Properties

Label 726.2.e.a.493.1
Level $726$
Weight $2$
Character 726.493
Analytic conductor $5.797$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [726,2,Mod(487,726)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(726, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 8])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("726.487"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 726 = 2 \cdot 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 726.e (of order \(5\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-1,-1,-1,-5,-1,-3,-1,-1,10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(10)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.79713918674\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 66)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 493.1
Root \(-0.309017 - 0.951057i\) of defining polynomial
Character \(\chi\) \(=\) 726.493
Dual form 726.2.e.a.511.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.309017 - 0.951057i) q^{2} +(-0.809017 + 0.587785i) q^{3} +(-0.809017 - 0.587785i) q^{4} +(0.427051 + 1.31433i) q^{5} +(0.309017 + 0.951057i) q^{6} +(-1.30902 - 0.951057i) q^{7} +(-0.809017 + 0.587785i) q^{8} +(0.309017 - 0.951057i) q^{9} +1.38197 q^{10} +1.00000 q^{12} +(0.381966 - 1.17557i) q^{13} +(-1.30902 + 0.951057i) q^{14} +(-1.11803 - 0.812299i) q^{15} +(0.309017 + 0.951057i) q^{16} +(-1.23607 - 3.80423i) q^{17} +(-0.809017 - 0.587785i) q^{18} +(6.23607 - 4.53077i) q^{19} +(0.427051 - 1.31433i) q^{20} +1.61803 q^{21} +7.70820 q^{23} +(0.309017 - 0.951057i) q^{24} +(2.50000 - 1.81636i) q^{25} +(-1.00000 - 0.726543i) q^{26} +(0.309017 + 0.951057i) q^{27} +(0.500000 + 1.53884i) q^{28} +(0.118034 + 0.0857567i) q^{29} +(-1.11803 + 0.812299i) q^{30} +(-1.73607 + 5.34307i) q^{31} +1.00000 q^{32} -4.00000 q^{34} +(0.690983 - 2.12663i) q^{35} +(-0.809017 + 0.587785i) q^{36} +(-7.23607 - 5.25731i) q^{37} +(-2.38197 - 7.33094i) q^{38} +(0.381966 + 1.17557i) q^{39} +(-1.11803 - 0.812299i) q^{40} +(6.23607 - 4.53077i) q^{41} +(0.500000 - 1.53884i) q^{42} +9.23607 q^{43} +1.38197 q^{45} +(2.38197 - 7.33094i) q^{46} +(-3.23607 + 2.35114i) q^{47} +(-0.809017 - 0.587785i) q^{48} +(-1.35410 - 4.16750i) q^{49} +(-0.954915 - 2.93893i) q^{50} +(3.23607 + 2.35114i) q^{51} +(-1.00000 + 0.726543i) q^{52} +(1.11803 - 3.44095i) q^{53} +1.00000 q^{54} +1.61803 q^{56} +(-2.38197 + 7.33094i) q^{57} +(0.118034 - 0.0857567i) q^{58} +(4.30902 + 3.13068i) q^{59} +(0.427051 + 1.31433i) q^{60} +(-3.00000 - 9.23305i) q^{61} +(4.54508 + 3.30220i) q^{62} +(-1.30902 + 0.951057i) q^{63} +(0.309017 - 0.951057i) q^{64} +1.70820 q^{65} -12.9443 q^{67} +(-1.23607 + 3.80423i) q^{68} +(-6.23607 + 4.53077i) q^{69} +(-1.80902 - 1.31433i) q^{70} +(1.85410 + 5.70634i) q^{71} +(0.309017 + 0.951057i) q^{72} +(-4.50000 - 3.26944i) q^{73} +(-7.23607 + 5.25731i) q^{74} +(-0.954915 + 2.93893i) q^{75} -7.70820 q^{76} +1.23607 q^{78} +(0.0450850 - 0.138757i) q^{79} +(-1.11803 + 0.812299i) q^{80} +(-0.809017 - 0.587785i) q^{81} +(-2.38197 - 7.33094i) q^{82} +(0.190983 + 0.587785i) q^{83} +(-1.30902 - 0.951057i) q^{84} +(4.47214 - 3.24920i) q^{85} +(2.85410 - 8.78402i) q^{86} -0.145898 q^{87} +11.2361 q^{89} +(0.427051 - 1.31433i) q^{90} +(-1.61803 + 1.17557i) q^{91} +(-6.23607 - 4.53077i) q^{92} +(-1.73607 - 5.34307i) q^{93} +(1.23607 + 3.80423i) q^{94} +(8.61803 + 6.26137i) q^{95} +(-0.809017 + 0.587785i) q^{96} +(-2.28115 + 7.02067i) q^{97} -4.38197 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - q^{2} - q^{3} - q^{4} - 5 q^{5} - q^{6} - 3 q^{7} - q^{8} - q^{9} + 10 q^{10} + 4 q^{12} + 6 q^{13} - 3 q^{14} - q^{16} + 4 q^{17} - q^{18} + 16 q^{19} - 5 q^{20} + 2 q^{21} + 4 q^{23} - q^{24}+ \cdots - 22 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/726\mathbb{Z}\right)^\times\).

\(n\) \(485\) \(607\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.309017 0.951057i 0.218508 0.672499i
\(3\) −0.809017 + 0.587785i −0.467086 + 0.339358i
\(4\) −0.809017 0.587785i −0.404508 0.293893i
\(5\) 0.427051 + 1.31433i 0.190983 + 0.587785i 1.00000 \(0\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(6\) 0.309017 + 0.951057i 0.126156 + 0.388267i
\(7\) −1.30902 0.951057i −0.494762 0.359466i 0.312251 0.950000i \(-0.398917\pi\)
−0.807013 + 0.590534i \(0.798917\pi\)
\(8\) −0.809017 + 0.587785i −0.286031 + 0.207813i
\(9\) 0.309017 0.951057i 0.103006 0.317019i
\(10\) 1.38197 0.437016
\(11\) 0 0
\(12\) 1.00000 0.288675
\(13\) 0.381966 1.17557i 0.105938 0.326045i −0.884011 0.467466i \(-0.845167\pi\)
0.989950 + 0.141421i \(0.0451671\pi\)
\(14\) −1.30902 + 0.951057i −0.349850 + 0.254181i
\(15\) −1.11803 0.812299i −0.288675 0.209735i
\(16\) 0.309017 + 0.951057i 0.0772542 + 0.237764i
\(17\) −1.23607 3.80423i −0.299791 0.922660i −0.981570 0.191103i \(-0.938794\pi\)
0.681780 0.731558i \(-0.261206\pi\)
\(18\) −0.809017 0.587785i −0.190687 0.138542i
\(19\) 6.23607 4.53077i 1.43065 1.03943i 0.440757 0.897626i \(-0.354710\pi\)
0.989895 0.141803i \(-0.0452900\pi\)
\(20\) 0.427051 1.31433i 0.0954915 0.293893i
\(21\) 1.61803 0.353084
\(22\) 0 0
\(23\) 7.70820 1.60727 0.803636 0.595121i \(-0.202896\pi\)
0.803636 + 0.595121i \(0.202896\pi\)
\(24\) 0.309017 0.951057i 0.0630778 0.194134i
\(25\) 2.50000 1.81636i 0.500000 0.363271i
\(26\) −1.00000 0.726543i −0.196116 0.142487i
\(27\) 0.309017 + 0.951057i 0.0594703 + 0.183031i
\(28\) 0.500000 + 1.53884i 0.0944911 + 0.290814i
\(29\) 0.118034 + 0.0857567i 0.0219184 + 0.0159246i 0.598691 0.800980i \(-0.295688\pi\)
−0.576772 + 0.816905i \(0.695688\pi\)
\(30\) −1.11803 + 0.812299i −0.204124 + 0.148305i
\(31\) −1.73607 + 5.34307i −0.311807 + 0.959643i 0.665242 + 0.746628i \(0.268328\pi\)
−0.977049 + 0.213015i \(0.931672\pi\)
\(32\) 1.00000 0.176777
\(33\) 0 0
\(34\) −4.00000 −0.685994
\(35\) 0.690983 2.12663i 0.116797 0.359466i
\(36\) −0.809017 + 0.587785i −0.134836 + 0.0979642i
\(37\) −7.23607 5.25731i −1.18960 0.864297i −0.196380 0.980528i \(-0.562919\pi\)
−0.993222 + 0.116231i \(0.962919\pi\)
\(38\) −2.38197 7.33094i −0.386406 1.18924i
\(39\) 0.381966 + 1.17557i 0.0611635 + 0.188242i
\(40\) −1.11803 0.812299i −0.176777 0.128436i
\(41\) 6.23607 4.53077i 0.973910 0.707587i 0.0175708 0.999846i \(-0.494407\pi\)
0.956339 + 0.292258i \(0.0944067\pi\)
\(42\) 0.500000 1.53884i 0.0771517 0.237448i
\(43\) 9.23607 1.40849 0.704244 0.709958i \(-0.251286\pi\)
0.704244 + 0.709958i \(0.251286\pi\)
\(44\) 0 0
\(45\) 1.38197 0.206011
\(46\) 2.38197 7.33094i 0.351202 1.08089i
\(47\) −3.23607 + 2.35114i −0.472029 + 0.342949i −0.798232 0.602351i \(-0.794231\pi\)
0.326202 + 0.945300i \(0.394231\pi\)
\(48\) −0.809017 0.587785i −0.116772 0.0848395i
\(49\) −1.35410 4.16750i −0.193443 0.595357i
\(50\) −0.954915 2.93893i −0.135045 0.415627i
\(51\) 3.23607 + 2.35114i 0.453140 + 0.329226i
\(52\) −1.00000 + 0.726543i −0.138675 + 0.100753i
\(53\) 1.11803 3.44095i 0.153574 0.472651i −0.844440 0.535650i \(-0.820066\pi\)
0.998014 + 0.0629990i \(0.0200665\pi\)
\(54\) 1.00000 0.136083
\(55\) 0 0
\(56\) 1.61803 0.216219
\(57\) −2.38197 + 7.33094i −0.315499 + 0.971006i
\(58\) 0.118034 0.0857567i 0.0154986 0.0112604i
\(59\) 4.30902 + 3.13068i 0.560986 + 0.407580i 0.831820 0.555046i \(-0.187299\pi\)
−0.270834 + 0.962626i \(0.587299\pi\)
\(60\) 0.427051 + 1.31433i 0.0551320 + 0.169679i
\(61\) −3.00000 9.23305i −0.384111 1.18217i −0.937123 0.348998i \(-0.886522\pi\)
0.553013 0.833173i \(-0.313478\pi\)
\(62\) 4.54508 + 3.30220i 0.577226 + 0.419380i
\(63\) −1.30902 + 0.951057i −0.164921 + 0.119822i
\(64\) 0.309017 0.951057i 0.0386271 0.118882i
\(65\) 1.70820 0.211877
\(66\) 0 0
\(67\) −12.9443 −1.58139 −0.790697 0.612207i \(-0.790282\pi\)
−0.790697 + 0.612207i \(0.790282\pi\)
\(68\) −1.23607 + 3.80423i −0.149895 + 0.461330i
\(69\) −6.23607 + 4.53077i −0.750734 + 0.545440i
\(70\) −1.80902 1.31433i −0.216219 0.157092i
\(71\) 1.85410 + 5.70634i 0.220041 + 0.677218i 0.998757 + 0.0498409i \(0.0158714\pi\)
−0.778716 + 0.627377i \(0.784129\pi\)
\(72\) 0.309017 + 0.951057i 0.0364180 + 0.112083i
\(73\) −4.50000 3.26944i −0.526685 0.382659i 0.292431 0.956287i \(-0.405536\pi\)
−0.819116 + 0.573627i \(0.805536\pi\)
\(74\) −7.23607 + 5.25731i −0.841176 + 0.611150i
\(75\) −0.954915 + 2.93893i −0.110264 + 0.339358i
\(76\) −7.70820 −0.884192
\(77\) 0 0
\(78\) 1.23607 0.139957
\(79\) 0.0450850 0.138757i 0.00507246 0.0156114i −0.948488 0.316812i \(-0.897387\pi\)
0.953561 + 0.301201i \(0.0973875\pi\)
\(80\) −1.11803 + 0.812299i −0.125000 + 0.0908178i
\(81\) −0.809017 0.587785i −0.0898908 0.0653095i
\(82\) −2.38197 7.33094i −0.263044 0.809567i
\(83\) 0.190983 + 0.587785i 0.0209631 + 0.0645178i 0.960991 0.276580i \(-0.0892012\pi\)
−0.940028 + 0.341098i \(0.889201\pi\)
\(84\) −1.30902 0.951057i −0.142825 0.103769i
\(85\) 4.47214 3.24920i 0.485071 0.352425i
\(86\) 2.85410 8.78402i 0.307766 0.947206i
\(87\) −0.145898 −0.0156419
\(88\) 0 0
\(89\) 11.2361 1.19102 0.595510 0.803348i \(-0.296950\pi\)
0.595510 + 0.803348i \(0.296950\pi\)
\(90\) 0.427051 1.31433i 0.0450151 0.138542i
\(91\) −1.61803 + 1.17557i −0.169616 + 0.123233i
\(92\) −6.23607 4.53077i −0.650155 0.472365i
\(93\) −1.73607 5.34307i −0.180022 0.554050i
\(94\) 1.23607 + 3.80423i 0.127491 + 0.392376i
\(95\) 8.61803 + 6.26137i 0.884192 + 0.642403i
\(96\) −0.809017 + 0.587785i −0.0825700 + 0.0599906i
\(97\) −2.28115 + 7.02067i −0.231616 + 0.712841i 0.765936 + 0.642916i \(0.222276\pi\)
−0.997552 + 0.0699243i \(0.977724\pi\)
\(98\) −4.38197 −0.442645
\(99\) 0 0
\(100\) −3.09017 −0.309017
\(101\) −2.80902 + 8.64527i −0.279508 + 0.860236i 0.708484 + 0.705727i \(0.249380\pi\)
−0.987991 + 0.154509i \(0.950620\pi\)
\(102\) 3.23607 2.35114i 0.320418 0.232798i
\(103\) 2.54508 + 1.84911i 0.250775 + 0.182198i 0.706070 0.708142i \(-0.250466\pi\)
−0.455295 + 0.890340i \(0.650466\pi\)
\(104\) 0.381966 + 1.17557i 0.0374548 + 0.115274i
\(105\) 0.690983 + 2.12663i 0.0674330 + 0.207538i
\(106\) −2.92705 2.12663i −0.284300 0.206556i
\(107\) −8.16312 + 5.93085i −0.789158 + 0.573357i −0.907714 0.419590i \(-0.862174\pi\)
0.118555 + 0.992947i \(0.462174\pi\)
\(108\) 0.309017 0.951057i 0.0297352 0.0915155i
\(109\) −14.9443 −1.43140 −0.715701 0.698407i \(-0.753893\pi\)
−0.715701 + 0.698407i \(0.753893\pi\)
\(110\) 0 0
\(111\) 8.94427 0.848953
\(112\) 0.500000 1.53884i 0.0472456 0.145407i
\(113\) 8.85410 6.43288i 0.832924 0.605155i −0.0874612 0.996168i \(-0.527875\pi\)
0.920385 + 0.391013i \(0.127875\pi\)
\(114\) 6.23607 + 4.53077i 0.584061 + 0.424345i
\(115\) 3.29180 + 10.1311i 0.306962 + 0.944731i
\(116\) −0.0450850 0.138757i −0.00418603 0.0128833i
\(117\) −1.00000 0.726543i −0.0924500 0.0671689i
\(118\) 4.30902 3.13068i 0.396677 0.288203i
\(119\) −2.00000 + 6.15537i −0.183340 + 0.564262i
\(120\) 1.38197 0.126156
\(121\) 0 0
\(122\) −9.70820 −0.878939
\(123\) −2.38197 + 7.33094i −0.214775 + 0.661008i
\(124\) 4.54508 3.30220i 0.408161 0.296546i
\(125\) 9.04508 + 6.57164i 0.809017 + 0.587785i
\(126\) 0.500000 + 1.53884i 0.0445435 + 0.137091i
\(127\) −1.23607 3.80423i −0.109683 0.337570i 0.881118 0.472897i \(-0.156792\pi\)
−0.990801 + 0.135326i \(0.956792\pi\)
\(128\) −0.809017 0.587785i −0.0715077 0.0519534i
\(129\) −7.47214 + 5.42882i −0.657885 + 0.477981i
\(130\) 0.527864 1.62460i 0.0462967 0.142487i
\(131\) 2.85410 0.249364 0.124682 0.992197i \(-0.460209\pi\)
0.124682 + 0.992197i \(0.460209\pi\)
\(132\) 0 0
\(133\) −12.4721 −1.08147
\(134\) −4.00000 + 12.3107i −0.345547 + 1.06349i
\(135\) −1.11803 + 0.812299i −0.0962250 + 0.0699116i
\(136\) 3.23607 + 2.35114i 0.277491 + 0.201609i
\(137\) 2.52786 + 7.77997i 0.215970 + 0.664687i 0.999083 + 0.0428083i \(0.0136305\pi\)
−0.783113 + 0.621879i \(0.786370\pi\)
\(138\) 2.38197 + 7.33094i 0.202766 + 0.624051i
\(139\) −1.85410 1.34708i −0.157263 0.114258i 0.506371 0.862316i \(-0.330987\pi\)
−0.663634 + 0.748058i \(0.730987\pi\)
\(140\) −1.80902 + 1.31433i −0.152890 + 0.111081i
\(141\) 1.23607 3.80423i 0.104096 0.320374i
\(142\) 6.00000 0.503509
\(143\) 0 0
\(144\) 1.00000 0.0833333
\(145\) −0.0623059 + 0.191758i −0.00517422 + 0.0159246i
\(146\) −4.50000 + 3.26944i −0.372423 + 0.270581i
\(147\) 3.54508 + 2.57565i 0.292394 + 0.212436i
\(148\) 2.76393 + 8.50651i 0.227194 + 0.699231i
\(149\) 7.11803 + 21.9071i 0.583132 + 1.79470i 0.606646 + 0.794972i \(0.292515\pi\)
−0.0235135 + 0.999724i \(0.507485\pi\)
\(150\) 2.50000 + 1.81636i 0.204124 + 0.148305i
\(151\) −3.88197 + 2.82041i −0.315910 + 0.229522i −0.734428 0.678686i \(-0.762550\pi\)
0.418518 + 0.908208i \(0.362550\pi\)
\(152\) −2.38197 + 7.33094i −0.193203 + 0.594618i
\(153\) −4.00000 −0.323381
\(154\) 0 0
\(155\) −7.76393 −0.623614
\(156\) 0.381966 1.17557i 0.0305818 0.0941210i
\(157\) 14.5623 10.5801i 1.16220 0.844387i 0.172144 0.985072i \(-0.444931\pi\)
0.990054 + 0.140685i \(0.0449305\pi\)
\(158\) −0.118034 0.0857567i −0.00939028 0.00682244i
\(159\) 1.11803 + 3.44095i 0.0886659 + 0.272885i
\(160\) 0.427051 + 1.31433i 0.0337613 + 0.103907i
\(161\) −10.0902 7.33094i −0.795217 0.577759i
\(162\) −0.809017 + 0.587785i −0.0635624 + 0.0461808i
\(163\) −2.61803 + 8.05748i −0.205060 + 0.631111i 0.794651 + 0.607067i \(0.207654\pi\)
−0.999711 + 0.0240436i \(0.992346\pi\)
\(164\) −7.70820 −0.601910
\(165\) 0 0
\(166\) 0.618034 0.0479687
\(167\) 6.09017 18.7436i 0.471271 1.45042i −0.379649 0.925130i \(-0.623955\pi\)
0.850921 0.525294i \(-0.176045\pi\)
\(168\) −1.30902 + 0.951057i −0.100993 + 0.0733756i
\(169\) 9.28115 + 6.74315i 0.713935 + 0.518704i
\(170\) −1.70820 5.25731i −0.131013 0.403217i
\(171\) −2.38197 7.33094i −0.182153 0.560611i
\(172\) −7.47214 5.42882i −0.569745 0.413944i
\(173\) 1.07295 0.779543i 0.0815748 0.0592676i −0.546250 0.837622i \(-0.683945\pi\)
0.627825 + 0.778354i \(0.283945\pi\)
\(174\) −0.0450850 + 0.138757i −0.00341788 + 0.0105192i
\(175\) −5.00000 −0.377964
\(176\) 0 0
\(177\) −5.32624 −0.400345
\(178\) 3.47214 10.6861i 0.260248 0.800960i
\(179\) −1.26393 + 0.918300i −0.0944707 + 0.0686370i −0.634018 0.773318i \(-0.718595\pi\)
0.539547 + 0.841955i \(0.318595\pi\)
\(180\) −1.11803 0.812299i −0.0833333 0.0605452i
\(181\) −1.67376 5.15131i −0.124410 0.382894i 0.869383 0.494138i \(-0.164516\pi\)
−0.993793 + 0.111244i \(0.964516\pi\)
\(182\) 0.618034 + 1.90211i 0.0458117 + 0.140994i
\(183\) 7.85410 + 5.70634i 0.580592 + 0.421825i
\(184\) −6.23607 + 4.53077i −0.459729 + 0.334013i
\(185\) 3.81966 11.7557i 0.280827 0.864297i
\(186\) −5.61803 −0.411934
\(187\) 0 0
\(188\) 4.00000 0.291730
\(189\) 0.500000 1.53884i 0.0363696 0.111934i
\(190\) 8.61803 6.26137i 0.625218 0.454247i
\(191\) 16.9443 + 12.3107i 1.22604 + 0.890773i 0.996587 0.0825453i \(-0.0263049\pi\)
0.229457 + 0.973319i \(0.426305\pi\)
\(192\) 0.309017 + 0.951057i 0.0223014 + 0.0686366i
\(193\) 0.736068 + 2.26538i 0.0529833 + 0.163066i 0.974047 0.226346i \(-0.0726781\pi\)
−0.921064 + 0.389412i \(0.872678\pi\)
\(194\) 5.97214 + 4.33901i 0.428774 + 0.311523i
\(195\) −1.38197 + 1.00406i −0.0989646 + 0.0719020i
\(196\) −1.35410 + 4.16750i −0.0967216 + 0.297678i
\(197\) −12.5066 −0.891057 −0.445528 0.895268i \(-0.646984\pi\)
−0.445528 + 0.895268i \(0.646984\pi\)
\(198\) 0 0
\(199\) −2.61803 −0.185588 −0.0927938 0.995685i \(-0.529580\pi\)
−0.0927938 + 0.995685i \(0.529580\pi\)
\(200\) −0.954915 + 2.93893i −0.0675227 + 0.207813i
\(201\) 10.4721 7.60845i 0.738648 0.536659i
\(202\) 7.35410 + 5.34307i 0.517433 + 0.375937i
\(203\) −0.0729490 0.224514i −0.00512002 0.0157578i
\(204\) −1.23607 3.80423i −0.0865421 0.266349i
\(205\) 8.61803 + 6.26137i 0.601910 + 0.437313i
\(206\) 2.54508 1.84911i 0.177324 0.128834i
\(207\) 2.38197 7.33094i 0.165558 0.509535i
\(208\) 1.23607 0.0857059
\(209\) 0 0
\(210\) 2.23607 0.154303
\(211\) 1.47214 4.53077i 0.101346 0.311911i −0.887509 0.460789i \(-0.847566\pi\)
0.988855 + 0.148878i \(0.0475663\pi\)
\(212\) −2.92705 + 2.12663i −0.201031 + 0.146057i
\(213\) −4.85410 3.52671i −0.332598 0.241646i
\(214\) 3.11803 + 9.59632i 0.213144 + 0.655991i
\(215\) 3.94427 + 12.1392i 0.268997 + 0.827888i
\(216\) −0.809017 0.587785i −0.0550466 0.0399937i
\(217\) 7.35410 5.34307i 0.499229 0.362711i
\(218\) −4.61803 + 14.2128i −0.312773 + 0.962615i
\(219\) 5.56231 0.375866
\(220\) 0 0
\(221\) −4.94427 −0.332588
\(222\) 2.76393 8.50651i 0.185503 0.570919i
\(223\) −11.5902 + 8.42075i −0.776135 + 0.563895i −0.903817 0.427920i \(-0.859246\pi\)
0.127681 + 0.991815i \(0.459246\pi\)
\(224\) −1.30902 0.951057i −0.0874624 0.0635451i
\(225\) −0.954915 2.93893i −0.0636610 0.195928i
\(226\) −3.38197 10.4086i −0.224965 0.692371i
\(227\) −19.4443 14.1271i −1.29056 0.937648i −0.290745 0.956801i \(-0.593903\pi\)
−0.999817 + 0.0191526i \(0.993903\pi\)
\(228\) 6.23607 4.53077i 0.412994 0.300057i
\(229\) 6.61803 20.3682i 0.437332 1.34597i −0.453346 0.891335i \(-0.649770\pi\)
0.890678 0.454635i \(-0.150230\pi\)
\(230\) 10.6525 0.702403
\(231\) 0 0
\(232\) −0.145898 −0.00957868
\(233\) −0.291796 + 0.898056i −0.0191162 + 0.0588336i −0.960160 0.279452i \(-0.909847\pi\)
0.941043 + 0.338286i \(0.109847\pi\)
\(234\) −1.00000 + 0.726543i −0.0653720 + 0.0474956i
\(235\) −4.47214 3.24920i −0.291730 0.211954i
\(236\) −1.64590 5.06555i −0.107139 0.329739i
\(237\) 0.0450850 + 0.138757i 0.00292858 + 0.00901325i
\(238\) 5.23607 + 3.80423i 0.339404 + 0.246591i
\(239\) −13.3262 + 9.68208i −0.862003 + 0.626282i −0.928429 0.371510i \(-0.878840\pi\)
0.0664264 + 0.997791i \(0.478840\pi\)
\(240\) 0.427051 1.31433i 0.0275660 0.0848395i
\(241\) −6.38197 −0.411099 −0.205549 0.978647i \(-0.565898\pi\)
−0.205549 + 0.978647i \(0.565898\pi\)
\(242\) 0 0
\(243\) 1.00000 0.0641500
\(244\) −3.00000 + 9.23305i −0.192055 + 0.591085i
\(245\) 4.89919 3.55947i 0.312998 0.227406i
\(246\) 6.23607 + 4.53077i 0.397597 + 0.288871i
\(247\) −2.94427 9.06154i −0.187340 0.576572i
\(248\) −1.73607 5.34307i −0.110240 0.339285i
\(249\) −0.500000 0.363271i −0.0316862 0.0230214i
\(250\) 9.04508 6.57164i 0.572061 0.415627i
\(251\) −0.100813 + 0.310271i −0.00636326 + 0.0195841i −0.954188 0.299209i \(-0.903277\pi\)
0.947824 + 0.318793i \(0.103277\pi\)
\(252\) 1.61803 0.101927
\(253\) 0 0
\(254\) −4.00000 −0.250982
\(255\) −1.70820 + 5.25731i −0.106972 + 0.329226i
\(256\) −0.809017 + 0.587785i −0.0505636 + 0.0367366i
\(257\) −17.5623 12.7598i −1.09551 0.795932i −0.115186 0.993344i \(-0.536746\pi\)
−0.980321 + 0.197412i \(0.936746\pi\)
\(258\) 2.85410 + 8.78402i 0.177689 + 0.546869i
\(259\) 4.47214 + 13.7638i 0.277885 + 0.855242i
\(260\) −1.38197 1.00406i −0.0857059 0.0622690i
\(261\) 0.118034 0.0857567i 0.00730612 0.00530821i
\(262\) 0.881966 2.71441i 0.0544880 0.167697i
\(263\) 12.7639 0.787058 0.393529 0.919312i \(-0.371254\pi\)
0.393529 + 0.919312i \(0.371254\pi\)
\(264\) 0 0
\(265\) 5.00000 0.307148
\(266\) −3.85410 + 11.8617i −0.236310 + 0.727288i
\(267\) −9.09017 + 6.60440i −0.556309 + 0.404182i
\(268\) 10.4721 + 7.60845i 0.639688 + 0.464760i
\(269\) 1.85410 + 5.70634i 0.113047 + 0.347922i 0.991535 0.129843i \(-0.0414473\pi\)
−0.878488 + 0.477764i \(0.841447\pi\)
\(270\) 0.427051 + 1.31433i 0.0259895 + 0.0799874i
\(271\) 14.1803 + 10.3026i 0.861394 + 0.625840i 0.928264 0.371922i \(-0.121301\pi\)
−0.0668696 + 0.997762i \(0.521301\pi\)
\(272\) 3.23607 2.35114i 0.196215 0.142559i
\(273\) 0.618034 1.90211i 0.0374051 0.115121i
\(274\) 8.18034 0.494192
\(275\) 0 0
\(276\) 7.70820 0.463979
\(277\) −0.708204 + 2.17963i −0.0425519 + 0.130961i −0.970076 0.242803i \(-0.921933\pi\)
0.927524 + 0.373764i \(0.121933\pi\)
\(278\) −1.85410 + 1.34708i −0.111202 + 0.0807927i
\(279\) 4.54508 + 3.30220i 0.272107 + 0.197697i
\(280\) 0.690983 + 2.12663i 0.0412941 + 0.127090i
\(281\) −5.18034 15.9434i −0.309033 0.951106i −0.978141 0.207941i \(-0.933324\pi\)
0.669108 0.743165i \(-0.266676\pi\)
\(282\) −3.23607 2.35114i −0.192705 0.140008i
\(283\) −13.3262 + 9.68208i −0.792163 + 0.575540i −0.908604 0.417658i \(-0.862851\pi\)
0.116442 + 0.993198i \(0.462851\pi\)
\(284\) 1.85410 5.70634i 0.110021 0.338609i
\(285\) −10.6525 −0.630998
\(286\) 0 0
\(287\) −12.4721 −0.736207
\(288\) 0.309017 0.951057i 0.0182090 0.0560415i
\(289\) 0.809017 0.587785i 0.0475892 0.0345756i
\(290\) 0.163119 + 0.118513i 0.00957868 + 0.00695931i
\(291\) −2.28115 7.02067i −0.133724 0.411559i
\(292\) 1.71885 + 5.29007i 0.100588 + 0.309578i
\(293\) 6.16312 + 4.47777i 0.360053 + 0.261594i 0.753074 0.657935i \(-0.228570\pi\)
−0.393021 + 0.919529i \(0.628570\pi\)
\(294\) 3.54508 2.57565i 0.206754 0.150215i
\(295\) −2.27458 + 7.00042i −0.132431 + 0.407580i
\(296\) 8.94427 0.519875
\(297\) 0 0
\(298\) 23.0344 1.33435
\(299\) 2.94427 9.06154i 0.170272 0.524042i
\(300\) 2.50000 1.81636i 0.144338 0.104867i
\(301\) −12.0902 8.78402i −0.696866 0.506303i
\(302\) 1.48278 + 4.56352i 0.0853243 + 0.262601i
\(303\) −2.80902 8.64527i −0.161374 0.496658i
\(304\) 6.23607 + 4.53077i 0.357663 + 0.259857i
\(305\) 10.8541 7.88597i 0.621504 0.451549i
\(306\) −1.23607 + 3.80423i −0.0706613 + 0.217473i
\(307\) 12.7639 0.728476 0.364238 0.931306i \(-0.381329\pi\)
0.364238 + 0.931306i \(0.381329\pi\)
\(308\) 0 0
\(309\) −3.14590 −0.178964
\(310\) −2.39919 + 7.38394i −0.136265 + 0.419380i
\(311\) −6.09017 + 4.42477i −0.345342 + 0.250906i −0.746912 0.664923i \(-0.768465\pi\)
0.401570 + 0.915828i \(0.368465\pi\)
\(312\) −1.00000 0.726543i −0.0566139 0.0411324i
\(313\) −7.71885 23.7562i −0.436295 1.34278i −0.891754 0.452521i \(-0.850525\pi\)
0.455459 0.890257i \(-0.349475\pi\)
\(314\) −5.56231 17.1190i −0.313899 0.966082i
\(315\) −1.80902 1.31433i −0.101927 0.0740540i
\(316\) −0.118034 + 0.0857567i −0.00663993 + 0.00482419i
\(317\) −8.32624 + 25.6255i −0.467648 + 1.43927i 0.387973 + 0.921671i \(0.373175\pi\)
−0.855621 + 0.517602i \(0.826825\pi\)
\(318\) 3.61803 0.202889
\(319\) 0 0
\(320\) 1.38197 0.0772542
\(321\) 3.11803 9.59632i 0.174032 0.535614i
\(322\) −10.0902 + 7.33094i −0.562303 + 0.408537i
\(323\) −24.9443 18.1231i −1.38794 1.00839i
\(324\) 0.309017 + 0.951057i 0.0171676 + 0.0528365i
\(325\) −1.18034 3.63271i −0.0654735 0.201507i
\(326\) 6.85410 + 4.97980i 0.379614 + 0.275805i
\(327\) 12.0902 8.78402i 0.668588 0.485758i
\(328\) −2.38197 + 7.33094i −0.131522 + 0.404783i
\(329\) 6.47214 0.356820
\(330\) 0 0
\(331\) 28.3607 1.55884 0.779422 0.626499i \(-0.215513\pi\)
0.779422 + 0.626499i \(0.215513\pi\)
\(332\) 0.190983 0.587785i 0.0104816 0.0322589i
\(333\) −7.23607 + 5.25731i −0.396534 + 0.288099i
\(334\) −15.9443 11.5842i −0.872432 0.633859i
\(335\) −5.52786 17.0130i −0.302019 0.929520i
\(336\) 0.500000 + 1.53884i 0.0272772 + 0.0839507i
\(337\) −12.8541 9.33905i −0.700208 0.508731i 0.179792 0.983705i \(-0.442457\pi\)
−0.880000 + 0.474974i \(0.842457\pi\)
\(338\) 9.28115 6.74315i 0.504828 0.366779i
\(339\) −3.38197 + 10.4086i −0.183683 + 0.565319i
\(340\) −5.52786 −0.299791
\(341\) 0 0
\(342\) −7.70820 −0.416812
\(343\) −5.69098 + 17.5150i −0.307284 + 0.945724i
\(344\) −7.47214 + 5.42882i −0.402871 + 0.292703i
\(345\) −8.61803 6.26137i −0.463979 0.337101i
\(346\) −0.409830 1.26133i −0.0220326 0.0678094i
\(347\) 5.77051 + 17.7598i 0.309777 + 0.953396i 0.977851 + 0.209301i \(0.0671190\pi\)
−0.668074 + 0.744095i \(0.732881\pi\)
\(348\) 0.118034 + 0.0857567i 0.00632729 + 0.00459704i
\(349\) −20.7984 + 15.1109i −1.11331 + 0.808868i −0.983182 0.182629i \(-0.941539\pi\)
−0.130130 + 0.991497i \(0.541539\pi\)
\(350\) −1.54508 + 4.75528i −0.0825883 + 0.254181i
\(351\) 1.23607 0.0659764
\(352\) 0 0
\(353\) 11.2361 0.598036 0.299018 0.954248i \(-0.403341\pi\)
0.299018 + 0.954248i \(0.403341\pi\)
\(354\) −1.64590 + 5.06555i −0.0874785 + 0.269231i
\(355\) −6.70820 + 4.87380i −0.356034 + 0.258674i
\(356\) −9.09017 6.60440i −0.481778 0.350032i
\(357\) −2.00000 6.15537i −0.105851 0.325777i
\(358\) 0.482779 + 1.48584i 0.0255157 + 0.0785291i
\(359\) −4.70820 3.42071i −0.248489 0.180538i 0.456568 0.889689i \(-0.349079\pi\)
−0.705057 + 0.709151i \(0.749079\pi\)
\(360\) −1.11803 + 0.812299i −0.0589256 + 0.0428119i
\(361\) 12.4894 38.4383i 0.657335 2.02307i
\(362\) −5.41641 −0.284680
\(363\) 0 0
\(364\) 2.00000 0.104828
\(365\) 2.37539 7.31069i 0.124334 0.382659i
\(366\) 7.85410 5.70634i 0.410540 0.298275i
\(367\) −8.11803 5.89810i −0.423758 0.307878i 0.355390 0.934718i \(-0.384348\pi\)
−0.779148 + 0.626840i \(0.784348\pi\)
\(368\) 2.38197 + 7.33094i 0.124169 + 0.382152i
\(369\) −2.38197 7.33094i −0.124000 0.381633i
\(370\) −10.0000 7.26543i −0.519875 0.377711i
\(371\) −4.73607 + 3.44095i −0.245884 + 0.178645i
\(372\) −1.73607 + 5.34307i −0.0900109 + 0.277025i
\(373\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(374\) 0 0
\(375\) −11.1803 −0.577350
\(376\) 1.23607 3.80423i 0.0637453 0.196188i
\(377\) 0.145898 0.106001i 0.00751413 0.00545934i
\(378\) −1.30902 0.951057i −0.0673286 0.0489171i
\(379\) 1.18034 + 3.63271i 0.0606300 + 0.186600i 0.976784 0.214226i \(-0.0687231\pi\)
−0.916154 + 0.400826i \(0.868723\pi\)
\(380\) −3.29180 10.1311i −0.168866 0.519715i
\(381\) 3.23607 + 2.35114i 0.165789 + 0.120453i
\(382\) 16.9443 12.3107i 0.866944 0.629872i
\(383\) 11.6525 35.8626i 0.595414 1.83249i 0.0427577 0.999085i \(-0.486386\pi\)
0.552656 0.833409i \(-0.313614\pi\)
\(384\) 1.00000 0.0510310
\(385\) 0 0
\(386\) 2.38197 0.121239
\(387\) 2.85410 8.78402i 0.145082 0.446517i
\(388\) 5.97214 4.33901i 0.303189 0.220280i
\(389\) −0.854102 0.620541i −0.0433047 0.0314627i 0.565922 0.824459i \(-0.308520\pi\)
−0.609227 + 0.792996i \(0.708520\pi\)
\(390\) 0.527864 + 1.62460i 0.0267294 + 0.0822647i
\(391\) −9.52786 29.3238i −0.481845 1.48297i
\(392\) 3.54508 + 2.57565i 0.179054 + 0.130090i
\(393\) −2.30902 + 1.67760i −0.116474 + 0.0846237i
\(394\) −3.86475 + 11.8945i −0.194703 + 0.599234i
\(395\) 0.201626 0.0101449
\(396\) 0 0
\(397\) −12.9443 −0.649654 −0.324827 0.945773i \(-0.605306\pi\)
−0.324827 + 0.945773i \(0.605306\pi\)
\(398\) −0.809017 + 2.48990i −0.0405524 + 0.124807i
\(399\) 10.0902 7.33094i 0.505140 0.367006i
\(400\) 2.50000 + 1.81636i 0.125000 + 0.0908178i
\(401\) 3.61803 + 11.1352i 0.180676 + 0.556064i 0.999847 0.0174857i \(-0.00556614\pi\)
−0.819171 + 0.573549i \(0.805566\pi\)
\(402\) −4.00000 12.3107i −0.199502 0.614004i
\(403\) 5.61803 + 4.08174i 0.279854 + 0.203326i
\(404\) 7.35410 5.34307i 0.365880 0.265828i
\(405\) 0.427051 1.31433i 0.0212203 0.0653095i
\(406\) −0.236068 −0.0117159
\(407\) 0 0
\(408\) −4.00000 −0.198030
\(409\) −5.24671 + 16.1477i −0.259433 + 0.798453i 0.733491 + 0.679700i \(0.237890\pi\)
−0.992924 + 0.118754i \(0.962110\pi\)
\(410\) 8.61803 6.26137i 0.425614 0.309227i
\(411\) −6.61803 4.80828i −0.326444 0.237175i
\(412\) −0.972136 2.99193i −0.0478937 0.147402i
\(413\) −2.66312 8.19624i −0.131044 0.403310i
\(414\) −6.23607 4.53077i −0.306486 0.222675i
\(415\) −0.690983 + 0.502029i −0.0339190 + 0.0246436i
\(416\) 0.381966 1.17557i 0.0187274 0.0576371i
\(417\) 2.29180 0.112230
\(418\) 0 0
\(419\) 0.909830 0.0444481 0.0222241 0.999753i \(-0.492925\pi\)
0.0222241 + 0.999753i \(0.492925\pi\)
\(420\) 0.690983 2.12663i 0.0337165 0.103769i
\(421\) −32.0344 + 23.2744i −1.56126 + 1.13432i −0.626298 + 0.779583i \(0.715431\pi\)
−0.934965 + 0.354741i \(0.884569\pi\)
\(422\) −3.85410 2.80017i −0.187615 0.136310i
\(423\) 1.23607 + 3.80423i 0.0600997 + 0.184968i
\(424\) 1.11803 + 3.44095i 0.0542965 + 0.167108i
\(425\) −10.0000 7.26543i −0.485071 0.352425i
\(426\) −4.85410 + 3.52671i −0.235182 + 0.170870i
\(427\) −4.85410 + 14.9394i −0.234906 + 0.722968i
\(428\) 10.0902 0.487727
\(429\) 0 0
\(430\) 12.7639 0.615531
\(431\) 7.43769 22.8909i 0.358261 1.10261i −0.595833 0.803108i \(-0.703178\pi\)
0.954094 0.299506i \(-0.0968219\pi\)
\(432\) −0.809017 + 0.587785i −0.0389238 + 0.0282798i
\(433\) −7.78115 5.65334i −0.373938 0.271682i 0.384904 0.922957i \(-0.374235\pi\)
−0.758842 + 0.651275i \(0.774235\pi\)
\(434\) −2.80902 8.64527i −0.134837 0.414986i
\(435\) −0.0623059 0.191758i −0.00298734 0.00919408i
\(436\) 12.0902 + 8.78402i 0.579014 + 0.420678i
\(437\) 48.0689 34.9241i 2.29945 1.67065i
\(438\) 1.71885 5.29007i 0.0821297 0.252769i
\(439\) 34.9230 1.66678 0.833392 0.552683i \(-0.186396\pi\)
0.833392 + 0.552683i \(0.186396\pi\)
\(440\) 0 0
\(441\) −4.38197 −0.208665
\(442\) −1.52786 + 4.70228i −0.0726731 + 0.223665i
\(443\) −5.54508 + 4.02874i −0.263455 + 0.191411i −0.711669 0.702515i \(-0.752060\pi\)
0.448214 + 0.893926i \(0.352060\pi\)
\(444\) −7.23607 5.25731i −0.343409 0.249501i
\(445\) 4.79837 + 14.7679i 0.227465 + 0.700064i
\(446\) 4.42705 + 13.6251i 0.209627 + 0.645165i
\(447\) −18.6353 13.5393i −0.881417 0.640387i
\(448\) −1.30902 + 0.951057i −0.0618452 + 0.0449332i
\(449\) −2.61803 + 8.05748i −0.123553 + 0.380256i −0.993635 0.112651i \(-0.964066\pi\)
0.870082 + 0.492907i \(0.164066\pi\)
\(450\) −3.09017 −0.145672
\(451\) 0 0
\(452\) −10.9443 −0.514775
\(453\) 1.48278 4.56352i 0.0696670 0.214413i
\(454\) −19.4443 + 14.1271i −0.912565 + 0.663017i
\(455\) −2.23607 1.62460i −0.104828 0.0761624i
\(456\) −2.38197 7.33094i −0.111546 0.343303i
\(457\) 5.22542 + 16.0822i 0.244435 + 0.752294i 0.995729 + 0.0923259i \(0.0294301\pi\)
−0.751294 + 0.659968i \(0.770570\pi\)
\(458\) −17.3262 12.5882i −0.809602 0.588210i
\(459\) 3.23607 2.35114i 0.151047 0.109742i
\(460\) 3.29180 10.1311i 0.153481 0.472365i
\(461\) −22.0000 −1.02464 −0.512321 0.858794i \(-0.671214\pi\)
−0.512321 + 0.858794i \(0.671214\pi\)
\(462\) 0 0
\(463\) 34.7426 1.61463 0.807314 0.590122i \(-0.200920\pi\)
0.807314 + 0.590122i \(0.200920\pi\)
\(464\) −0.0450850 + 0.138757i −0.00209302 + 0.00644164i
\(465\) 6.28115 4.56352i 0.291281 0.211628i
\(466\) 0.763932 + 0.555029i 0.0353885 + 0.0257112i
\(467\) −3.64590 11.2209i −0.168712 0.519242i 0.830579 0.556901i \(-0.188010\pi\)
−0.999291 + 0.0376591i \(0.988010\pi\)
\(468\) 0.381966 + 1.17557i 0.0176564 + 0.0543408i
\(469\) 16.9443 + 12.3107i 0.782414 + 0.568457i
\(470\) −4.47214 + 3.24920i −0.206284 + 0.149874i
\(471\) −5.56231 + 17.1190i −0.256298 + 0.788803i
\(472\) −5.32624 −0.245160
\(473\) 0 0
\(474\) 0.145898 0.00670132
\(475\) 7.36068 22.6538i 0.337731 1.03943i
\(476\) 5.23607 3.80423i 0.239995 0.174366i
\(477\) −2.92705 2.12663i −0.134020 0.0973716i
\(478\) 5.09017 + 15.6659i 0.232819 + 0.716543i
\(479\) −4.09017 12.5882i −0.186885 0.575172i 0.813091 0.582136i \(-0.197783\pi\)
−0.999976 + 0.00696468i \(0.997783\pi\)
\(480\) −1.11803 0.812299i −0.0510310 0.0370762i
\(481\) −8.94427 + 6.49839i −0.407824 + 0.296301i
\(482\) −1.97214 + 6.06961i −0.0898283 + 0.276463i
\(483\) 12.4721 0.567502
\(484\) 0 0
\(485\) −10.2016 −0.463232
\(486\) 0.309017 0.951057i 0.0140173 0.0431408i
\(487\) 6.54508 4.75528i 0.296586 0.215482i −0.429533 0.903051i \(-0.641322\pi\)
0.726119 + 0.687569i \(0.241322\pi\)
\(488\) 7.85410 + 5.70634i 0.355538 + 0.258314i
\(489\) −2.61803 8.05748i −0.118392 0.364372i
\(490\) −1.87132 5.75934i −0.0845378 0.260180i
\(491\) 26.9443 + 19.5762i 1.21598 + 0.883460i 0.995760 0.0919909i \(-0.0293231\pi\)
0.220218 + 0.975451i \(0.429323\pi\)
\(492\) 6.23607 4.53077i 0.281144 0.204263i
\(493\) 0.180340 0.555029i 0.00812210 0.0249973i
\(494\) −9.52786 −0.428679
\(495\) 0 0
\(496\) −5.61803 −0.252257
\(497\) 3.00000 9.23305i 0.134568 0.414159i
\(498\) −0.500000 + 0.363271i −0.0224055 + 0.0162786i
\(499\) 20.4721 + 14.8739i 0.916459 + 0.665846i 0.942640 0.333811i \(-0.108335\pi\)
−0.0261814 + 0.999657i \(0.508335\pi\)
\(500\) −3.45492 10.6331i −0.154508 0.475528i
\(501\) 6.09017 + 18.7436i 0.272089 + 0.837403i
\(502\) 0.263932 + 0.191758i 0.0117799 + 0.00855857i
\(503\) −25.4164 + 18.4661i −1.13326 + 0.823363i −0.986166 0.165760i \(-0.946992\pi\)
−0.147095 + 0.989122i \(0.546992\pi\)
\(504\) 0.500000 1.53884i 0.0222718 0.0685455i
\(505\) −12.5623 −0.559015
\(506\) 0 0
\(507\) −11.4721 −0.509495
\(508\) −1.23607 + 3.80423i −0.0548416 + 0.168785i
\(509\) 8.30902 6.03685i 0.368291 0.267579i −0.388211 0.921570i \(-0.626907\pi\)
0.756502 + 0.653992i \(0.226907\pi\)
\(510\) 4.47214 + 3.24920i 0.198030 + 0.143877i
\(511\) 2.78115 + 8.55951i 0.123031 + 0.378650i
\(512\) 0.309017 + 0.951057i 0.0136568 + 0.0420312i
\(513\) 6.23607 + 4.53077i 0.275329 + 0.200038i
\(514\) −17.5623 + 12.7598i −0.774640 + 0.562809i
\(515\) −1.34346 + 4.13474i −0.0591999 + 0.182198i
\(516\) 9.23607 0.406595
\(517\) 0 0
\(518\) 14.4721 0.635869
\(519\) −0.409830 + 1.26133i −0.0179895 + 0.0553661i
\(520\) −1.38197 + 1.00406i −0.0606032 + 0.0440308i
\(521\) 22.6525 + 16.4580i 0.992423 + 0.721038i 0.960450 0.278451i \(-0.0898211\pi\)
0.0319726 + 0.999489i \(0.489821\pi\)
\(522\) −0.0450850 0.138757i −0.00197332 0.00607324i
\(523\) 5.14590 + 15.8374i 0.225014 + 0.692523i 0.998290 + 0.0584532i \(0.0186169\pi\)
−0.773276 + 0.634070i \(0.781383\pi\)
\(524\) −2.30902 1.67760i −0.100870 0.0732863i
\(525\) 4.04508 2.93893i 0.176542 0.128265i
\(526\) 3.94427 12.1392i 0.171978 0.529295i
\(527\) 22.4721 0.978902
\(528\) 0 0
\(529\) 36.4164 1.58332
\(530\) 1.54508 4.75528i 0.0671142 0.206556i
\(531\) 4.30902 3.13068i 0.186995 0.135860i
\(532\) 10.0902 + 7.33094i 0.437464 + 0.317836i
\(533\) −2.94427 9.06154i −0.127531 0.392499i
\(534\) 3.47214 + 10.6861i 0.150254 + 0.462434i
\(535\) −11.2812 8.19624i −0.487727 0.354354i
\(536\) 10.4721 7.60845i 0.452327 0.328635i
\(537\) 0.482779 1.48584i 0.0208335 0.0641188i
\(538\) 6.00000 0.258678
\(539\) 0 0
\(540\) 1.38197 0.0594703
\(541\) −1.38197 + 4.25325i −0.0594154 + 0.182862i −0.976359 0.216155i \(-0.930648\pi\)
0.916944 + 0.399017i \(0.130648\pi\)
\(542\) 14.1803 10.3026i 0.609098 0.442535i
\(543\) 4.38197 + 3.18368i 0.188048 + 0.136625i
\(544\) −1.23607 3.80423i −0.0529960 0.163105i
\(545\) −6.38197 19.6417i −0.273373 0.841357i
\(546\) −1.61803 1.17557i −0.0692455 0.0503098i
\(547\) −2.32624 + 1.69011i −0.0994628 + 0.0722639i −0.636405 0.771355i \(-0.719579\pi\)
0.536942 + 0.843619i \(0.319579\pi\)
\(548\) 2.52786 7.77997i 0.107985 0.332344i
\(549\) −9.70820 −0.414336
\(550\) 0 0
\(551\) 1.12461 0.0479101
\(552\) 2.38197 7.33094i 0.101383 0.312025i
\(553\) −0.190983 + 0.138757i −0.00812142 + 0.00590056i
\(554\) 1.85410 + 1.34708i 0.0787732 + 0.0572321i
\(555\) 3.81966 + 11.7557i 0.162136 + 0.499002i
\(556\) 0.708204 + 2.17963i 0.0300345 + 0.0924368i
\(557\) 10.7812 + 7.83297i 0.456812 + 0.331893i 0.792279 0.610158i \(-0.208894\pi\)
−0.335467 + 0.942052i \(0.608894\pi\)
\(558\) 4.54508 3.30220i 0.192409 0.139793i
\(559\) 3.52786 10.8576i 0.149213 0.459230i
\(560\) 2.23607 0.0944911
\(561\) 0 0
\(562\) −16.7639 −0.707144
\(563\) −2.47214 + 7.60845i −0.104188 + 0.320658i −0.989539 0.144265i \(-0.953918\pi\)
0.885351 + 0.464923i \(0.153918\pi\)
\(564\) −3.23607 + 2.35114i −0.136263 + 0.0990009i
\(565\) 12.2361 + 8.89002i 0.514775 + 0.374006i
\(566\) 5.09017 + 15.6659i 0.213956 + 0.658488i
\(567\) 0.500000 + 1.53884i 0.0209980 + 0.0646253i
\(568\) −4.85410 3.52671i −0.203674 0.147978i
\(569\) −13.3262 + 9.68208i −0.558665 + 0.405894i −0.830970 0.556317i \(-0.812214\pi\)
0.272305 + 0.962211i \(0.412214\pi\)
\(570\) −3.29180 + 10.1311i −0.137878 + 0.424345i
\(571\) −1.34752 −0.0563921 −0.0281961 0.999602i \(-0.508976\pi\)
−0.0281961 + 0.999602i \(0.508976\pi\)
\(572\) 0 0
\(573\) −20.9443 −0.874960
\(574\) −3.85410 + 11.8617i −0.160867 + 0.495098i
\(575\) 19.2705 14.0008i 0.803636 0.583876i
\(576\) −0.809017 0.587785i −0.0337090 0.0244911i
\(577\) −1.62461 5.00004i −0.0676335 0.208154i 0.911528 0.411238i \(-0.134904\pi\)
−0.979161 + 0.203084i \(0.934904\pi\)
\(578\) −0.309017 0.951057i −0.0128534 0.0395587i
\(579\) −1.92705 1.40008i −0.0800855 0.0581855i
\(580\) 0.163119 0.118513i 0.00677315 0.00492098i
\(581\) 0.309017 0.951057i 0.0128202 0.0394565i
\(582\) −7.38197 −0.305992
\(583\) 0 0
\(584\) 5.56231 0.230170
\(585\) 0.527864 1.62460i 0.0218245 0.0671689i
\(586\) 6.16312 4.47777i 0.254596 0.184975i
\(587\) 17.1525 + 12.4620i 0.707958 + 0.514362i 0.882514 0.470285i \(-0.155849\pi\)
−0.174556 + 0.984647i \(0.555849\pi\)
\(588\) −1.35410 4.16750i −0.0558422 0.171865i
\(589\) 13.3820 + 41.1855i 0.551394 + 1.69702i
\(590\) 5.95492 + 4.32650i 0.245160 + 0.178119i
\(591\) 10.1180 7.35118i 0.416200 0.302387i
\(592\) 2.76393 8.50651i 0.113597 0.349615i
\(593\) 7.88854 0.323944 0.161972 0.986795i \(-0.448215\pi\)
0.161972 + 0.986795i \(0.448215\pi\)
\(594\) 0 0
\(595\) −8.94427 −0.366679
\(596\) 7.11803 21.9071i 0.291566 0.897348i
\(597\) 2.11803 1.53884i 0.0866854 0.0629806i
\(598\) −7.70820 5.60034i −0.315212 0.229015i
\(599\) 10.0000 + 30.7768i 0.408589 + 1.25751i 0.917861 + 0.396902i \(0.129915\pi\)
−0.509272 + 0.860606i \(0.670085\pi\)
\(600\) −0.954915 2.93893i −0.0389842 0.119981i
\(601\) −16.2533 11.8087i −0.662985 0.481687i 0.204684 0.978828i \(-0.434383\pi\)
−0.867670 + 0.497141i \(0.834383\pi\)
\(602\) −12.0902 + 8.78402i −0.492759 + 0.358010i
\(603\) −4.00000 + 12.3107i −0.162893 + 0.501332i
\(604\) 4.79837 0.195243
\(605\) 0 0
\(606\) −9.09017 −0.369263
\(607\) −4.65248 + 14.3188i −0.188838 + 0.581184i −0.999993 0.00364685i \(-0.998839\pi\)
0.811155 + 0.584831i \(0.198839\pi\)
\(608\) 6.23607 4.53077i 0.252906 0.183747i
\(609\) 0.190983 + 0.138757i 0.00773902 + 0.00562273i
\(610\) −4.14590 12.7598i −0.167863 0.516628i
\(611\) 1.52786 + 4.70228i 0.0618108 + 0.190234i
\(612\) 3.23607 + 2.35114i 0.130810 + 0.0950392i
\(613\) 2.70820 1.96763i 0.109383 0.0794716i −0.531749 0.846902i \(-0.678465\pi\)
0.641132 + 0.767430i \(0.278465\pi\)
\(614\) 3.94427 12.1392i 0.159178 0.489899i
\(615\) −10.6525 −0.429549
\(616\) 0 0
\(617\) −15.1246 −0.608894 −0.304447 0.952529i \(-0.598472\pi\)
−0.304447 + 0.952529i \(0.598472\pi\)
\(618\) −0.972136 + 2.99193i −0.0391050 + 0.120353i
\(619\) −3.23607 + 2.35114i −0.130069 + 0.0945003i −0.650917 0.759149i \(-0.725616\pi\)
0.520849 + 0.853649i \(0.325616\pi\)
\(620\) 6.28115 + 4.56352i 0.252257 + 0.183276i
\(621\) 2.38197 + 7.33094i 0.0955850 + 0.294180i
\(622\) 2.32624 + 7.15942i 0.0932736 + 0.287067i
\(623\) −14.7082 10.6861i −0.589272 0.428131i
\(624\) −1.00000 + 0.726543i −0.0400320 + 0.0290850i
\(625\) 0 0
\(626\) −24.9787 −0.998350
\(627\) 0 0
\(628\) −18.0000 −0.718278
\(629\) −11.0557 + 34.0260i −0.440821 + 1.35671i
\(630\) −1.80902 + 1.31433i −0.0720730 + 0.0523641i
\(631\) 19.5902 + 14.2331i 0.779872 + 0.566610i 0.904941 0.425538i \(-0.139915\pi\)
−0.125068 + 0.992148i \(0.539915\pi\)
\(632\) 0.0450850 + 0.138757i 0.00179338 + 0.00551947i
\(633\) 1.47214 + 4.53077i 0.0585122 + 0.180082i
\(634\) 21.7984 + 15.8374i 0.865724 + 0.628985i
\(635\) 4.47214 3.24920i 0.177471 0.128940i
\(636\) 1.11803 3.44095i 0.0443329 0.136443i
\(637\) −5.41641 −0.214606
\(638\) 0 0
\(639\) 6.00000 0.237356
\(640\) 0.427051 1.31433i 0.0168807 0.0519534i
\(641\) 16.3262 11.8617i 0.644848 0.468509i −0.216665 0.976246i \(-0.569518\pi\)
0.861512 + 0.507737i \(0.169518\pi\)
\(642\) −8.16312 5.93085i −0.322173 0.234072i
\(643\) 1.85410 + 5.70634i 0.0731186 + 0.225036i 0.980936 0.194329i \(-0.0622528\pi\)
−0.907818 + 0.419365i \(0.862253\pi\)
\(644\) 3.85410 + 11.8617i 0.151873 + 0.467417i
\(645\) −10.3262 7.50245i −0.406595 0.295409i
\(646\) −24.9443 + 18.1231i −0.981419 + 0.713043i
\(647\) −6.56231 + 20.1967i −0.257991 + 0.794014i 0.735235 + 0.677813i \(0.237072\pi\)
−0.993226 + 0.116202i \(0.962928\pi\)
\(648\) 1.00000 0.0392837
\(649\) 0 0
\(650\) −3.81966 −0.149819
\(651\) −2.80902 + 8.64527i −0.110094 + 0.338835i
\(652\) 6.85410 4.97980i 0.268427 0.195024i
\(653\) 2.88197 + 2.09387i 0.112780 + 0.0819395i 0.642746 0.766080i \(-0.277795\pi\)
−0.529966 + 0.848019i \(0.677795\pi\)
\(654\) −4.61803 14.2128i −0.180579 0.555766i
\(655\) 1.21885 + 3.75123i 0.0476243 + 0.146573i
\(656\) 6.23607 + 4.53077i 0.243478 + 0.176897i
\(657\) −4.50000 + 3.26944i −0.175562 + 0.127553i
\(658\) 2.00000 6.15537i 0.0779681 0.239961i
\(659\) −45.9230 −1.78891 −0.894453 0.447162i \(-0.852435\pi\)
−0.894453 + 0.447162i \(0.852435\pi\)
\(660\) 0 0
\(661\) −11.5967 −0.451061 −0.225531 0.974236i \(-0.572412\pi\)
−0.225531 + 0.974236i \(0.572412\pi\)
\(662\) 8.76393 26.9726i 0.340620 1.04832i
\(663\) 4.00000 2.90617i 0.155347 0.112866i
\(664\) −0.500000 0.363271i −0.0194038 0.0140977i
\(665\) −5.32624 16.3925i −0.206543 0.635673i
\(666\) 2.76393 + 8.50651i 0.107100 + 0.329620i
\(667\) 0.909830 + 0.661030i 0.0352288 + 0.0255952i
\(668\) −15.9443 + 11.5842i −0.616902 + 0.448206i
\(669\) 4.42705 13.6251i 0.171160 0.526775i
\(670\) −17.8885 −0.691095
\(671\) 0 0
\(672\) 1.61803 0.0624170
\(673\) −2.39261 + 7.36369i −0.0922283 + 0.283850i −0.986521 0.163632i \(-0.947679\pi\)
0.894293 + 0.447482i \(0.147679\pi\)
\(674\) −12.8541 + 9.33905i −0.495122 + 0.359727i
\(675\) 2.50000 + 1.81636i 0.0962250 + 0.0699116i
\(676\) −3.54508 10.9106i −0.136349 0.419640i
\(677\) −15.7148 48.3651i −0.603968 1.85882i −0.503734 0.863859i \(-0.668041\pi\)
−0.100234 0.994964i \(-0.531959\pi\)
\(678\) 8.85410 + 6.43288i 0.340040 + 0.247053i
\(679\) 9.66312 7.02067i 0.370836 0.269428i
\(680\) −1.70820 + 5.25731i −0.0655066 + 0.201609i
\(681\) 24.0344 0.921002
\(682\) 0 0
\(683\) −14.4508 −0.552946 −0.276473 0.961022i \(-0.589166\pi\)
−0.276473 + 0.961022i \(0.589166\pi\)
\(684\) −2.38197 + 7.33094i −0.0910767 + 0.280305i
\(685\) −9.14590 + 6.64488i −0.349447 + 0.253888i
\(686\) 14.8992 + 10.8249i 0.568854 + 0.413296i
\(687\) 6.61803 + 20.3682i 0.252494 + 0.777096i
\(688\) 2.85410 + 8.78402i 0.108812 + 0.334888i
\(689\) −3.61803 2.62866i −0.137836 0.100144i
\(690\) −8.61803 + 6.26137i −0.328083 + 0.238366i
\(691\) 1.58359 4.87380i 0.0602427 0.185408i −0.916406 0.400249i \(-0.868923\pi\)
0.976649 + 0.214841i \(0.0689235\pi\)
\(692\) −1.32624 −0.0504160
\(693\) 0 0
\(694\) 18.6738 0.708846
\(695\) 0.978714 3.01217i 0.0371247 0.114258i
\(696\) 0.118034 0.0857567i 0.00447407 0.00325060i
\(697\) −24.9443 18.1231i −0.944832 0.686460i
\(698\) 7.94427 + 24.4500i 0.300695 + 0.925444i
\(699\) −0.291796 0.898056i −0.0110367 0.0339676i
\(700\) 4.04508 + 2.93893i 0.152890 + 0.111081i
\(701\) 13.0344 9.47008i 0.492304 0.357680i −0.313766 0.949500i \(-0.601591\pi\)
0.806070 + 0.591821i \(0.201591\pi\)
\(702\) 0.381966 1.17557i 0.0144164 0.0443690i
\(703\) −68.9443 −2.60028
\(704\) 0 0
\(705\) 5.52786 0.208191
\(706\) 3.47214 10.6861i 0.130676 0.402178i
\(707\) 11.8992 8.64527i 0.447515 0.325139i
\(708\) 4.30902 + 3.13068i 0.161943 + 0.117658i
\(709\) 10.6738 + 32.8505i 0.400862 + 1.23372i 0.924302 + 0.381663i \(0.124648\pi\)
−0.523440 + 0.852062i \(0.675352\pi\)
\(710\) 2.56231 + 7.88597i 0.0961616 + 0.295955i
\(711\) −0.118034 0.0857567i −0.00442662 0.00321613i
\(712\) −9.09017 + 6.60440i −0.340669 + 0.247510i
\(713\) −13.3820 + 41.1855i −0.501159 + 1.54241i
\(714\) −6.47214 −0.242214
\(715\) 0 0
\(716\) 1.56231 0.0583861
\(717\) 5.09017 15.6659i 0.190096 0.585055i
\(718\) −4.70820 + 3.42071i −0.175709 + 0.127660i
\(719\) −0.854102 0.620541i −0.0318526 0.0231423i 0.571745 0.820431i \(-0.306267\pi\)
−0.603598 + 0.797289i \(0.706267\pi\)
\(720\) 0.427051 + 1.31433i 0.0159153 + 0.0489821i
\(721\) −1.57295 4.84104i −0.0585797 0.180290i
\(722\) −32.6976 23.7562i −1.21688 0.884113i
\(723\) 5.16312 3.75123i 0.192018 0.139510i
\(724\) −1.67376 + 5.15131i −0.0622049 + 0.191447i
\(725\) 0.450850 0.0167441
\(726\) 0 0
\(727\) −31.4164 −1.16517 −0.582585 0.812770i \(-0.697959\pi\)
−0.582585 + 0.812770i \(0.697959\pi\)
\(728\) 0.618034 1.90211i 0.0229059 0.0704970i
\(729\) −0.809017 + 0.587785i −0.0299636 + 0.0217698i
\(730\) −6.21885 4.51826i −0.230170 0.167228i
\(731\) −11.4164 35.1361i −0.422251 1.29956i
\(732\) −3.00000 9.23305i −0.110883 0.341263i
\(733\) 18.7984 + 13.6578i 0.694334 + 0.504463i 0.878082 0.478510i \(-0.158823\pi\)
−0.183748 + 0.982973i \(0.558823\pi\)
\(734\) −8.11803 + 5.89810i −0.299642 + 0.217703i
\(735\) −1.87132 + 5.75934i −0.0690248 + 0.212436i
\(736\) 7.70820 0.284128
\(737\) 0 0
\(738\) −7.70820 −0.283743
\(739\) −10.3607 + 31.8869i −0.381124 + 1.17298i 0.558130 + 0.829754i \(0.311519\pi\)
−0.939253 + 0.343225i \(0.888481\pi\)
\(740\) −10.0000 + 7.26543i −0.367607 + 0.267082i
\(741\) 7.70820 + 5.60034i 0.283168 + 0.205734i
\(742\) 1.80902 + 5.56758i 0.0664111 + 0.204392i
\(743\) 7.74265 + 23.8294i 0.284050 + 0.874216i 0.986682 + 0.162663i \(0.0520082\pi\)
−0.702632 + 0.711554i \(0.747992\pi\)
\(744\) 4.54508 + 3.30220i 0.166631 + 0.121064i
\(745\) −25.7533 + 18.7109i −0.943528 + 0.685513i
\(746\) 0 0
\(747\) 0.618034 0.0226127
\(748\) 0 0
\(749\) 16.3262 0.596548
\(750\) −3.45492 + 10.6331i −0.126156 + 0.388267i
\(751\) 15.2361 11.0697i 0.555972 0.403937i −0.274011 0.961727i \(-0.588350\pi\)
0.829983 + 0.557789i \(0.188350\pi\)
\(752\) −3.23607 2.35114i −0.118007 0.0857373i
\(753\) −0.100813 0.310271i −0.00367383 0.0113069i
\(754\) −0.0557281 0.171513i −0.00202950 0.00624615i
\(755\) −5.36475 3.89772i −0.195243 0.141852i
\(756\) −1.30902 + 0.951057i −0.0476085 + 0.0345896i
\(757\) −16.8885 + 51.9776i −0.613825 + 1.88916i −0.196101 + 0.980584i \(0.562828\pi\)
−0.417724 + 0.908574i \(0.637172\pi\)
\(758\) 3.81966 0.138736
\(759\) 0 0
\(760\) −10.6525 −0.386406
\(761\) −16.7426 + 51.5286i −0.606920 + 1.86791i −0.123912 + 0.992293i \(0.539544\pi\)
−0.483008 + 0.875616i \(0.660456\pi\)
\(762\) 3.23607 2.35114i 0.117230 0.0851729i
\(763\) 19.5623 + 14.2128i 0.708203 + 0.514540i
\(764\) −6.47214 19.9192i −0.234154 0.720651i
\(765\) −1.70820 5.25731i −0.0617602 0.190078i
\(766\) −30.5066 22.1643i −1.10225 0.800830i
\(767\) 5.32624 3.86974i 0.192319 0.139728i
\(768\) 0.309017 0.951057i 0.0111507 0.0343183i
\(769\) 41.5623 1.49878 0.749388 0.662132i \(-0.230348\pi\)
0.749388 + 0.662132i \(0.230348\pi\)
\(770\) 0 0
\(771\) 21.7082 0.781802
\(772\) 0.736068 2.26538i 0.0264917 0.0815330i
\(773\) −34.0066 + 24.7072i −1.22313 + 0.888657i −0.996356 0.0852900i \(-0.972818\pi\)
−0.226775 + 0.973947i \(0.572818\pi\)
\(774\) −7.47214 5.42882i −0.268580 0.195135i
\(775\) 5.36475 + 16.5110i 0.192707 + 0.593092i
\(776\) −2.28115 7.02067i −0.0818886 0.252027i
\(777\) −11.7082 8.50651i −0.420029 0.305169i
\(778\) −0.854102 + 0.620541i −0.0306210 + 0.0222475i
\(779\) 18.3607 56.5084i 0.657840 2.02462i
\(780\) 1.70820 0.0611635
\(781\) 0 0
\(782\) −30.8328 −1.10258
\(783\) −0.0450850 + 0.138757i −0.00161121 + 0.00495878i
\(784\) 3.54508 2.57565i 0.126610 0.0919877i
\(785\) 20.1246 + 14.6214i 0.718278 + 0.521860i
\(786\) 0.881966 + 2.71441i 0.0314587 + 0.0968199i
\(787\) −6.27051 19.2986i −0.223520 0.687922i −0.998439 0.0558618i \(-0.982209\pi\)
0.774919 0.632061i \(-0.217791\pi\)
\(788\) 10.1180 + 7.35118i 0.360440 + 0.261875i
\(789\) −10.3262 + 7.50245i −0.367624 + 0.267094i
\(790\) 0.0623059 0.191758i 0.00221674 0.00682244i
\(791\) −17.7082 −0.629631
\(792\) 0 0
\(793\) −12.0000 −0.426132
\(794\) −4.00000 + 12.3107i −0.141955 + 0.436892i
\(795\) −4.04508 + 2.93893i −0.143464 + 0.104233i
\(796\) 2.11803 + 1.53884i 0.0750717 + 0.0545428i
\(797\) 14.4098 + 44.3489i 0.510422 + 1.57092i 0.791459 + 0.611222i \(0.209322\pi\)
−0.281037 + 0.959697i \(0.590678\pi\)
\(798\) −3.85410 11.8617i −0.136434 0.419900i
\(799\) 12.9443 + 9.40456i 0.457935 + 0.332710i
\(800\) 2.50000 1.81636i 0.0883883 0.0642179i
\(801\) 3.47214 10.6861i 0.122682 0.377576i
\(802\) 11.7082 0.413431
\(803\) 0 0
\(804\) −12.9443 −0.456509
\(805\) 5.32624 16.3925i 0.187725 0.577759i
\(806\) 5.61803 4.08174i 0.197887 0.143773i
\(807\) −4.85410 3.52671i −0.170872 0.124146i
\(808\) −2.80902 8.64527i −0.0988209 0.304139i
\(809\) 0.944272 + 2.90617i 0.0331988 + 0.102175i 0.966283 0.257483i \(-0.0828932\pi\)
−0.933084 + 0.359659i \(0.882893\pi\)
\(810\) −1.11803 0.812299i −0.0392837 0.0285413i
\(811\) 17.6525 12.8253i 0.619862 0.450356i −0.233011 0.972474i \(-0.574858\pi\)
0.852873 + 0.522118i \(0.174858\pi\)
\(812\) −0.0729490 + 0.224514i −0.00256001 + 0.00787890i
\(813\) −17.5279 −0.614729
\(814\) 0 0
\(815\) −11.7082 −0.410120
\(816\) −1.23607 + 3.80423i −0.0432710 + 0.133175i
\(817\) 57.5967 41.8465i 2.01506 1.46402i
\(818\) 13.7361 + 9.97984i 0.480270 + 0.348937i
\(819\) 0.618034 + 1.90211i 0.0215959 + 0.0664652i
\(820\) −3.29180 10.1311i −0.114955 0.353794i
\(821\) 36.0517 + 26.1931i 1.25821 + 0.914144i 0.998668 0.0515872i \(-0.0164280\pi\)
0.259543 + 0.965731i \(0.416428\pi\)
\(822\) −6.61803 + 4.80828i −0.230830 + 0.167708i
\(823\) 7.37132 22.6866i 0.256948 0.790805i −0.736491 0.676447i \(-0.763519\pi\)
0.993440 0.114358i \(-0.0364812\pi\)
\(824\) −3.14590 −0.109593
\(825\) 0 0
\(826\) −8.61803 −0.299860
\(827\) −2.00658 + 6.17561i −0.0697755 + 0.214747i −0.979864 0.199668i \(-0.936014\pi\)
0.910088 + 0.414415i \(0.136014\pi\)
\(828\) −6.23607 + 4.53077i −0.216718 + 0.157455i
\(829\) 17.6180 + 12.8003i 0.611900 + 0.444571i 0.850083 0.526649i \(-0.176552\pi\)
−0.238183 + 0.971220i \(0.576552\pi\)
\(830\) 0.263932 + 0.812299i 0.00916121 + 0.0281953i
\(831\) −0.708204 2.17963i −0.0245673 0.0756104i
\(832\) −1.00000 0.726543i −0.0346688 0.0251883i
\(833\) −14.1803 + 10.3026i −0.491320 + 0.356965i
\(834\) 0.708204 2.17963i 0.0245231 0.0754743i
\(835\) 27.2361 0.942543
\(836\) 0 0
\(837\) −5.61803 −0.194188
\(838\) 0.281153 0.865300i 0.00971227 0.0298913i
\(839\) −41.2705 + 29.9848i −1.42482 + 1.03519i −0.433863 + 0.900979i \(0.642850\pi\)
−0.990953 + 0.134211i \(0.957150\pi\)
\(840\) −1.80902 1.31433i −0.0624170 0.0453486i
\(841\) −8.95492 27.5604i −0.308790 0.950358i
\(842\) 12.2361 + 37.6587i 0.421683 + 1.29781i
\(843\) 13.5623 + 9.85359i 0.467111 + 0.339376i
\(844\) −3.85410 + 2.80017i −0.132664 + 0.0963858i
\(845\) −4.89919 + 15.0781i −0.168537 + 0.518704i
\(846\) 4.00000 0.137523
\(847\) 0 0
\(848\) 3.61803 0.124244
\(849\) 5.09017 15.6659i 0.174694 0.537653i
\(850\) −10.0000 + 7.26543i −0.342997 + 0.249202i
\(851\) −55.7771 40.5244i −1.91201 1.38916i
\(852\) 1.85410 + 5.70634i 0.0635205 + 0.195496i
\(853\) −6.94427 21.3723i −0.237767 0.731773i −0.996742 0.0806528i \(-0.974300\pi\)
0.758975 0.651120i \(-0.225700\pi\)
\(854\) 12.7082 + 9.23305i 0.434866 + 0.315948i
\(855\) 8.61803 6.26137i 0.294731 0.214134i
\(856\) 3.11803 9.59632i 0.106572 0.327996i
\(857\) 2.18034 0.0744790 0.0372395 0.999306i \(-0.488144\pi\)
0.0372395 + 0.999306i \(0.488144\pi\)
\(858\) 0 0
\(859\) 41.9574 1.43157 0.715784 0.698321i \(-0.246069\pi\)
0.715784 + 0.698321i \(0.246069\pi\)
\(860\) 3.94427 12.1392i 0.134499 0.413944i
\(861\) 10.0902 7.33094i 0.343872 0.249838i
\(862\) −19.4721 14.1473i −0.663224 0.481860i
\(863\) −10.2361 31.5034i −0.348440 1.07239i −0.959716 0.280970i \(-0.909344\pi\)
0.611277 0.791417i \(-0.290656\pi\)
\(864\) 0.309017 + 0.951057i 0.0105130 + 0.0323556i
\(865\) 1.48278 + 1.07730i 0.0504160 + 0.0366294i
\(866\) −7.78115 + 5.65334i −0.264414 + 0.192108i
\(867\) −0.309017 + 0.951057i −0.0104948 + 0.0322996i
\(868\) −9.09017 −0.308540
\(869\) 0 0
\(870\) −0.201626 −0.00683577
\(871\) −4.94427 + 15.2169i −0.167530 + 0.515605i
\(872\) 12.0902 8.78402i 0.409425 0.297465i
\(873\) 5.97214 + 4.33901i 0.202126 + 0.146853i
\(874\) −18.3607 56.5084i −0.621059 1.91142i
\(875\) −5.59017 17.2048i −0.188982 0.581628i
\(876\) −4.50000 3.26944i −0.152041 0.110464i
\(877\) 20.0902 14.5964i 0.678397 0.492884i −0.194429 0.980917i \(-0.562285\pi\)
0.872825 + 0.488033i \(0.162285\pi\)
\(878\) 10.7918 33.2137i 0.364205 1.12091i
\(879\) −7.61803 −0.256950
\(880\) 0 0
\(881\) 34.0689 1.14781 0.573905 0.818922i \(-0.305428\pi\)
0.573905 + 0.818922i \(0.305428\pi\)
\(882\) −1.35410 + 4.16750i −0.0455950 + 0.140327i
\(883\) −8.52786 + 6.19586i −0.286985 + 0.208507i −0.721959 0.691936i \(-0.756758\pi\)
0.434973 + 0.900443i \(0.356758\pi\)
\(884\) 4.00000 + 2.90617i 0.134535 + 0.0977451i
\(885\) −2.27458 7.00042i −0.0764590 0.235317i
\(886\) 2.11803 + 6.51864i 0.0711567 + 0.218998i
\(887\) 13.7639 + 10.0001i 0.462148 + 0.335770i 0.794373 0.607430i \(-0.207800\pi\)
−0.332226 + 0.943200i \(0.607800\pi\)
\(888\) −7.23607 + 5.25731i −0.242827 + 0.176424i
\(889\) −2.00000 + 6.15537i −0.0670778 + 0.206444i
\(890\) 15.5279 0.520495
\(891\) 0 0
\(892\) 14.3262 0.479678
\(893\) −9.52786 + 29.3238i −0.318838 + 0.981282i
\(894\) −18.6353 + 13.5393i −0.623256 + 0.452822i
\(895\) −1.74671 1.26906i −0.0583861 0.0424200i
\(896\) 0.500000 + 1.53884i 0.0167038 + 0.0514091i
\(897\) 2.94427 + 9.06154i 0.0983064 + 0.302556i
\(898\) 6.85410 + 4.97980i 0.228724 + 0.166178i
\(899\) −0.663119 + 0.481784i −0.0221163 + 0.0160684i
\(900\) −0.954915 + 2.93893i −0.0318305 + 0.0979642i
\(901\) −14.4721 −0.482137
\(902\) 0 0
\(903\) 14.9443 0.497314
\(904\) −3.38197 + 10.4086i −0.112483 + 0.346186i
\(905\) 6.05573 4.39974i 0.201299 0.146252i
\(906\) −3.88197 2.82041i −0.128970 0.0937020i
\(907\) 3.61803 + 11.1352i 0.120135 + 0.369737i 0.992983 0.118254i \(-0.0377298\pi\)
−0.872849 + 0.487991i \(0.837730\pi\)
\(908\) 7.42705 + 22.8581i 0.246475 + 0.758573i
\(909\) 7.35410 + 5.34307i 0.243920 + 0.177218i
\(910\) −2.23607 + 1.62460i −0.0741249 + 0.0538549i
\(911\) −12.5279 + 38.5568i −0.415067 + 1.27744i 0.497125 + 0.867679i \(0.334389\pi\)
−0.912191 + 0.409765i \(0.865611\pi\)
\(912\) −7.70820 −0.255244
\(913\) 0 0
\(914\) 16.9098 0.559327
\(915\) −4.14590 + 12.7598i −0.137059 + 0.421825i
\(916\) −17.3262 + 12.5882i −0.572475 + 0.415927i
\(917\) −3.73607 2.71441i −0.123376 0.0896378i
\(918\) −1.23607 3.80423i −0.0407963 0.125558i
\(919\) 3.30244 + 10.1639i 0.108937 + 0.335275i 0.990634 0.136541i \(-0.0435986\pi\)
−0.881697 + 0.471816i \(0.843599\pi\)
\(920\) −8.61803 6.26137i −0.284128 0.206431i
\(921\) −10.3262 + 7.50245i −0.340261 + 0.247214i
\(922\) −6.79837 + 20.9232i −0.223893 + 0.689070i
\(923\) 7.41641 0.244114
\(924\) 0 0
\(925\) −27.6393 −0.908775
\(926\) 10.7361 33.0422i 0.352809 1.08583i
\(927\) 2.54508 1.84911i 0.0835916 0.0607328i
\(928\) 0.118034 + 0.0857567i 0.00387466 + 0.00281510i
\(929\) 1.18034 + 3.63271i 0.0387257 + 0.119185i 0.968551 0.248817i \(-0.0800418\pi\)
−0.929825 + 0.368002i \(0.880042\pi\)
\(930\) −2.39919 7.38394i −0.0786724 0.242129i
\(931\) −27.3262 19.8537i −0.895581 0.650678i
\(932\) 0.763932 0.555029i 0.0250234 0.0181806i
\(933\) 2.32624 7.15942i 0.0761576 0.234389i
\(934\) −11.7984 −0.386055
\(935\) 0 0
\(936\) 1.23607 0.0404021
\(937\) 16.2082 49.8837i 0.529499 1.62963i −0.225745 0.974186i \(-0.572482\pi\)
0.755244 0.655444i \(-0.227518\pi\)
\(938\) 16.9443 12.3107i 0.553250 0.401960i
\(939\) 20.2082 + 14.6821i 0.659470 + 0.479133i
\(940\) 1.70820 + 5.25731i 0.0557155 + 0.171475i
\(941\) 10.4377 + 32.1239i 0.340259 + 1.04721i 0.964073 + 0.265637i \(0.0855823\pi\)
−0.623814 + 0.781573i \(0.714418\pi\)
\(942\) 14.5623 + 10.5801i 0.474466 + 0.344719i
\(943\) 48.0689 34.9241i 1.56534 1.13728i
\(944\) −1.64590 + 5.06555i −0.0535694 + 0.164870i
\(945\) 2.23607 0.0727393
\(946\) 0 0
\(947\) −32.9230 −1.06985 −0.534927 0.844899i \(-0.679661\pi\)
−0.534927 + 0.844899i \(0.679661\pi\)
\(948\) 0.0450850 0.138757i 0.00146429 0.00450663i
\(949\) −5.56231 + 4.04125i −0.180560 + 0.131185i
\(950\) −19.2705 14.0008i −0.625218 0.454247i
\(951\) −8.32624 25.6255i −0.269997 0.830965i
\(952\) −2.00000 6.15537i −0.0648204 0.199497i
\(953\) −21.4164 15.5599i −0.693745 0.504036i 0.184144 0.982899i \(-0.441049\pi\)
−0.877889 + 0.478864i \(0.841049\pi\)
\(954\) −2.92705 + 2.12663i −0.0947668 + 0.0688521i
\(955\) −8.94427 + 27.5276i −0.289430 + 0.890773i
\(956\) 16.4721 0.532747
\(957\) 0 0
\(958\) −13.2361 −0.427638
\(959\) 4.09017 12.5882i 0.132078 0.406496i
\(960\) −1.11803 + 0.812299i −0.0360844 + 0.0262168i
\(961\) −0.454915 0.330515i −0.0146747 0.0106618i
\(962\) 3.41641 + 10.5146i 0.110149 + 0.339005i
\(963\) 3.11803 + 9.59632i 0.100477 + 0.309237i
\(964\) 5.16312 + 3.75123i 0.166293 + 0.120819i
\(965\) −2.66312 + 1.93487i −0.0857288 + 0.0622856i
\(966\) 3.85410 11.8617i 0.124004 0.381644i
\(967\) 17.3820 0.558966 0.279483 0.960151i \(-0.409837\pi\)
0.279483 + 0.960151i \(0.409837\pi\)
\(968\) 0 0
\(969\) 30.8328 0.990493
\(970\) −3.15248 + 9.70232i −0.101220 + 0.311523i
\(971\) 11.7082 8.50651i 0.375734 0.272987i −0.383851 0.923395i \(-0.625402\pi\)
0.759585 + 0.650408i \(0.225402\pi\)
\(972\) −0.809017 0.587785i −0.0259492 0.0188532i
\(973\) 1.14590 + 3.52671i 0.0367358 + 0.113061i
\(974\) −2.50000 7.69421i −0.0801052 0.246538i
\(975\) 3.09017 + 2.24514i 0.0989646 + 0.0719020i
\(976\) 7.85410 5.70634i 0.251404 0.182655i
\(977\) 17.6180 54.2227i 0.563651 1.73474i −0.108275 0.994121i \(-0.534533\pi\)
0.671926 0.740618i \(-0.265467\pi\)
\(978\) −8.47214 −0.270909
\(979\) 0 0
\(980\) −6.05573 −0.193443
\(981\) −4.61803 + 14.2128i −0.147442 + 0.453781i
\(982\) 26.9443 19.5762i 0.859826 0.624700i
\(983\) −23.9443 17.3965i −0.763704 0.554863i 0.136340 0.990662i \(-0.456466\pi\)
−0.900044 + 0.435799i \(0.856466\pi\)
\(984\) −2.38197 7.33094i −0.0759343 0.233702i
\(985\) −5.34095 16.4377i −0.170177 0.523750i
\(986\) −0.472136 0.343027i −0.0150359 0.0109242i
\(987\) −5.23607 + 3.80423i −0.166666 + 0.121090i
\(988\) −2.94427 + 9.06154i −0.0936698 + 0.288286i
\(989\) 71.1935 2.26382
\(990\) 0 0
\(991\) −18.3951 −0.584340 −0.292170 0.956366i \(-0.594377\pi\)
−0.292170 + 0.956366i \(0.594377\pi\)
\(992\) −1.73607 + 5.34307i −0.0551202 + 0.169643i
\(993\) −22.9443 + 16.6700i −0.728114 + 0.529006i
\(994\) −7.85410 5.70634i −0.249117 0.180994i
\(995\) −1.11803 3.44095i −0.0354441 0.109086i
\(996\) 0.190983 + 0.587785i 0.00605153 + 0.0186247i
\(997\) −5.38197 3.91023i −0.170449 0.123838i 0.499290 0.866435i \(-0.333594\pi\)
−0.669739 + 0.742597i \(0.733594\pi\)
\(998\) 20.4721 14.8739i 0.648034 0.470824i
\(999\) 2.76393 8.50651i 0.0874469 0.269134i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 726.2.e.a.493.1 4
11.2 odd 10 66.2.e.b.25.1 4
11.3 even 5 726.2.e.c.565.1 4
11.4 even 5 726.2.a.m.1.1 2
11.5 even 5 inner 726.2.e.a.511.1 4
11.6 odd 10 726.2.e.j.511.1 4
11.7 odd 10 726.2.a.k.1.1 2
11.8 odd 10 66.2.e.b.37.1 yes 4
11.9 even 5 726.2.e.c.487.1 4
11.10 odd 2 726.2.e.j.493.1 4
33.2 even 10 198.2.f.a.91.1 4
33.8 even 10 198.2.f.a.37.1 4
33.26 odd 10 2178.2.a.o.1.2 2
33.29 even 10 2178.2.a.v.1.2 2
44.7 even 10 5808.2.a.bz.1.1 2
44.15 odd 10 5808.2.a.by.1.1 2
44.19 even 10 528.2.y.g.433.1 4
44.35 even 10 528.2.y.g.289.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
66.2.e.b.25.1 4 11.2 odd 10
66.2.e.b.37.1 yes 4 11.8 odd 10
198.2.f.a.37.1 4 33.8 even 10
198.2.f.a.91.1 4 33.2 even 10
528.2.y.g.289.1 4 44.35 even 10
528.2.y.g.433.1 4 44.19 even 10
726.2.a.k.1.1 2 11.7 odd 10
726.2.a.m.1.1 2 11.4 even 5
726.2.e.a.493.1 4 1.1 even 1 trivial
726.2.e.a.511.1 4 11.5 even 5 inner
726.2.e.c.487.1 4 11.9 even 5
726.2.e.c.565.1 4 11.3 even 5
726.2.e.j.493.1 4 11.10 odd 2
726.2.e.j.511.1 4 11.6 odd 10
2178.2.a.o.1.2 2 33.26 odd 10
2178.2.a.v.1.2 2 33.29 even 10
5808.2.a.by.1.1 2 44.15 odd 10
5808.2.a.bz.1.1 2 44.7 even 10