Properties

Label 6800.2.a.bz.1.5
Level $6800$
Weight $2$
Character 6800.1
Self dual yes
Analytic conductor $54.298$
Analytic rank $1$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6800,2,Mod(1,6800)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6800, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6800.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 6800 = 2^{4} \cdot 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6800.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,0,-1,0,0,0,-1,0,6,0,-4,0,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(54.2982733745\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: 5.5.1893456.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 10x^{3} + 10x^{2} + 23x - 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 425)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(-2.48887\) of defining polynomial
Character \(\chi\) \(=\) 6800.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.48887 q^{3} -3.05725 q^{7} +3.19447 q^{9} +5.36180 q^{11} -4.59895 q^{13} +1.00000 q^{17} -4.57325 q^{19} -7.60910 q^{21} -1.24730 q^{23} +0.483999 q^{27} -5.93018 q^{29} -9.84580 q^{31} +13.3448 q^{33} +4.20461 q^{37} -11.4462 q^{39} +0.404485 q^{41} +5.76142 q^{43} +3.35693 q^{47} +2.34678 q^{49} +2.48887 q^{51} +4.81568 q^{53} -11.3822 q^{57} -12.7392 q^{59} +4.97774 q^{61} -9.76628 q^{63} -6.82926 q^{67} -3.10436 q^{69} -11.9408 q^{71} +10.8876 q^{73} -16.3924 q^{77} -16.7139 q^{79} -8.37879 q^{81} -4.11450 q^{83} -14.7594 q^{87} -10.4142 q^{89} +14.0601 q^{91} -24.5049 q^{93} -2.27443 q^{97} +17.1281 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - q^{3} - q^{7} + 6 q^{9} - 4 q^{11} - 3 q^{13} + 5 q^{17} - 6 q^{19} - 5 q^{21} - 4 q^{23} + 5 q^{27} + 2 q^{29} - 21 q^{31} + 12 q^{33} - 2 q^{37} - 23 q^{39} - 8 q^{41} + 4 q^{43} + 2 q^{47} + 10 q^{49}+ \cdots + 14 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.48887 1.43695 0.718474 0.695553i \(-0.244841\pi\)
0.718474 + 0.695553i \(0.244841\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −3.05725 −1.15553 −0.577766 0.816202i \(-0.696075\pi\)
−0.577766 + 0.816202i \(0.696075\pi\)
\(8\) 0 0
\(9\) 3.19447 1.06482
\(10\) 0 0
\(11\) 5.36180 1.61664 0.808322 0.588741i \(-0.200376\pi\)
0.808322 + 0.588741i \(0.200376\pi\)
\(12\) 0 0
\(13\) −4.59895 −1.27552 −0.637760 0.770235i \(-0.720139\pi\)
−0.637760 + 0.770235i \(0.720139\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 1.00000 0.242536
\(18\) 0 0
\(19\) −4.57325 −1.04918 −0.524588 0.851356i \(-0.675781\pi\)
−0.524588 + 0.851356i \(0.675781\pi\)
\(20\) 0 0
\(21\) −7.60910 −1.66044
\(22\) 0 0
\(23\) −1.24730 −0.260079 −0.130040 0.991509i \(-0.541510\pi\)
−0.130040 + 0.991509i \(0.541510\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 0.483999 0.0931457
\(28\) 0 0
\(29\) −5.93018 −1.10121 −0.550604 0.834767i \(-0.685602\pi\)
−0.550604 + 0.834767i \(0.685602\pi\)
\(30\) 0 0
\(31\) −9.84580 −1.76836 −0.884179 0.467149i \(-0.845281\pi\)
−0.884179 + 0.467149i \(0.845281\pi\)
\(32\) 0 0
\(33\) 13.3448 2.32303
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 4.20461 0.691234 0.345617 0.938376i \(-0.387670\pi\)
0.345617 + 0.938376i \(0.387670\pi\)
\(38\) 0 0
\(39\) −11.4462 −1.83286
\(40\) 0 0
\(41\) 0.404485 0.0631699 0.0315850 0.999501i \(-0.489945\pi\)
0.0315850 + 0.999501i \(0.489945\pi\)
\(42\) 0 0
\(43\) 5.76142 0.878608 0.439304 0.898339i \(-0.355225\pi\)
0.439304 + 0.898339i \(0.355225\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 3.35693 0.489659 0.244829 0.969566i \(-0.421268\pi\)
0.244829 + 0.969566i \(0.421268\pi\)
\(48\) 0 0
\(49\) 2.34678 0.335255
\(50\) 0 0
\(51\) 2.48887 0.348511
\(52\) 0 0
\(53\) 4.81568 0.661484 0.330742 0.943721i \(-0.392701\pi\)
0.330742 + 0.943721i \(0.392701\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −11.3822 −1.50761
\(58\) 0 0
\(59\) −12.7392 −1.65850 −0.829248 0.558881i \(-0.811231\pi\)
−0.829248 + 0.558881i \(0.811231\pi\)
\(60\) 0 0
\(61\) 4.97774 0.637334 0.318667 0.947867i \(-0.396765\pi\)
0.318667 + 0.947867i \(0.396765\pi\)
\(62\) 0 0
\(63\) −9.76628 −1.23044
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −6.82926 −0.834327 −0.417163 0.908831i \(-0.636976\pi\)
−0.417163 + 0.908831i \(0.636976\pi\)
\(68\) 0 0
\(69\) −3.10436 −0.373721
\(70\) 0 0
\(71\) −11.9408 −1.41711 −0.708555 0.705656i \(-0.750652\pi\)
−0.708555 + 0.705656i \(0.750652\pi\)
\(72\) 0 0
\(73\) 10.8876 1.27430 0.637150 0.770740i \(-0.280113\pi\)
0.637150 + 0.770740i \(0.280113\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −16.3924 −1.86808
\(78\) 0 0
\(79\) −16.7139 −1.88046 −0.940230 0.340539i \(-0.889391\pi\)
−0.940230 + 0.340539i \(0.889391\pi\)
\(80\) 0 0
\(81\) −8.37879 −0.930976
\(82\) 0 0
\(83\) −4.11450 −0.451625 −0.225813 0.974171i \(-0.572504\pi\)
−0.225813 + 0.974171i \(0.572504\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −14.7594 −1.58238
\(88\) 0 0
\(89\) −10.4142 −1.10391 −0.551953 0.833875i \(-0.686117\pi\)
−0.551953 + 0.833875i \(0.686117\pi\)
\(90\) 0 0
\(91\) 14.0601 1.47390
\(92\) 0 0
\(93\) −24.5049 −2.54104
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −2.27443 −0.230933 −0.115467 0.993311i \(-0.536836\pi\)
−0.115467 + 0.993311i \(0.536836\pi\)
\(98\) 0 0
\(99\) 17.1281 1.72144
\(100\) 0 0
\(101\) 8.12465 0.808433 0.404216 0.914663i \(-0.367544\pi\)
0.404216 + 0.914663i \(0.367544\pi\)
\(102\) 0 0
\(103\) 5.15706 0.508140 0.254070 0.967186i \(-0.418231\pi\)
0.254070 + 0.967186i \(0.418231\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −5.61021 −0.542360 −0.271180 0.962529i \(-0.587414\pi\)
−0.271180 + 0.962529i \(0.587414\pi\)
\(108\) 0 0
\(109\) −3.98158 −0.381366 −0.190683 0.981652i \(-0.561070\pi\)
−0.190683 + 0.981652i \(0.561070\pi\)
\(110\) 0 0
\(111\) 10.4647 0.993268
\(112\) 0 0
\(113\) −0.913734 −0.0859569 −0.0429785 0.999076i \(-0.513685\pi\)
−0.0429785 + 0.999076i \(0.513685\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −14.6912 −1.35820
\(118\) 0 0
\(119\) −3.05725 −0.280258
\(120\) 0 0
\(121\) 17.7489 1.61354
\(122\) 0 0
\(123\) 1.00671 0.0907720
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −8.41422 −0.746642 −0.373321 0.927702i \(-0.621781\pi\)
−0.373321 + 0.927702i \(0.621781\pi\)
\(128\) 0 0
\(129\) 14.3394 1.26251
\(130\) 0 0
\(131\) 1.34723 0.117708 0.0588542 0.998267i \(-0.481255\pi\)
0.0588542 + 0.998267i \(0.481255\pi\)
\(132\) 0 0
\(133\) 13.9816 1.21236
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 12.5650 1.07350 0.536749 0.843742i \(-0.319652\pi\)
0.536749 + 0.843742i \(0.319652\pi\)
\(138\) 0 0
\(139\) 9.83024 0.833790 0.416895 0.908955i \(-0.363118\pi\)
0.416895 + 0.908955i \(0.363118\pi\)
\(140\) 0 0
\(141\) 8.35496 0.703614
\(142\) 0 0
\(143\) −24.6586 −2.06206
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 5.84084 0.481744
\(148\) 0 0
\(149\) −9.03003 −0.739769 −0.369884 0.929078i \(-0.620603\pi\)
−0.369884 + 0.929078i \(0.620603\pi\)
\(150\) 0 0
\(151\) 5.97576 0.486301 0.243150 0.969989i \(-0.421819\pi\)
0.243150 + 0.969989i \(0.421819\pi\)
\(152\) 0 0
\(153\) 3.19447 0.258257
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −8.71002 −0.695135 −0.347568 0.937655i \(-0.612992\pi\)
−0.347568 + 0.937655i \(0.612992\pi\)
\(158\) 0 0
\(159\) 11.9856 0.950519
\(160\) 0 0
\(161\) 3.81330 0.300530
\(162\) 0 0
\(163\) −0.852508 −0.0667736 −0.0333868 0.999443i \(-0.510629\pi\)
−0.0333868 + 0.999443i \(0.510629\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −1.32122 −0.102239 −0.0511195 0.998693i \(-0.516279\pi\)
−0.0511195 + 0.998693i \(0.516279\pi\)
\(168\) 0 0
\(169\) 8.15035 0.626950
\(170\) 0 0
\(171\) −14.6091 −1.11719
\(172\) 0 0
\(173\) −7.49672 −0.569965 −0.284983 0.958533i \(-0.591988\pi\)
−0.284983 + 0.958533i \(0.591988\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −31.7061 −2.38317
\(178\) 0 0
\(179\) −15.9913 −1.19525 −0.597624 0.801777i \(-0.703888\pi\)
−0.597624 + 0.801777i \(0.703888\pi\)
\(180\) 0 0
\(181\) −11.0136 −0.818633 −0.409317 0.912392i \(-0.634233\pi\)
−0.409317 + 0.912392i \(0.634233\pi\)
\(182\) 0 0
\(183\) 12.3889 0.915816
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 5.36180 0.392094
\(188\) 0 0
\(189\) −1.47971 −0.107633
\(190\) 0 0
\(191\) −8.49870 −0.614944 −0.307472 0.951557i \(-0.599483\pi\)
−0.307472 + 0.951557i \(0.599483\pi\)
\(192\) 0 0
\(193\) 18.8634 1.35782 0.678908 0.734223i \(-0.262453\pi\)
0.678908 + 0.734223i \(0.262453\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 10.7750 0.767687 0.383843 0.923398i \(-0.374600\pi\)
0.383843 + 0.923398i \(0.374600\pi\)
\(198\) 0 0
\(199\) 12.7488 0.903735 0.451868 0.892085i \(-0.350758\pi\)
0.451868 + 0.892085i \(0.350758\pi\)
\(200\) 0 0
\(201\) −16.9971 −1.19889
\(202\) 0 0
\(203\) 18.1301 1.27248
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −3.98445 −0.276938
\(208\) 0 0
\(209\) −24.5209 −1.69614
\(210\) 0 0
\(211\) −26.3541 −1.81429 −0.907146 0.420817i \(-0.861743\pi\)
−0.907146 + 0.420817i \(0.861743\pi\)
\(212\) 0 0
\(213\) −29.7190 −2.03631
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 30.1011 2.04339
\(218\) 0 0
\(219\) 27.0979 1.83110
\(220\) 0 0
\(221\) −4.59895 −0.309359
\(222\) 0 0
\(223\) 20.0300 1.34131 0.670655 0.741769i \(-0.266013\pi\)
0.670655 + 0.741769i \(0.266013\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −13.2928 −0.882277 −0.441138 0.897439i \(-0.645425\pi\)
−0.441138 + 0.897439i \(0.645425\pi\)
\(228\) 0 0
\(229\) 10.0240 0.662404 0.331202 0.943560i \(-0.392546\pi\)
0.331202 + 0.943560i \(0.392546\pi\)
\(230\) 0 0
\(231\) −40.7984 −2.68434
\(232\) 0 0
\(233\) −5.12121 −0.335502 −0.167751 0.985829i \(-0.553650\pi\)
−0.167751 + 0.985829i \(0.553650\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −41.5987 −2.70213
\(238\) 0 0
\(239\) 13.3667 0.864618 0.432309 0.901726i \(-0.357699\pi\)
0.432309 + 0.901726i \(0.357699\pi\)
\(240\) 0 0
\(241\) −4.12595 −0.265776 −0.132888 0.991131i \(-0.542425\pi\)
−0.132888 + 0.991131i \(0.542425\pi\)
\(242\) 0 0
\(243\) −22.3057 −1.43091
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 21.0322 1.33824
\(248\) 0 0
\(249\) −10.2405 −0.648962
\(250\) 0 0
\(251\) 7.71502 0.486968 0.243484 0.969905i \(-0.421710\pi\)
0.243484 + 0.969905i \(0.421710\pi\)
\(252\) 0 0
\(253\) −6.68775 −0.420456
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −18.4651 −1.15182 −0.575912 0.817512i \(-0.695353\pi\)
−0.575912 + 0.817512i \(0.695353\pi\)
\(258\) 0 0
\(259\) −12.8546 −0.798743
\(260\) 0 0
\(261\) −18.9438 −1.17259
\(262\) 0 0
\(263\) 18.7644 1.15707 0.578533 0.815659i \(-0.303626\pi\)
0.578533 + 0.815659i \(0.303626\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −25.9196 −1.58626
\(268\) 0 0
\(269\) 14.7847 0.901441 0.450721 0.892665i \(-0.351167\pi\)
0.450721 + 0.892665i \(0.351167\pi\)
\(270\) 0 0
\(271\) 24.2920 1.47563 0.737817 0.675001i \(-0.235857\pi\)
0.737817 + 0.675001i \(0.235857\pi\)
\(272\) 0 0
\(273\) 34.9939 2.11792
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −5.84481 −0.351181 −0.175590 0.984463i \(-0.556183\pi\)
−0.175590 + 0.984463i \(0.556183\pi\)
\(278\) 0 0
\(279\) −31.4521 −1.88299
\(280\) 0 0
\(281\) −0.651914 −0.0388899 −0.0194450 0.999811i \(-0.506190\pi\)
−0.0194450 + 0.999811i \(0.506190\pi\)
\(282\) 0 0
\(283\) −4.62452 −0.274899 −0.137450 0.990509i \(-0.543890\pi\)
−0.137450 + 0.990509i \(0.543890\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −1.23661 −0.0729949
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) −5.66075 −0.331839
\(292\) 0 0
\(293\) 3.46169 0.202234 0.101117 0.994875i \(-0.467758\pi\)
0.101117 + 0.994875i \(0.467758\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 2.59511 0.150583
\(298\) 0 0
\(299\) 5.73626 0.331736
\(300\) 0 0
\(301\) −17.6141 −1.01526
\(302\) 0 0
\(303\) 20.2212 1.16168
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 19.7625 1.12790 0.563952 0.825808i \(-0.309280\pi\)
0.563952 + 0.825808i \(0.309280\pi\)
\(308\) 0 0
\(309\) 12.8352 0.730171
\(310\) 0 0
\(311\) −26.2366 −1.48774 −0.743871 0.668324i \(-0.767012\pi\)
−0.743871 + 0.668324i \(0.767012\pi\)
\(312\) 0 0
\(313\) −22.9825 −1.29905 −0.649523 0.760342i \(-0.725031\pi\)
−0.649523 + 0.760342i \(0.725031\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 10.9419 0.614558 0.307279 0.951619i \(-0.400582\pi\)
0.307279 + 0.951619i \(0.400582\pi\)
\(318\) 0 0
\(319\) −31.7964 −1.78026
\(320\) 0 0
\(321\) −13.9631 −0.779343
\(322\) 0 0
\(323\) −4.57325 −0.254463
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −9.90963 −0.548004
\(328\) 0 0
\(329\) −10.2630 −0.565816
\(330\) 0 0
\(331\) −11.1037 −0.610314 −0.305157 0.952302i \(-0.598709\pi\)
−0.305157 + 0.952302i \(0.598709\pi\)
\(332\) 0 0
\(333\) 13.4315 0.736041
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 30.0360 1.63617 0.818083 0.575101i \(-0.195037\pi\)
0.818083 + 0.575101i \(0.195037\pi\)
\(338\) 0 0
\(339\) −2.27416 −0.123516
\(340\) 0 0
\(341\) −52.7912 −2.85880
\(342\) 0 0
\(343\) 14.2260 0.768134
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −26.4956 −1.42236 −0.711179 0.703011i \(-0.751839\pi\)
−0.711179 + 0.703011i \(0.751839\pi\)
\(348\) 0 0
\(349\) 11.8225 0.632846 0.316423 0.948618i \(-0.397518\pi\)
0.316423 + 0.948618i \(0.397518\pi\)
\(350\) 0 0
\(351\) −2.22589 −0.118809
\(352\) 0 0
\(353\) 11.3987 0.606690 0.303345 0.952881i \(-0.401897\pi\)
0.303345 + 0.952881i \(0.401897\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −7.60910 −0.402716
\(358\) 0 0
\(359\) −12.2135 −0.644601 −0.322301 0.946637i \(-0.604456\pi\)
−0.322301 + 0.946637i \(0.604456\pi\)
\(360\) 0 0
\(361\) 1.91463 0.100770
\(362\) 0 0
\(363\) 44.1746 2.31857
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 6.91651 0.361039 0.180519 0.983571i \(-0.442222\pi\)
0.180519 + 0.983571i \(0.442222\pi\)
\(368\) 0 0
\(369\) 1.29211 0.0672647
\(370\) 0 0
\(371\) −14.7227 −0.764367
\(372\) 0 0
\(373\) −27.3487 −1.41606 −0.708030 0.706183i \(-0.750416\pi\)
−0.708030 + 0.706183i \(0.750416\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 27.2726 1.40461
\(378\) 0 0
\(379\) −14.9563 −0.768255 −0.384127 0.923280i \(-0.625498\pi\)
−0.384127 + 0.923280i \(0.625498\pi\)
\(380\) 0 0
\(381\) −20.9419 −1.07289
\(382\) 0 0
\(383\) −28.4094 −1.45165 −0.725826 0.687879i \(-0.758542\pi\)
−0.725826 + 0.687879i \(0.758542\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 18.4046 0.935561
\(388\) 0 0
\(389\) −22.2240 −1.12680 −0.563401 0.826184i \(-0.690507\pi\)
−0.563401 + 0.826184i \(0.690507\pi\)
\(390\) 0 0
\(391\) −1.24730 −0.0630785
\(392\) 0 0
\(393\) 3.35309 0.169141
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 1.76615 0.0886406 0.0443203 0.999017i \(-0.485888\pi\)
0.0443203 + 0.999017i \(0.485888\pi\)
\(398\) 0 0
\(399\) 34.7983 1.74209
\(400\) 0 0
\(401\) −4.79423 −0.239412 −0.119706 0.992809i \(-0.538195\pi\)
−0.119706 + 0.992809i \(0.538195\pi\)
\(402\) 0 0
\(403\) 45.2803 2.25557
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 22.5443 1.11748
\(408\) 0 0
\(409\) −36.2834 −1.79410 −0.897050 0.441929i \(-0.854294\pi\)
−0.897050 + 0.441929i \(0.854294\pi\)
\(410\) 0 0
\(411\) 31.2726 1.54256
\(412\) 0 0
\(413\) 38.9468 1.91645
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 24.4662 1.19811
\(418\) 0 0
\(419\) 24.4452 1.19423 0.597113 0.802157i \(-0.296314\pi\)
0.597113 + 0.802157i \(0.296314\pi\)
\(420\) 0 0
\(421\) −14.0909 −0.686750 −0.343375 0.939198i \(-0.611570\pi\)
−0.343375 + 0.939198i \(0.611570\pi\)
\(422\) 0 0
\(423\) 10.7236 0.521399
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −15.2182 −0.736460
\(428\) 0 0
\(429\) −61.3721 −2.96307
\(430\) 0 0
\(431\) 17.5277 0.844282 0.422141 0.906530i \(-0.361279\pi\)
0.422141 + 0.906530i \(0.361279\pi\)
\(432\) 0 0
\(433\) −11.1755 −0.537059 −0.268530 0.963271i \(-0.586538\pi\)
−0.268530 + 0.963271i \(0.586538\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 5.70420 0.272869
\(438\) 0 0
\(439\) 12.0419 0.574727 0.287363 0.957822i \(-0.407221\pi\)
0.287363 + 0.957822i \(0.407221\pi\)
\(440\) 0 0
\(441\) 7.49672 0.356987
\(442\) 0 0
\(443\) −39.5984 −1.88138 −0.940689 0.339269i \(-0.889820\pi\)
−0.940689 + 0.339269i \(0.889820\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −22.4746 −1.06301
\(448\) 0 0
\(449\) 11.6778 0.551107 0.275554 0.961286i \(-0.411139\pi\)
0.275554 + 0.961286i \(0.411139\pi\)
\(450\) 0 0
\(451\) 2.16877 0.102123
\(452\) 0 0
\(453\) 14.8729 0.698789
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 20.2148 0.945606 0.472803 0.881168i \(-0.343242\pi\)
0.472803 + 0.881168i \(0.343242\pi\)
\(458\) 0 0
\(459\) 0.483999 0.0225912
\(460\) 0 0
\(461\) 2.77786 0.129378 0.0646890 0.997905i \(-0.479394\pi\)
0.0646890 + 0.997905i \(0.479394\pi\)
\(462\) 0 0
\(463\) −33.8186 −1.57168 −0.785842 0.618427i \(-0.787770\pi\)
−0.785842 + 0.618427i \(0.787770\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −41.1417 −1.90381 −0.951904 0.306395i \(-0.900877\pi\)
−0.951904 + 0.306395i \(0.900877\pi\)
\(468\) 0 0
\(469\) 20.8788 0.964092
\(470\) 0 0
\(471\) −21.6781 −0.998874
\(472\) 0 0
\(473\) 30.8916 1.42039
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 15.3835 0.704363
\(478\) 0 0
\(479\) 10.8273 0.494710 0.247355 0.968925i \(-0.420439\pi\)
0.247355 + 0.968925i \(0.420439\pi\)
\(480\) 0 0
\(481\) −19.3368 −0.881682
\(482\) 0 0
\(483\) 9.49080 0.431846
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 17.2533 0.781820 0.390910 0.920429i \(-0.372160\pi\)
0.390910 + 0.920429i \(0.372160\pi\)
\(488\) 0 0
\(489\) −2.12178 −0.0959502
\(490\) 0 0
\(491\) 28.6442 1.29269 0.646347 0.763043i \(-0.276296\pi\)
0.646347 + 0.763043i \(0.276296\pi\)
\(492\) 0 0
\(493\) −5.93018 −0.267082
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 36.5060 1.63752
\(498\) 0 0
\(499\) 10.5083 0.470418 0.235209 0.971945i \(-0.424423\pi\)
0.235209 + 0.971945i \(0.424423\pi\)
\(500\) 0 0
\(501\) −3.28834 −0.146912
\(502\) 0 0
\(503\) −14.7844 −0.659206 −0.329603 0.944120i \(-0.606915\pi\)
−0.329603 + 0.944120i \(0.606915\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 20.2851 0.900895
\(508\) 0 0
\(509\) 32.5112 1.44103 0.720517 0.693438i \(-0.243905\pi\)
0.720517 + 0.693438i \(0.243905\pi\)
\(510\) 0 0
\(511\) −33.2862 −1.47250
\(512\) 0 0
\(513\) −2.21345 −0.0977263
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 17.9992 0.791603
\(518\) 0 0
\(519\) −18.6584 −0.819011
\(520\) 0 0
\(521\) 40.4949 1.77411 0.887057 0.461660i \(-0.152746\pi\)
0.887057 + 0.461660i \(0.152746\pi\)
\(522\) 0 0
\(523\) 19.7050 0.861640 0.430820 0.902438i \(-0.358224\pi\)
0.430820 + 0.902438i \(0.358224\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −9.84580 −0.428890
\(528\) 0 0
\(529\) −21.4443 −0.932359
\(530\) 0 0
\(531\) −40.6948 −1.76600
\(532\) 0 0
\(533\) −1.86021 −0.0805745
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −39.8003 −1.71751
\(538\) 0 0
\(539\) 12.5830 0.541988
\(540\) 0 0
\(541\) 21.0224 0.903824 0.451912 0.892062i \(-0.350742\pi\)
0.451912 + 0.892062i \(0.350742\pi\)
\(542\) 0 0
\(543\) −27.4114 −1.17633
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 25.1379 1.07482 0.537410 0.843321i \(-0.319403\pi\)
0.537410 + 0.843321i \(0.319403\pi\)
\(548\) 0 0
\(549\) 15.9012 0.678647
\(550\) 0 0
\(551\) 27.1202 1.15536
\(552\) 0 0
\(553\) 51.0986 2.17293
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −22.9470 −0.972297 −0.486149 0.873876i \(-0.661599\pi\)
−0.486149 + 0.873876i \(0.661599\pi\)
\(558\) 0 0
\(559\) −26.4965 −1.12068
\(560\) 0 0
\(561\) 13.3448 0.563418
\(562\) 0 0
\(563\) 34.8974 1.47075 0.735374 0.677661i \(-0.237006\pi\)
0.735374 + 0.677661i \(0.237006\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 25.6161 1.07577
\(568\) 0 0
\(569\) 6.87405 0.288175 0.144088 0.989565i \(-0.453975\pi\)
0.144088 + 0.989565i \(0.453975\pi\)
\(570\) 0 0
\(571\) −24.7188 −1.03445 −0.517224 0.855850i \(-0.673035\pi\)
−0.517224 + 0.855850i \(0.673035\pi\)
\(572\) 0 0
\(573\) −21.1521 −0.883643
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −4.89908 −0.203951 −0.101976 0.994787i \(-0.532516\pi\)
−0.101976 + 0.994787i \(0.532516\pi\)
\(578\) 0 0
\(579\) 46.9485 1.95111
\(580\) 0 0
\(581\) 12.5791 0.521868
\(582\) 0 0
\(583\) 25.8207 1.06938
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 23.8761 0.985471 0.492736 0.870179i \(-0.335997\pi\)
0.492736 + 0.870179i \(0.335997\pi\)
\(588\) 0 0
\(589\) 45.0273 1.85532
\(590\) 0 0
\(591\) 26.8175 1.10313
\(592\) 0 0
\(593\) 37.8742 1.55531 0.777654 0.628693i \(-0.216410\pi\)
0.777654 + 0.628693i \(0.216410\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 31.7300 1.29862
\(598\) 0 0
\(599\) −43.9867 −1.79725 −0.898625 0.438718i \(-0.855433\pi\)
−0.898625 + 0.438718i \(0.855433\pi\)
\(600\) 0 0
\(601\) 11.4083 0.465355 0.232678 0.972554i \(-0.425251\pi\)
0.232678 + 0.972554i \(0.425251\pi\)
\(602\) 0 0
\(603\) −21.8158 −0.888410
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −17.4364 −0.707721 −0.353861 0.935298i \(-0.615131\pi\)
−0.353861 + 0.935298i \(0.615131\pi\)
\(608\) 0 0
\(609\) 45.1233 1.82849
\(610\) 0 0
\(611\) −15.4384 −0.624569
\(612\) 0 0
\(613\) 0.620807 0.0250741 0.0125371 0.999921i \(-0.496009\pi\)
0.0125371 + 0.999921i \(0.496009\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −45.0359 −1.81308 −0.906539 0.422123i \(-0.861285\pi\)
−0.906539 + 0.422123i \(0.861285\pi\)
\(618\) 0 0
\(619\) 11.4780 0.461340 0.230670 0.973032i \(-0.425908\pi\)
0.230670 + 0.973032i \(0.425908\pi\)
\(620\) 0 0
\(621\) −0.603691 −0.0242253
\(622\) 0 0
\(623\) 31.8389 1.27560
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) −61.0292 −2.43727
\(628\) 0 0
\(629\) 4.20461 0.167649
\(630\) 0 0
\(631\) 10.9485 0.435853 0.217926 0.975965i \(-0.430071\pi\)
0.217926 + 0.975965i \(0.430071\pi\)
\(632\) 0 0
\(633\) −65.5919 −2.60704
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −10.7927 −0.427624
\(638\) 0 0
\(639\) −38.1444 −1.50897
\(640\) 0 0
\(641\) −1.51186 −0.0597147 −0.0298574 0.999554i \(-0.509505\pi\)
−0.0298574 + 0.999554i \(0.509505\pi\)
\(642\) 0 0
\(643\) 17.7547 0.700179 0.350089 0.936716i \(-0.386151\pi\)
0.350089 + 0.936716i \(0.386151\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 35.1787 1.38302 0.691508 0.722369i \(-0.256947\pi\)
0.691508 + 0.722369i \(0.256947\pi\)
\(648\) 0 0
\(649\) −68.3048 −2.68120
\(650\) 0 0
\(651\) 74.9176 2.93625
\(652\) 0 0
\(653\) 9.99410 0.391099 0.195550 0.980694i \(-0.437351\pi\)
0.195550 + 0.980694i \(0.437351\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 34.7802 1.35690
\(658\) 0 0
\(659\) 23.9165 0.931655 0.465827 0.884876i \(-0.345757\pi\)
0.465827 + 0.884876i \(0.345757\pi\)
\(660\) 0 0
\(661\) 28.6063 1.11266 0.556328 0.830963i \(-0.312210\pi\)
0.556328 + 0.830963i \(0.312210\pi\)
\(662\) 0 0
\(663\) −11.4462 −0.444533
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 7.39670 0.286401
\(668\) 0 0
\(669\) 49.8521 1.92739
\(670\) 0 0
\(671\) 26.6896 1.03034
\(672\) 0 0
\(673\) 12.9564 0.499431 0.249716 0.968319i \(-0.419663\pi\)
0.249716 + 0.968319i \(0.419663\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −23.5326 −0.904430 −0.452215 0.891909i \(-0.649366\pi\)
−0.452215 + 0.891909i \(0.649366\pi\)
\(678\) 0 0
\(679\) 6.95350 0.266851
\(680\) 0 0
\(681\) −33.0841 −1.26779
\(682\) 0 0
\(683\) −25.4677 −0.974495 −0.487247 0.873264i \(-0.661999\pi\)
−0.487247 + 0.873264i \(0.661999\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 24.9484 0.951840
\(688\) 0 0
\(689\) −22.1471 −0.843736
\(690\) 0 0
\(691\) −47.8923 −1.82191 −0.910955 0.412507i \(-0.864653\pi\)
−0.910955 + 0.412507i \(0.864653\pi\)
\(692\) 0 0
\(693\) −52.3649 −1.98918
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0.404485 0.0153210
\(698\) 0 0
\(699\) −12.7460 −0.482099
\(700\) 0 0
\(701\) −5.52783 −0.208783 −0.104392 0.994536i \(-0.533290\pi\)
−0.104392 + 0.994536i \(0.533290\pi\)
\(702\) 0 0
\(703\) −19.2287 −0.725226
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −24.8391 −0.934170
\(708\) 0 0
\(709\) 22.8895 0.859633 0.429817 0.902916i \(-0.358578\pi\)
0.429817 + 0.902916i \(0.358578\pi\)
\(710\) 0 0
\(711\) −53.3920 −2.00236
\(712\) 0 0
\(713\) 12.2806 0.459913
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 33.2679 1.24241
\(718\) 0 0
\(719\) −0.748823 −0.0279264 −0.0139632 0.999903i \(-0.504445\pi\)
−0.0139632 + 0.999903i \(0.504445\pi\)
\(720\) 0 0
\(721\) −15.7664 −0.587172
\(722\) 0 0
\(723\) −10.2690 −0.381906
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 51.8312 1.92231 0.961157 0.276004i \(-0.0890102\pi\)
0.961157 + 0.276004i \(0.0890102\pi\)
\(728\) 0 0
\(729\) −30.3796 −1.12517
\(730\) 0 0
\(731\) 5.76142 0.213094
\(732\) 0 0
\(733\) −0.440590 −0.0162735 −0.00813677 0.999967i \(-0.502590\pi\)
−0.00813677 + 0.999967i \(0.502590\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −36.6171 −1.34881
\(738\) 0 0
\(739\) 30.4658 1.12070 0.560351 0.828255i \(-0.310666\pi\)
0.560351 + 0.828255i \(0.310666\pi\)
\(740\) 0 0
\(741\) 52.3463 1.92299
\(742\) 0 0
\(743\) −15.1434 −0.555557 −0.277779 0.960645i \(-0.589598\pi\)
−0.277779 + 0.960645i \(0.589598\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −13.1436 −0.480901
\(748\) 0 0
\(749\) 17.1518 0.626714
\(750\) 0 0
\(751\) −34.1610 −1.24655 −0.623277 0.782001i \(-0.714199\pi\)
−0.623277 + 0.782001i \(0.714199\pi\)
\(752\) 0 0
\(753\) 19.2017 0.699748
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 20.5792 0.747965 0.373982 0.927436i \(-0.377992\pi\)
0.373982 + 0.927436i \(0.377992\pi\)
\(758\) 0 0
\(759\) −16.6449 −0.604173
\(760\) 0 0
\(761\) −18.8045 −0.681661 −0.340831 0.940125i \(-0.610708\pi\)
−0.340831 + 0.940125i \(0.610708\pi\)
\(762\) 0 0
\(763\) 12.1727 0.440681
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 58.5867 2.11544
\(768\) 0 0
\(769\) −36.5974 −1.31974 −0.659868 0.751382i \(-0.729388\pi\)
−0.659868 + 0.751382i \(0.729388\pi\)
\(770\) 0 0
\(771\) −45.9573 −1.65511
\(772\) 0 0
\(773\) 19.4040 0.697912 0.348956 0.937139i \(-0.386536\pi\)
0.348956 + 0.937139i \(0.386536\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −31.9933 −1.14775
\(778\) 0 0
\(779\) −1.84981 −0.0662764
\(780\) 0 0
\(781\) −64.0240 −2.29096
\(782\) 0 0
\(783\) −2.87020 −0.102573
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −28.7760 −1.02575 −0.512876 0.858462i \(-0.671420\pi\)
−0.512876 + 0.858462i \(0.671420\pi\)
\(788\) 0 0
\(789\) 46.7022 1.66264
\(790\) 0 0
\(791\) 2.79352 0.0993260
\(792\) 0 0
\(793\) −22.8924 −0.812932
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 4.55967 0.161512 0.0807559 0.996734i \(-0.474267\pi\)
0.0807559 + 0.996734i \(0.474267\pi\)
\(798\) 0 0
\(799\) 3.35693 0.118760
\(800\) 0 0
\(801\) −33.2679 −1.17546
\(802\) 0 0
\(803\) 58.3773 2.06009
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 36.7973 1.29532
\(808\) 0 0
\(809\) 37.0052 1.30103 0.650516 0.759493i \(-0.274553\pi\)
0.650516 + 0.759493i \(0.274553\pi\)
\(810\) 0 0
\(811\) 30.4268 1.06843 0.534215 0.845349i \(-0.320607\pi\)
0.534215 + 0.845349i \(0.320607\pi\)
\(812\) 0 0
\(813\) 60.4596 2.12041
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −26.3484 −0.921814
\(818\) 0 0
\(819\) 44.9147 1.56945
\(820\) 0 0
\(821\) 2.43436 0.0849596 0.0424798 0.999097i \(-0.486474\pi\)
0.0424798 + 0.999097i \(0.486474\pi\)
\(822\) 0 0
\(823\) 30.1177 1.04984 0.524918 0.851153i \(-0.324096\pi\)
0.524918 + 0.851153i \(0.324096\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 17.7944 0.618771 0.309385 0.950937i \(-0.399877\pi\)
0.309385 + 0.950937i \(0.399877\pi\)
\(828\) 0 0
\(829\) 27.9359 0.970254 0.485127 0.874444i \(-0.338773\pi\)
0.485127 + 0.874444i \(0.338773\pi\)
\(830\) 0 0
\(831\) −14.5470 −0.504629
\(832\) 0 0
\(833\) 2.34678 0.0813113
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −4.76536 −0.164715
\(838\) 0 0
\(839\) 40.4717 1.39724 0.698618 0.715494i \(-0.253799\pi\)
0.698618 + 0.715494i \(0.253799\pi\)
\(840\) 0 0
\(841\) 6.16706 0.212657
\(842\) 0 0
\(843\) −1.62253 −0.0558828
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −54.2628 −1.86449
\(848\) 0 0
\(849\) −11.5098 −0.395016
\(850\) 0 0
\(851\) −5.24440 −0.179776
\(852\) 0 0
\(853\) 7.32217 0.250706 0.125353 0.992112i \(-0.459994\pi\)
0.125353 + 0.992112i \(0.459994\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 4.74086 0.161945 0.0809724 0.996716i \(-0.474197\pi\)
0.0809724 + 0.996716i \(0.474197\pi\)
\(858\) 0 0
\(859\) −8.14829 −0.278016 −0.139008 0.990291i \(-0.544391\pi\)
−0.139008 + 0.990291i \(0.544391\pi\)
\(860\) 0 0
\(861\) −3.07776 −0.104890
\(862\) 0 0
\(863\) −15.8044 −0.537988 −0.268994 0.963142i \(-0.586691\pi\)
−0.268994 + 0.963142i \(0.586691\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 2.48887 0.0845264
\(868\) 0 0
\(869\) −89.6166 −3.04003
\(870\) 0 0
\(871\) 31.4074 1.06420
\(872\) 0 0
\(873\) −7.26559 −0.245903
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −22.3063 −0.753231 −0.376616 0.926370i \(-0.622912\pi\)
−0.376616 + 0.926370i \(0.622912\pi\)
\(878\) 0 0
\(879\) 8.61570 0.290600
\(880\) 0 0
\(881\) 9.67865 0.326082 0.163041 0.986619i \(-0.447870\pi\)
0.163041 + 0.986619i \(0.447870\pi\)
\(882\) 0 0
\(883\) −21.7255 −0.731120 −0.365560 0.930788i \(-0.619123\pi\)
−0.365560 + 0.930788i \(0.619123\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −2.17244 −0.0729434 −0.0364717 0.999335i \(-0.511612\pi\)
−0.0364717 + 0.999335i \(0.511612\pi\)
\(888\) 0 0
\(889\) 25.7244 0.862768
\(890\) 0 0
\(891\) −44.9254 −1.50506
\(892\) 0 0
\(893\) −15.3521 −0.513738
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 14.2768 0.476688
\(898\) 0 0
\(899\) 58.3874 1.94733
\(900\) 0 0
\(901\) 4.81568 0.160434
\(902\) 0 0
\(903\) −43.8392 −1.45888
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −25.8704 −0.859012 −0.429506 0.903064i \(-0.641312\pi\)
−0.429506 + 0.903064i \(0.641312\pi\)
\(908\) 0 0
\(909\) 25.9539 0.860837
\(910\) 0 0
\(911\) 36.1769 1.19859 0.599297 0.800527i \(-0.295447\pi\)
0.599297 + 0.800527i \(0.295447\pi\)
\(912\) 0 0
\(913\) −22.0611 −0.730117
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −4.11883 −0.136016
\(918\) 0 0
\(919\) −52.2475 −1.72349 −0.861743 0.507346i \(-0.830627\pi\)
−0.861743 + 0.507346i \(0.830627\pi\)
\(920\) 0 0
\(921\) 49.1862 1.62074
\(922\) 0 0
\(923\) 54.9150 1.80755
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 16.4740 0.541078
\(928\) 0 0
\(929\) 19.6884 0.645955 0.322978 0.946407i \(-0.395316\pi\)
0.322978 + 0.946407i \(0.395316\pi\)
\(930\) 0 0
\(931\) −10.7324 −0.351741
\(932\) 0 0
\(933\) −65.2994 −2.13781
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 15.0805 0.492657 0.246328 0.969186i \(-0.420776\pi\)
0.246328 + 0.969186i \(0.420776\pi\)
\(938\) 0 0
\(939\) −57.2004 −1.86666
\(940\) 0 0
\(941\) −12.2054 −0.397886 −0.198943 0.980011i \(-0.563751\pi\)
−0.198943 + 0.980011i \(0.563751\pi\)
\(942\) 0 0
\(943\) −0.504513 −0.0164292
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 23.4424 0.761776 0.380888 0.924621i \(-0.375618\pi\)
0.380888 + 0.924621i \(0.375618\pi\)
\(948\) 0 0
\(949\) −50.0717 −1.62540
\(950\) 0 0
\(951\) 27.2329 0.883088
\(952\) 0 0
\(953\) −50.7165 −1.64287 −0.821435 0.570302i \(-0.806826\pi\)
−0.821435 + 0.570302i \(0.806826\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −79.1372 −2.55814
\(958\) 0 0
\(959\) −38.4143 −1.24046
\(960\) 0 0
\(961\) 65.9397 2.12709
\(962\) 0 0
\(963\) −17.9216 −0.577517
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −41.6170 −1.33831 −0.669157 0.743121i \(-0.733344\pi\)
−0.669157 + 0.743121i \(0.733344\pi\)
\(968\) 0 0
\(969\) −11.3822 −0.365650
\(970\) 0 0
\(971\) −19.2045 −0.616302 −0.308151 0.951337i \(-0.599710\pi\)
−0.308151 + 0.951337i \(0.599710\pi\)
\(972\) 0 0
\(973\) −30.0535 −0.963472
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −21.0264 −0.672696 −0.336348 0.941738i \(-0.609192\pi\)
−0.336348 + 0.941738i \(0.609192\pi\)
\(978\) 0 0
\(979\) −55.8390 −1.78462
\(980\) 0 0
\(981\) −12.7190 −0.406087
\(982\) 0 0
\(983\) −3.77964 −0.120552 −0.0602758 0.998182i \(-0.519198\pi\)
−0.0602758 + 0.998182i \(0.519198\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −25.5432 −0.813049
\(988\) 0 0
\(989\) −7.18619 −0.228508
\(990\) 0 0
\(991\) −35.7886 −1.13686 −0.568431 0.822731i \(-0.692449\pi\)
−0.568431 + 0.822731i \(0.692449\pi\)
\(992\) 0 0
\(993\) −27.6356 −0.876990
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 4.92887 0.156099 0.0780494 0.996949i \(-0.475131\pi\)
0.0780494 + 0.996949i \(0.475131\pi\)
\(998\) 0 0
\(999\) 2.03503 0.0643855
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6800.2.a.bz.1.5 5
4.3 odd 2 425.2.a.i.1.2 5
5.4 even 2 6800.2.a.cd.1.1 5
12.11 even 2 3825.2.a.bq.1.4 5
20.3 even 4 425.2.b.f.324.8 10
20.7 even 4 425.2.b.f.324.3 10
20.19 odd 2 425.2.a.j.1.4 yes 5
60.59 even 2 3825.2.a.bl.1.2 5
68.67 odd 2 7225.2.a.x.1.2 5
340.339 odd 2 7225.2.a.y.1.4 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
425.2.a.i.1.2 5 4.3 odd 2
425.2.a.j.1.4 yes 5 20.19 odd 2
425.2.b.f.324.3 10 20.7 even 4
425.2.b.f.324.8 10 20.3 even 4
3825.2.a.bl.1.2 5 60.59 even 2
3825.2.a.bq.1.4 5 12.11 even 2
6800.2.a.bz.1.5 5 1.1 even 1 trivial
6800.2.a.cd.1.1 5 5.4 even 2
7225.2.a.x.1.2 5 68.67 odd 2
7225.2.a.y.1.4 5 340.339 odd 2