L(s) = 1 | + (0.309 − 0.951i)2-s + (−0.809 + 0.587i)3-s + (−0.809 − 0.587i)4-s + (1.11 + 3.44i)5-s + (0.309 + 0.951i)6-s + (0.5 + 0.363i)7-s + (−0.809 + 0.587i)8-s + (0.309 − 0.951i)9-s + 3.61·10-s + 0.999·12-s + (−1 + 3.07i)13-s + (0.5 − 0.363i)14-s + (−2.92 − 2.12i)15-s + (0.309 + 0.951i)16-s + (−1.23 − 3.80i)17-s + (−0.809 − 0.587i)18-s + ⋯ |
L(s) = 1 | + (0.218 − 0.672i)2-s + (−0.467 + 0.339i)3-s + (−0.404 − 0.293i)4-s + (0.499 + 1.53i)5-s + (0.126 + 0.388i)6-s + (0.188 + 0.137i)7-s + (−0.286 + 0.207i)8-s + (0.103 − 0.317i)9-s + 1.14·10-s + 0.288·12-s + (−0.277 + 0.853i)13-s + (0.133 − 0.0970i)14-s + (−0.755 − 0.549i)15-s + (0.0772 + 0.237i)16-s + (−0.299 − 0.922i)17-s + (−0.190 − 0.138i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 726 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0219 - 0.999i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 726 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.0219 - 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.811470 + 0.793822i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.811470 + 0.793822i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.309 + 0.951i)T \) |
| 3 | \( 1 + (0.809 - 0.587i)T \) |
| 11 | \( 1 \) |
good | 5 | \( 1 + (-1.11 - 3.44i)T + (-4.04 + 2.93i)T^{2} \) |
| 7 | \( 1 + (-0.5 - 0.363i)T + (2.16 + 6.65i)T^{2} \) |
| 13 | \( 1 + (1 - 3.07i)T + (-10.5 - 7.64i)T^{2} \) |
| 17 | \( 1 + (1.23 + 3.80i)T + (-13.7 + 9.99i)T^{2} \) |
| 19 | \( 1 + (4.61 - 3.35i)T + (5.87 - 18.0i)T^{2} \) |
| 23 | \( 1 + 5.70T + 23T^{2} \) |
| 29 | \( 1 + (-5.54 - 4.02i)T + (8.96 + 27.5i)T^{2} \) |
| 31 | \( 1 + (1.04 - 3.21i)T + (-25.0 - 18.2i)T^{2} \) |
| 37 | \( 1 + (-7.23 - 5.25i)T + (11.4 + 35.1i)T^{2} \) |
| 41 | \( 1 + (4.61 - 3.35i)T + (12.6 - 38.9i)T^{2} \) |
| 43 | \( 1 - 4.76T + 43T^{2} \) |
| 47 | \( 1 + (3.23 - 2.35i)T + (14.5 - 44.6i)T^{2} \) |
| 53 | \( 1 + (-0.427 + 1.31i)T + (-42.8 - 31.1i)T^{2} \) |
| 59 | \( 1 + (8.35 + 6.06i)T + (18.2 + 56.1i)T^{2} \) |
| 61 | \( 1 + (-1.14 - 3.52i)T + (-49.3 + 35.8i)T^{2} \) |
| 67 | \( 1 - 4.94T + 67T^{2} \) |
| 71 | \( 1 + (-1.85 - 5.70i)T + (-57.4 + 41.7i)T^{2} \) |
| 73 | \( 1 + (-11.7 - 8.55i)T + (22.5 + 69.4i)T^{2} \) |
| 79 | \( 1 + (-2.11 + 6.51i)T + (-63.9 - 46.4i)T^{2} \) |
| 83 | \( 1 + (0.5 + 1.53i)T + (-67.1 + 48.7i)T^{2} \) |
| 89 | \( 1 - 6.76T + 89T^{2} \) |
| 97 | \( 1 + (2.97 - 9.14i)T + (-78.4 - 57.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.57288458107427234821303505963, −10.06435078906229313108697102984, −9.303051178318629343210944937503, −8.063020483300624260193717349643, −6.71422133584690362108552903982, −6.32013866697431533317911527759, −5.09295329796660562423486390326, −4.06815119901038188035454398914, −2.93059682466465899266495620449, −1.94619264070086552630308397106,
0.56415874457762768693503691625, 2.12153445585720855073901113754, 4.16883658585160758450694764115, 4.83478918524199492108805496043, 5.80666530529369096544080264836, 6.35102526947392918778224361949, 7.75561712077410985911936503003, 8.286829426633319975410202213778, 9.144339542415935020743661242158, 10.06986491708908919558463351562