Properties

Label 7225.2.a.y.1.4
Level $7225$
Weight $2$
Character 7225.1
Self dual yes
Analytic conductor $57.692$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [7225,2,Mod(1,7225)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7225, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("7225.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 7225 = 5^{2} \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7225.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,1,1,11,0,-3,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(57.6919154604\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: 5.5.1893456.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 10x^{3} + 10x^{2} + 23x - 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 425)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-2.48887\) of defining polynomial
Character \(\chi\) \(=\) 7225.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.19447 q^{2} -2.48887 q^{3} +2.81568 q^{4} -5.46174 q^{6} +3.05725 q^{7} +1.78998 q^{8} +3.19447 q^{9} +5.36180 q^{11} -7.00786 q^{12} +4.59895 q^{13} +6.70903 q^{14} -1.70331 q^{16} +7.01015 q^{18} +4.57325 q^{19} -7.60910 q^{21} +11.7663 q^{22} +1.24730 q^{23} -4.45503 q^{24} +10.0922 q^{26} -0.483999 q^{27} +8.60824 q^{28} +5.93018 q^{29} -9.84580 q^{31} -7.31781 q^{32} -13.3448 q^{33} +8.99459 q^{36} +4.20461 q^{37} +10.0358 q^{38} -11.4462 q^{39} -0.404485 q^{41} -16.6979 q^{42} +5.76142 q^{43} +15.0971 q^{44} +2.73715 q^{46} +3.35693 q^{47} +4.23931 q^{48} +2.34678 q^{49} +12.9492 q^{52} -4.81568 q^{53} -1.06212 q^{54} +5.47242 q^{56} -11.3822 q^{57} +13.0136 q^{58} +12.7392 q^{59} -4.97774 q^{61} -21.6063 q^{62} +9.76628 q^{63} -12.6521 q^{64} -29.2847 q^{66} -6.82926 q^{67} -3.10436 q^{69} -11.9408 q^{71} +5.71803 q^{72} +10.8876 q^{73} +9.22687 q^{74} +12.8768 q^{76} +16.3924 q^{77} -25.1183 q^{78} -16.7139 q^{79} -8.37879 q^{81} -0.887628 q^{82} -4.11450 q^{83} -21.4248 q^{84} +12.6432 q^{86} -14.7594 q^{87} +9.59752 q^{88} -10.4142 q^{89} +14.0601 q^{91} +3.51199 q^{92} +24.5049 q^{93} +7.36667 q^{94} +18.2131 q^{96} -2.27443 q^{97} +5.14994 q^{98} +17.1281 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + q^{2} + q^{3} + 11 q^{4} - 3 q^{6} + q^{7} + 9 q^{8} + 6 q^{9} - 4 q^{11} + 17 q^{12} + 3 q^{13} + 7 q^{14} + 27 q^{16} + 22 q^{18} + 6 q^{19} - 5 q^{21} + 18 q^{22} + 4 q^{23} + 19 q^{24} - 5 q^{26}+ \cdots + 14 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.19447 1.55172 0.775861 0.630904i \(-0.217316\pi\)
0.775861 + 0.630904i \(0.217316\pi\)
\(3\) −2.48887 −1.43695 −0.718474 0.695553i \(-0.755159\pi\)
−0.718474 + 0.695553i \(0.755159\pi\)
\(4\) 2.81568 1.40784
\(5\) 0 0
\(6\) −5.46174 −2.22974
\(7\) 3.05725 1.15553 0.577766 0.816202i \(-0.303925\pi\)
0.577766 + 0.816202i \(0.303925\pi\)
\(8\) 1.78998 0.632854
\(9\) 3.19447 1.06482
\(10\) 0 0
\(11\) 5.36180 1.61664 0.808322 0.588741i \(-0.200376\pi\)
0.808322 + 0.588741i \(0.200376\pi\)
\(12\) −7.00786 −2.02299
\(13\) 4.59895 1.27552 0.637760 0.770235i \(-0.279861\pi\)
0.637760 + 0.770235i \(0.279861\pi\)
\(14\) 6.70903 1.79306
\(15\) 0 0
\(16\) −1.70331 −0.425827
\(17\) 0 0
\(18\) 7.01015 1.65231
\(19\) 4.57325 1.04918 0.524588 0.851356i \(-0.324219\pi\)
0.524588 + 0.851356i \(0.324219\pi\)
\(20\) 0 0
\(21\) −7.60910 −1.66044
\(22\) 11.7663 2.50858
\(23\) 1.24730 0.260079 0.130040 0.991509i \(-0.458490\pi\)
0.130040 + 0.991509i \(0.458490\pi\)
\(24\) −4.45503 −0.909378
\(25\) 0 0
\(26\) 10.0922 1.97925
\(27\) −0.483999 −0.0931457
\(28\) 8.60824 1.62680
\(29\) 5.93018 1.10121 0.550604 0.834767i \(-0.314398\pi\)
0.550604 + 0.834767i \(0.314398\pi\)
\(30\) 0 0
\(31\) −9.84580 −1.76836 −0.884179 0.467149i \(-0.845281\pi\)
−0.884179 + 0.467149i \(0.845281\pi\)
\(32\) −7.31781 −1.29362
\(33\) −13.3448 −2.32303
\(34\) 0 0
\(35\) 0 0
\(36\) 8.99459 1.49910
\(37\) 4.20461 0.691234 0.345617 0.938376i \(-0.387670\pi\)
0.345617 + 0.938376i \(0.387670\pi\)
\(38\) 10.0358 1.62803
\(39\) −11.4462 −1.83286
\(40\) 0 0
\(41\) −0.404485 −0.0631699 −0.0315850 0.999501i \(-0.510055\pi\)
−0.0315850 + 0.999501i \(0.510055\pi\)
\(42\) −16.6979 −2.57654
\(43\) 5.76142 0.878608 0.439304 0.898339i \(-0.355225\pi\)
0.439304 + 0.898339i \(0.355225\pi\)
\(44\) 15.0971 2.27597
\(45\) 0 0
\(46\) 2.73715 0.403571
\(47\) 3.35693 0.489659 0.244829 0.969566i \(-0.421268\pi\)
0.244829 + 0.969566i \(0.421268\pi\)
\(48\) 4.23931 0.611892
\(49\) 2.34678 0.335255
\(50\) 0 0
\(51\) 0 0
\(52\) 12.9492 1.79573
\(53\) −4.81568 −0.661484 −0.330742 0.943721i \(-0.607299\pi\)
−0.330742 + 0.943721i \(0.607299\pi\)
\(54\) −1.06212 −0.144536
\(55\) 0 0
\(56\) 5.47242 0.731283
\(57\) −11.3822 −1.50761
\(58\) 13.0136 1.70877
\(59\) 12.7392 1.65850 0.829248 0.558881i \(-0.188769\pi\)
0.829248 + 0.558881i \(0.188769\pi\)
\(60\) 0 0
\(61\) −4.97774 −0.637334 −0.318667 0.947867i \(-0.603235\pi\)
−0.318667 + 0.947867i \(0.603235\pi\)
\(62\) −21.6063 −2.74400
\(63\) 9.76628 1.23044
\(64\) −12.6521 −1.58151
\(65\) 0 0
\(66\) −29.2847 −3.60470
\(67\) −6.82926 −0.834327 −0.417163 0.908831i \(-0.636976\pi\)
−0.417163 + 0.908831i \(0.636976\pi\)
\(68\) 0 0
\(69\) −3.10436 −0.373721
\(70\) 0 0
\(71\) −11.9408 −1.41711 −0.708555 0.705656i \(-0.750652\pi\)
−0.708555 + 0.705656i \(0.750652\pi\)
\(72\) 5.71803 0.673877
\(73\) 10.8876 1.27430 0.637150 0.770740i \(-0.280113\pi\)
0.637150 + 0.770740i \(0.280113\pi\)
\(74\) 9.22687 1.07260
\(75\) 0 0
\(76\) 12.8768 1.47707
\(77\) 16.3924 1.86808
\(78\) −25.1183 −2.84408
\(79\) −16.7139 −1.88046 −0.940230 0.340539i \(-0.889391\pi\)
−0.940230 + 0.340539i \(0.889391\pi\)
\(80\) 0 0
\(81\) −8.37879 −0.930976
\(82\) −0.887628 −0.0980221
\(83\) −4.11450 −0.451625 −0.225813 0.974171i \(-0.572504\pi\)
−0.225813 + 0.974171i \(0.572504\pi\)
\(84\) −21.4248 −2.33763
\(85\) 0 0
\(86\) 12.6432 1.36335
\(87\) −14.7594 −1.58238
\(88\) 9.59752 1.02310
\(89\) −10.4142 −1.10391 −0.551953 0.833875i \(-0.686117\pi\)
−0.551953 + 0.833875i \(0.686117\pi\)
\(90\) 0 0
\(91\) 14.0601 1.47390
\(92\) 3.51199 0.366150
\(93\) 24.5049 2.54104
\(94\) 7.36667 0.759814
\(95\) 0 0
\(96\) 18.2131 1.85886
\(97\) −2.27443 −0.230933 −0.115467 0.993311i \(-0.536836\pi\)
−0.115467 + 0.993311i \(0.536836\pi\)
\(98\) 5.14994 0.520222
\(99\) 17.1281 1.72144
\(100\) 0 0
\(101\) 8.12465 0.808433 0.404216 0.914663i \(-0.367544\pi\)
0.404216 + 0.914663i \(0.367544\pi\)
\(102\) 0 0
\(103\) 5.15706 0.508140 0.254070 0.967186i \(-0.418231\pi\)
0.254070 + 0.967186i \(0.418231\pi\)
\(104\) 8.23203 0.807217
\(105\) 0 0
\(106\) −10.5678 −1.02644
\(107\) 5.61021 0.542360 0.271180 0.962529i \(-0.412586\pi\)
0.271180 + 0.962529i \(0.412586\pi\)
\(108\) −1.36279 −0.131134
\(109\) 3.98158 0.381366 0.190683 0.981652i \(-0.438930\pi\)
0.190683 + 0.981652i \(0.438930\pi\)
\(110\) 0 0
\(111\) −10.4647 −0.993268
\(112\) −5.20744 −0.492057
\(113\) −0.913734 −0.0859569 −0.0429785 0.999076i \(-0.513685\pi\)
−0.0429785 + 0.999076i \(0.513685\pi\)
\(114\) −24.9779 −2.33939
\(115\) 0 0
\(116\) 16.6975 1.55032
\(117\) 14.6912 1.35820
\(118\) 27.9556 2.57352
\(119\) 0 0
\(120\) 0 0
\(121\) 17.7489 1.61354
\(122\) −10.9235 −0.988965
\(123\) 1.00671 0.0907720
\(124\) −27.7226 −2.48956
\(125\) 0 0
\(126\) 21.4318 1.90929
\(127\) −8.41422 −0.746642 −0.373321 0.927702i \(-0.621781\pi\)
−0.373321 + 0.927702i \(0.621781\pi\)
\(128\) −13.1289 −1.16044
\(129\) −14.3394 −1.26251
\(130\) 0 0
\(131\) 1.34723 0.117708 0.0588542 0.998267i \(-0.481255\pi\)
0.0588542 + 0.998267i \(0.481255\pi\)
\(132\) −37.5747 −3.27046
\(133\) 13.9816 1.21236
\(134\) −14.9866 −1.29464
\(135\) 0 0
\(136\) 0 0
\(137\) −12.5650 −1.07350 −0.536749 0.843742i \(-0.680348\pi\)
−0.536749 + 0.843742i \(0.680348\pi\)
\(138\) −6.81241 −0.579910
\(139\) 9.83024 0.833790 0.416895 0.908955i \(-0.363118\pi\)
0.416895 + 0.908955i \(0.363118\pi\)
\(140\) 0 0
\(141\) −8.35496 −0.703614
\(142\) −26.2036 −2.19896
\(143\) 24.6586 2.06206
\(144\) −5.44116 −0.453430
\(145\) 0 0
\(146\) 23.8925 1.97736
\(147\) −5.84084 −0.481744
\(148\) 11.8388 0.973146
\(149\) −9.03003 −0.739769 −0.369884 0.929078i \(-0.620603\pi\)
−0.369884 + 0.929078i \(0.620603\pi\)
\(150\) 0 0
\(151\) −5.97576 −0.486301 −0.243150 0.969989i \(-0.578181\pi\)
−0.243150 + 0.969989i \(0.578181\pi\)
\(152\) 8.18603 0.663975
\(153\) 0 0
\(154\) 35.9725 2.89875
\(155\) 0 0
\(156\) −32.2288 −2.58037
\(157\) 8.71002 0.695135 0.347568 0.937655i \(-0.387008\pi\)
0.347568 + 0.937655i \(0.387008\pi\)
\(158\) −36.6781 −2.91795
\(159\) 11.9856 0.950519
\(160\) 0 0
\(161\) 3.81330 0.300530
\(162\) −18.3870 −1.44462
\(163\) 0.852508 0.0667736 0.0333868 0.999443i \(-0.489371\pi\)
0.0333868 + 0.999443i \(0.489371\pi\)
\(164\) −1.13890 −0.0889331
\(165\) 0 0
\(166\) −9.02913 −0.700797
\(167\) 1.32122 0.102239 0.0511195 0.998693i \(-0.483721\pi\)
0.0511195 + 0.998693i \(0.483721\pi\)
\(168\) −13.6201 −1.05082
\(169\) 8.15035 0.626950
\(170\) 0 0
\(171\) 14.6091 1.11719
\(172\) 16.2223 1.23694
\(173\) −7.49672 −0.569965 −0.284983 0.958533i \(-0.591988\pi\)
−0.284983 + 0.958533i \(0.591988\pi\)
\(174\) −32.3891 −2.45541
\(175\) 0 0
\(176\) −9.13279 −0.688410
\(177\) −31.7061 −2.38317
\(178\) −22.8537 −1.71295
\(179\) 15.9913 1.19525 0.597624 0.801777i \(-0.296112\pi\)
0.597624 + 0.801777i \(0.296112\pi\)
\(180\) 0 0
\(181\) 11.0136 0.818633 0.409317 0.912392i \(-0.365767\pi\)
0.409317 + 0.912392i \(0.365767\pi\)
\(182\) 30.8545 2.28709
\(183\) 12.3889 0.915816
\(184\) 2.23264 0.164592
\(185\) 0 0
\(186\) 53.7752 3.94299
\(187\) 0 0
\(188\) 9.45204 0.689361
\(189\) −1.47971 −0.107633
\(190\) 0 0
\(191\) 8.49870 0.614944 0.307472 0.951557i \(-0.400517\pi\)
0.307472 + 0.951557i \(0.400517\pi\)
\(192\) 31.4893 2.27255
\(193\) 18.8634 1.35782 0.678908 0.734223i \(-0.262453\pi\)
0.678908 + 0.734223i \(0.262453\pi\)
\(194\) −4.99116 −0.358344
\(195\) 0 0
\(196\) 6.60779 0.471985
\(197\) 10.7750 0.767687 0.383843 0.923398i \(-0.374600\pi\)
0.383843 + 0.923398i \(0.374600\pi\)
\(198\) 37.5870 2.67119
\(199\) 12.7488 0.903735 0.451868 0.892085i \(-0.350758\pi\)
0.451868 + 0.892085i \(0.350758\pi\)
\(200\) 0 0
\(201\) 16.9971 1.19889
\(202\) 17.8293 1.25446
\(203\) 18.1301 1.27248
\(204\) 0 0
\(205\) 0 0
\(206\) 11.3170 0.788492
\(207\) 3.98445 0.276938
\(208\) −7.83343 −0.543151
\(209\) 24.5209 1.69614
\(210\) 0 0
\(211\) −26.3541 −1.81429 −0.907146 0.420817i \(-0.861743\pi\)
−0.907146 + 0.420817i \(0.861743\pi\)
\(212\) −13.5594 −0.931264
\(213\) 29.7190 2.03631
\(214\) 12.3114 0.841591
\(215\) 0 0
\(216\) −0.866350 −0.0589476
\(217\) −30.1011 −2.04339
\(218\) 8.73744 0.591774
\(219\) −27.0979 −1.83110
\(220\) 0 0
\(221\) 0 0
\(222\) −22.9645 −1.54127
\(223\) 20.0300 1.34131 0.670655 0.741769i \(-0.266013\pi\)
0.670655 + 0.741769i \(0.266013\pi\)
\(224\) −22.3724 −1.49482
\(225\) 0 0
\(226\) −2.00516 −0.133381
\(227\) 13.2928 0.882277 0.441138 0.897439i \(-0.354575\pi\)
0.441138 + 0.897439i \(0.354575\pi\)
\(228\) −32.0487 −2.12248
\(229\) 10.0240 0.662404 0.331202 0.943560i \(-0.392546\pi\)
0.331202 + 0.943560i \(0.392546\pi\)
\(230\) 0 0
\(231\) −40.7984 −2.68434
\(232\) 10.6149 0.696903
\(233\) −5.12121 −0.335502 −0.167751 0.985829i \(-0.553650\pi\)
−0.167751 + 0.985829i \(0.553650\pi\)
\(234\) 32.2393 2.10755
\(235\) 0 0
\(236\) 35.8694 2.33490
\(237\) 41.5987 2.70213
\(238\) 0 0
\(239\) −13.3667 −0.864618 −0.432309 0.901726i \(-0.642301\pi\)
−0.432309 + 0.901726i \(0.642301\pi\)
\(240\) 0 0
\(241\) 4.12595 0.265776 0.132888 0.991131i \(-0.457575\pi\)
0.132888 + 0.991131i \(0.457575\pi\)
\(242\) 38.9493 2.50376
\(243\) 22.3057 1.43091
\(244\) −14.0157 −0.897264
\(245\) 0 0
\(246\) 2.20919 0.140853
\(247\) 21.0322 1.33824
\(248\) −17.6238 −1.11911
\(249\) 10.2405 0.648962
\(250\) 0 0
\(251\) −7.71502 −0.486968 −0.243484 0.969905i \(-0.578290\pi\)
−0.243484 + 0.969905i \(0.578290\pi\)
\(252\) 27.4987 1.73226
\(253\) 6.68775 0.420456
\(254\) −18.4647 −1.15858
\(255\) 0 0
\(256\) −3.50680 −0.219175
\(257\) 18.4651 1.15182 0.575912 0.817512i \(-0.304647\pi\)
0.575912 + 0.817512i \(0.304647\pi\)
\(258\) −31.4673 −1.95907
\(259\) 12.8546 0.798743
\(260\) 0 0
\(261\) 18.9438 1.17259
\(262\) 2.95646 0.182651
\(263\) 18.7644 1.15707 0.578533 0.815659i \(-0.303626\pi\)
0.578533 + 0.815659i \(0.303626\pi\)
\(264\) −23.8870 −1.47014
\(265\) 0 0
\(266\) 30.6821 1.88124
\(267\) 25.9196 1.58626
\(268\) −19.2290 −1.17460
\(269\) −14.7847 −0.901441 −0.450721 0.892665i \(-0.648833\pi\)
−0.450721 + 0.892665i \(0.648833\pi\)
\(270\) 0 0
\(271\) −24.2920 −1.47563 −0.737817 0.675001i \(-0.764143\pi\)
−0.737817 + 0.675001i \(0.764143\pi\)
\(272\) 0 0
\(273\) −34.9939 −2.11792
\(274\) −27.5734 −1.66577
\(275\) 0 0
\(276\) −8.74088 −0.526139
\(277\) −5.84481 −0.351181 −0.175590 0.984463i \(-0.556183\pi\)
−0.175590 + 0.984463i \(0.556183\pi\)
\(278\) 21.5721 1.29381
\(279\) −31.4521 −1.88299
\(280\) 0 0
\(281\) −0.651914 −0.0388899 −0.0194450 0.999811i \(-0.506190\pi\)
−0.0194450 + 0.999811i \(0.506190\pi\)
\(282\) −18.3347 −1.09181
\(283\) 4.62452 0.274899 0.137450 0.990509i \(-0.456110\pi\)
0.137450 + 0.990509i \(0.456110\pi\)
\(284\) −33.6214 −1.99506
\(285\) 0 0
\(286\) 54.1126 3.19974
\(287\) −1.23661 −0.0729949
\(288\) −23.3765 −1.37747
\(289\) 0 0
\(290\) 0 0
\(291\) 5.66075 0.331839
\(292\) 30.6561 1.79401
\(293\) −3.46169 −0.202234 −0.101117 0.994875i \(-0.532242\pi\)
−0.101117 + 0.994875i \(0.532242\pi\)
\(294\) −12.8175 −0.747533
\(295\) 0 0
\(296\) 7.52617 0.437450
\(297\) −2.59511 −0.150583
\(298\) −19.8161 −1.14792
\(299\) 5.73626 0.331736
\(300\) 0 0
\(301\) 17.6141 1.01526
\(302\) −13.1136 −0.754603
\(303\) −20.2212 −1.16168
\(304\) −7.78966 −0.446767
\(305\) 0 0
\(306\) 0 0
\(307\) 19.7625 1.12790 0.563952 0.825808i \(-0.309280\pi\)
0.563952 + 0.825808i \(0.309280\pi\)
\(308\) 46.1557 2.62996
\(309\) −12.8352 −0.730171
\(310\) 0 0
\(311\) −26.2366 −1.48774 −0.743871 0.668324i \(-0.767012\pi\)
−0.743871 + 0.668324i \(0.767012\pi\)
\(312\) −20.4884 −1.15993
\(313\) −22.9825 −1.29905 −0.649523 0.760342i \(-0.725031\pi\)
−0.649523 + 0.760342i \(0.725031\pi\)
\(314\) 19.1138 1.07866
\(315\) 0 0
\(316\) −47.0610 −2.64739
\(317\) 10.9419 0.614558 0.307279 0.951619i \(-0.400582\pi\)
0.307279 + 0.951619i \(0.400582\pi\)
\(318\) 26.3020 1.47494
\(319\) 31.7964 1.78026
\(320\) 0 0
\(321\) −13.9631 −0.779343
\(322\) 8.36815 0.466339
\(323\) 0 0
\(324\) −23.5920 −1.31067
\(325\) 0 0
\(326\) 1.87080 0.103614
\(327\) −9.90963 −0.548004
\(328\) −0.724020 −0.0399773
\(329\) 10.2630 0.565816
\(330\) 0 0
\(331\) 11.1037 0.610314 0.305157 0.952302i \(-0.401291\pi\)
0.305157 + 0.952302i \(0.401291\pi\)
\(332\) −11.5851 −0.635816
\(333\) 13.4315 0.736041
\(334\) 2.89937 0.158646
\(335\) 0 0
\(336\) 12.9606 0.707060
\(337\) 30.0360 1.63617 0.818083 0.575101i \(-0.195037\pi\)
0.818083 + 0.575101i \(0.195037\pi\)
\(338\) 17.8857 0.972851
\(339\) 2.27416 0.123516
\(340\) 0 0
\(341\) −52.7912 −2.85880
\(342\) 32.0592 1.73356
\(343\) −14.2260 −0.768134
\(344\) 10.3128 0.556030
\(345\) 0 0
\(346\) −16.4513 −0.884428
\(347\) 26.4956 1.42236 0.711179 0.703011i \(-0.248161\pi\)
0.711179 + 0.703011i \(0.248161\pi\)
\(348\) −41.5579 −2.22774
\(349\) 11.8225 0.632846 0.316423 0.948618i \(-0.397518\pi\)
0.316423 + 0.948618i \(0.397518\pi\)
\(350\) 0 0
\(351\) −2.22589 −0.118809
\(352\) −39.2366 −2.09132
\(353\) −11.3987 −0.606690 −0.303345 0.952881i \(-0.598103\pi\)
−0.303345 + 0.952881i \(0.598103\pi\)
\(354\) −69.5779 −3.69802
\(355\) 0 0
\(356\) −29.3231 −1.55412
\(357\) 0 0
\(358\) 35.0924 1.85469
\(359\) 12.2135 0.644601 0.322301 0.946637i \(-0.395544\pi\)
0.322301 + 0.946637i \(0.395544\pi\)
\(360\) 0 0
\(361\) 1.91463 0.100770
\(362\) 24.1689 1.27029
\(363\) −44.1746 −2.31857
\(364\) 39.5889 2.07502
\(365\) 0 0
\(366\) 27.1871 1.42109
\(367\) −6.91651 −0.361039 −0.180519 0.983571i \(-0.557778\pi\)
−0.180519 + 0.983571i \(0.557778\pi\)
\(368\) −2.12453 −0.110749
\(369\) −1.29211 −0.0672647
\(370\) 0 0
\(371\) −14.7227 −0.764367
\(372\) 68.9979 3.57738
\(373\) 27.3487 1.41606 0.708030 0.706183i \(-0.249584\pi\)
0.708030 + 0.706183i \(0.249584\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 6.00884 0.309882
\(377\) 27.2726 1.40461
\(378\) −3.24717 −0.167016
\(379\) −14.9563 −0.768255 −0.384127 0.923280i \(-0.625498\pi\)
−0.384127 + 0.923280i \(0.625498\pi\)
\(380\) 0 0
\(381\) 20.9419 1.07289
\(382\) 18.6501 0.954222
\(383\) −28.4094 −1.45165 −0.725826 0.687879i \(-0.758542\pi\)
−0.725826 + 0.687879i \(0.758542\pi\)
\(384\) 32.6761 1.66750
\(385\) 0 0
\(386\) 41.3951 2.10695
\(387\) 18.4046 0.935561
\(388\) −6.40406 −0.325117
\(389\) −22.2240 −1.12680 −0.563401 0.826184i \(-0.690507\pi\)
−0.563401 + 0.826184i \(0.690507\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 4.20070 0.212167
\(393\) −3.35309 −0.169141
\(394\) 23.6454 1.19124
\(395\) 0 0
\(396\) 48.2272 2.42351
\(397\) 1.76615 0.0886406 0.0443203 0.999017i \(-0.485888\pi\)
0.0443203 + 0.999017i \(0.485888\pi\)
\(398\) 27.9767 1.40235
\(399\) −34.7983 −1.74209
\(400\) 0 0
\(401\) 4.79423 0.239412 0.119706 0.992809i \(-0.461805\pi\)
0.119706 + 0.992809i \(0.461805\pi\)
\(402\) 37.2996 1.86034
\(403\) −45.2803 −2.25557
\(404\) 22.8764 1.13814
\(405\) 0 0
\(406\) 39.7858 1.97454
\(407\) 22.5443 1.11748
\(408\) 0 0
\(409\) −36.2834 −1.79410 −0.897050 0.441929i \(-0.854294\pi\)
−0.897050 + 0.441929i \(0.854294\pi\)
\(410\) 0 0
\(411\) 31.2726 1.54256
\(412\) 14.5206 0.715379
\(413\) 38.9468 1.91645
\(414\) 8.74373 0.429731
\(415\) 0 0
\(416\) −33.6543 −1.65004
\(417\) −24.4662 −1.19811
\(418\) 53.8102 2.63194
\(419\) 24.4452 1.19423 0.597113 0.802157i \(-0.296314\pi\)
0.597113 + 0.802157i \(0.296314\pi\)
\(420\) 0 0
\(421\) −14.0909 −0.686750 −0.343375 0.939198i \(-0.611570\pi\)
−0.343375 + 0.939198i \(0.611570\pi\)
\(422\) −57.8332 −2.81527
\(423\) 10.7236 0.521399
\(424\) −8.61997 −0.418623
\(425\) 0 0
\(426\) 65.2174 3.15979
\(427\) −15.2182 −0.736460
\(428\) 15.7966 0.763556
\(429\) −61.3721 −2.96307
\(430\) 0 0
\(431\) 17.5277 0.844282 0.422141 0.906530i \(-0.361279\pi\)
0.422141 + 0.906530i \(0.361279\pi\)
\(432\) 0.824400 0.0396640
\(433\) 11.1755 0.537059 0.268530 0.963271i \(-0.413462\pi\)
0.268530 + 0.963271i \(0.413462\pi\)
\(434\) −66.0558 −3.17078
\(435\) 0 0
\(436\) 11.2109 0.536902
\(437\) 5.70420 0.272869
\(438\) −59.4654 −2.84136
\(439\) 12.0419 0.574727 0.287363 0.957822i \(-0.407221\pi\)
0.287363 + 0.957822i \(0.407221\pi\)
\(440\) 0 0
\(441\) 7.49672 0.356987
\(442\) 0 0
\(443\) −39.5984 −1.88138 −0.940689 0.339269i \(-0.889820\pi\)
−0.940689 + 0.339269i \(0.889820\pi\)
\(444\) −29.4653 −1.39836
\(445\) 0 0
\(446\) 43.9552 2.08134
\(447\) 22.4746 1.06301
\(448\) −38.6806 −1.82748
\(449\) −11.6778 −0.551107 −0.275554 0.961286i \(-0.588861\pi\)
−0.275554 + 0.961286i \(0.588861\pi\)
\(450\) 0 0
\(451\) −2.16877 −0.102123
\(452\) −2.57278 −0.121014
\(453\) 14.8729 0.698789
\(454\) 29.1707 1.36905
\(455\) 0 0
\(456\) −20.3740 −0.954098
\(457\) −20.2148 −0.945606 −0.472803 0.881168i \(-0.656758\pi\)
−0.472803 + 0.881168i \(0.656758\pi\)
\(458\) 21.9973 1.02787
\(459\) 0 0
\(460\) 0 0
\(461\) 2.77786 0.129378 0.0646890 0.997905i \(-0.479394\pi\)
0.0646890 + 0.997905i \(0.479394\pi\)
\(462\) −89.5308 −4.16535
\(463\) −33.8186 −1.57168 −0.785842 0.618427i \(-0.787770\pi\)
−0.785842 + 0.618427i \(0.787770\pi\)
\(464\) −10.1009 −0.468924
\(465\) 0 0
\(466\) −11.2383 −0.520605
\(467\) −41.1417 −1.90381 −0.951904 0.306395i \(-0.900877\pi\)
−0.951904 + 0.306395i \(0.900877\pi\)
\(468\) 41.3657 1.91213
\(469\) −20.8788 −0.964092
\(470\) 0 0
\(471\) −21.6781 −0.998874
\(472\) 22.8028 1.04959
\(473\) 30.8916 1.42039
\(474\) 91.2869 4.19295
\(475\) 0 0
\(476\) 0 0
\(477\) −15.3835 −0.704363
\(478\) −29.3327 −1.34165
\(479\) 10.8273 0.494710 0.247355 0.968925i \(-0.420439\pi\)
0.247355 + 0.968925i \(0.420439\pi\)
\(480\) 0 0
\(481\) 19.3368 0.881682
\(482\) 9.05426 0.412410
\(483\) −9.49080 −0.431846
\(484\) 49.9752 2.27160
\(485\) 0 0
\(486\) 48.9491 2.22038
\(487\) −17.2533 −0.781820 −0.390910 0.920429i \(-0.627840\pi\)
−0.390910 + 0.920429i \(0.627840\pi\)
\(488\) −8.91005 −0.403339
\(489\) −2.12178 −0.0959502
\(490\) 0 0
\(491\) −28.6442 −1.29269 −0.646347 0.763043i \(-0.723704\pi\)
−0.646347 + 0.763043i \(0.723704\pi\)
\(492\) 2.83457 0.127792
\(493\) 0 0
\(494\) 46.1544 2.07658
\(495\) 0 0
\(496\) 16.7704 0.753014
\(497\) −36.5060 −1.63752
\(498\) 22.4723 1.00701
\(499\) 10.5083 0.470418 0.235209 0.971945i \(-0.424423\pi\)
0.235209 + 0.971945i \(0.424423\pi\)
\(500\) 0 0
\(501\) −3.28834 −0.146912
\(502\) −16.9303 −0.755638
\(503\) 14.7844 0.659206 0.329603 0.944120i \(-0.393085\pi\)
0.329603 + 0.944120i \(0.393085\pi\)
\(504\) 17.4815 0.778686
\(505\) 0 0
\(506\) 14.6760 0.652430
\(507\) −20.2851 −0.900895
\(508\) −23.6918 −1.05115
\(509\) 32.5112 1.44103 0.720517 0.693438i \(-0.243905\pi\)
0.720517 + 0.693438i \(0.243905\pi\)
\(510\) 0 0
\(511\) 33.2862 1.47250
\(512\) 18.5623 0.820344
\(513\) −2.21345 −0.0977263
\(514\) 40.5211 1.78731
\(515\) 0 0
\(516\) −40.3752 −1.77742
\(517\) 17.9992 0.791603
\(518\) 28.2089 1.23943
\(519\) 18.6584 0.819011
\(520\) 0 0
\(521\) −40.4949 −1.77411 −0.887057 0.461660i \(-0.847254\pi\)
−0.887057 + 0.461660i \(0.847254\pi\)
\(522\) 41.5714 1.81953
\(523\) 19.7050 0.861640 0.430820 0.902438i \(-0.358224\pi\)
0.430820 + 0.902438i \(0.358224\pi\)
\(524\) 3.79338 0.165715
\(525\) 0 0
\(526\) 41.1779 1.79544
\(527\) 0 0
\(528\) 22.7303 0.989210
\(529\) −21.4443 −0.932359
\(530\) 0 0
\(531\) 40.6948 1.76600
\(532\) 39.3676 1.70680
\(533\) −1.86021 −0.0805745
\(534\) 56.8797 2.46143
\(535\) 0 0
\(536\) −12.2242 −0.528007
\(537\) −39.8003 −1.71751
\(538\) −32.4446 −1.39879
\(539\) 12.5830 0.541988
\(540\) 0 0
\(541\) −21.0224 −0.903824 −0.451912 0.892062i \(-0.649258\pi\)
−0.451912 + 0.892062i \(0.649258\pi\)
\(542\) −53.3080 −2.28977
\(543\) −27.4114 −1.17633
\(544\) 0 0
\(545\) 0 0
\(546\) −76.7928 −3.28643
\(547\) −25.1379 −1.07482 −0.537410 0.843321i \(-0.680597\pi\)
−0.537410 + 0.843321i \(0.680597\pi\)
\(548\) −35.3789 −1.51131
\(549\) −15.9012 −0.678647
\(550\) 0 0
\(551\) 27.1202 1.15536
\(552\) −5.55674 −0.236511
\(553\) −51.0986 −2.17293
\(554\) −12.8262 −0.544935
\(555\) 0 0
\(556\) 27.6788 1.17384
\(557\) 22.9470 0.972297 0.486149 0.873876i \(-0.338401\pi\)
0.486149 + 0.873876i \(0.338401\pi\)
\(558\) −69.0205 −2.92187
\(559\) 26.4965 1.12068
\(560\) 0 0
\(561\) 0 0
\(562\) −1.43060 −0.0603463
\(563\) 34.8974 1.47075 0.735374 0.677661i \(-0.237006\pi\)
0.735374 + 0.677661i \(0.237006\pi\)
\(564\) −23.5249 −0.990576
\(565\) 0 0
\(566\) 10.1483 0.426567
\(567\) −25.6161 −1.07577
\(568\) −21.3738 −0.896823
\(569\) 6.87405 0.288175 0.144088 0.989565i \(-0.453975\pi\)
0.144088 + 0.989565i \(0.453975\pi\)
\(570\) 0 0
\(571\) −24.7188 −1.03445 −0.517224 0.855850i \(-0.673035\pi\)
−0.517224 + 0.855850i \(0.673035\pi\)
\(572\) 69.4309 2.90305
\(573\) −21.1521 −0.883643
\(574\) −2.71370 −0.113268
\(575\) 0 0
\(576\) −40.4166 −1.68403
\(577\) 4.89908 0.203951 0.101976 0.994787i \(-0.467484\pi\)
0.101976 + 0.994787i \(0.467484\pi\)
\(578\) 0 0
\(579\) −46.9485 −1.95111
\(580\) 0 0
\(581\) −12.5791 −0.521868
\(582\) 12.4223 0.514922
\(583\) −25.8207 −1.06938
\(584\) 19.4886 0.806446
\(585\) 0 0
\(586\) −7.59657 −0.313811
\(587\) 23.8761 0.985471 0.492736 0.870179i \(-0.335997\pi\)
0.492736 + 0.870179i \(0.335997\pi\)
\(588\) −16.4459 −0.678219
\(589\) −45.0273 −1.85532
\(590\) 0 0
\(591\) −26.8175 −1.10313
\(592\) −7.16175 −0.294346
\(593\) −37.8742 −1.55531 −0.777654 0.628693i \(-0.783590\pi\)
−0.777654 + 0.628693i \(0.783590\pi\)
\(594\) −5.69487 −0.233664
\(595\) 0 0
\(596\) −25.4257 −1.04148
\(597\) −31.7300 −1.29862
\(598\) 12.5880 0.514762
\(599\) 43.9867 1.79725 0.898625 0.438718i \(-0.144567\pi\)
0.898625 + 0.438718i \(0.144567\pi\)
\(600\) 0 0
\(601\) −11.4083 −0.465355 −0.232678 0.972554i \(-0.574749\pi\)
−0.232678 + 0.972554i \(0.574749\pi\)
\(602\) 38.6535 1.57540
\(603\) −21.8158 −0.888410
\(604\) −16.8258 −0.684634
\(605\) 0 0
\(606\) −44.3747 −1.80260
\(607\) 17.4364 0.707721 0.353861 0.935298i \(-0.384869\pi\)
0.353861 + 0.935298i \(0.384869\pi\)
\(608\) −33.4662 −1.35723
\(609\) −45.1233 −1.82849
\(610\) 0 0
\(611\) 15.4384 0.624569
\(612\) 0 0
\(613\) −0.620807 −0.0250741 −0.0125371 0.999921i \(-0.503991\pi\)
−0.0125371 + 0.999921i \(0.503991\pi\)
\(614\) 43.3681 1.75019
\(615\) 0 0
\(616\) 29.3420 1.18222
\(617\) −45.0359 −1.81308 −0.906539 0.422123i \(-0.861285\pi\)
−0.906539 + 0.422123i \(0.861285\pi\)
\(618\) −28.1665 −1.13302
\(619\) 11.4780 0.461340 0.230670 0.973032i \(-0.425908\pi\)
0.230670 + 0.973032i \(0.425908\pi\)
\(620\) 0 0
\(621\) −0.603691 −0.0242253
\(622\) −57.5753 −2.30856
\(623\) −31.8389 −1.27560
\(624\) 19.4964 0.780480
\(625\) 0 0
\(626\) −50.4342 −2.01576
\(627\) −61.0292 −2.43727
\(628\) 24.5246 0.978639
\(629\) 0 0
\(630\) 0 0
\(631\) −10.9485 −0.435853 −0.217926 0.975965i \(-0.569929\pi\)
−0.217926 + 0.975965i \(0.569929\pi\)
\(632\) −29.9176 −1.19006
\(633\) 65.5919 2.60704
\(634\) 24.0116 0.953623
\(635\) 0 0
\(636\) 33.7476 1.33818
\(637\) 10.7927 0.427624
\(638\) 69.7762 2.76247
\(639\) −38.1444 −1.50897
\(640\) 0 0
\(641\) 1.51186 0.0597147 0.0298574 0.999554i \(-0.490495\pi\)
0.0298574 + 0.999554i \(0.490495\pi\)
\(642\) −30.6415 −1.20932
\(643\) −17.7547 −0.700179 −0.350089 0.936716i \(-0.613849\pi\)
−0.350089 + 0.936716i \(0.613849\pi\)
\(644\) 10.7370 0.423098
\(645\) 0 0
\(646\) 0 0
\(647\) 35.1787 1.38302 0.691508 0.722369i \(-0.256947\pi\)
0.691508 + 0.722369i \(0.256947\pi\)
\(648\) −14.9979 −0.589172
\(649\) 68.3048 2.68120
\(650\) 0 0
\(651\) 74.9176 2.93625
\(652\) 2.40039 0.0940065
\(653\) 9.99410 0.391099 0.195550 0.980694i \(-0.437351\pi\)
0.195550 + 0.980694i \(0.437351\pi\)
\(654\) −21.7463 −0.850349
\(655\) 0 0
\(656\) 0.688962 0.0268995
\(657\) 34.7802 1.35690
\(658\) 22.5218 0.877989
\(659\) −23.9165 −0.931655 −0.465827 0.884876i \(-0.654243\pi\)
−0.465827 + 0.884876i \(0.654243\pi\)
\(660\) 0 0
\(661\) 28.6063 1.11266 0.556328 0.830963i \(-0.312210\pi\)
0.556328 + 0.830963i \(0.312210\pi\)
\(662\) 24.3667 0.947037
\(663\) 0 0
\(664\) −7.36488 −0.285813
\(665\) 0 0
\(666\) 29.4749 1.14213
\(667\) 7.39670 0.286401
\(668\) 3.72013 0.143936
\(669\) −49.8521 −1.92739
\(670\) 0 0
\(671\) −26.6896 −1.03034
\(672\) 55.6819 2.14798
\(673\) 12.9564 0.499431 0.249716 0.968319i \(-0.419663\pi\)
0.249716 + 0.968319i \(0.419663\pi\)
\(674\) 65.9130 2.53887
\(675\) 0 0
\(676\) 22.9488 0.882645
\(677\) −23.5326 −0.904430 −0.452215 0.891909i \(-0.649366\pi\)
−0.452215 + 0.891909i \(0.649366\pi\)
\(678\) 4.99058 0.191662
\(679\) −6.95350 −0.266851
\(680\) 0 0
\(681\) −33.0841 −1.26779
\(682\) −115.848 −4.43607
\(683\) 25.4677 0.974495 0.487247 0.873264i \(-0.338001\pi\)
0.487247 + 0.873264i \(0.338001\pi\)
\(684\) 41.1345 1.57282
\(685\) 0 0
\(686\) −31.2186 −1.19193
\(687\) −24.9484 −0.951840
\(688\) −9.81346 −0.374135
\(689\) −22.1471 −0.843736
\(690\) 0 0
\(691\) −47.8923 −1.82191 −0.910955 0.412507i \(-0.864653\pi\)
−0.910955 + 0.412507i \(0.864653\pi\)
\(692\) −21.1084 −0.802420
\(693\) 52.3649 1.98918
\(694\) 58.1437 2.20710
\(695\) 0 0
\(696\) −26.4191 −1.00141
\(697\) 0 0
\(698\) 25.9442 0.982001
\(699\) 12.7460 0.482099
\(700\) 0 0
\(701\) −5.52783 −0.208783 −0.104392 0.994536i \(-0.533290\pi\)
−0.104392 + 0.994536i \(0.533290\pi\)
\(702\) −4.88464 −0.184359
\(703\) 19.2287 0.725226
\(704\) −67.8379 −2.55674
\(705\) 0 0
\(706\) −25.0140 −0.941414
\(707\) 24.8391 0.934170
\(708\) −89.2741 −3.35513
\(709\) −22.8895 −0.859633 −0.429817 0.902916i \(-0.641422\pi\)
−0.429817 + 0.902916i \(0.641422\pi\)
\(710\) 0 0
\(711\) −53.3920 −2.00236
\(712\) −18.6413 −0.698611
\(713\) −12.2806 −0.459913
\(714\) 0 0
\(715\) 0 0
\(716\) 45.0264 1.68272
\(717\) 33.2679 1.24241
\(718\) 26.8020 1.00024
\(719\) −0.748823 −0.0279264 −0.0139632 0.999903i \(-0.504445\pi\)
−0.0139632 + 0.999903i \(0.504445\pi\)
\(720\) 0 0
\(721\) 15.7664 0.587172
\(722\) 4.20159 0.156367
\(723\) −10.2690 −0.381906
\(724\) 31.0107 1.15250
\(725\) 0 0
\(726\) −96.9398 −3.59777
\(727\) 51.8312 1.92231 0.961157 0.276004i \(-0.0890102\pi\)
0.961157 + 0.276004i \(0.0890102\pi\)
\(728\) 25.1674 0.932766
\(729\) −30.3796 −1.12517
\(730\) 0 0
\(731\) 0 0
\(732\) 34.8833 1.28932
\(733\) 0.440590 0.0162735 0.00813677 0.999967i \(-0.497410\pi\)
0.00813677 + 0.999967i \(0.497410\pi\)
\(734\) −15.1780 −0.560232
\(735\) 0 0
\(736\) −9.12748 −0.336443
\(737\) −36.6171 −1.34881
\(738\) −2.83550 −0.104376
\(739\) −30.4658 −1.12070 −0.560351 0.828255i \(-0.689334\pi\)
−0.560351 + 0.828255i \(0.689334\pi\)
\(740\) 0 0
\(741\) −52.3463 −1.92299
\(742\) −32.3086 −1.18608
\(743\) 15.1434 0.555557 0.277779 0.960645i \(-0.410402\pi\)
0.277779 + 0.960645i \(0.410402\pi\)
\(744\) 43.8633 1.60811
\(745\) 0 0
\(746\) 60.0157 2.19733
\(747\) −13.1436 −0.480901
\(748\) 0 0
\(749\) 17.1518 0.626714
\(750\) 0 0
\(751\) −34.1610 −1.24655 −0.623277 0.782001i \(-0.714199\pi\)
−0.623277 + 0.782001i \(0.714199\pi\)
\(752\) −5.71789 −0.208510
\(753\) 19.2017 0.699748
\(754\) 59.8488 2.17957
\(755\) 0 0
\(756\) −4.16638 −0.151530
\(757\) −20.5792 −0.747965 −0.373982 0.927436i \(-0.622008\pi\)
−0.373982 + 0.927436i \(0.622008\pi\)
\(758\) −32.8211 −1.19212
\(759\) −16.6449 −0.604173
\(760\) 0 0
\(761\) −18.8045 −0.681661 −0.340831 0.940125i \(-0.610708\pi\)
−0.340831 + 0.940125i \(0.610708\pi\)
\(762\) 45.9563 1.66482
\(763\) 12.1727 0.440681
\(764\) 23.9296 0.865743
\(765\) 0 0
\(766\) −62.3434 −2.25256
\(767\) 58.5867 2.11544
\(768\) 8.72798 0.314944
\(769\) −36.5974 −1.31974 −0.659868 0.751382i \(-0.729388\pi\)
−0.659868 + 0.751382i \(0.729388\pi\)
\(770\) 0 0
\(771\) −45.9573 −1.65511
\(772\) 53.1133 1.91159
\(773\) −19.4040 −0.697912 −0.348956 0.937139i \(-0.613464\pi\)
−0.348956 + 0.937139i \(0.613464\pi\)
\(774\) 40.3884 1.45173
\(775\) 0 0
\(776\) −4.07118 −0.146147
\(777\) −31.9933 −1.14775
\(778\) −48.7698 −1.74848
\(779\) −1.84981 −0.0662764
\(780\) 0 0
\(781\) −64.0240 −2.29096
\(782\) 0 0
\(783\) −2.87020 −0.102573
\(784\) −3.99730 −0.142761
\(785\) 0 0
\(786\) −7.35823 −0.262460
\(787\) 28.7760 1.02575 0.512876 0.858462i \(-0.328580\pi\)
0.512876 + 0.858462i \(0.328580\pi\)
\(788\) 30.3389 1.08078
\(789\) −46.7022 −1.66264
\(790\) 0 0
\(791\) −2.79352 −0.0993260
\(792\) 30.6589 1.08942
\(793\) −22.8924 −0.812932
\(794\) 3.87576 0.137546
\(795\) 0 0
\(796\) 35.8964 1.27231
\(797\) −4.55967 −0.161512 −0.0807559 0.996734i \(-0.525733\pi\)
−0.0807559 + 0.996734i \(0.525733\pi\)
\(798\) −76.3637 −2.70325
\(799\) 0 0
\(800\) 0 0
\(801\) −33.2679 −1.17546
\(802\) 10.5208 0.371501
\(803\) 58.3773 2.06009
\(804\) 47.8585 1.68784
\(805\) 0 0
\(806\) −99.3662 −3.50002
\(807\) 36.7973 1.29532
\(808\) 14.5430 0.511620
\(809\) −37.0052 −1.30103 −0.650516 0.759493i \(-0.725447\pi\)
−0.650516 + 0.759493i \(0.725447\pi\)
\(810\) 0 0
\(811\) 30.4268 1.06843 0.534215 0.845349i \(-0.320607\pi\)
0.534215 + 0.845349i \(0.320607\pi\)
\(812\) 51.0484 1.79145
\(813\) 60.4596 2.12041
\(814\) 49.4726 1.73402
\(815\) 0 0
\(816\) 0 0
\(817\) 26.3484 0.921814
\(818\) −79.6227 −2.78394
\(819\) 44.9147 1.56945
\(820\) 0 0
\(821\) −2.43436 −0.0849596 −0.0424798 0.999097i \(-0.513526\pi\)
−0.0424798 + 0.999097i \(0.513526\pi\)
\(822\) 68.6266 2.39363
\(823\) −30.1177 −1.04984 −0.524918 0.851153i \(-0.675904\pi\)
−0.524918 + 0.851153i \(0.675904\pi\)
\(824\) 9.23103 0.321578
\(825\) 0 0
\(826\) 85.4674 2.97379
\(827\) −17.7944 −0.618771 −0.309385 0.950937i \(-0.600123\pi\)
−0.309385 + 0.950937i \(0.600123\pi\)
\(828\) 11.2189 0.389885
\(829\) 27.9359 0.970254 0.485127 0.874444i \(-0.338773\pi\)
0.485127 + 0.874444i \(0.338773\pi\)
\(830\) 0 0
\(831\) 14.5470 0.504629
\(832\) −58.1863 −2.01725
\(833\) 0 0
\(834\) −53.6902 −1.85914
\(835\) 0 0
\(836\) 69.0429 2.38790
\(837\) 4.76536 0.164715
\(838\) 53.6441 1.85311
\(839\) 40.4717 1.39724 0.698618 0.715494i \(-0.253799\pi\)
0.698618 + 0.715494i \(0.253799\pi\)
\(840\) 0 0
\(841\) 6.16706 0.212657
\(842\) −30.9221 −1.06565
\(843\) 1.62253 0.0558828
\(844\) −74.2047 −2.55423
\(845\) 0 0
\(846\) 23.5326 0.809066
\(847\) 54.2628 1.86449
\(848\) 8.20258 0.281678
\(849\) −11.5098 −0.395016
\(850\) 0 0
\(851\) 5.24440 0.179776
\(852\) 83.6792 2.86680
\(853\) 7.32217 0.250706 0.125353 0.992112i \(-0.459994\pi\)
0.125353 + 0.992112i \(0.459994\pi\)
\(854\) −33.3958 −1.14278
\(855\) 0 0
\(856\) 10.0422 0.343234
\(857\) 4.74086 0.161945 0.0809724 0.996716i \(-0.474197\pi\)
0.0809724 + 0.996716i \(0.474197\pi\)
\(858\) −134.679 −4.59787
\(859\) 8.14829 0.278016 0.139008 0.990291i \(-0.455609\pi\)
0.139008 + 0.990291i \(0.455609\pi\)
\(860\) 0 0
\(861\) 3.07776 0.104890
\(862\) 38.4640 1.31009
\(863\) −15.8044 −0.537988 −0.268994 0.963142i \(-0.586691\pi\)
−0.268994 + 0.963142i \(0.586691\pi\)
\(864\) 3.54182 0.120495
\(865\) 0 0
\(866\) 24.5242 0.833366
\(867\) 0 0
\(868\) −84.7550 −2.87677
\(869\) −89.6166 −3.04003
\(870\) 0 0
\(871\) −31.4074 −1.06420
\(872\) 7.12695 0.241349
\(873\) −7.26559 −0.245903
\(874\) 12.5177 0.423417
\(875\) 0 0
\(876\) −76.2989 −2.57790
\(877\) −22.3063 −0.753231 −0.376616 0.926370i \(-0.622912\pi\)
−0.376616 + 0.926370i \(0.622912\pi\)
\(878\) 26.4254 0.891816
\(879\) 8.61570 0.290600
\(880\) 0 0
\(881\) −9.67865 −0.326082 −0.163041 0.986619i \(-0.552130\pi\)
−0.163041 + 0.986619i \(0.552130\pi\)
\(882\) 16.4513 0.553944
\(883\) −21.7255 −0.731120 −0.365560 0.930788i \(-0.619123\pi\)
−0.365560 + 0.930788i \(0.619123\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −86.8974 −2.91938
\(887\) 2.17244 0.0729434 0.0364717 0.999335i \(-0.488388\pi\)
0.0364717 + 0.999335i \(0.488388\pi\)
\(888\) −18.7317 −0.628593
\(889\) −25.7244 −0.862768
\(890\) 0 0
\(891\) −44.9254 −1.50506
\(892\) 56.3981 1.88835
\(893\) 15.3521 0.513738
\(894\) 49.3196 1.64950
\(895\) 0 0
\(896\) −40.1384 −1.34093
\(897\) −14.2768 −0.476688
\(898\) −25.6264 −0.855165
\(899\) −58.3874 −1.94733
\(900\) 0 0
\(901\) 0 0
\(902\) −4.75928 −0.158467
\(903\) −43.8392 −1.45888
\(904\) −1.63557 −0.0543982
\(905\) 0 0
\(906\) 32.6380 1.08433
\(907\) 25.8704 0.859012 0.429506 0.903064i \(-0.358688\pi\)
0.429506 + 0.903064i \(0.358688\pi\)
\(908\) 37.4284 1.24210
\(909\) 25.9539 0.860837
\(910\) 0 0
\(911\) 36.1769 1.19859 0.599297 0.800527i \(-0.295447\pi\)
0.599297 + 0.800527i \(0.295447\pi\)
\(912\) 19.3874 0.641982
\(913\) −22.0611 −0.730117
\(914\) −44.3606 −1.46732
\(915\) 0 0
\(916\) 28.2243 0.932558
\(917\) 4.11883 0.136016
\(918\) 0 0
\(919\) 52.2475 1.72349 0.861743 0.507346i \(-0.169373\pi\)
0.861743 + 0.507346i \(0.169373\pi\)
\(920\) 0 0
\(921\) −49.1862 −1.62074
\(922\) 6.09592 0.200759
\(923\) −54.9150 −1.80755
\(924\) −114.875 −3.77912
\(925\) 0 0
\(926\) −74.2138 −2.43882
\(927\) 16.4740 0.541078
\(928\) −43.3960 −1.42454
\(929\) −19.6884 −0.645955 −0.322978 0.946407i \(-0.604684\pi\)
−0.322978 + 0.946407i \(0.604684\pi\)
\(930\) 0 0
\(931\) 10.7324 0.351741
\(932\) −14.4197 −0.472333
\(933\) 65.2994 2.13781
\(934\) −90.2840 −2.95418
\(935\) 0 0
\(936\) 26.2969 0.859543
\(937\) −15.0805 −0.492657 −0.246328 0.969186i \(-0.579224\pi\)
−0.246328 + 0.969186i \(0.579224\pi\)
\(938\) −45.8177 −1.49600
\(939\) 57.2004 1.86666
\(940\) 0 0
\(941\) 12.2054 0.397886 0.198943 0.980011i \(-0.436249\pi\)
0.198943 + 0.980011i \(0.436249\pi\)
\(942\) −47.5718 −1.54997
\(943\) −0.504513 −0.0164292
\(944\) −21.6987 −0.706232
\(945\) 0 0
\(946\) 67.7904 2.20406
\(947\) −23.4424 −0.761776 −0.380888 0.924621i \(-0.624382\pi\)
−0.380888 + 0.924621i \(0.624382\pi\)
\(948\) 117.129 3.80416
\(949\) 50.0717 1.62540
\(950\) 0 0
\(951\) −27.2329 −0.883088
\(952\) 0 0
\(953\) 50.7165 1.64287 0.821435 0.570302i \(-0.193174\pi\)
0.821435 + 0.570302i \(0.193174\pi\)
\(954\) −33.7586 −1.09298
\(955\) 0 0
\(956\) −37.6363 −1.21724
\(957\) −79.1372 −2.55814
\(958\) 23.7600 0.767652
\(959\) −38.4143 −1.24046
\(960\) 0 0
\(961\) 65.9397 2.12709
\(962\) 42.4339 1.36813
\(963\) 17.9216 0.577517
\(964\) 11.6174 0.374170
\(965\) 0 0
\(966\) −20.8272 −0.670105
\(967\) −41.6170 −1.33831 −0.669157 0.743121i \(-0.733344\pi\)
−0.669157 + 0.743121i \(0.733344\pi\)
\(968\) 31.7702 1.02113
\(969\) 0 0
\(970\) 0 0
\(971\) 19.2045 0.616302 0.308151 0.951337i \(-0.400290\pi\)
0.308151 + 0.951337i \(0.400290\pi\)
\(972\) 62.8057 2.01449
\(973\) 30.0535 0.963472
\(974\) −37.8617 −1.21317
\(975\) 0 0
\(976\) 8.47862 0.271394
\(977\) 21.0264 0.672696 0.336348 0.941738i \(-0.390808\pi\)
0.336348 + 0.941738i \(0.390808\pi\)
\(978\) −4.65618 −0.148888
\(979\) −55.8390 −1.78462
\(980\) 0 0
\(981\) 12.7190 0.406087
\(982\) −62.8587 −2.00590
\(983\) 3.77964 0.120552 0.0602758 0.998182i \(-0.480802\pi\)
0.0602758 + 0.998182i \(0.480802\pi\)
\(984\) 1.80199 0.0574454
\(985\) 0 0
\(986\) 0 0
\(987\) −25.5432 −0.813049
\(988\) 59.2198 1.88403
\(989\) 7.18619 0.228508
\(990\) 0 0
\(991\) −35.7886 −1.13686 −0.568431 0.822731i \(-0.692449\pi\)
−0.568431 + 0.822731i \(0.692449\pi\)
\(992\) 72.0497 2.28758
\(993\) −27.6356 −0.876990
\(994\) −80.1111 −2.54097
\(995\) 0 0
\(996\) 28.8338 0.913635
\(997\) 4.92887 0.156099 0.0780494 0.996949i \(-0.475131\pi\)
0.0780494 + 0.996949i \(0.475131\pi\)
\(998\) 23.0602 0.729958
\(999\) −2.03503 −0.0643855
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7225.2.a.y.1.4 5
5.4 even 2 7225.2.a.x.1.2 5
17.16 even 2 425.2.a.j.1.4 yes 5
51.50 odd 2 3825.2.a.bl.1.2 5
68.67 odd 2 6800.2.a.cd.1.1 5
85.33 odd 4 425.2.b.f.324.3 10
85.67 odd 4 425.2.b.f.324.8 10
85.84 even 2 425.2.a.i.1.2 5
255.254 odd 2 3825.2.a.bq.1.4 5
340.339 odd 2 6800.2.a.bz.1.5 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
425.2.a.i.1.2 5 85.84 even 2
425.2.a.j.1.4 yes 5 17.16 even 2
425.2.b.f.324.3 10 85.33 odd 4
425.2.b.f.324.8 10 85.67 odd 4
3825.2.a.bl.1.2 5 51.50 odd 2
3825.2.a.bq.1.4 5 255.254 odd 2
6800.2.a.bz.1.5 5 340.339 odd 2
6800.2.a.cd.1.1 5 68.67 odd 2
7225.2.a.x.1.2 5 5.4 even 2
7225.2.a.y.1.4 5 1.1 even 1 trivial