685\) −15.8541 48.7939i −0.605754 1.86432i
\(686\) 2.60081 8.00448i 0.0992995 0.305612i
\(687\) 4.38197 + 3.18368i 0.167182 + 0.121465i
\(688\) −3.85410 2.80017i −0.146936 0.106755i
\(689\) −1.38197 + 4.25325i −0.0526487 + 0.162036i
\(690\) −6.38197 19.6417i −0.242957 0.747746i
\(691\) 28.4164 20.6457i 1.08101 0.785401i 0.103152 0.994666i \(-0.467107\pi\)
0.977859 + 0.209265i \(0.0671071\pi\)
\(692\) 14.3262 0.544602
\(693\) 0 0
\(694\) 34.3262 1.30301
\(695\) −45.9787 + 33.4055i −1.74407 + 1.26714i
\(696\) −2.11803 6.51864i −0.0802839 0.247088i
\(697\) −7.05573 + 21.7153i −0.267255 + 0.822526i
\(698\) −9.94427 7.22494i −0.376396 0.273468i
\(699\) −13.7082 9.95959i −0.518492 0.376706i
\(700\) −1.54508 + 4.75528i −0.0583987 + 0.179733i
\(701\) −16.0344 49.3489i −0.605613 1.86388i −0.492524 0.870299i \(-0.663926\pi\)
−0.113088 0.993585i \(-0.536074\pi\)
\(702\) 2.61803 1.90211i 0.0988113 0.0717906i
\(703\) −51.0557 −1.92560
\(704\) 0 0
\(705\) 14.4721 0.545052
\(706\) −5.47214 + 3.97574i −0.205947 + 0.149629i
\(707\) −0.399187 1.22857i −0.0150130 0.0462052i
\(708\) 3.19098 9.82084i 0.119924 0.369090i
\(709\) 26.3262 + 19.1271i 0.988703 + 0.718334i 0.959637 0.281243i \(-0.0907467\pi\)
0.0290660 + 0.999577i \(0.490747\pi\)
\(710\) −17.5623 12.7598i −0.659102 0.478865i
\(711\) 2.11803 6.51864i 0.0794325 0.244468i
\(712\) 2.09017 + 6.43288i 0.0783324 + 0.241082i
\(713\) −15.6180 + 11.3472i −0.584900 + 0.424955i
\(714\) 2.47214 0.0925174
\(715\) 0 0
\(716\) −18.5623 −0.693706
\(717\) −6.09017 + 4.42477i −0.227442 + 0.165246i
\(718\) 8.70820 + 26.8011i 0.324987 + 1.00021i
\(719\) 5.85410 18.0171i 0.218321 0.671923i −0.780580 0.625056i \(-0.785076\pi\)
0.998901 0.0468675i \(-0.0149239\pi\)
\(720\) −2.92705 2.12663i −0.109085 0.0792547i
\(721\) −4.92705 3.57971i −0.183493 0.133315i
\(722\) 4.19756 12.9188i 0.156217 0.480787i
\(723\) −2.66312 8.19624i −0.0990425 0.304821i
\(724\) −17.3262 + 12.5882i −0.643925 + 0.467839i
\(725\) −55.4508 −2.05939
\(726\) 0 0
\(727\) −4.58359 −0.169996 −0.0849980 0.996381i \(-0.527088\pi\)
−0.0849980 + 0.996381i \(0.527088\pi\)
\(728\) −1.61803 + 1.17557i −0.0599683 + 0.0435695i
\(729\) 0.309017 + 0.951057i 0.0114451 + 0.0352243i
\(730\) −16.2812 + 50.1082i −0.602593 + 1.85459i
\(731\) 15.4164 + 11.2007i 0.570196 + 0.414272i
\(732\) −3.00000 2.17963i −0.110883 0.0805614i
\(733\) −5.79837 + 17.8456i −0.214168 + 0.659141i 0.785044 + 0.619440i \(0.212640\pi\)
−0.999212 + 0.0397005i \(0.987360\pi\)
\(734\) −5.88197 18.1028i −0.217107 0.668188i
\(735\) 19.3713 14.0741i 0.714522 0.519131i
\(736\) −5.70820 −0.210407
\(737\) 0 0
\(738\) 5.70820 0.210122
\(739\) 34.3607 24.9645i 1.26398 0.918334i 0.265032 0.964240i \(-0.414617\pi\)
0.998946 + 0.0459057i \(0.0146174\pi\)
\(740\) −10.0000 30.7768i −0.367607 1.13138i
\(741\) −5.70820 + 17.5680i −0.209696 + 0.645378i
\(742\) 0.690983 + 0.502029i 0.0253668 + 0.0184300i
\(743\) −34.7426 25.2420i −1.27458 0.926040i −0.275209 0.961384i \(-0.588747\pi\)
−0.999375 + 0.0353449i \(0.988747\pi\)
\(744\) −1.04508 + 3.21644i −0.0383147 + 0.117920i
\(745\) −6.74671 20.7642i −0.247180 0.760743i
\(746\) 0 0
\(747\) −1.61803 −0.0592008
\(748\) 0 0
\(749\) 0.673762 0.0246187
\(750\) −9.04508 + 6.57164i −0.330280 + 0.239962i
\(751\) 10.7639 + 33.1280i 0.392781 + 1.20886i 0.930676 + 0.365845i \(0.119220\pi\)
−0.537894 + 0.843012i \(0.680780\pi\)
\(752\) 1.23607 3.80423i 0.0450748 0.138726i
\(753\) −12.3992 9.00854i −0.451851 0.328289i
\(754\) −17.9443 13.0373i −0.653492 0.474790i
\(755\) −22.1353 + 68.1253i −0.805584 + 2.47933i
\(756\) −0.190983 0.587785i −0.00694598 0.0213775i
\(757\) 18.8885 13.7233i 0.686516 0.498783i −0.188997 0.981978i \(-0.560524\pi\)
0.875513 + 0.483195i \(0.160524\pi\)
\(758\) 26.1803 0.950913
\(759\) 0 0
\(760\) 20.6525 0.749144
\(761\) 25.7426 18.7031i 0.933170 0.677988i −0.0135968 0.999908i \(-0.504328\pi\)
0.946767 + 0.321920i \(0.104328\pi\)
\(762\) −1.23607 3.80423i −0.0447780 0.137813i
\(763\) −0.562306 + 1.73060i −0.0203568 + 0.0626519i
\(764\) 2.47214 + 1.79611i 0.0894387 + 0.0649810i
\(765\) 11.7082 + 8.50651i 0.423311 + 0.307553i
\(766\) 7.50658 23.1029i 0.271224 0.834741i
\(767\) −10.3262 31.7809i −0.372859 1.14754i
\(768\) −0.809017 + 0.587785i −0.0291929 + 0.0212099i
\(769\) 21.4377 0.773063 0.386532 0.922276i \(-0.373673\pi\)
0.386532 + 0.922276i \(0.373673\pi\)
\(770\) 0 0
\(771\) 8.29180 0.298622
\(772\) −3.73607 + 2.71441i −0.134464 + 0.0976938i
\(773\) 4.00658 + 12.3310i 0.144107 + 0.443514i 0.996895 0.0787421i \(-0.0250903\pi\)
−0.852788 + 0.522257i \(0.825090\pi\)
\(774\) 1.47214 4.53077i 0.0529148 0.162855i
\(775\) 22.1353 + 16.0822i 0.795122 + 0.577690i
\(776\) 7.78115 + 5.65334i 0.279327 + 0.202943i
\(777\) 1.70820 5.25731i 0.0612815 0.188605i
\(778\) 5.85410 + 18.0171i 0.209880 + 0.645943i
\(779\) −26.3607 + 19.1522i −0.944469 + 0.686197i
\(780\) −11.7082 −0.419221
\(781\) 0 0
\(782\) 22.8328 0.816500
\(783\) 5.54508 4.02874i 0.198165 0.143975i
\(784\) −2.04508 6.29412i −0.0730387 0.224790i
\(785\) −20.1246 + 61.9372i −0.718278 + 2.21063i
\(786\) 3.11803 + 2.26538i 0.111217 + 0.0808036i
\(787\) 27.2705 + 19.8132i 0.972089 + 0.706264i 0.955927 0.293606i \(-0.0948552\pi\)
0.0161620 + 0.999869i \(0.494855\pi\)
\(788\) 7.88197 24.2582i 0.280783 0.864162i
\(789\) 5.32624 + 16.3925i 0.189619 + 0.583588i
\(790\) −20.0623 + 14.5761i −0.713785 + 0.518595i
\(791\) −4.29180 −0.152599
\(792\) 0 0
\(793\) −12.0000 −0.426132
\(794\) −4.00000 + 2.90617i −0.141955 + 0.103136i
\(795\) 1.54508 + 4.75528i 0.0547985 + 0.168652i
\(796\) −0.118034 + 0.363271i −0.00418360 + 0.0128758i
\(797\) 25.5902 + 18.5923i 0.906450 + 0.658575i 0.940115 0.340858i \(-0.110718\pi\)
−0.0336643 + 0.999433i \(0.510718\pi\)
\(798\) 2.85410 + 2.07363i 0.101034 + 0.0734056i
\(799\) −4.94427 + 15.2169i −0.174916 + 0.538335i
\(800\) 2.50000 + 7.69421i 0.0883883 + 0.272031i
\(801\) −5.47214 + 3.97574i −0.193348 + 0.140476i
\(802\) −1.70820 −0.0603188
\(803\) 0 0
\(804\) 4.94427 0.174371
\(805\) −10.3262 + 7.50245i −0.363952 + 0.264427i
\(806\) 3.38197 + 10.4086i 0.119125 + 0.366628i
\(807\) 1.85410 5.70634i 0.0652675 0.200873i
\(808\) −1.69098 1.22857i −0.0594886 0.0432210i
\(809\) −16.9443 12.3107i −0.595729 0.432822i 0.248631 0.968598i \(-0.420019\pi\)
−0.844360 + 0.535776i \(0.820019\pi\)
\(810\) 1.11803 3.44095i 0.0392837 0.120903i
\(811\) −13.6525 42.0180i −0.479403 1.47545i −0.839926 0.542701i \(-0.817402\pi\)
0.360523 0.932750i \(-0.382598\pi\)
\(812\) −3.42705 + 2.48990i −0.120266 + 0.0873783i
\(813\) −26.4721 −0.928418
\(814\) 0 0
\(815\) 1.70820 0.0598358
\(816\) 3.23607 2.35114i 0.113285 0.0823064i
\(817\) 8.40325 + 25.8626i 0.293993 + 0.904816i
\(818\) 9.26393 28.5115i 0.323906 0.996880i
\(819\) −1.61803 1.17557i −0.0565387 0.0410778i
\(820\) −16.7082 12.1392i −0.583476 0.423920i
\(821\) −7.55166 + 23.2416i −0.263555 + 0.811138i 0.728468 + 0.685080i \(0.240233\pi\)
−0.992023 + 0.126059i \(0.959767\pi\)
\(822\) −4.38197 13.4863i −0.152839 0.470389i
\(823\) −13.8713 + 10.0781i −0.483524 + 0.351301i −0.802688 0.596399i \(-0.796598\pi\)
0.319164 + 0.947699i \(0.396598\pi\)
\(824\) −9.85410 −0.343284
\(825\) 0 0
\(826\) −6.38197 −0.222057
\(827\) 36.0066 26.1603i 1.25207 0.909683i 0.253731 0.967275i \(-0.418342\pi\)
0.998340 + 0.0575917i \(0.0183421\pi\)
\(828\) −1.76393 5.42882i −0.0613009 0.188665i
\(829\) 15.3820 47.3408i 0.534238 1.64421i −0.211053 0.977475i \(-0.567689\pi\)
0.745290 0.666740i \(-0.232311\pi\)
\(830\) 4.73607 + 3.44095i 0.164391 + 0.119437i
\(831\) 12.7082 + 9.23305i 0.440843 + 0.320291i
\(832\) −1.00000 + 3.07768i −0.0346688 + 0.106699i
\(833\) 8.18034 + 25.1765i 0.283432 + 0.872314i
\(834\) −12.7082 + 9.23305i −0.440049 + 0.319714i
\(835\) 22.7639 0.787778
\(836\) 0 0
\(837\) −3.38197 −0.116898
\(838\) −9.78115 + 7.10642i −0.337884 + 0.245487i
\(839\) −7.72949 23.7889i −0.266852 0.821285i −0.991261 0.131915i \(-0.957887\pi\)
0.724409 0.689370i \(-0.242113\pi\)
\(840\) −0.690983 + 2.12663i −0.0238412 + 0.0733756i
\(841\) −14.5451 10.5676i −0.501555 0.364401i
\(842\) 7.76393 + 5.64083i 0.267563 + 0.194396i
\(843\) −6.56231 + 20.1967i −0.226018 + 0.695611i
\(844\) 2.85410 + 8.78402i 0.0982422 + 0.302359i
\(845\) 7.39919 5.37582i 0.254540 0.184934i
\(846\) 4.00000 0.137523
\(847\) 0 0
\(848\) 1.38197 0.0474569
\(849\) −6.09017 + 4.42477i −0.209014 + 0.151858i
\(850\) −10.0000 30.7768i −0.342997 1.05564i
\(851\) 15.7771 48.5569i 0.540832 1.66451i
\(852\) −4.85410 3.52671i −0.166299 0.120823i
\(853\) 10.9443 + 7.95148i 0.374725 + 0.272253i 0.759167 0.650895i \(-0.225606\pi\)
−0.384443 + 0.923149i \(0.625606\pi\)
\(854\) −0.708204 + 2.17963i −0.0242342 + 0.0745853i
\(855\) 6.38197 + 19.6417i 0.218259 + 0.671731i
\(856\) 0.881966 0.640786i 0.0301450 0.0219016i
\(857\) −20.1803 −0.689347 −0.344674 0.938723i \(-0.612010\pi\)
−0.344674 + 0.938723i \(0.612010\pi\)
\(858\) 0 0
\(859\) −51.9574 −1.77276 −0.886382 0.462954i \(-0.846789\pi\)
−0.886382 + 0.462954i \(0.846789\pi\)
\(860\) −13.9443 + 10.1311i −0.475496 + 0.345468i
\(861\) −1.09017 3.35520i −0.0371529 0.114345i
\(862\) −10.5279 + 32.4014i −0.358580 + 1.10360i
\(863\) −5.76393 4.18774i −0.196207 0.142552i 0.485344 0.874323i \(-0.338694\pi\)
−0.681551 + 0.731771i \(0.738694\pi\)
\(864\) −0.809017 0.587785i −0.0275233 0.0199969i
\(865\) 16.0172 49.2959i 0.544602 1.67611i
\(866\) 2.28115 + 7.02067i 0.0775167 + 0.238572i
\(867\) 0.809017 0.587785i 0.0274757 0.0199622i
\(868\) 2.09017 0.0709450
\(869\) 0 0
\(870\) −24.7984 −0.840744
\(871\) 12.9443 9.40456i 0.438600 0.318661i
\(872\) 0.909830 + 2.80017i 0.0308107 + 0.0948257i
\(873\) −2.97214 + 9.14729i −0.100592 + 0.309589i
\(874\) 26.3607 + 19.1522i 0.891663 + 0.647831i
\(875\) 5.59017 + 4.06150i 0.188982 + 0.137304i
\(876\) −4.50000 + 13.8496i −0.152041 + 0.467934i
\(877\) 8.90983 + 27.4216i 0.300864 + 0.925963i 0.981188 + 0.193052i \(0.0618387\pi\)
−0.680325 + 0.732911i \(0.738161\pi\)
\(878\) 24.2082 17.5883i 0.816987 0.593576i
\(879\) −5.38197 −0.181529
\(880\) 0 0
\(881\) −24.0689 −0.810901 −0.405451 0.914117i \(-0.632885\pi\)
−0.405451 + 0.914117i \(0.632885\pi\)
\(882\) 5.35410 3.88998i 0.180282 0.130983i
\(883\) −17.4721 53.7737i −0.587984 1.80963i −0.586941 0.809630i \(-0.699668\pi\)
−0.00104333 0.999999i \(-0.500332\pi\)
\(884\) 4.00000 12.3107i 0.134535 0.414055i
\(885\) −30.2254 21.9601i −1.01602 0.738179i
\(886\) −0.118034 0.0857567i −0.00396543 0.00288105i
\(887\) 18.2361 56.1248i 0.612307 1.88449i 0.176984 0.984214i \(-0.443366\pi\)
0.435323 0.900274i \(-0.356634\pi\)
\(888\) −2.76393 8.50651i −0.0927515 0.285460i
\(889\) −2.00000 + 1.45309i −0.0670778 + 0.0487349i
\(890\) 24.4721 0.820308
\(891\) 0 0
\(892\) −1.32624 −0.0444057
\(893\) −18.4721 + 13.4208i −0.618146 + 0.449110i
\(894\) −1.86475 5.73910i −0.0623664 0.191944i
\(895\) −20.7533 + 63.8721i −0.693706 + 2.13501i
\(896\) 0.500000 + 0.363271i 0.0167038 + 0.0121360i
\(897\) −14.9443 10.8576i −0.498975 0.362526i
\(898\) 0.145898 0.449028i 0.00486868 0.0149843i
\(899\) 7.16312 + 22.0458i 0.238903 + 0.735269i
\(900\) −6.54508 + 4.75528i −0.218169 + 0.158509i
\(901\) −5.52786 −0.184160
\(902\) 0 0
\(903\) −2.94427 −0.0979792
\(904\) −5.61803 + 4.08174i −0.186853 + 0.135757i
\(905\) 23.9443 + 73.6929i 0.795935 + 2.44963i
\(906\) −6.11803 + 18.8294i −0.203258 + 0.625564i
\(907\) 1.38197 + 1.00406i 0.0458874 + 0.0333392i 0.610493 0.792022i \(-0.290972\pi\)
−0.564605 + 0.825361i \(0.690972\pi\)
\(908\) 4.07295 + 2.95917i 0.135166 + 0.0982035i
\(909\) 0.645898 1.98787i 0.0214231 0.0659335i
\(910\) 2.23607 + 6.88191i 0.0741249 + 0.228133i
\(911\) −21.4721 + 15.6004i −0.711404 + 0.516865i −0.883626 0.468193i \(-0.844905\pi\)
0.172223 + 0.985058i \(0.444905\pi\)
\(912\) 5.70820 0.189018
\(913\) 0 0
\(914\) 28.0902 0.929140
\(915\) −10.8541 + 7.88597i −0.358826 + 0.260702i
\(916\) −1.67376 5.15131i −0.0553027 0.170204i
\(917\) 0.736068 2.26538i 0.0243071 0.0748096i
\(918\) 3.23607 + 2.35114i 0.106806 + 0.0775992i
\(919\) 40.1976 + 29.2052i 1.32600 + 0.963392i 0.999837 + 0.0180768i \(0.00575434\pi\)
0.326159 + 0.945315i \(0.394246\pi\)
\(920\) −6.38197 + 19.6417i −0.210407 + 0.647567i
\(921\) 5.32624 + 16.3925i 0.175506 + 0.540150i
\(922\) 17.7984 12.9313i 0.586158 0.425869i
\(923\) −19.4164 −0.639099
\(924\) 0 0
\(925\) −72.3607 −2.37920
\(926\) 6.26393 4.55101i 0.205846 0.149556i
\(927\) −3.04508 9.37181i −0.100014 0.307811i
\(928\) −2.11803 + 6.51864i −0.0695279 + 0.213985i
\(929\) −21.1803 15.3884i −0.694904 0.504878i 0.183364 0.983045i \(-0.441301\pi\)
−0.878269 + 0.478167i \(0.841301\pi\)
\(930\) 9.89919 + 7.19218i 0.324607 + 0.235841i
\(931\) −11.6738 + 35.9281i −0.382592 + 1.17750i
\(932\) 5.23607 + 16.1150i 0.171513 + 0.527863i
\(933\) −13.3262 + 9.68208i −0.436281 + 0.316977i
\(934\) 12.7984 0.418776
\(935\) 0 0
\(936\) −3.23607 −0.105774
\(937\) 2.79180 2.02836i 0.0912040 0.0662636i −0.541249 0.840863i \(-0.682048\pi\)
0.632453 + 0.774599i \(0.282048\pi\)
\(938\) −0.944272 2.90617i −0.0308316 0.0948898i
\(939\) 6.79180 20.9030i 0.221642 0.682144i
\(940\) −11.7082 8.50651i −0.381880 0.277452i
\(941\) 30.5623 + 22.2048i 0.996303 + 0.723856i 0.961292 0.275531i \(-0.0888536\pi\)
0.0350104 + 0.999387i \(0.488854\pi\)
\(942\) −5.56231 + 17.1190i −0.181230 + 0.557768i
\(943\) −10.0689 30.9888i −0.327888 1.00914i
\(944\) −8.35410 + 6.06961i −0.271903 + 0.197549i
\(945\) −2.23607 −0.0727393
\(946\) 0 0
\(947\) 31.9230 1.03736 0.518679 0.854969i \(-0.326424\pi\)
0.518679 + 0.854969i \(0.326424\pi\)
\(948\) −5.54508 + 4.02874i −0.180096 + 0.130847i
\(949\) 14.5623 + 44.8182i 0.472712 + 1.45486i
\(950\) 14.2705 43.9201i 0.462996 1.42496i
\(951\) 7.32624 + 5.32282i 0.237570 + 0.172604i
\(952\) −2.00000 1.45309i −0.0648204 0.0470948i
\(953\) 5.41641 16.6700i 0.175455 0.539994i −0.824199 0.566300i \(-0.808374\pi\)
0.999654 + 0.0263060i \(0.00837441\pi\)
\(954\) 0.427051 + 1.31433i 0.0138263 + 0.0425529i
\(955\) 8.94427 6.49839i 0.289430 0.210283i
\(956\) 7.52786 0.243469
\(957\) 0 0
\(958\) −8.76393 −0.283150
\(959\) −7.09017 + 5.15131i −0.228954 + 0.166344i
\(960\) 1.11803 + 3.44095i 0.0360844 + 0.111056i
\(961\) −6.04508 + 18.6049i −0.195003 + 0.600157i
\(962\) −23.4164 17.0130i −0.754975 0.548522i
\(963\) 0.881966 + 0.640786i 0.0284210 + 0.0206490i
\(964\) −2.66312 + 8.19624i −0.0857733 + 0.263983i
\(965\) 5.16312 + 15.8904i 0.166207 + 0.511532i
\(966\) −2.85410 + 2.07363i −0.0918292 + 0.0667178i
\(967\) 19.6180 0.630873 0.315437 0.948947i \(-0.397849\pi\)
0.315437 + 0.948947i \(0.397849\pi\)
\(968\) 0 0
\(969\) −22.8328 −0.733496
\(970\) 28.1525 20.4540i 0.903922 0.656737i
\(971\) −1.70820 5.25731i −0.0548189 0.168715i 0.919898 0.392157i \(-0.128271\pi\)
−0.974717 + 0.223441i \(0.928271\pi\)
\(972\) 0.309017 0.951057i 0.00991172 0.0305052i
\(973\) 7.85410 + 5.70634i 0.251791 + 0.182937i
\(974\) −2.50000 1.81636i −0.0801052 0.0581998i
\(975\) −8.09017 + 24.8990i −0.259093 + 0.797406i
\(976\) 1.14590 + 3.52671i 0.0366793 + 0.112887i
\(977\) 15.3820 11.1757i 0.492113 0.357541i −0.313884 0.949461i \(-0.601630\pi\)
0.805996 + 0.591921i \(0.201630\pi\)
\(978\) 0.472136 0.0150972
\(979\) 0 0
\(980\) −23.9443 −0.764872
\(981\) −2.38197 + 1.73060i −0.0760503 + 0.0552538i
\(982\) 9.05573 + 27.8707i 0.288980 + 0.889389i
\(983\) −6.05573 + 18.6376i −0.193148 + 0.594448i 0.806845 + 0.590763i \(0.201173\pi\)
−0.999993 + 0.00368505i \(0.998827\pi\)
\(984\) −4.61803 3.35520i −0.147218 0.106960i
\(985\) −74.6591 54.2430i −2.37884 1.72832i
\(986\) 8.47214 26.0746i 0.269808 0.830383i
\(987\) −0.763932 2.35114i −0.0243162 0.0748376i
\(988\) 14.9443 10.8576i 0.475441 0.345428i
\(989\) −27.1935 −0.864703
\(990\) 0 0
\(991\) 55.3951 1.75968 0.879842 0.475266i \(-0.157648\pi\)
0.879842 + 0.475266i \(0.157648\pi\)
\(992\) 2.73607 1.98787i 0.0868702 0.0631149i
\(993\) −5.05573 15.5599i −0.160439 0.493779i
\(994\) −1.14590 + 3.52671i −0.0363457 + 0.111860i
\(995\) 1.11803 + 0.812299i 0.0354441 + 0.0257516i
\(996\) 1.30902 + 0.951057i 0.0414778 + 0.0301354i
\(997\) −7.61803 + 23.4459i −0.241266 + 0.742539i 0.754963 + 0.655768i \(0.227655\pi\)
−0.996228 + 0.0867713i \(0.972345\pi\)
\(998\) 11.5279 + 35.4791i 0.364908 + 1.12307i
\(999\) 7.23607 5.25731i 0.228939 0.166334i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 726.2.e.a.487.1 4
11.2 odd 10 726.2.a.k.1.2 2
11.3 even 5 726.2.e.c.511.1 4
11.4 even 5 inner 726.2.e.a.565.1 4
11.5 even 5 726.2.e.c.493.1 4
11.6 odd 10 66.2.e.b.31.1 4
11.7 odd 10 726.2.e.j.565.1 4
11.8 odd 10 66.2.e.b.49.1 yes 4
11.9 even 5 726.2.a.m.1.2 2
11.10 odd 2 726.2.e.j.487.1 4
33.2 even 10 2178.2.a.v.1.1 2
33.8 even 10 198.2.f.a.181.1 4
33.17 even 10 198.2.f.a.163.1 4
33.20 odd 10 2178.2.a.o.1.1 2
44.19 even 10 528.2.y.g.49.1 4
44.31 odd 10 5808.2.a.by.1.2 2
44.35 even 10 5808.2.a.bz.1.2 2
44.39 even 10 528.2.y.g.97.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
66.2.e.b.31.1 4 11.6 odd 10
66.2.e.b.49.1 yes 4 11.8 odd 10
198.2.f.a.163.1 4 33.17 even 10
198.2.f.a.181.1 4 33.8 even 10
528.2.y.g.49.1 4 44.19 even 10
528.2.y.g.97.1 4 44.39 even 10
726.2.a.k.1.2 2 11.2 odd 10
726.2.a.m.1.2 2 11.9 even 5
726.2.e.a.487.1 4 1.1 even 1 trivial
726.2.e.a.565.1 4 11.4 even 5 inner
726.2.e.c.493.1 4 11.5 even 5
726.2.e.c.511.1 4 11.3 even 5
726.2.e.j.487.1 4 11.10 odd 2
726.2.e.j.565.1 4 11.7 odd 10
2178.2.a.o.1.1 2 33.20 odd 10
2178.2.a.v.1.1 2 33.2 even 10
5808.2.a.by.1.2 2 44.31 odd 10
5808.2.a.bz.1.2 2 44.35 even 10