Properties

Label 726.2.e.c.565.1
Level $726$
Weight $2$
Character 726.565
Analytic conductor $5.797$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [726,2,Mod(487,726)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(726, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 8])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("726.487"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 726 = 2 \cdot 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 726.e (of order \(5\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-1,-1,-1,0,-1,2,-1,-1,10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(10)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.79713918674\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 66)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 565.1
Root \(0.809017 - 0.587785i\) of defining polynomial
Character \(\chi\) \(=\) 726.565
Dual form 726.2.e.c.487.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.809017 - 0.587785i) q^{2} +(0.309017 - 0.951057i) q^{3} +(0.309017 + 0.951057i) q^{4} +(-1.11803 + 0.812299i) q^{5} +(-0.809017 + 0.587785i) q^{6} +(0.500000 + 1.53884i) q^{7} +(0.309017 - 0.951057i) q^{8} +(-0.809017 - 0.587785i) q^{9} +1.38197 q^{10} +1.00000 q^{12} +(-1.00000 - 0.726543i) q^{13} +(0.500000 - 1.53884i) q^{14} +(0.427051 + 1.31433i) q^{15} +(-0.809017 + 0.587785i) q^{16} +(3.23607 - 2.35114i) q^{17} +(0.309017 + 0.951057i) q^{18} +(-2.38197 + 7.33094i) q^{19} +(-1.11803 - 0.812299i) q^{20} +1.61803 q^{21} +7.70820 q^{23} +(-0.809017 - 0.587785i) q^{24} +(-0.954915 + 2.93893i) q^{25} +(0.381966 + 1.17557i) q^{26} +(-0.809017 + 0.587785i) q^{27} +(-1.30902 + 0.951057i) q^{28} +(-0.0450850 - 0.138757i) q^{29} +(0.427051 - 1.31433i) q^{30} +(4.54508 + 3.30220i) q^{31} +1.00000 q^{32} -4.00000 q^{34} +(-1.80902 - 1.31433i) q^{35} +(0.309017 - 0.951057i) q^{36} +(2.76393 + 8.50651i) q^{37} +(6.23607 - 4.53077i) q^{38} +(-1.00000 + 0.726543i) q^{39} +(0.427051 + 1.31433i) q^{40} +(-2.38197 + 7.33094i) q^{41} +(-1.30902 - 0.951057i) q^{42} +9.23607 q^{43} +1.38197 q^{45} +(-6.23607 - 4.53077i) q^{46} +(1.23607 - 3.80423i) q^{47} +(0.309017 + 0.951057i) q^{48} +(3.54508 - 2.57565i) q^{49} +(2.50000 - 1.81636i) q^{50} +(-1.23607 - 3.80423i) q^{51} +(0.381966 - 1.17557i) q^{52} +(-2.92705 - 2.12663i) q^{53} +1.00000 q^{54} +1.61803 q^{56} +(6.23607 + 4.53077i) q^{57} +(-0.0450850 + 0.138757i) q^{58} +(-1.64590 - 5.06555i) q^{59} +(-1.11803 + 0.812299i) q^{60} +(7.85410 - 5.70634i) q^{61} +(-1.73607 - 5.34307i) q^{62} +(0.500000 - 1.53884i) q^{63} +(-0.809017 - 0.587785i) q^{64} +1.70820 q^{65} -12.9443 q^{67} +(3.23607 + 2.35114i) q^{68} +(2.38197 - 7.33094i) q^{69} +(0.690983 + 2.12663i) q^{70} +(-4.85410 + 3.52671i) q^{71} +(-0.809017 + 0.587785i) q^{72} +(1.71885 + 5.29007i) q^{73} +(2.76393 - 8.50651i) q^{74} +(2.50000 + 1.81636i) q^{75} -7.70820 q^{76} +1.23607 q^{78} +(-0.118034 - 0.0857567i) q^{79} +(0.427051 - 1.31433i) q^{80} +(0.309017 + 0.951057i) q^{81} +(6.23607 - 4.53077i) q^{82} +(-0.500000 + 0.363271i) q^{83} +(0.500000 + 1.53884i) q^{84} +(-1.70820 + 5.25731i) q^{85} +(-7.47214 - 5.42882i) q^{86} -0.145898 q^{87} +11.2361 q^{89} +(-1.11803 - 0.812299i) q^{90} +(0.618034 - 1.90211i) q^{91} +(2.38197 + 7.33094i) q^{92} +(4.54508 - 3.30220i) q^{93} +(-3.23607 + 2.35114i) q^{94} +(-3.29180 - 10.1311i) q^{95} +(0.309017 - 0.951057i) q^{96} +(5.97214 + 4.33901i) q^{97} -4.38197 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - q^{2} - q^{3} - q^{4} - q^{6} + 2 q^{7} - q^{8} - q^{9} + 10 q^{10} + 4 q^{12} - 4 q^{13} + 2 q^{14} - 5 q^{15} - q^{16} + 4 q^{17} - q^{18} - 14 q^{19} + 2 q^{21} + 4 q^{23} - q^{24} - 15 q^{25}+ \cdots - 22 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/726\mathbb{Z}\right)^\times\).

\(n\) \(485\) \(607\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.809017 0.587785i −0.572061 0.415627i
\(3\) 0.309017 0.951057i 0.178411 0.549093i
\(4\) 0.309017 + 0.951057i 0.154508 + 0.475528i
\(5\) −1.11803 + 0.812299i −0.500000 + 0.363271i −0.809017 0.587785i \(-0.800000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(6\) −0.809017 + 0.587785i −0.330280 + 0.239962i
\(7\) 0.500000 + 1.53884i 0.188982 + 0.581628i 0.999994 0.00340203i \(-0.00108290\pi\)
−0.811012 + 0.585030i \(0.801083\pi\)
\(8\) 0.309017 0.951057i 0.109254 0.336249i
\(9\) −0.809017 0.587785i −0.269672 0.195928i
\(10\) 1.38197 0.437016
\(11\) 0 0
\(12\) 1.00000 0.288675
\(13\) −1.00000 0.726543i −0.277350 0.201507i 0.440411 0.897796i \(-0.354833\pi\)
−0.717761 + 0.696290i \(0.754833\pi\)
\(14\) 0.500000 1.53884i 0.133631 0.411273i
\(15\) 0.427051 + 1.31433i 0.110264 + 0.339358i
\(16\) −0.809017 + 0.587785i −0.202254 + 0.146946i
\(17\) 3.23607 2.35114i 0.784862 0.570235i −0.121572 0.992583i \(-0.538794\pi\)
0.906434 + 0.422347i \(0.138794\pi\)
\(18\) 0.309017 + 0.951057i 0.0728360 + 0.224166i
\(19\) −2.38197 + 7.33094i −0.546460 + 1.68183i 0.171031 + 0.985266i \(0.445290\pi\)
−0.717492 + 0.696567i \(0.754710\pi\)
\(20\) −1.11803 0.812299i −0.250000 0.181636i
\(21\) 1.61803 0.353084
\(22\) 0 0
\(23\) 7.70820 1.60727 0.803636 0.595121i \(-0.202896\pi\)
0.803636 + 0.595121i \(0.202896\pi\)
\(24\) −0.809017 0.587785i −0.165140 0.119981i
\(25\) −0.954915 + 2.93893i −0.190983 + 0.587785i
\(26\) 0.381966 + 1.17557i 0.0749097 + 0.230548i
\(27\) −0.809017 + 0.587785i −0.155695 + 0.113119i
\(28\) −1.30902 + 0.951057i −0.247381 + 0.179733i
\(29\) −0.0450850 0.138757i −0.00837207 0.0257666i 0.946783 0.321872i \(-0.104312\pi\)
−0.955155 + 0.296105i \(0.904312\pi\)
\(30\) 0.427051 1.31433i 0.0779685 0.239962i
\(31\) 4.54508 + 3.30220i 0.816321 + 0.593092i 0.915656 0.401962i \(-0.131672\pi\)
−0.0993351 + 0.995054i \(0.531672\pi\)
\(32\) 1.00000 0.176777
\(33\) 0 0
\(34\) −4.00000 −0.685994
\(35\) −1.80902 1.31433i −0.305780 0.222162i
\(36\) 0.309017 0.951057i 0.0515028 0.158509i
\(37\) 2.76393 + 8.50651i 0.454388 + 1.39846i 0.871853 + 0.489768i \(0.162919\pi\)
−0.417465 + 0.908693i \(0.637081\pi\)
\(38\) 6.23607 4.53077i 1.01162 0.734988i
\(39\) −1.00000 + 0.726543i −0.160128 + 0.116340i
\(40\) 0.427051 + 1.31433i 0.0675227 + 0.207813i
\(41\) −2.38197 + 7.33094i −0.372001 + 1.14490i 0.573479 + 0.819220i \(0.305593\pi\)
−0.945480 + 0.325680i \(0.894407\pi\)
\(42\) −1.30902 0.951057i −0.201986 0.146751i
\(43\) 9.23607 1.40849 0.704244 0.709958i \(-0.251286\pi\)
0.704244 + 0.709958i \(0.251286\pi\)
\(44\) 0 0
\(45\) 1.38197 0.206011
\(46\) −6.23607 4.53077i −0.919458 0.668025i
\(47\) 1.23607 3.80423i 0.180299 0.554903i −0.819537 0.573027i \(-0.805769\pi\)
0.999836 + 0.0181233i \(0.00576913\pi\)
\(48\) 0.309017 + 0.951057i 0.0446028 + 0.137273i
\(49\) 3.54508 2.57565i 0.506441 0.367951i
\(50\) 2.50000 1.81636i 0.353553 0.256872i
\(51\) −1.23607 3.80423i −0.173084 0.532698i
\(52\) 0.381966 1.17557i 0.0529692 0.163022i
\(53\) −2.92705 2.12663i −0.402061 0.292115i 0.368319 0.929700i \(-0.379934\pi\)
−0.770380 + 0.637585i \(0.779934\pi\)
\(54\) 1.00000 0.136083
\(55\) 0 0
\(56\) 1.61803 0.216219
\(57\) 6.23607 + 4.53077i 0.825987 + 0.600115i
\(58\) −0.0450850 + 0.138757i −0.00591995 + 0.0182197i
\(59\) −1.64590 5.06555i −0.214278 0.659479i −0.999204 0.0398899i \(-0.987299\pi\)
0.784926 0.619589i \(-0.212701\pi\)
\(60\) −1.11803 + 0.812299i −0.144338 + 0.104867i
\(61\) 7.85410 5.70634i 1.00561 0.730622i 0.0423300 0.999104i \(-0.486522\pi\)
0.963285 + 0.268482i \(0.0865219\pi\)
\(62\) −1.73607 5.34307i −0.220481 0.678570i
\(63\) 0.500000 1.53884i 0.0629941 0.193876i
\(64\) −0.809017 0.587785i −0.101127 0.0734732i
\(65\) 1.70820 0.211877
\(66\) 0 0
\(67\) −12.9443 −1.58139 −0.790697 0.612207i \(-0.790282\pi\)
−0.790697 + 0.612207i \(0.790282\pi\)
\(68\) 3.23607 + 2.35114i 0.392431 + 0.285118i
\(69\) 2.38197 7.33094i 0.286755 0.882541i
\(70\) 0.690983 + 2.12663i 0.0825883 + 0.254181i
\(71\) −4.85410 + 3.52671i −0.576076 + 0.418544i −0.837307 0.546733i \(-0.815871\pi\)
0.261231 + 0.965276i \(0.415871\pi\)
\(72\) −0.809017 + 0.587785i −0.0953436 + 0.0692712i
\(73\) 1.71885 + 5.29007i 0.201176 + 0.619156i 0.999849 + 0.0173902i \(0.00553575\pi\)
−0.798673 + 0.601765i \(0.794464\pi\)
\(74\) 2.76393 8.50651i 0.321301 0.988861i
\(75\) 2.50000 + 1.81636i 0.288675 + 0.209735i
\(76\) −7.70820 −0.884192
\(77\) 0 0
\(78\) 1.23607 0.139957
\(79\) −0.118034 0.0857567i −0.0132799 0.00964838i 0.581126 0.813814i \(-0.302613\pi\)
−0.594405 + 0.804166i \(0.702613\pi\)
\(80\) 0.427051 1.31433i 0.0477458 0.146946i
\(81\) 0.309017 + 0.951057i 0.0343352 + 0.105673i
\(82\) 6.23607 4.53077i 0.688659 0.500340i
\(83\) −0.500000 + 0.363271i −0.0548821 + 0.0398742i −0.614888 0.788614i \(-0.710799\pi\)
0.560006 + 0.828489i \(0.310799\pi\)
\(84\) 0.500000 + 1.53884i 0.0545545 + 0.167901i
\(85\) −1.70820 + 5.25731i −0.185281 + 0.570235i
\(86\) −7.47214 5.42882i −0.805741 0.585405i
\(87\) −0.145898 −0.0156419
\(88\) 0 0
\(89\) 11.2361 1.19102 0.595510 0.803348i \(-0.296950\pi\)
0.595510 + 0.803348i \(0.296950\pi\)
\(90\) −1.11803 0.812299i −0.117851 0.0856239i
\(91\) 0.618034 1.90211i 0.0647876 0.199396i
\(92\) 2.38197 + 7.33094i 0.248337 + 0.764303i
\(93\) 4.54508 3.30220i 0.471303 0.342422i
\(94\) −3.23607 + 2.35114i −0.333775 + 0.242502i
\(95\) −3.29180 10.1311i −0.337731 1.03943i
\(96\) 0.309017 0.951057i 0.0315389 0.0970668i
\(97\) 5.97214 + 4.33901i 0.606379 + 0.440560i 0.848137 0.529777i \(-0.177724\pi\)
−0.241759 + 0.970336i \(0.577724\pi\)
\(98\) −4.38197 −0.442645
\(99\) 0 0
\(100\) −3.09017 −0.309017
\(101\) 7.35410 + 5.34307i 0.731760 + 0.531655i 0.890120 0.455726i \(-0.150620\pi\)
−0.158359 + 0.987382i \(0.550620\pi\)
\(102\) −1.23607 + 3.80423i −0.122389 + 0.376675i
\(103\) −0.972136 2.99193i −0.0957874 0.294803i 0.891671 0.452685i \(-0.149534\pi\)
−0.987458 + 0.157881i \(0.949534\pi\)
\(104\) −1.00000 + 0.726543i −0.0980581 + 0.0712434i
\(105\) −1.80902 + 1.31433i −0.176542 + 0.128265i
\(106\) 1.11803 + 3.44095i 0.108593 + 0.334215i
\(107\) 3.11803 9.59632i 0.301432 0.927711i −0.679553 0.733626i \(-0.737826\pi\)
0.980985 0.194085i \(-0.0621738\pi\)
\(108\) −0.809017 0.587785i −0.0778477 0.0565597i
\(109\) −14.9443 −1.43140 −0.715701 0.698407i \(-0.753893\pi\)
−0.715701 + 0.698407i \(0.753893\pi\)
\(110\) 0 0
\(111\) 8.94427 0.848953
\(112\) −1.30902 0.951057i −0.123690 0.0898664i
\(113\) −3.38197 + 10.4086i −0.318149 + 0.979161i 0.656290 + 0.754508i \(0.272125\pi\)
−0.974439 + 0.224652i \(0.927875\pi\)
\(114\) −2.38197 7.33094i −0.223092 0.686605i
\(115\) −8.61803 + 6.26137i −0.803636 + 0.583876i
\(116\) 0.118034 0.0857567i 0.0109592 0.00796231i
\(117\) 0.381966 + 1.17557i 0.0353128 + 0.108682i
\(118\) −1.64590 + 5.06555i −0.151517 + 0.466322i
\(119\) 5.23607 + 3.80423i 0.479990 + 0.348733i
\(120\) 1.38197 0.126156
\(121\) 0 0
\(122\) −9.70820 −0.878939
\(123\) 6.23607 + 4.53077i 0.562287 + 0.408526i
\(124\) −1.73607 + 5.34307i −0.155904 + 0.479822i
\(125\) −3.45492 10.6331i −0.309017 0.951057i
\(126\) −1.30902 + 0.951057i −0.116617 + 0.0847268i
\(127\) 3.23607 2.35114i 0.287155 0.208630i −0.434877 0.900490i \(-0.643208\pi\)
0.722032 + 0.691860i \(0.243208\pi\)
\(128\) 0.309017 + 0.951057i 0.0273135 + 0.0840623i
\(129\) 2.85410 8.78402i 0.251290 0.773390i
\(130\) −1.38197 1.00406i −0.121206 0.0880616i
\(131\) 2.85410 0.249364 0.124682 0.992197i \(-0.460209\pi\)
0.124682 + 0.992197i \(0.460209\pi\)
\(132\) 0 0
\(133\) −12.4721 −1.08147
\(134\) 10.4721 + 7.60845i 0.904655 + 0.657270i
\(135\) 0.427051 1.31433i 0.0367547 0.113119i
\(136\) −1.23607 3.80423i −0.105992 0.326210i
\(137\) −6.61803 + 4.80828i −0.565417 + 0.410799i −0.833437 0.552614i \(-0.813630\pi\)
0.268021 + 0.963413i \(0.413630\pi\)
\(138\) −6.23607 + 4.53077i −0.530849 + 0.385685i
\(139\) 0.708204 + 2.17963i 0.0600691 + 0.184874i 0.976588 0.215117i \(-0.0690133\pi\)
−0.916519 + 0.399991i \(0.869013\pi\)
\(140\) 0.690983 2.12663i 0.0583987 0.179733i
\(141\) −3.23607 2.35114i −0.272526 0.198002i
\(142\) 6.00000 0.503509
\(143\) 0 0
\(144\) 1.00000 0.0833333
\(145\) 0.163119 + 0.118513i 0.0135463 + 0.00984196i
\(146\) 1.71885 5.29007i 0.142253 0.437809i
\(147\) −1.35410 4.16750i −0.111684 0.343729i
\(148\) −7.23607 + 5.25731i −0.594801 + 0.432148i
\(149\) −18.6353 + 13.5393i −1.52666 + 1.10918i −0.568600 + 0.822614i \(0.692515\pi\)
−0.958060 + 0.286569i \(0.907485\pi\)
\(150\) −0.954915 2.93893i −0.0779685 0.239962i
\(151\) 1.48278 4.56352i 0.120667 0.371374i −0.872420 0.488757i \(-0.837450\pi\)
0.993087 + 0.117383i \(0.0374504\pi\)
\(152\) 6.23607 + 4.53077i 0.505812 + 0.367494i
\(153\) −4.00000 −0.323381
\(154\) 0 0
\(155\) −7.76393 −0.623614
\(156\) −1.00000 0.726543i −0.0800641 0.0581700i
\(157\) −5.56231 + 17.1190i −0.443920 + 1.36625i 0.439743 + 0.898124i \(0.355069\pi\)
−0.883663 + 0.468123i \(0.844931\pi\)
\(158\) 0.0450850 + 0.138757i 0.00358677 + 0.0110389i
\(159\) −2.92705 + 2.12663i −0.232130 + 0.168652i
\(160\) −1.11803 + 0.812299i −0.0883883 + 0.0642179i
\(161\) 3.85410 + 11.8617i 0.303746 + 0.934833i
\(162\) 0.309017 0.951057i 0.0242787 0.0747221i
\(163\) 6.85410 + 4.97980i 0.536855 + 0.390048i 0.822916 0.568164i \(-0.192346\pi\)
−0.286061 + 0.958211i \(0.592346\pi\)
\(164\) −7.70820 −0.601910
\(165\) 0 0
\(166\) 0.618034 0.0479687
\(167\) −15.9443 11.5842i −1.23380 0.896412i −0.236635 0.971599i \(-0.576045\pi\)
−0.997169 + 0.0751869i \(0.976045\pi\)
\(168\) 0.500000 1.53884i 0.0385758 0.118724i
\(169\) −3.54508 10.9106i −0.272699 0.839281i
\(170\) 4.47214 3.24920i 0.342997 0.249202i
\(171\) 6.23607 4.53077i 0.476884 0.346477i
\(172\) 2.85410 + 8.78402i 0.217623 + 0.669775i
\(173\) −0.409830 + 1.26133i −0.0311588 + 0.0958969i −0.965426 0.260676i \(-0.916055\pi\)
0.934268 + 0.356572i \(0.116055\pi\)
\(174\) 0.118034 + 0.0857567i 0.00894813 + 0.00650120i
\(175\) −5.00000 −0.377964
\(176\) 0 0
\(177\) −5.32624 −0.400345
\(178\) −9.09017 6.60440i −0.681337 0.495020i
\(179\) 0.482779 1.48584i 0.0360846 0.111057i −0.931392 0.364018i \(-0.881405\pi\)
0.967476 + 0.252961i \(0.0814045\pi\)
\(180\) 0.427051 + 1.31433i 0.0318305 + 0.0979642i
\(181\) 4.38197 3.18368i 0.325709 0.236641i −0.412899 0.910777i \(-0.635484\pi\)
0.738608 + 0.674136i \(0.235484\pi\)
\(182\) −1.61803 + 1.17557i −0.119937 + 0.0871391i
\(183\) −3.00000 9.23305i −0.221766 0.682527i
\(184\) 2.38197 7.33094i 0.175601 0.540444i
\(185\) −10.0000 7.26543i −0.735215 0.534165i
\(186\) −5.61803 −0.411934
\(187\) 0 0
\(188\) 4.00000 0.291730
\(189\) −1.30902 0.951057i −0.0952170 0.0691792i
\(190\) −3.29180 + 10.1311i −0.238812 + 0.734988i
\(191\) −6.47214 19.9192i −0.468307 1.44130i −0.854775 0.518999i \(-0.826305\pi\)
0.386468 0.922303i \(-0.373695\pi\)
\(192\) −0.809017 + 0.587785i −0.0583858 + 0.0424197i
\(193\) −1.92705 + 1.40008i −0.138712 + 0.100780i −0.654977 0.755648i \(-0.727322\pi\)
0.516265 + 0.856429i \(0.327322\pi\)
\(194\) −2.28115 7.02067i −0.163777 0.504055i
\(195\) 0.527864 1.62460i 0.0378011 0.116340i
\(196\) 3.54508 + 2.57565i 0.253220 + 0.183975i
\(197\) −12.5066 −0.891057 −0.445528 0.895268i \(-0.646984\pi\)
−0.445528 + 0.895268i \(0.646984\pi\)
\(198\) 0 0
\(199\) −2.61803 −0.185588 −0.0927938 0.995685i \(-0.529580\pi\)
−0.0927938 + 0.995685i \(0.529580\pi\)
\(200\) 2.50000 + 1.81636i 0.176777 + 0.128436i
\(201\) −4.00000 + 12.3107i −0.282138 + 0.868332i
\(202\) −2.80902 8.64527i −0.197642 0.608279i
\(203\) 0.190983 0.138757i 0.0134044 0.00973885i
\(204\) 3.23607 2.35114i 0.226570 0.164613i
\(205\) −3.29180 10.1311i −0.229909 0.707587i
\(206\) −0.972136 + 2.99193i −0.0677319 + 0.208457i
\(207\) −6.23607 4.53077i −0.433437 0.314910i
\(208\) 1.23607 0.0857059
\(209\) 0 0
\(210\) 2.23607 0.154303
\(211\) −3.85410 2.80017i −0.265327 0.192772i 0.447165 0.894451i \(-0.352434\pi\)
−0.712492 + 0.701680i \(0.752434\pi\)
\(212\) 1.11803 3.44095i 0.0767869 0.236326i
\(213\) 1.85410 + 5.70634i 0.127041 + 0.390992i
\(214\) −8.16312 + 5.93085i −0.558019 + 0.405425i
\(215\) −10.3262 + 7.50245i −0.704244 + 0.511663i
\(216\) 0.309017 + 0.951057i 0.0210259 + 0.0647112i
\(217\) −2.80902 + 8.64527i −0.190688 + 0.586879i
\(218\) 12.0902 + 8.78402i 0.818850 + 0.594929i
\(219\) 5.56231 0.375866
\(220\) 0 0
\(221\) −4.94427 −0.332588
\(222\) −7.23607 5.25731i −0.485653 0.352848i
\(223\) 4.42705 13.6251i 0.296457 0.912402i −0.686271 0.727346i \(-0.740754\pi\)
0.982728 0.185056i \(-0.0592465\pi\)
\(224\) 0.500000 + 1.53884i 0.0334077 + 0.102818i
\(225\) 2.50000 1.81636i 0.166667 0.121090i
\(226\) 8.85410 6.43288i 0.588966 0.427909i
\(227\) 7.42705 + 22.8581i 0.492951 + 1.51715i 0.820126 + 0.572183i \(0.193903\pi\)
−0.327176 + 0.944964i \(0.606097\pi\)
\(228\) −2.38197 + 7.33094i −0.157750 + 0.485503i
\(229\) −17.3262 12.5882i −1.14495 0.831855i −0.157149 0.987575i \(-0.550230\pi\)
−0.987801 + 0.155720i \(0.950230\pi\)
\(230\) 10.6525 0.702403
\(231\) 0 0
\(232\) −0.145898 −0.00957868
\(233\) 0.763932 + 0.555029i 0.0500469 + 0.0363612i 0.612527 0.790449i \(-0.290153\pi\)
−0.562481 + 0.826810i \(0.690153\pi\)
\(234\) 0.381966 1.17557i 0.0249699 0.0768494i
\(235\) 1.70820 + 5.25731i 0.111431 + 0.342949i
\(236\) 4.30902 3.13068i 0.280493 0.203790i
\(237\) −0.118034 + 0.0857567i −0.00766713 + 0.00557050i
\(238\) −2.00000 6.15537i −0.129641 0.398993i
\(239\) 5.09017 15.6659i 0.329256 1.01334i −0.640227 0.768186i \(-0.721160\pi\)
0.969483 0.245159i \(-0.0788402\pi\)
\(240\) −1.11803 0.812299i −0.0721688 0.0524337i
\(241\) −6.38197 −0.411099 −0.205549 0.978647i \(-0.565898\pi\)
−0.205549 + 0.978647i \(0.565898\pi\)
\(242\) 0 0
\(243\) 1.00000 0.0641500
\(244\) 7.85410 + 5.70634i 0.502807 + 0.365311i
\(245\) −1.87132 + 5.75934i −0.119554 + 0.367951i
\(246\) −2.38197 7.33094i −0.151869 0.467404i
\(247\) 7.70820 5.60034i 0.490461 0.356341i
\(248\) 4.54508 3.30220i 0.288613 0.209690i
\(249\) 0.190983 + 0.587785i 0.0121031 + 0.0372494i
\(250\) −3.45492 + 10.6331i −0.218508 + 0.672499i
\(251\) 0.263932 + 0.191758i 0.0166592 + 0.0121036i 0.596084 0.802922i \(-0.296723\pi\)
−0.579424 + 0.815026i \(0.696723\pi\)
\(252\) 1.61803 0.101927
\(253\) 0 0
\(254\) −4.00000 −0.250982
\(255\) 4.47214 + 3.24920i 0.280056 + 0.203473i
\(256\) 0.309017 0.951057i 0.0193136 0.0594410i
\(257\) 6.70820 + 20.6457i 0.418446 + 1.28785i 0.909132 + 0.416508i \(0.136746\pi\)
−0.490686 + 0.871337i \(0.663254\pi\)
\(258\) −7.47214 + 5.42882i −0.465195 + 0.337984i
\(259\) −11.7082 + 8.50651i −0.727512 + 0.528569i
\(260\) 0.527864 + 1.62460i 0.0327367 + 0.100753i
\(261\) −0.0450850 + 0.138757i −0.00279069 + 0.00858886i
\(262\) −2.30902 1.67760i −0.142652 0.103642i
\(263\) 12.7639 0.787058 0.393529 0.919312i \(-0.371254\pi\)
0.393529 + 0.919312i \(0.371254\pi\)
\(264\) 0 0
\(265\) 5.00000 0.307148
\(266\) 10.0902 + 7.33094i 0.618668 + 0.449489i
\(267\) 3.47214 10.6861i 0.212491 0.653981i
\(268\) −4.00000 12.3107i −0.244339 0.751998i
\(269\) −4.85410 + 3.52671i −0.295960 + 0.215027i −0.725849 0.687854i \(-0.758553\pi\)
0.429889 + 0.902882i \(0.358553\pi\)
\(270\) −1.11803 + 0.812299i −0.0680414 + 0.0494350i
\(271\) −5.41641 16.6700i −0.329023 1.01263i −0.969592 0.244729i \(-0.921301\pi\)
0.640568 0.767901i \(-0.278699\pi\)
\(272\) −1.23607 + 3.80423i −0.0749476 + 0.230665i
\(273\) −1.61803 1.17557i −0.0979279 0.0711488i
\(274\) 8.18034 0.494192
\(275\) 0 0
\(276\) 7.70820 0.463979
\(277\) 1.85410 + 1.34708i 0.111402 + 0.0809384i 0.642092 0.766628i \(-0.278067\pi\)
−0.530689 + 0.847566i \(0.678067\pi\)
\(278\) 0.708204 2.17963i 0.0424752 0.130725i
\(279\) −1.73607 5.34307i −0.103936 0.319881i
\(280\) −1.80902 + 1.31433i −0.108109 + 0.0785461i
\(281\) 13.5623 9.85359i 0.809059 0.587816i −0.104498 0.994525i \(-0.533324\pi\)
0.913558 + 0.406709i \(0.133324\pi\)
\(282\) 1.23607 + 3.80423i 0.0736068 + 0.226538i
\(283\) 5.09017 15.6659i 0.302579 0.931243i −0.677990 0.735071i \(-0.737149\pi\)
0.980569 0.196172i \(-0.0628511\pi\)
\(284\) −4.85410 3.52671i −0.288038 0.209272i
\(285\) −10.6525 −0.630998
\(286\) 0 0
\(287\) −12.4721 −0.736207
\(288\) −0.809017 0.587785i −0.0476718 0.0346356i
\(289\) −0.309017 + 0.951057i −0.0181775 + 0.0559445i
\(290\) −0.0623059 0.191758i −0.00365873 0.0112604i
\(291\) 5.97214 4.33901i 0.350093 0.254357i
\(292\) −4.50000 + 3.26944i −0.263343 + 0.191330i
\(293\) −2.35410 7.24518i −0.137528 0.423268i 0.858447 0.512903i \(-0.171430\pi\)
−0.995975 + 0.0896350i \(0.971430\pi\)
\(294\) −1.35410 + 4.16750i −0.0789728 + 0.243053i
\(295\) 5.95492 + 4.32650i 0.346709 + 0.251899i
\(296\) 8.94427 0.519875
\(297\) 0 0
\(298\) 23.0344 1.33435
\(299\) −7.70820 5.60034i −0.445777 0.323876i
\(300\) −0.954915 + 2.93893i −0.0551320 + 0.169679i
\(301\) 4.61803 + 14.2128i 0.266179 + 0.819215i
\(302\) −3.88197 + 2.82041i −0.223382 + 0.162297i
\(303\) 7.35410 5.34307i 0.422482 0.306951i
\(304\) −2.38197 7.33094i −0.136615 0.420458i
\(305\) −4.14590 + 12.7598i −0.237393 + 0.730622i
\(306\) 3.23607 + 2.35114i 0.184994 + 0.134406i
\(307\) 12.7639 0.728476 0.364238 0.931306i \(-0.381329\pi\)
0.364238 + 0.931306i \(0.381329\pi\)
\(308\) 0 0
\(309\) −3.14590 −0.178964
\(310\) 6.28115 + 4.56352i 0.356746 + 0.259191i
\(311\) 2.32624 7.15942i 0.131909 0.405974i −0.863188 0.504883i \(-0.831535\pi\)
0.995096 + 0.0989097i \(0.0315355\pi\)
\(312\) 0.381966 + 1.17557i 0.0216246 + 0.0665536i
\(313\) 20.2082 14.6821i 1.14224 0.829882i 0.154806 0.987945i \(-0.450525\pi\)
0.987429 + 0.158062i \(0.0505247\pi\)
\(314\) 14.5623 10.5801i 0.821798 0.597072i
\(315\) 0.690983 + 2.12663i 0.0389325 + 0.119822i
\(316\) 0.0450850 0.138757i 0.00253623 0.00780571i
\(317\) 21.7984 + 15.8374i 1.22432 + 0.889520i 0.996451 0.0841726i \(-0.0268247\pi\)
0.227867 + 0.973692i \(0.426825\pi\)
\(318\) 3.61803 0.202889
\(319\) 0 0
\(320\) 1.38197 0.0772542
\(321\) −8.16312 5.93085i −0.455621 0.331028i
\(322\) 3.85410 11.8617i 0.214781 0.661027i
\(323\) 9.52786 + 29.3238i 0.530145 + 1.63162i
\(324\) −0.809017 + 0.587785i −0.0449454 + 0.0326547i
\(325\) 3.09017 2.24514i 0.171412 0.124538i
\(326\) −2.61803 8.05748i −0.144999 0.446263i
\(327\) −4.61803 + 14.2128i −0.255378 + 0.785972i
\(328\) 6.23607 + 4.53077i 0.344329 + 0.250170i
\(329\) 6.47214 0.356820
\(330\) 0 0
\(331\) 28.3607 1.55884 0.779422 0.626499i \(-0.215513\pi\)
0.779422 + 0.626499i \(0.215513\pi\)
\(332\) −0.500000 0.363271i −0.0274411 0.0199371i
\(333\) 2.76393 8.50651i 0.151463 0.466154i
\(334\) 6.09017 + 18.7436i 0.333239 + 1.02561i
\(335\) 14.4721 10.5146i 0.790697 0.574475i
\(336\) −1.30902 + 0.951057i −0.0714127 + 0.0518844i
\(337\) 4.90983 + 15.1109i 0.267455 + 0.823143i 0.991118 + 0.132989i \(0.0424574\pi\)
−0.723662 + 0.690155i \(0.757543\pi\)
\(338\) −3.54508 + 10.9106i −0.192827 + 0.593461i
\(339\) 8.85410 + 6.43288i 0.480889 + 0.349386i
\(340\) −5.52786 −0.299791
\(341\) 0 0
\(342\) −7.70820 −0.416812
\(343\) 14.8992 + 10.8249i 0.804480 + 0.584489i
\(344\) 2.85410 8.78402i 0.153883 0.473603i
\(345\) 3.29180 + 10.1311i 0.177224 + 0.545440i
\(346\) 1.07295 0.779543i 0.0576821 0.0419085i
\(347\) −15.1074 + 10.9762i −0.811007 + 0.589231i −0.914122 0.405438i \(-0.867119\pi\)
0.103115 + 0.994669i \(0.467119\pi\)
\(348\) −0.0450850 0.138757i −0.00241681 0.00743817i
\(349\) 7.94427 24.4500i 0.425247 1.30878i −0.477510 0.878626i \(-0.658461\pi\)
0.902757 0.430150i \(-0.141539\pi\)
\(350\) 4.04508 + 2.93893i 0.216219 + 0.157092i
\(351\) 1.23607 0.0659764
\(352\) 0 0
\(353\) 11.2361 0.598036 0.299018 0.954248i \(-0.403341\pi\)
0.299018 + 0.954248i \(0.403341\pi\)
\(354\) 4.30902 + 3.13068i 0.229022 + 0.166394i
\(355\) 2.56231 7.88597i 0.135993 0.418544i
\(356\) 3.47214 + 10.6861i 0.184023 + 0.566364i
\(357\) 5.23607 3.80423i 0.277122 0.201341i
\(358\) −1.26393 + 0.918300i −0.0668009 + 0.0485337i
\(359\) 1.79837 + 5.53483i 0.0949145 + 0.292117i 0.987231 0.159293i \(-0.0509213\pi\)
−0.892317 + 0.451410i \(0.850921\pi\)
\(360\) 0.427051 1.31433i 0.0225076 0.0692712i
\(361\) −32.6976 23.7562i −1.72092 1.25032i
\(362\) −5.41641 −0.284680
\(363\) 0 0
\(364\) 2.00000 0.104828
\(365\) −6.21885 4.51826i −0.325509 0.236496i
\(366\) −3.00000 + 9.23305i −0.156813 + 0.482619i
\(367\) 3.10081 + 9.54332i 0.161861 + 0.498157i 0.998791 0.0491524i \(-0.0156520\pi\)
−0.836930 + 0.547310i \(0.815652\pi\)
\(368\) −6.23607 + 4.53077i −0.325078 + 0.236183i
\(369\) 6.23607 4.53077i 0.324637 0.235862i
\(370\) 3.81966 + 11.7557i 0.198575 + 0.611150i
\(371\) 1.80902 5.56758i 0.0939195 0.289054i
\(372\) 4.54508 + 3.30220i 0.235652 + 0.171211i
\(373\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(374\) 0 0
\(375\) −11.1803 −0.577350
\(376\) −3.23607 2.35114i −0.166887 0.121251i
\(377\) −0.0557281 + 0.171513i −0.00287014 + 0.00883339i
\(378\) 0.500000 + 1.53884i 0.0257172 + 0.0791495i
\(379\) −3.09017 + 2.24514i −0.158731 + 0.115325i −0.664316 0.747452i \(-0.731277\pi\)
0.505584 + 0.862777i \(0.331277\pi\)
\(380\) 8.61803 6.26137i 0.442096 0.321201i
\(381\) −1.23607 3.80423i −0.0633257 0.194896i
\(382\) −6.47214 + 19.9192i −0.331143 + 1.01915i
\(383\) −30.5066 22.1643i −1.55881 1.13254i −0.936974 0.349399i \(-0.886386\pi\)
−0.621839 0.783145i \(-0.713614\pi\)
\(384\) 1.00000 0.0510310
\(385\) 0 0
\(386\) 2.38197 0.121239
\(387\) −7.47214 5.42882i −0.379830 0.275963i
\(388\) −2.28115 + 7.02067i −0.115808 + 0.356420i
\(389\) 0.326238 + 1.00406i 0.0165409 + 0.0509077i 0.958986 0.283452i \(-0.0914798\pi\)
−0.942445 + 0.334360i \(0.891480\pi\)
\(390\) −1.38197 + 1.00406i −0.0699786 + 0.0508424i
\(391\) 24.9443 18.1231i 1.26149 0.916523i
\(392\) −1.35410 4.16750i −0.0683925 0.210490i
\(393\) 0.881966 2.71441i 0.0444893 0.136924i
\(394\) 10.1180 + 7.35118i 0.509739 + 0.370347i
\(395\) 0.201626 0.0101449
\(396\) 0 0
\(397\) −12.9443 −0.649654 −0.324827 0.945773i \(-0.605306\pi\)
−0.324827 + 0.945773i \(0.605306\pi\)
\(398\) 2.11803 + 1.53884i 0.106167 + 0.0771352i
\(399\) −3.85410 + 11.8617i −0.192946 + 0.593828i
\(400\) −0.954915 2.93893i −0.0477458 0.146946i
\(401\) −9.47214 + 6.88191i −0.473016 + 0.343666i −0.798615 0.601842i \(-0.794434\pi\)
0.325600 + 0.945508i \(0.394434\pi\)
\(402\) 10.4721 7.60845i 0.522303 0.379475i
\(403\) −2.14590 6.60440i −0.106895 0.328988i
\(404\) −2.80902 + 8.64527i −0.139754 + 0.430118i
\(405\) −1.11803 0.812299i −0.0555556 0.0403635i
\(406\) −0.236068 −0.0117159
\(407\) 0 0
\(408\) −4.00000 −0.198030
\(409\) 13.7361 + 9.97984i 0.679205 + 0.493471i 0.873094 0.487552i \(-0.162110\pi\)
−0.193889 + 0.981023i \(0.562110\pi\)
\(410\) −3.29180 + 10.1311i −0.162570 + 0.500340i
\(411\) 2.52786 + 7.77997i 0.124690 + 0.383757i
\(412\) 2.54508 1.84911i 0.125387 0.0910992i
\(413\) 6.97214 5.06555i 0.343076 0.249260i
\(414\) 2.38197 + 7.33094i 0.117067 + 0.360296i
\(415\) 0.263932 0.812299i 0.0129559 0.0398742i
\(416\) −1.00000 0.726543i −0.0490290 0.0356217i
\(417\) 2.29180 0.112230
\(418\) 0 0
\(419\) 0.909830 0.0444481 0.0222241 0.999753i \(-0.492925\pi\)
0.0222241 + 0.999753i \(0.492925\pi\)
\(420\) −1.80902 1.31433i −0.0882710 0.0641326i
\(421\) 12.2361 37.6587i 0.596349 1.83537i 0.0484585 0.998825i \(-0.484569\pi\)
0.547891 0.836550i \(-0.315431\pi\)
\(422\) 1.47214 + 4.53077i 0.0716625 + 0.220554i
\(423\) −3.23607 + 2.35114i −0.157343 + 0.114316i
\(424\) −2.92705 + 2.12663i −0.142150 + 0.103278i
\(425\) 3.81966 + 11.7557i 0.185281 + 0.570235i
\(426\) 1.85410 5.70634i 0.0898315 0.276473i
\(427\) 12.7082 + 9.23305i 0.614993 + 0.446819i
\(428\) 10.0902 0.487727
\(429\) 0 0
\(430\) 12.7639 0.615531
\(431\) −19.4721 14.1473i −0.937940 0.681453i 0.00998408 0.999950i \(-0.496822\pi\)
−0.947924 + 0.318497i \(0.896822\pi\)
\(432\) 0.309017 0.951057i 0.0148676 0.0457577i
\(433\) 2.97214 + 9.14729i 0.142832 + 0.439591i 0.996726 0.0808560i \(-0.0257654\pi\)
−0.853894 + 0.520447i \(0.825765\pi\)
\(434\) 7.35410 5.34307i 0.353008 0.256475i
\(435\) 0.163119 0.118513i 0.00782096 0.00568226i
\(436\) −4.61803 14.2128i −0.221164 0.680672i
\(437\) −18.3607 + 56.5084i −0.878310 + 2.70316i
\(438\) −4.50000 3.26944i −0.215018 0.156220i
\(439\) 34.9230 1.66678 0.833392 0.552683i \(-0.186396\pi\)
0.833392 + 0.552683i \(0.186396\pi\)
\(440\) 0 0
\(441\) −4.38197 −0.208665
\(442\) 4.00000 + 2.90617i 0.190261 + 0.138232i
\(443\) 2.11803 6.51864i 0.100631 0.309710i −0.888049 0.459748i \(-0.847940\pi\)
0.988680 + 0.150038i \(0.0479397\pi\)
\(444\) 2.76393 + 8.50651i 0.131170 + 0.403701i
\(445\) −12.5623 + 9.12705i −0.595510 + 0.432664i
\(446\) −11.5902 + 8.42075i −0.548810 + 0.398734i
\(447\) 7.11803 + 21.9071i 0.336671 + 1.03617i
\(448\) 0.500000 1.53884i 0.0236228 0.0727034i
\(449\) 6.85410 + 4.97980i 0.323465 + 0.235011i 0.737653 0.675180i \(-0.235934\pi\)
−0.414188 + 0.910192i \(0.635934\pi\)
\(450\) −3.09017 −0.145672
\(451\) 0 0
\(452\) −10.9443 −0.514775
\(453\) −3.88197 2.82041i −0.182391 0.132515i
\(454\) 7.42705 22.8581i 0.348569 1.07278i
\(455\) 0.854102 + 2.62866i 0.0400409 + 0.123233i
\(456\) 6.23607 4.53077i 0.292031 0.212173i
\(457\) −13.6803 + 9.93935i −0.639939 + 0.464943i −0.859829 0.510582i \(-0.829430\pi\)
0.219890 + 0.975525i \(0.429430\pi\)
\(458\) 6.61803 + 20.3682i 0.309240 + 0.951744i
\(459\) −1.23607 + 3.80423i −0.0576947 + 0.177566i
\(460\) −8.61803 6.26137i −0.401818 0.291938i
\(461\) −22.0000 −1.02464 −0.512321 0.858794i \(-0.671214\pi\)
−0.512321 + 0.858794i \(0.671214\pi\)
\(462\) 0 0
\(463\) 34.7426 1.61463 0.807314 0.590122i \(-0.200920\pi\)
0.807314 + 0.590122i \(0.200920\pi\)
\(464\) 0.118034 + 0.0857567i 0.00547959 + 0.00398116i
\(465\) −2.39919 + 7.38394i −0.111260 + 0.342422i
\(466\) −0.291796 0.898056i −0.0135172 0.0416016i
\(467\) 9.54508 6.93491i 0.441694 0.320909i −0.344614 0.938745i \(-0.611990\pi\)
0.786308 + 0.617835i \(0.211990\pi\)
\(468\) −1.00000 + 0.726543i −0.0462250 + 0.0335844i
\(469\) −6.47214 19.9192i −0.298855 0.919783i
\(470\) 1.70820 5.25731i 0.0787936 0.242502i
\(471\) 14.5623 + 10.5801i 0.670996 + 0.487507i
\(472\) −5.32624 −0.245160
\(473\) 0 0
\(474\) 0.145898 0.00670132
\(475\) −19.2705 14.0008i −0.884192 0.642403i
\(476\) −2.00000 + 6.15537i −0.0916698 + 0.282131i
\(477\) 1.11803 + 3.44095i 0.0511913 + 0.157550i
\(478\) −13.3262 + 9.68208i −0.609528 + 0.442848i
\(479\) 10.7082 7.77997i 0.489270 0.355476i −0.315633 0.948881i \(-0.602217\pi\)
0.804904 + 0.593406i \(0.202217\pi\)
\(480\) 0.427051 + 1.31433i 0.0194921 + 0.0599906i
\(481\) 3.41641 10.5146i 0.155775 0.479426i
\(482\) 5.16312 + 3.75123i 0.235174 + 0.170864i
\(483\) 12.4721 0.567502
\(484\) 0 0
\(485\) −10.2016 −0.463232
\(486\) −0.809017 0.587785i −0.0366978 0.0266625i
\(487\) −2.50000 + 7.69421i −0.113286 + 0.348658i −0.991586 0.129452i \(-0.958678\pi\)
0.878300 + 0.478110i \(0.158678\pi\)
\(488\) −3.00000 9.23305i −0.135804 0.417961i
\(489\) 6.85410 4.97980i 0.309953 0.225194i
\(490\) 4.89919 3.55947i 0.221323 0.160800i
\(491\) −10.2918 31.6749i −0.464462 1.42947i −0.859658 0.510871i \(-0.829323\pi\)
0.395195 0.918597i \(-0.370677\pi\)
\(492\) −2.38197 + 7.33094i −0.107387 + 0.330504i
\(493\) −0.472136 0.343027i −0.0212639 0.0154492i
\(494\) −9.52786 −0.428679
\(495\) 0 0
\(496\) −5.61803 −0.252257
\(497\) −7.85410 5.70634i −0.352305 0.255964i
\(498\) 0.190983 0.587785i 0.00855815 0.0263393i
\(499\) −7.81966 24.0664i −0.350056 1.07736i −0.958821 0.284011i \(-0.908335\pi\)
0.608765 0.793351i \(-0.291665\pi\)
\(500\) 9.04508 6.57164i 0.404508 0.293893i
\(501\) −15.9443 + 11.5842i −0.712338 + 0.517544i
\(502\) −0.100813 0.310271i −0.00449951 0.0138481i
\(503\) 9.70820 29.8788i 0.432867 1.33223i −0.462389 0.886677i \(-0.653008\pi\)
0.895256 0.445552i \(-0.146992\pi\)
\(504\) −1.30902 0.951057i −0.0583083 0.0423634i
\(505\) −12.5623 −0.559015
\(506\) 0 0
\(507\) −11.4721 −0.509495
\(508\) 3.23607 + 2.35114i 0.143577 + 0.104315i
\(509\) −3.17376 + 9.76784i −0.140675 + 0.432952i −0.996429 0.0844297i \(-0.973093\pi\)
0.855755 + 0.517381i \(0.173093\pi\)
\(510\) −1.70820 5.25731i −0.0756405 0.232798i
\(511\) −7.28115 + 5.29007i −0.322099 + 0.234019i
\(512\) −0.809017 + 0.587785i −0.0357538 + 0.0259767i
\(513\) −2.38197 7.33094i −0.105166 0.323669i
\(514\) 6.70820 20.6457i 0.295886 0.910644i
\(515\) 3.51722 + 2.55541i 0.154987 + 0.112605i
\(516\) 9.23607 0.406595
\(517\) 0 0
\(518\) 14.4721 0.635869
\(519\) 1.07295 + 0.779543i 0.0470972 + 0.0342181i
\(520\) 0.527864 1.62460i 0.0231484 0.0712434i
\(521\) −8.65248 26.6296i −0.379072 1.16666i −0.940690 0.339267i \(-0.889821\pi\)
0.561618 0.827396i \(-0.310179\pi\)
\(522\) 0.118034 0.0857567i 0.00516621 0.00375347i
\(523\) −13.4721 + 9.78808i −0.589095 + 0.428003i −0.841992 0.539491i \(-0.818617\pi\)
0.252896 + 0.967493i \(0.418617\pi\)
\(524\) 0.881966 + 2.71441i 0.0385289 + 0.118580i
\(525\) −1.54508 + 4.75528i −0.0674330 + 0.207538i
\(526\) −10.3262 7.50245i −0.450245 0.327122i
\(527\) 22.4721 0.978902
\(528\) 0 0
\(529\) 36.4164 1.58332
\(530\) −4.04508 2.93893i −0.175707 0.127659i
\(531\) −1.64590 + 5.06555i −0.0714259 + 0.219826i
\(532\) −3.85410 11.8617i −0.167097 0.514270i
\(533\) 7.70820 5.60034i 0.333879 0.242578i
\(534\) −9.09017 + 6.60440i −0.393370 + 0.285800i
\(535\) 4.30902 + 13.2618i 0.186295 + 0.573357i
\(536\) −4.00000 + 12.3107i −0.172774 + 0.531743i
\(537\) −1.26393 0.918300i −0.0545427 0.0396276i
\(538\) 6.00000 0.258678
\(539\) 0 0
\(540\) 1.38197 0.0594703
\(541\) 3.61803 + 2.62866i 0.155551 + 0.113015i 0.662838 0.748762i \(-0.269352\pi\)
−0.507287 + 0.861777i \(0.669352\pi\)
\(542\) −5.41641 + 16.6700i −0.232655 + 0.716037i
\(543\) −1.67376 5.15131i −0.0718280 0.221064i
\(544\) 3.23607 2.35114i 0.138745 0.100804i
\(545\) 16.7082 12.1392i 0.715701 0.519987i
\(546\) 0.618034 + 1.90211i 0.0264494 + 0.0814029i
\(547\) 0.888544 2.73466i 0.0379914 0.116925i −0.930262 0.366895i \(-0.880421\pi\)
0.968254 + 0.249970i \(0.0804207\pi\)
\(548\) −6.61803 4.80828i −0.282708 0.205400i
\(549\) −9.70820 −0.414336
\(550\) 0 0
\(551\) 1.12461 0.0479101
\(552\) −6.23607 4.53077i −0.265425 0.192842i
\(553\) 0.0729490 0.224514i 0.00310211 0.00954731i
\(554\) −0.708204 2.17963i −0.0300887 0.0926035i
\(555\) −10.0000 + 7.26543i −0.424476 + 0.308400i
\(556\) −1.85410 + 1.34708i −0.0786314 + 0.0571291i
\(557\) −4.11803 12.6740i −0.174487 0.537015i 0.825123 0.564953i \(-0.191106\pi\)
−0.999610 + 0.0279384i \(0.991106\pi\)
\(558\) −1.73607 + 5.34307i −0.0734936 + 0.226190i
\(559\) −9.23607 6.71040i −0.390644 0.283820i
\(560\) 2.23607 0.0944911
\(561\) 0 0
\(562\) −16.7639 −0.707144
\(563\) 6.47214 + 4.70228i 0.272768 + 0.198178i 0.715757 0.698350i \(-0.246082\pi\)
−0.442989 + 0.896527i \(0.646082\pi\)
\(564\) 1.23607 3.80423i 0.0520479 0.160187i
\(565\) −4.67376 14.3844i −0.196627 0.605155i
\(566\) −13.3262 + 9.68208i −0.560144 + 0.406968i
\(567\) −1.30902 + 0.951057i −0.0549735 + 0.0399406i
\(568\) 1.85410 + 5.70634i 0.0777964 + 0.239433i
\(569\) 5.09017 15.6659i 0.213391 0.656750i −0.785873 0.618388i \(-0.787786\pi\)
0.999264 0.0383620i \(-0.0122140\pi\)
\(570\) 8.61803 + 6.26137i 0.360970 + 0.262260i
\(571\) −1.34752 −0.0563921 −0.0281961 0.999602i \(-0.508976\pi\)
−0.0281961 + 0.999602i \(0.508976\pi\)
\(572\) 0 0
\(573\) −20.9443 −0.874960
\(574\) 10.0902 + 7.33094i 0.421156 + 0.305987i
\(575\) −7.36068 + 22.6538i −0.306962 + 0.944731i
\(576\) 0.309017 + 0.951057i 0.0128757 + 0.0396274i
\(577\) 4.25329 3.09020i 0.177067 0.128647i −0.495722 0.868481i \(-0.665096\pi\)
0.672788 + 0.739835i \(0.265096\pi\)
\(578\) 0.809017 0.587785i 0.0336507 0.0244486i
\(579\) 0.736068 + 2.26538i 0.0305899 + 0.0941462i
\(580\) −0.0623059 + 0.191758i −0.00258711 + 0.00796231i
\(581\) −0.809017 0.587785i −0.0335637 0.0243854i
\(582\) −7.38197 −0.305992
\(583\) 0 0
\(584\) 5.56231 0.230170
\(585\) −1.38197 1.00406i −0.0571373 0.0415127i
\(586\) −2.35410 + 7.24518i −0.0972471 + 0.299296i
\(587\) −6.55166 20.1639i −0.270416 0.832255i −0.990396 0.138260i \(-0.955849\pi\)
0.719980 0.693995i \(-0.244151\pi\)
\(588\) 3.54508 2.57565i 0.146197 0.106218i
\(589\) −35.0344 + 25.4540i −1.44357 + 1.04881i
\(590\) −2.27458 7.00042i −0.0936428 0.288203i
\(591\) −3.86475 + 11.8945i −0.158974 + 0.489273i
\(592\) −7.23607 5.25731i −0.297401 0.216074i
\(593\) 7.88854 0.323944 0.161972 0.986795i \(-0.448215\pi\)
0.161972 + 0.986795i \(0.448215\pi\)
\(594\) 0 0
\(595\) −8.94427 −0.366679
\(596\) −18.6353 13.5393i −0.763330 0.554592i
\(597\) −0.809017 + 2.48990i −0.0331109 + 0.101905i
\(598\) 2.94427 + 9.06154i 0.120400 + 0.370554i
\(599\) −26.1803 + 19.0211i −1.06970 + 0.777182i −0.975858 0.218405i \(-0.929915\pi\)
−0.0938414 + 0.995587i \(0.529915\pi\)
\(600\) 2.50000 1.81636i 0.102062 0.0741524i
\(601\) 6.20820 + 19.1069i 0.253238 + 0.779386i 0.994172 + 0.107808i \(0.0343832\pi\)
−0.740934 + 0.671578i \(0.765617\pi\)
\(602\) 4.61803 14.2128i 0.188217 0.579272i
\(603\) 10.4721 + 7.60845i 0.426458 + 0.309840i
\(604\) 4.79837 0.195243
\(605\) 0 0
\(606\) −9.09017 −0.369263
\(607\) 12.1803 + 8.84953i 0.494385 + 0.359192i 0.806868 0.590732i \(-0.201161\pi\)
−0.312483 + 0.949923i \(0.601161\pi\)
\(608\) −2.38197 + 7.33094i −0.0966015 + 0.297309i
\(609\) −0.0729490 0.224514i −0.00295604 0.00909777i
\(610\) 10.8541 7.88597i 0.439470 0.319293i
\(611\) −4.00000 + 2.90617i −0.161823 + 0.117571i
\(612\) −1.23607 3.80423i −0.0499651 0.153777i
\(613\) −1.03444 + 3.18368i −0.0417807 + 0.128588i −0.969771 0.244016i \(-0.921535\pi\)
0.927990 + 0.372604i \(0.121535\pi\)
\(614\) −10.3262 7.50245i −0.416733 0.302774i
\(615\) −10.6525 −0.429549
\(616\) 0 0
\(617\) −15.1246 −0.608894 −0.304447 0.952529i \(-0.598472\pi\)
−0.304447 + 0.952529i \(0.598472\pi\)
\(618\) 2.54508 + 1.84911i 0.102378 + 0.0743822i
\(619\) 1.23607 3.80423i 0.0496818 0.152905i −0.923138 0.384469i \(-0.874384\pi\)
0.972820 + 0.231565i \(0.0743845\pi\)
\(620\) −2.39919 7.38394i −0.0963537 0.296546i
\(621\) −6.23607 + 4.53077i −0.250245 + 0.181813i
\(622\) −6.09017 + 4.42477i −0.244194 + 0.177417i
\(623\) 5.61803 + 17.2905i 0.225082 + 0.692730i
\(624\) 0.381966 1.17557i 0.0152909 0.0470605i
\(625\) 0 0
\(626\) −24.9787 −0.998350
\(627\) 0 0
\(628\) −18.0000 −0.718278
\(629\) 28.9443 + 21.0292i 1.15408 + 0.838491i
\(630\) 0.690983 2.12663i 0.0275294 0.0847268i
\(631\) −7.48278 23.0296i −0.297885 0.916795i −0.982237 0.187644i \(-0.939915\pi\)
0.684352 0.729151i \(-0.260085\pi\)
\(632\) −0.118034 + 0.0857567i −0.00469514 + 0.00341122i
\(633\) −3.85410 + 2.80017i −0.153187 + 0.111297i
\(634\) −8.32624 25.6255i −0.330677 1.01772i
\(635\) −1.70820 + 5.25731i −0.0677880 + 0.208630i
\(636\) −2.92705 2.12663i −0.116065 0.0843262i
\(637\) −5.41641 −0.214606
\(638\) 0 0
\(639\) 6.00000 0.237356
\(640\) −1.11803 0.812299i −0.0441942 0.0321089i
\(641\) −6.23607 + 19.1926i −0.246310 + 0.758064i 0.749108 + 0.662447i \(0.230482\pi\)
−0.995418 + 0.0956164i \(0.969518\pi\)
\(642\) 3.11803 + 9.59632i 0.123059 + 0.378737i
\(643\) −4.85410 + 3.52671i −0.191427 + 0.139080i −0.679371 0.733795i \(-0.737747\pi\)
0.487944 + 0.872875i \(0.337747\pi\)
\(644\) −10.0902 + 7.33094i −0.397608 + 0.288879i
\(645\) 3.94427 + 12.1392i 0.155306 + 0.477981i
\(646\) 9.52786 29.3238i 0.374869 1.15373i
\(647\) 17.1803 + 12.4822i 0.675429 + 0.490728i 0.871838 0.489794i \(-0.162928\pi\)
−0.196409 + 0.980522i \(0.562928\pi\)
\(648\) 1.00000 0.0392837
\(649\) 0 0
\(650\) −3.81966 −0.149819
\(651\) 7.35410 + 5.34307i 0.288230 + 0.209411i
\(652\) −2.61803 + 8.05748i −0.102530 + 0.315555i
\(653\) −1.10081 3.38795i −0.0430781 0.132581i 0.927204 0.374556i \(-0.122205\pi\)
−0.970282 + 0.241975i \(0.922205\pi\)
\(654\) 12.0902 8.78402i 0.472763 0.343482i
\(655\) −3.19098 + 2.31838i −0.124682 + 0.0905868i
\(656\) −2.38197 7.33094i −0.0930001 0.286225i
\(657\) 1.71885 5.29007i 0.0670586 0.206385i
\(658\) −5.23607 3.80423i −0.204123 0.148304i
\(659\) −45.9230 −1.78891 −0.894453 0.447162i \(-0.852435\pi\)
−0.894453 + 0.447162i \(0.852435\pi\)
\(660\) 0 0
\(661\) −11.5967 −0.451061 −0.225531 0.974236i \(-0.572412\pi\)
−0.225531 + 0.974236i \(0.572412\pi\)
\(662\) −22.9443 16.6700i −0.891754 0.647898i
\(663\) −1.52786 + 4.70228i −0.0593373 + 0.182622i
\(664\) 0.190983 + 0.587785i 0.00741158 + 0.0228105i
\(665\) 13.9443 10.1311i 0.540736 0.392867i
\(666\) −7.23607 + 5.25731i −0.280392 + 0.203717i
\(667\) −0.347524 1.06957i −0.0134562 0.0414139i
\(668\) 6.09017 18.7436i 0.235636 0.725212i
\(669\) −11.5902 8.42075i −0.448102 0.325565i
\(670\) −17.8885 −0.691095
\(671\) 0 0
\(672\) 1.61803 0.0624170
\(673\) 6.26393 + 4.55101i 0.241457 + 0.175429i 0.701932 0.712244i \(-0.252321\pi\)
−0.460475 + 0.887673i \(0.652321\pi\)
\(674\) 4.90983 15.1109i 0.189120 0.582050i
\(675\) −0.954915 2.93893i −0.0367547 0.113119i
\(676\) 9.28115 6.74315i 0.356967 0.259352i
\(677\) 41.1418 29.8913i 1.58121 1.14882i 0.665916 0.746026i \(-0.268041\pi\)
0.915293 0.402789i \(-0.131959\pi\)
\(678\) −3.38197 10.4086i −0.129884 0.399741i
\(679\) −3.69098 + 11.3597i −0.141647 + 0.435944i
\(680\) 4.47214 + 3.24920i 0.171499 + 0.124601i
\(681\) 24.0344 0.921002
\(682\) 0 0
\(683\) −14.4508 −0.552946 −0.276473 0.961022i \(-0.589166\pi\)
−0.276473 + 0.961022i \(0.589166\pi\)
\(684\) 6.23607 + 4.53077i 0.238442 + 0.173238i
\(685\) 3.49342 10.7516i 0.133477 0.410799i
\(686\) −5.69098 17.5150i −0.217283 0.668728i
\(687\) −17.3262 + 12.5882i −0.661037 + 0.480272i
\(688\) −7.47214 + 5.42882i −0.284873 + 0.206972i
\(689\) 1.38197 + 4.25325i 0.0526487 + 0.162036i
\(690\) 3.29180 10.1311i 0.125317 0.385685i
\(691\) −4.14590 3.01217i −0.157717 0.114588i 0.506128 0.862459i \(-0.331077\pi\)
−0.663845 + 0.747870i \(0.731077\pi\)
\(692\) −1.32624 −0.0504160
\(693\) 0 0
\(694\) 18.6738 0.708846
\(695\) −2.56231 1.86162i −0.0971938 0.0706154i
\(696\) −0.0450850 + 0.138757i −0.00170894 + 0.00525958i
\(697\) 9.52786 + 29.3238i 0.360894 + 1.11072i
\(698\) −20.7984 + 15.1109i −0.787230 + 0.571956i
\(699\) 0.763932 0.555029i 0.0288946 0.0209931i
\(700\) −1.54508 4.75528i −0.0583987 0.179733i
\(701\) −4.97871 + 15.3229i −0.188043 + 0.578738i −0.999988 0.00499706i \(-0.998409\pi\)
0.811944 + 0.583735i \(0.198409\pi\)
\(702\) −1.00000 0.726543i −0.0377426 0.0274216i
\(703\) −68.9443 −2.60028
\(704\) 0 0
\(705\) 5.52786 0.208191
\(706\) −9.09017 6.60440i −0.342113 0.248560i
\(707\) −4.54508 + 13.9883i −0.170936 + 0.526085i
\(708\) −1.64590 5.06555i −0.0618566 0.190375i
\(709\) −27.9443 + 20.3027i −1.04947 + 0.762484i −0.972111 0.234519i \(-0.924648\pi\)
−0.0773577 + 0.997003i \(0.524648\pi\)
\(710\) −6.70820 + 4.87380i −0.251754 + 0.182910i
\(711\) 0.0450850 + 0.138757i 0.00169082 + 0.00520380i
\(712\) 3.47214 10.6861i 0.130124 0.400480i
\(713\) 35.0344 + 25.4540i 1.31205 + 0.953260i
\(714\) −6.47214 −0.242214
\(715\) 0 0
\(716\) 1.56231 0.0583861
\(717\) −13.3262 9.68208i −0.497677 0.361584i
\(718\) 1.79837 5.53483i 0.0671147 0.206558i
\(719\) 0.326238 + 1.00406i 0.0121666 + 0.0374450i 0.956956 0.290235i \(-0.0937333\pi\)
−0.944789 + 0.327680i \(0.893733\pi\)
\(720\) −1.11803 + 0.812299i −0.0416667 + 0.0302726i
\(721\) 4.11803 2.99193i 0.153364 0.111425i
\(722\) 12.4894 + 38.4383i 0.464806 + 1.43052i
\(723\) −1.97214 + 6.06961i −0.0733445 + 0.225731i
\(724\) 4.38197 + 3.18368i 0.162854 + 0.118321i
\(725\) 0.450850 0.0167441
\(726\) 0 0
\(727\) −31.4164 −1.16517 −0.582585 0.812770i \(-0.697959\pi\)
−0.582585 + 0.812770i \(0.697959\pi\)
\(728\) −1.61803 1.17557i −0.0599683 0.0435695i
\(729\) 0.309017 0.951057i 0.0114451 0.0352243i
\(730\) 2.37539 + 7.31069i 0.0879171 + 0.270581i
\(731\) 29.8885 21.7153i 1.10547 0.803169i
\(732\) 7.85410 5.70634i 0.290296 0.210912i
\(733\) −7.18034 22.0988i −0.265212 0.816238i −0.991645 0.129001i \(-0.958823\pi\)
0.726433 0.687238i \(-0.241177\pi\)
\(734\) 3.10081 9.54332i 0.114453 0.352250i
\(735\) 4.89919 + 3.55947i 0.180709 + 0.131293i
\(736\) 7.70820 0.284128
\(737\) 0 0
\(738\) −7.70820 −0.283743
\(739\) 27.1246 + 19.7072i 0.997795 + 0.724940i 0.961614 0.274405i \(-0.0884808\pi\)
0.0361807 + 0.999345i \(0.488481\pi\)
\(740\) 3.81966 11.7557i 0.140413 0.432148i
\(741\) −2.94427 9.06154i −0.108161 0.332884i
\(742\) −4.73607 + 3.44095i −0.173867 + 0.126321i
\(743\) −20.2705 + 14.7274i −0.743653 + 0.540295i −0.893853 0.448360i \(-0.852008\pi\)
0.150200 + 0.988656i \(0.452008\pi\)
\(744\) −1.73607 5.34307i −0.0636473 0.195886i
\(745\) 9.83688 30.2748i 0.360395 1.10918i
\(746\) 0 0
\(747\) 0.618034 0.0226127
\(748\) 0 0
\(749\) 16.3262 0.596548
\(750\) 9.04508 + 6.57164i 0.330280 + 0.239962i
\(751\) −5.81966 + 17.9111i −0.212362 + 0.653584i 0.786968 + 0.616994i \(0.211650\pi\)
−0.999330 + 0.0365904i \(0.988350\pi\)
\(752\) 1.23607 + 3.80423i 0.0450748 + 0.138726i
\(753\) 0.263932 0.191758i 0.00961822 0.00698804i
\(754\) 0.145898 0.106001i 0.00531329 0.00386033i
\(755\) 2.04915 + 6.30664i 0.0745762 + 0.229522i
\(756\) 0.500000 1.53884i 0.0181848 0.0559671i
\(757\) 44.2148 + 32.1239i 1.60701 + 1.16756i 0.871992 + 0.489520i \(0.162828\pi\)
0.735021 + 0.678044i \(0.237172\pi\)
\(758\) 3.81966 0.138736
\(759\) 0 0
\(760\) −10.6525 −0.386406
\(761\) 43.8328 + 31.8464i 1.58894 + 1.15443i 0.905436 + 0.424483i \(0.139544\pi\)
0.683502 + 0.729948i \(0.260456\pi\)
\(762\) −1.23607 + 3.80423i −0.0447780 + 0.137813i
\(763\) −7.47214 22.9969i −0.270509 0.832543i
\(764\) 16.9443 12.3107i 0.613022 0.445387i
\(765\) 4.47214 3.24920i 0.161690 0.117475i
\(766\) 11.6525 + 35.8626i 0.421021 + 1.29577i
\(767\) −2.03444 + 6.26137i −0.0734594 + 0.226085i
\(768\) −0.809017 0.587785i −0.0291929 0.0212099i
\(769\) 41.5623 1.49878 0.749388 0.662132i \(-0.230348\pi\)
0.749388 + 0.662132i \(0.230348\pi\)
\(770\) 0 0
\(771\) 21.7082 0.781802
\(772\) −1.92705 1.40008i −0.0693561 0.0503901i
\(773\) 12.9894 39.9771i 0.467195 1.43788i −0.389007 0.921235i \(-0.627182\pi\)
0.856201 0.516642i \(-0.172818\pi\)
\(774\) 2.85410 + 8.78402i 0.102589 + 0.315735i
\(775\) −14.0451 + 10.2044i −0.504514 + 0.366551i
\(776\) 5.97214 4.33901i 0.214387 0.155761i
\(777\) 4.47214 + 13.7638i 0.160437 + 0.493774i
\(778\) 0.326238 1.00406i 0.0116962 0.0359972i
\(779\) −48.0689 34.9241i −1.72225 1.25129i
\(780\) 1.70820 0.0611635
\(781\) 0 0
\(782\) −30.8328 −1.10258
\(783\) 0.118034 + 0.0857567i 0.00421819 + 0.00306469i
\(784\) −1.35410 + 4.16750i −0.0483608 + 0.148839i
\(785\) −7.68692 23.6579i −0.274358 0.844387i
\(786\) −2.30902 + 1.67760i −0.0823599 + 0.0598380i
\(787\) 16.4164 11.9272i 0.585182 0.425159i −0.255407 0.966834i \(-0.582209\pi\)
0.840588 + 0.541674i \(0.182209\pi\)
\(788\) −3.86475 11.8945i −0.137676 0.423723i
\(789\) 3.94427 12.1392i 0.140420 0.432168i
\(790\) −0.163119 0.118513i −0.00580351 0.00421650i
\(791\) −17.7082 −0.629631
\(792\) 0 0
\(793\) −12.0000 −0.426132
\(794\) 10.4721 + 7.60845i 0.371642 + 0.270014i
\(795\) 1.54508 4.75528i 0.0547985 0.168652i
\(796\) −0.809017 2.48990i −0.0286748 0.0882521i
\(797\) −37.7254 + 27.4091i −1.33630 + 0.970881i −0.336732 + 0.941601i \(0.609322\pi\)
−0.999571 + 0.0292805i \(0.990678\pi\)
\(798\) 10.0902 7.33094i 0.357188 0.259512i
\(799\) −4.94427 15.2169i −0.174916 0.538335i
\(800\) −0.954915 + 2.93893i −0.0337613 + 0.103907i
\(801\) −9.09017 6.60440i −0.321185 0.233355i
\(802\) 11.7082 0.413431
\(803\) 0 0
\(804\) −12.9443 −0.456509
\(805\) −13.9443 10.1311i −0.491471 0.357075i
\(806\) −2.14590 + 6.60440i −0.0755860 + 0.232630i
\(807\) 1.85410 + 5.70634i 0.0652675 + 0.200873i
\(808\) 7.35410 5.34307i 0.258716 0.187968i
\(809\) −2.47214 + 1.79611i −0.0869157 + 0.0631479i −0.630394 0.776275i \(-0.717107\pi\)
0.543479 + 0.839423i \(0.317107\pi\)
\(810\) 0.427051 + 1.31433i 0.0150050 + 0.0461808i
\(811\) −6.74265 + 20.7517i −0.236766 + 0.728692i 0.760116 + 0.649788i \(0.225142\pi\)
−0.996882 + 0.0789043i \(0.974858\pi\)
\(812\) 0.190983 + 0.138757i 0.00670219 + 0.00486943i
\(813\) −17.5279 −0.614729
\(814\) 0 0
\(815\) −11.7082 −0.410120
\(816\) 3.23607 + 2.35114i 0.113285 + 0.0823064i
\(817\) −22.0000 + 67.7090i −0.769683 + 2.36884i
\(818\) −5.24671 16.1477i −0.183447 0.564592i
\(819\) −1.61803 + 1.17557i −0.0565387 + 0.0410778i
\(820\) 8.61803 6.26137i 0.300955 0.218656i
\(821\) −13.7705 42.3813i −0.480594 1.47912i −0.838262 0.545268i \(-0.816428\pi\)
0.357668 0.933849i \(-0.383572\pi\)
\(822\) 2.52786 7.77997i 0.0881694 0.271357i
\(823\) −19.2984 14.0211i −0.672699 0.488744i 0.198229 0.980156i \(-0.436481\pi\)
−0.870928 + 0.491411i \(0.836481\pi\)
\(824\) −3.14590 −0.109593
\(825\) 0 0
\(826\) −8.61803 −0.299860
\(827\) 5.25329 + 3.81674i 0.182675 + 0.132721i 0.675365 0.737484i \(-0.263986\pi\)
−0.492690 + 0.870205i \(0.663986\pi\)
\(828\) 2.38197 7.33094i 0.0827790 0.254768i
\(829\) −6.72949 20.7112i −0.233725 0.719331i −0.997288 0.0735980i \(-0.976552\pi\)
0.763563 0.645733i \(-0.223448\pi\)
\(830\) −0.690983 + 0.502029i −0.0239844 + 0.0174257i
\(831\) 1.85410 1.34708i 0.0643181 0.0467298i
\(832\) 0.381966 + 1.17557i 0.0132423 + 0.0407556i
\(833\) 5.41641 16.6700i 0.187667 0.577581i
\(834\) −1.85410 1.34708i −0.0642023 0.0466457i
\(835\) 27.2361 0.942543
\(836\) 0 0
\(837\) −5.61803 −0.194188
\(838\) −0.736068 0.534785i −0.0254270 0.0184738i
\(839\) 15.7639 48.5164i 0.544231 1.67497i −0.178579 0.983926i \(-0.557150\pi\)
0.722810 0.691046i \(-0.242850\pi\)
\(840\) 0.690983 + 2.12663i 0.0238412 + 0.0733756i
\(841\) 23.4443 17.0333i 0.808423 0.587354i
\(842\) −32.0344 + 23.2744i −1.10398 + 0.802088i
\(843\) −5.18034 15.9434i −0.178420 0.549121i
\(844\) 1.47214 4.53077i 0.0506730 0.155955i
\(845\) 12.8262 + 9.31881i 0.441236 + 0.320577i
\(846\) 4.00000 0.137523
\(847\) 0 0
\(848\) 3.61803 0.124244
\(849\) −13.3262 9.68208i −0.457355 0.332288i
\(850\) 3.81966 11.7557i 0.131013 0.403217i
\(851\) 21.3050 + 65.5699i 0.730324 + 2.24771i
\(852\) −4.85410 + 3.52671i −0.166299 + 0.120823i
\(853\) 18.1803 13.2088i 0.622483 0.452260i −0.231305 0.972881i \(-0.574300\pi\)
0.853788 + 0.520621i \(0.174300\pi\)
\(854\) −4.85410 14.9394i −0.166104 0.511215i
\(855\) −3.29180 + 10.1311i −0.112577 + 0.346477i
\(856\) −8.16312 5.93085i −0.279010 0.202712i
\(857\) 2.18034 0.0744790 0.0372395 0.999306i \(-0.488144\pi\)
0.0372395 + 0.999306i \(0.488144\pi\)
\(858\) 0 0
\(859\) 41.9574 1.43157 0.715784 0.698321i \(-0.246069\pi\)
0.715784 + 0.698321i \(0.246069\pi\)
\(860\) −10.3262 7.50245i −0.352122 0.255831i
\(861\) −3.85410 + 11.8617i −0.131347 + 0.404246i
\(862\) 7.43769 + 22.8909i 0.253329 + 0.779666i
\(863\) 26.7984 19.4702i 0.912227 0.662772i −0.0293499 0.999569i \(-0.509344\pi\)
0.941577 + 0.336797i \(0.109344\pi\)
\(864\) −0.809017 + 0.587785i −0.0275233 + 0.0199969i
\(865\) −0.566371 1.74311i −0.0192572 0.0592676i
\(866\) 2.97214 9.14729i 0.100997 0.310838i
\(867\) 0.809017 + 0.587785i 0.0274757 + 0.0199622i
\(868\) −9.09017 −0.308540
\(869\) 0 0
\(870\) −0.201626 −0.00683577
\(871\) 12.9443 + 9.40456i 0.438600 + 0.318661i
\(872\) −4.61803 + 14.2128i −0.156386 + 0.481308i
\(873\) −2.28115 7.02067i −0.0772053 0.237614i
\(874\) 48.0689 34.9241i 1.62595 1.18132i
\(875\) 14.6353 10.6331i 0.494762 0.359466i
\(876\) 1.71885 + 5.29007i 0.0580745 + 0.178735i
\(877\) −7.67376 + 23.6174i −0.259125 + 0.797503i 0.733864 + 0.679296i \(0.237715\pi\)
−0.992989 + 0.118207i \(0.962285\pi\)
\(878\) −28.2533 20.5272i −0.953502 0.692760i
\(879\) −7.61803 −0.256950
\(880\) 0 0
\(881\) 34.0689 1.14781 0.573905 0.818922i \(-0.305428\pi\)
0.573905 + 0.818922i \(0.305428\pi\)
\(882\) 3.54508 + 2.57565i 0.119369 + 0.0867268i
\(883\) 3.25735 10.0251i 0.109619 0.337372i −0.881168 0.472803i \(-0.843242\pi\)
0.990787 + 0.135432i \(0.0432421\pi\)
\(884\) −1.52786 4.70228i −0.0513876 0.158155i
\(885\) 5.95492 4.32650i 0.200172 0.145434i
\(886\) −5.54508 + 4.02874i −0.186291 + 0.135348i
\(887\) −5.25735 16.1805i −0.176525 0.543287i 0.823175 0.567788i \(-0.192200\pi\)
−0.999700 + 0.0245004i \(0.992200\pi\)
\(888\) 2.76393 8.50651i 0.0927515 0.285460i
\(889\) 5.23607 + 3.80423i 0.175612 + 0.127590i
\(890\) 15.5279 0.520495
\(891\) 0 0
\(892\) 14.3262 0.479678
\(893\) 24.9443 + 18.1231i 0.834728 + 0.606466i
\(894\) 7.11803 21.9071i 0.238063 0.732682i
\(895\) 0.667184 + 2.05338i 0.0223015 + 0.0686370i
\(896\) −1.30902 + 0.951057i −0.0437312 + 0.0317726i
\(897\) −7.70820 + 5.60034i −0.257369 + 0.186990i
\(898\) −2.61803 8.05748i −0.0873649 0.268882i
\(899\) 0.253289 0.779543i 0.00844766 0.0259992i
\(900\) 2.50000 + 1.81636i 0.0833333 + 0.0605452i
\(901\) −14.4721 −0.482137
\(902\) 0 0
\(903\) 14.9443 0.497314
\(904\) 8.85410 + 6.43288i 0.294483 + 0.213954i
\(905\) −2.31308 + 7.11894i −0.0768895 + 0.236641i
\(906\) 1.48278 + 4.56352i 0.0492620 + 0.151613i
\(907\) −9.47214 + 6.88191i −0.314517 + 0.228510i −0.733832 0.679331i \(-0.762270\pi\)
0.419315 + 0.907841i \(0.362270\pi\)
\(908\) −19.4443 + 14.1271i −0.645281 + 0.468824i
\(909\) −2.80902 8.64527i −0.0931692 0.286745i
\(910\) 0.854102 2.62866i 0.0283132 0.0871391i
\(911\) 32.7984 + 23.8294i 1.08666 + 0.789504i 0.978832 0.204666i \(-0.0656108\pi\)
0.107827 + 0.994170i \(0.465611\pi\)
\(912\) −7.70820 −0.255244
\(913\) 0 0
\(914\) 16.9098 0.559327
\(915\) 10.8541 + 7.88597i 0.358826 + 0.260702i
\(916\) 6.61803 20.3682i 0.218666 0.672985i
\(917\) 1.42705 + 4.39201i 0.0471254 + 0.145037i
\(918\) 3.23607 2.35114i 0.106806 0.0775992i
\(919\) −8.64590 + 6.28161i −0.285202 + 0.207211i −0.721183 0.692744i \(-0.756401\pi\)
0.435981 + 0.899956i \(0.356401\pi\)
\(920\) 3.29180 + 10.1311i 0.108527 + 0.334013i
\(921\) 3.94427 12.1392i 0.129968 0.400001i
\(922\) 17.7984 + 12.9313i 0.586158 + 0.425869i
\(923\) 7.41641 0.244114
\(924\) 0 0
\(925\) −27.6393 −0.908775
\(926\) −28.1074 20.4212i −0.923666 0.671083i
\(927\) −0.972136 + 2.99193i −0.0319291 + 0.0982678i
\(928\) −0.0450850 0.138757i −0.00147999 0.00455493i
\(929\) −3.09017 + 2.24514i −0.101385 + 0.0736607i −0.637323 0.770597i \(-0.719958\pi\)
0.535938 + 0.844258i \(0.319958\pi\)
\(930\) 6.28115 4.56352i 0.205967 0.149644i
\(931\) 10.4377 + 32.1239i 0.342082 + 1.05282i
\(932\) −0.291796 + 0.898056i −0.00955810 + 0.0294168i
\(933\) −6.09017 4.42477i −0.199383 0.144860i
\(934\) −11.7984 −0.386055
\(935\) 0 0
\(936\) 1.23607 0.0404021
\(937\) −42.4336 30.8298i −1.38625 1.00717i −0.996265 0.0863439i \(-0.972482\pi\)
−0.389981 0.920823i \(-0.627518\pi\)
\(938\) −6.47214 + 19.9192i −0.211323 + 0.650384i
\(939\) −7.71885 23.7562i −0.251895 0.775253i
\(940\) −4.47214 + 3.24920i −0.145865 + 0.105977i
\(941\) −27.3262 + 19.8537i −0.890810 + 0.647211i −0.936089 0.351763i \(-0.885582\pi\)
0.0452792 + 0.998974i \(0.485582\pi\)
\(942\) −5.56231 17.1190i −0.181230 0.557768i
\(943\) −18.3607 + 56.5084i −0.597906 + 1.84017i
\(944\) 4.30902 + 3.13068i 0.140247 + 0.101895i
\(945\) 2.23607 0.0727393
\(946\) 0 0
\(947\) −32.9230 −1.06985 −0.534927 0.844899i \(-0.679661\pi\)
−0.534927 + 0.844899i \(0.679661\pi\)
\(948\) −0.118034 0.0857567i −0.00383357 0.00278525i
\(949\) 2.12461 6.53888i 0.0689678 0.212261i
\(950\) 7.36068 + 22.6538i 0.238812 + 0.734988i
\(951\) 21.7984 15.8374i 0.706861 0.513564i
\(952\) 5.23607 3.80423i 0.169702 0.123296i
\(953\) 8.18034 + 25.1765i 0.264987 + 0.815547i 0.991696 + 0.128601i \(0.0410488\pi\)
−0.726709 + 0.686945i \(0.758951\pi\)
\(954\) 1.11803 3.44095i 0.0361977 0.111405i
\(955\) 23.4164 + 17.0130i 0.757737 + 0.550528i
\(956\) 16.4721 0.532747
\(957\) 0 0
\(958\) −13.2361 −0.427638
\(959\) −10.7082 7.77997i −0.345786 0.251228i
\(960\) 0.427051 1.31433i 0.0137830 0.0424197i
\(961\) 0.173762 + 0.534785i 0.00560523 + 0.0172511i
\(962\) −8.94427 + 6.49839i −0.288375 + 0.209517i
\(963\) −8.16312 + 5.93085i −0.263053 + 0.191119i
\(964\) −1.97214 6.06961i −0.0635182 0.195489i
\(965\) 1.01722 3.13068i 0.0327455 0.100780i
\(966\) −10.0902 7.33094i −0.324646 0.235869i
\(967\) 17.3820 0.558966 0.279483 0.960151i \(-0.409837\pi\)
0.279483 + 0.960151i \(0.409837\pi\)
\(968\) 0 0
\(969\) 30.8328 0.990493
\(970\) 8.25329 + 5.99637i 0.264997 + 0.192532i
\(971\) −4.47214 + 13.7638i −0.143518 + 0.441702i −0.996817 0.0797188i \(-0.974598\pi\)
0.853300 + 0.521421i \(0.174598\pi\)
\(972\) 0.309017 + 0.951057i 0.00991172 + 0.0305052i
\(973\) −3.00000 + 2.17963i −0.0961756 + 0.0698757i
\(974\) 6.54508 4.75528i 0.209718 0.152369i
\(975\) −1.18034 3.63271i −0.0378011 0.116340i
\(976\) −3.00000 + 9.23305i −0.0960277 + 0.295543i
\(977\) −46.1246 33.5115i −1.47566 1.07213i −0.978924 0.204224i \(-0.934533\pi\)
−0.496733 0.867903i \(-0.665467\pi\)
\(978\) −8.47214 −0.270909
\(979\) 0 0
\(980\) −6.05573 −0.193443
\(981\) 12.0902 + 8.78402i 0.386009 + 0.280452i
\(982\) −10.2918 + 31.6749i −0.328424 + 1.01079i
\(983\) 9.14590 + 28.1482i 0.291709 + 0.897788i 0.984307 + 0.176464i \(0.0564659\pi\)
−0.692598 + 0.721324i \(0.743534\pi\)
\(984\) 6.23607 4.53077i 0.198799 0.144436i
\(985\) 13.9828 10.1591i 0.445528 0.323695i
\(986\) 0.180340 + 0.555029i 0.00574319 + 0.0176757i
\(987\) 2.00000 6.15537i 0.0636607 0.195927i
\(988\) 7.70820 + 5.60034i 0.245231 + 0.178170i
\(989\) 71.1935 2.26382
\(990\) 0 0
\(991\) −18.3951 −0.584340 −0.292170 0.956366i \(-0.594377\pi\)
−0.292170 + 0.956366i \(0.594377\pi\)
\(992\) 4.54508 + 3.30220i 0.144307 + 0.104845i
\(993\) 8.76393 26.9726i 0.278115 0.855950i
\(994\) 3.00000 + 9.23305i 0.0951542 + 0.292855i
\(995\) 2.92705 2.12663i 0.0927938 0.0674186i
\(996\) −0.500000 + 0.363271i −0.0158431 + 0.0115107i
\(997\) 2.05573 + 6.32688i 0.0651056 + 0.200374i 0.978318 0.207110i \(-0.0664059\pi\)
−0.913212 + 0.407485i \(0.866406\pi\)
\(998\) −7.81966 + 24.0664i −0.247527 + 0.761810i
\(999\) −7.23607 5.25731i −0.228939 0.166334i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 726.2.e.c.565.1 4
11.2 odd 10 726.2.e.j.511.1 4
11.3 even 5 inner 726.2.e.c.487.1 4
11.4 even 5 726.2.e.a.493.1 4
11.5 even 5 726.2.a.m.1.1 2
11.6 odd 10 726.2.a.k.1.1 2
11.7 odd 10 726.2.e.j.493.1 4
11.8 odd 10 66.2.e.b.25.1 4
11.9 even 5 726.2.e.a.511.1 4
11.10 odd 2 66.2.e.b.37.1 yes 4
33.5 odd 10 2178.2.a.o.1.2 2
33.8 even 10 198.2.f.a.91.1 4
33.17 even 10 2178.2.a.v.1.2 2
33.32 even 2 198.2.f.a.37.1 4
44.19 even 10 528.2.y.g.289.1 4
44.27 odd 10 5808.2.a.by.1.1 2
44.39 even 10 5808.2.a.bz.1.1 2
44.43 even 2 528.2.y.g.433.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
66.2.e.b.25.1 4 11.8 odd 10
66.2.e.b.37.1 yes 4 11.10 odd 2
198.2.f.a.37.1 4 33.32 even 2
198.2.f.a.91.1 4 33.8 even 10
528.2.y.g.289.1 4 44.19 even 10
528.2.y.g.433.1 4 44.43 even 2
726.2.a.k.1.1 2 11.6 odd 10
726.2.a.m.1.1 2 11.5 even 5
726.2.e.a.493.1 4 11.4 even 5
726.2.e.a.511.1 4 11.9 even 5
726.2.e.c.487.1 4 11.3 even 5 inner
726.2.e.c.565.1 4 1.1 even 1 trivial
726.2.e.j.493.1 4 11.7 odd 10
726.2.e.j.511.1 4 11.2 odd 10
2178.2.a.o.1.2 2 33.5 odd 10
2178.2.a.v.1.2 2 33.17 even 10
5808.2.a.by.1.1 2 44.27 odd 10
5808.2.a.bz.1.1 2 44.39 even 10