L(s) = 1 | + (0.309 − 0.951i)2-s + (−0.809 + 0.587i)3-s + (−0.809 − 0.587i)4-s + (0.427 + 1.31i)5-s + (0.309 + 0.951i)6-s + (−1.30 − 0.951i)7-s + (−0.809 + 0.587i)8-s + (0.309 − 0.951i)9-s + 1.38·10-s + 0.999·12-s + (0.381 − 1.17i)13-s + (−1.30 + 0.951i)14-s + (−1.11 − 0.812i)15-s + (0.309 + 0.951i)16-s + (−1.23 − 3.80i)17-s + (−0.809 − 0.587i)18-s + ⋯ |
L(s) = 1 | + (0.218 − 0.672i)2-s + (−0.467 + 0.339i)3-s + (−0.404 − 0.293i)4-s + (0.190 + 0.587i)5-s + (0.126 + 0.388i)6-s + (−0.494 − 0.359i)7-s + (−0.286 + 0.207i)8-s + (0.103 − 0.317i)9-s + 0.437·10-s + 0.288·12-s + (0.105 − 0.326i)13-s + (−0.349 + 0.254i)14-s + (−0.288 − 0.209i)15-s + (0.0772 + 0.237i)16-s + (−0.299 − 0.922i)17-s + (−0.190 − 0.138i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 726 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.263 + 0.964i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 726 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.263 + 0.964i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.03628 - 0.791217i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.03628 - 0.791217i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.309 + 0.951i)T \) |
| 3 | \( 1 + (0.809 - 0.587i)T \) |
| 11 | \( 1 \) |
good | 5 | \( 1 + (-0.427 - 1.31i)T + (-4.04 + 2.93i)T^{2} \) |
| 7 | \( 1 + (1.30 + 0.951i)T + (2.16 + 6.65i)T^{2} \) |
| 13 | \( 1 + (-0.381 + 1.17i)T + (-10.5 - 7.64i)T^{2} \) |
| 17 | \( 1 + (1.23 + 3.80i)T + (-13.7 + 9.99i)T^{2} \) |
| 19 | \( 1 + (-6.23 + 4.53i)T + (5.87 - 18.0i)T^{2} \) |
| 23 | \( 1 - 7.70T + 23T^{2} \) |
| 29 | \( 1 + (-0.118 - 0.0857i)T + (8.96 + 27.5i)T^{2} \) |
| 31 | \( 1 + (1.73 - 5.34i)T + (-25.0 - 18.2i)T^{2} \) |
| 37 | \( 1 + (7.23 + 5.25i)T + (11.4 + 35.1i)T^{2} \) |
| 41 | \( 1 + (-6.23 + 4.53i)T + (12.6 - 38.9i)T^{2} \) |
| 43 | \( 1 - 9.23T + 43T^{2} \) |
| 47 | \( 1 + (3.23 - 2.35i)T + (14.5 - 44.6i)T^{2} \) |
| 53 | \( 1 + (-1.11 + 3.44i)T + (-42.8 - 31.1i)T^{2} \) |
| 59 | \( 1 + (-4.30 - 3.13i)T + (18.2 + 56.1i)T^{2} \) |
| 61 | \( 1 + (3 + 9.23i)T + (-49.3 + 35.8i)T^{2} \) |
| 67 | \( 1 + 12.9T + 67T^{2} \) |
| 71 | \( 1 + (-1.85 - 5.70i)T + (-57.4 + 41.7i)T^{2} \) |
| 73 | \( 1 + (4.5 + 3.26i)T + (22.5 + 69.4i)T^{2} \) |
| 79 | \( 1 + (-0.0450 + 0.138i)T + (-63.9 - 46.4i)T^{2} \) |
| 83 | \( 1 + (-0.190 - 0.587i)T + (-67.1 + 48.7i)T^{2} \) |
| 89 | \( 1 - 11.2T + 89T^{2} \) |
| 97 | \( 1 + (2.28 - 7.02i)T + (-78.4 - 57.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.54360713140980710269776842724, −9.443875962265263208629811676704, −8.995052126911752660451448029874, −7.30685678852591403143272250245, −6.76317076218152371605112622186, −5.48405465166992806007925420153, −4.78384008501411484827871246397, −3.44945911382816474075721950808, −2.72451004091377007792270629100, −0.77883836019854026957681634952,
1.31354664325704530964861280764, 3.11293345771153644393799417091, 4.40803616721453297911514299456, 5.43817974965911427772412918980, 6.02841265193559537871489754814, 7.00248240957412038773736001815, 7.83313378187839449717477190091, 8.879808856420863244569310614676, 9.458874498905362796990113564688, 10.56661186709613630852368372709