Properties

Label 3825.2.a.bq.1.4
Level $3825$
Weight $2$
Character 3825.1
Self dual yes
Analytic conductor $30.543$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3825,2,Mod(1,3825)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3825, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3825.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3825 = 3^{2} \cdot 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3825.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,1,0,11,0,0,1,9,0,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(30.5427787731\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: 5.5.1893456.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 10x^{3} + 10x^{2} + 23x - 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 425)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-2.48887\) of defining polynomial
Character \(\chi\) \(=\) 3825.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.19447 q^{2} +2.81568 q^{4} +3.05725 q^{7} +1.78998 q^{8} +5.36180 q^{11} -4.59895 q^{13} +6.70903 q^{14} -1.70331 q^{16} -1.00000 q^{17} +4.57325 q^{19} +11.7663 q^{22} -1.24730 q^{23} -10.0922 q^{26} +8.60824 q^{28} +5.93018 q^{29} +9.84580 q^{31} -7.31781 q^{32} -2.19447 q^{34} +4.20461 q^{37} +10.0358 q^{38} -0.404485 q^{41} -5.76142 q^{43} +15.0971 q^{44} -2.73715 q^{46} +3.35693 q^{47} +2.34678 q^{49} -12.9492 q^{52} -4.81568 q^{53} +5.47242 q^{56} +13.0136 q^{58} -12.7392 q^{59} +4.97774 q^{61} +21.6063 q^{62} -12.6521 q^{64} +6.82926 q^{67} -2.81568 q^{68} -11.9408 q^{71} +10.8876 q^{73} +9.22687 q^{74} +12.8768 q^{76} +16.3924 q^{77} +16.7139 q^{79} -0.887628 q^{82} -4.11450 q^{83} -12.6432 q^{86} +9.59752 q^{88} +10.4142 q^{89} -14.0601 q^{91} -3.51199 q^{92} +7.36667 q^{94} -2.27443 q^{97} +5.14994 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + q^{2} + 11 q^{4} + q^{7} + 9 q^{8} - 4 q^{11} - 3 q^{13} + 7 q^{14} + 27 q^{16} - 5 q^{17} + 6 q^{19} + 18 q^{22} - 4 q^{23} + 5 q^{26} - 15 q^{28} - 2 q^{29} + 21 q^{31} + 9 q^{32} - q^{34} - 2 q^{37}+ \cdots - 38 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.19447 1.55172 0.775861 0.630904i \(-0.217316\pi\)
0.775861 + 0.630904i \(0.217316\pi\)
\(3\) 0 0
\(4\) 2.81568 1.40784
\(5\) 0 0
\(6\) 0 0
\(7\) 3.05725 1.15553 0.577766 0.816202i \(-0.303925\pi\)
0.577766 + 0.816202i \(0.303925\pi\)
\(8\) 1.78998 0.632854
\(9\) 0 0
\(10\) 0 0
\(11\) 5.36180 1.61664 0.808322 0.588741i \(-0.200376\pi\)
0.808322 + 0.588741i \(0.200376\pi\)
\(12\) 0 0
\(13\) −4.59895 −1.27552 −0.637760 0.770235i \(-0.720139\pi\)
−0.637760 + 0.770235i \(0.720139\pi\)
\(14\) 6.70903 1.79306
\(15\) 0 0
\(16\) −1.70331 −0.425827
\(17\) −1.00000 −0.242536
\(18\) 0 0
\(19\) 4.57325 1.04918 0.524588 0.851356i \(-0.324219\pi\)
0.524588 + 0.851356i \(0.324219\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 11.7663 2.50858
\(23\) −1.24730 −0.260079 −0.130040 0.991509i \(-0.541510\pi\)
−0.130040 + 0.991509i \(0.541510\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) −10.0922 −1.97925
\(27\) 0 0
\(28\) 8.60824 1.62680
\(29\) 5.93018 1.10121 0.550604 0.834767i \(-0.314398\pi\)
0.550604 + 0.834767i \(0.314398\pi\)
\(30\) 0 0
\(31\) 9.84580 1.76836 0.884179 0.467149i \(-0.154719\pi\)
0.884179 + 0.467149i \(0.154719\pi\)
\(32\) −7.31781 −1.29362
\(33\) 0 0
\(34\) −2.19447 −0.376348
\(35\) 0 0
\(36\) 0 0
\(37\) 4.20461 0.691234 0.345617 0.938376i \(-0.387670\pi\)
0.345617 + 0.938376i \(0.387670\pi\)
\(38\) 10.0358 1.62803
\(39\) 0 0
\(40\) 0 0
\(41\) −0.404485 −0.0631699 −0.0315850 0.999501i \(-0.510055\pi\)
−0.0315850 + 0.999501i \(0.510055\pi\)
\(42\) 0 0
\(43\) −5.76142 −0.878608 −0.439304 0.898339i \(-0.644775\pi\)
−0.439304 + 0.898339i \(0.644775\pi\)
\(44\) 15.0971 2.27597
\(45\) 0 0
\(46\) −2.73715 −0.403571
\(47\) 3.35693 0.489659 0.244829 0.969566i \(-0.421268\pi\)
0.244829 + 0.969566i \(0.421268\pi\)
\(48\) 0 0
\(49\) 2.34678 0.335255
\(50\) 0 0
\(51\) 0 0
\(52\) −12.9492 −1.79573
\(53\) −4.81568 −0.661484 −0.330742 0.943721i \(-0.607299\pi\)
−0.330742 + 0.943721i \(0.607299\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 5.47242 0.731283
\(57\) 0 0
\(58\) 13.0136 1.70877
\(59\) −12.7392 −1.65850 −0.829248 0.558881i \(-0.811231\pi\)
−0.829248 + 0.558881i \(0.811231\pi\)
\(60\) 0 0
\(61\) 4.97774 0.637334 0.318667 0.947867i \(-0.396765\pi\)
0.318667 + 0.947867i \(0.396765\pi\)
\(62\) 21.6063 2.74400
\(63\) 0 0
\(64\) −12.6521 −1.58151
\(65\) 0 0
\(66\) 0 0
\(67\) 6.82926 0.834327 0.417163 0.908831i \(-0.363024\pi\)
0.417163 + 0.908831i \(0.363024\pi\)
\(68\) −2.81568 −0.341451
\(69\) 0 0
\(70\) 0 0
\(71\) −11.9408 −1.41711 −0.708555 0.705656i \(-0.750652\pi\)
−0.708555 + 0.705656i \(0.750652\pi\)
\(72\) 0 0
\(73\) 10.8876 1.27430 0.637150 0.770740i \(-0.280113\pi\)
0.637150 + 0.770740i \(0.280113\pi\)
\(74\) 9.22687 1.07260
\(75\) 0 0
\(76\) 12.8768 1.47707
\(77\) 16.3924 1.86808
\(78\) 0 0
\(79\) 16.7139 1.88046 0.940230 0.340539i \(-0.110609\pi\)
0.940230 + 0.340539i \(0.110609\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) −0.887628 −0.0980221
\(83\) −4.11450 −0.451625 −0.225813 0.974171i \(-0.572504\pi\)
−0.225813 + 0.974171i \(0.572504\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −12.6432 −1.36335
\(87\) 0 0
\(88\) 9.59752 1.02310
\(89\) 10.4142 1.10391 0.551953 0.833875i \(-0.313883\pi\)
0.551953 + 0.833875i \(0.313883\pi\)
\(90\) 0 0
\(91\) −14.0601 −1.47390
\(92\) −3.51199 −0.366150
\(93\) 0 0
\(94\) 7.36667 0.759814
\(95\) 0 0
\(96\) 0 0
\(97\) −2.27443 −0.230933 −0.115467 0.993311i \(-0.536836\pi\)
−0.115467 + 0.993311i \(0.536836\pi\)
\(98\) 5.14994 0.520222
\(99\) 0 0
\(100\) 0 0
\(101\) −8.12465 −0.808433 −0.404216 0.914663i \(-0.632456\pi\)
−0.404216 + 0.914663i \(0.632456\pi\)
\(102\) 0 0
\(103\) −5.15706 −0.508140 −0.254070 0.967186i \(-0.581769\pi\)
−0.254070 + 0.967186i \(0.581769\pi\)
\(104\) −8.23203 −0.807217
\(105\) 0 0
\(106\) −10.5678 −1.02644
\(107\) −5.61021 −0.542360 −0.271180 0.962529i \(-0.587414\pi\)
−0.271180 + 0.962529i \(0.587414\pi\)
\(108\) 0 0
\(109\) −3.98158 −0.381366 −0.190683 0.981652i \(-0.561070\pi\)
−0.190683 + 0.981652i \(0.561070\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −5.20744 −0.492057
\(113\) 0.913734 0.0859569 0.0429785 0.999076i \(-0.486315\pi\)
0.0429785 + 0.999076i \(0.486315\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 16.6975 1.55032
\(117\) 0 0
\(118\) −27.9556 −2.57352
\(119\) −3.05725 −0.280258
\(120\) 0 0
\(121\) 17.7489 1.61354
\(122\) 10.9235 0.988965
\(123\) 0 0
\(124\) 27.7226 2.48956
\(125\) 0 0
\(126\) 0 0
\(127\) 8.41422 0.746642 0.373321 0.927702i \(-0.378219\pi\)
0.373321 + 0.927702i \(0.378219\pi\)
\(128\) −13.1289 −1.16044
\(129\) 0 0
\(130\) 0 0
\(131\) 1.34723 0.117708 0.0588542 0.998267i \(-0.481255\pi\)
0.0588542 + 0.998267i \(0.481255\pi\)
\(132\) 0 0
\(133\) 13.9816 1.21236
\(134\) 14.9866 1.29464
\(135\) 0 0
\(136\) −1.78998 −0.153490
\(137\) −12.5650 −1.07350 −0.536749 0.843742i \(-0.680348\pi\)
−0.536749 + 0.843742i \(0.680348\pi\)
\(138\) 0 0
\(139\) −9.83024 −0.833790 −0.416895 0.908955i \(-0.636882\pi\)
−0.416895 + 0.908955i \(0.636882\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −26.2036 −2.19896
\(143\) −24.6586 −2.06206
\(144\) 0 0
\(145\) 0 0
\(146\) 23.8925 1.97736
\(147\) 0 0
\(148\) 11.8388 0.973146
\(149\) 9.03003 0.739769 0.369884 0.929078i \(-0.379397\pi\)
0.369884 + 0.929078i \(0.379397\pi\)
\(150\) 0 0
\(151\) −5.97576 −0.486301 −0.243150 0.969989i \(-0.578181\pi\)
−0.243150 + 0.969989i \(0.578181\pi\)
\(152\) 8.18603 0.663975
\(153\) 0 0
\(154\) 35.9725 2.89875
\(155\) 0 0
\(156\) 0 0
\(157\) −8.71002 −0.695135 −0.347568 0.937655i \(-0.612992\pi\)
−0.347568 + 0.937655i \(0.612992\pi\)
\(158\) 36.6781 2.91795
\(159\) 0 0
\(160\) 0 0
\(161\) −3.81330 −0.300530
\(162\) 0 0
\(163\) 0.852508 0.0667736 0.0333868 0.999443i \(-0.489371\pi\)
0.0333868 + 0.999443i \(0.489371\pi\)
\(164\) −1.13890 −0.0889331
\(165\) 0 0
\(166\) −9.02913 −0.700797
\(167\) −1.32122 −0.102239 −0.0511195 0.998693i \(-0.516279\pi\)
−0.0511195 + 0.998693i \(0.516279\pi\)
\(168\) 0 0
\(169\) 8.15035 0.626950
\(170\) 0 0
\(171\) 0 0
\(172\) −16.2223 −1.23694
\(173\) 7.49672 0.569965 0.284983 0.958533i \(-0.408012\pi\)
0.284983 + 0.958533i \(0.408012\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −9.13279 −0.688410
\(177\) 0 0
\(178\) 22.8537 1.71295
\(179\) −15.9913 −1.19525 −0.597624 0.801777i \(-0.703888\pi\)
−0.597624 + 0.801777i \(0.703888\pi\)
\(180\) 0 0
\(181\) −11.0136 −0.818633 −0.409317 0.912392i \(-0.634233\pi\)
−0.409317 + 0.912392i \(0.634233\pi\)
\(182\) −30.8545 −2.28709
\(183\) 0 0
\(184\) −2.23264 −0.164592
\(185\) 0 0
\(186\) 0 0
\(187\) −5.36180 −0.392094
\(188\) 9.45204 0.689361
\(189\) 0 0
\(190\) 0 0
\(191\) −8.49870 −0.614944 −0.307472 0.951557i \(-0.599483\pi\)
−0.307472 + 0.951557i \(0.599483\pi\)
\(192\) 0 0
\(193\) 18.8634 1.35782 0.678908 0.734223i \(-0.262453\pi\)
0.678908 + 0.734223i \(0.262453\pi\)
\(194\) −4.99116 −0.358344
\(195\) 0 0
\(196\) 6.60779 0.471985
\(197\) −10.7750 −0.767687 −0.383843 0.923398i \(-0.625400\pi\)
−0.383843 + 0.923398i \(0.625400\pi\)
\(198\) 0 0
\(199\) −12.7488 −0.903735 −0.451868 0.892085i \(-0.649242\pi\)
−0.451868 + 0.892085i \(0.649242\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) −17.8293 −1.25446
\(203\) 18.1301 1.27248
\(204\) 0 0
\(205\) 0 0
\(206\) −11.3170 −0.788492
\(207\) 0 0
\(208\) 7.83343 0.543151
\(209\) 24.5209 1.69614
\(210\) 0 0
\(211\) 26.3541 1.81429 0.907146 0.420817i \(-0.138257\pi\)
0.907146 + 0.420817i \(0.138257\pi\)
\(212\) −13.5594 −0.931264
\(213\) 0 0
\(214\) −12.3114 −0.841591
\(215\) 0 0
\(216\) 0 0
\(217\) 30.1011 2.04339
\(218\) −8.73744 −0.591774
\(219\) 0 0
\(220\) 0 0
\(221\) 4.59895 0.309359
\(222\) 0 0
\(223\) −20.0300 −1.34131 −0.670655 0.741769i \(-0.733987\pi\)
−0.670655 + 0.741769i \(0.733987\pi\)
\(224\) −22.3724 −1.49482
\(225\) 0 0
\(226\) 2.00516 0.133381
\(227\) −13.2928 −0.882277 −0.441138 0.897439i \(-0.645425\pi\)
−0.441138 + 0.897439i \(0.645425\pi\)
\(228\) 0 0
\(229\) 10.0240 0.662404 0.331202 0.943560i \(-0.392546\pi\)
0.331202 + 0.943560i \(0.392546\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 10.6149 0.696903
\(233\) 5.12121 0.335502 0.167751 0.985829i \(-0.446350\pi\)
0.167751 + 0.985829i \(0.446350\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −35.8694 −2.33490
\(237\) 0 0
\(238\) −6.70903 −0.434882
\(239\) 13.3667 0.864618 0.432309 0.901726i \(-0.357699\pi\)
0.432309 + 0.901726i \(0.357699\pi\)
\(240\) 0 0
\(241\) −4.12595 −0.265776 −0.132888 0.991131i \(-0.542425\pi\)
−0.132888 + 0.991131i \(0.542425\pi\)
\(242\) 38.9493 2.50376
\(243\) 0 0
\(244\) 14.0157 0.897264
\(245\) 0 0
\(246\) 0 0
\(247\) −21.0322 −1.33824
\(248\) 17.6238 1.11911
\(249\) 0 0
\(250\) 0 0
\(251\) 7.71502 0.486968 0.243484 0.969905i \(-0.421710\pi\)
0.243484 + 0.969905i \(0.421710\pi\)
\(252\) 0 0
\(253\) −6.68775 −0.420456
\(254\) 18.4647 1.15858
\(255\) 0 0
\(256\) −3.50680 −0.219175
\(257\) 18.4651 1.15182 0.575912 0.817512i \(-0.304647\pi\)
0.575912 + 0.817512i \(0.304647\pi\)
\(258\) 0 0
\(259\) 12.8546 0.798743
\(260\) 0 0
\(261\) 0 0
\(262\) 2.95646 0.182651
\(263\) 18.7644 1.15707 0.578533 0.815659i \(-0.303626\pi\)
0.578533 + 0.815659i \(0.303626\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 30.6821 1.88124
\(267\) 0 0
\(268\) 19.2290 1.17460
\(269\) −14.7847 −0.901441 −0.450721 0.892665i \(-0.648833\pi\)
−0.450721 + 0.892665i \(0.648833\pi\)
\(270\) 0 0
\(271\) −24.2920 −1.47563 −0.737817 0.675001i \(-0.764143\pi\)
−0.737817 + 0.675001i \(0.764143\pi\)
\(272\) 1.70331 0.103278
\(273\) 0 0
\(274\) −27.5734 −1.66577
\(275\) 0 0
\(276\) 0 0
\(277\) −5.84481 −0.351181 −0.175590 0.984463i \(-0.556183\pi\)
−0.175590 + 0.984463i \(0.556183\pi\)
\(278\) −21.5721 −1.29381
\(279\) 0 0
\(280\) 0 0
\(281\) 0.651914 0.0388899 0.0194450 0.999811i \(-0.493810\pi\)
0.0194450 + 0.999811i \(0.493810\pi\)
\(282\) 0 0
\(283\) 4.62452 0.274899 0.137450 0.990509i \(-0.456110\pi\)
0.137450 + 0.990509i \(0.456110\pi\)
\(284\) −33.6214 −1.99506
\(285\) 0 0
\(286\) −54.1126 −3.19974
\(287\) −1.23661 −0.0729949
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) 0 0
\(292\) 30.6561 1.79401
\(293\) −3.46169 −0.202234 −0.101117 0.994875i \(-0.532242\pi\)
−0.101117 + 0.994875i \(0.532242\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 7.52617 0.437450
\(297\) 0 0
\(298\) 19.8161 1.14792
\(299\) 5.73626 0.331736
\(300\) 0 0
\(301\) −17.6141 −1.01526
\(302\) −13.1136 −0.754603
\(303\) 0 0
\(304\) −7.78966 −0.446767
\(305\) 0 0
\(306\) 0 0
\(307\) −19.7625 −1.12790 −0.563952 0.825808i \(-0.690720\pi\)
−0.563952 + 0.825808i \(0.690720\pi\)
\(308\) 46.1557 2.62996
\(309\) 0 0
\(310\) 0 0
\(311\) −26.2366 −1.48774 −0.743871 0.668324i \(-0.767012\pi\)
−0.743871 + 0.668324i \(0.767012\pi\)
\(312\) 0 0
\(313\) −22.9825 −1.29905 −0.649523 0.760342i \(-0.725031\pi\)
−0.649523 + 0.760342i \(0.725031\pi\)
\(314\) −19.1138 −1.07866
\(315\) 0 0
\(316\) 47.0610 2.64739
\(317\) −10.9419 −0.614558 −0.307279 0.951619i \(-0.599418\pi\)
−0.307279 + 0.951619i \(0.599418\pi\)
\(318\) 0 0
\(319\) 31.7964 1.78026
\(320\) 0 0
\(321\) 0 0
\(322\) −8.36815 −0.466339
\(323\) −4.57325 −0.254463
\(324\) 0 0
\(325\) 0 0
\(326\) 1.87080 0.103614
\(327\) 0 0
\(328\) −0.724020 −0.0399773
\(329\) 10.2630 0.565816
\(330\) 0 0
\(331\) 11.1037 0.610314 0.305157 0.952302i \(-0.401291\pi\)
0.305157 + 0.952302i \(0.401291\pi\)
\(332\) −11.5851 −0.635816
\(333\) 0 0
\(334\) −2.89937 −0.158646
\(335\) 0 0
\(336\) 0 0
\(337\) 30.0360 1.63617 0.818083 0.575101i \(-0.195037\pi\)
0.818083 + 0.575101i \(0.195037\pi\)
\(338\) 17.8857 0.972851
\(339\) 0 0
\(340\) 0 0
\(341\) 52.7912 2.85880
\(342\) 0 0
\(343\) −14.2260 −0.768134
\(344\) −10.3128 −0.556030
\(345\) 0 0
\(346\) 16.4513 0.884428
\(347\) −26.4956 −1.42236 −0.711179 0.703011i \(-0.751839\pi\)
−0.711179 + 0.703011i \(0.751839\pi\)
\(348\) 0 0
\(349\) 11.8225 0.632846 0.316423 0.948618i \(-0.397518\pi\)
0.316423 + 0.948618i \(0.397518\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −39.2366 −2.09132
\(353\) −11.3987 −0.606690 −0.303345 0.952881i \(-0.598103\pi\)
−0.303345 + 0.952881i \(0.598103\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 29.3231 1.55412
\(357\) 0 0
\(358\) −35.0924 −1.85469
\(359\) −12.2135 −0.644601 −0.322301 0.946637i \(-0.604456\pi\)
−0.322301 + 0.946637i \(0.604456\pi\)
\(360\) 0 0
\(361\) 1.91463 0.100770
\(362\) −24.1689 −1.27029
\(363\) 0 0
\(364\) −39.5889 −2.07502
\(365\) 0 0
\(366\) 0 0
\(367\) −6.91651 −0.361039 −0.180519 0.983571i \(-0.557778\pi\)
−0.180519 + 0.983571i \(0.557778\pi\)
\(368\) 2.12453 0.110749
\(369\) 0 0
\(370\) 0 0
\(371\) −14.7227 −0.764367
\(372\) 0 0
\(373\) −27.3487 −1.41606 −0.708030 0.706183i \(-0.750416\pi\)
−0.708030 + 0.706183i \(0.750416\pi\)
\(374\) −11.7663 −0.608420
\(375\) 0 0
\(376\) 6.00884 0.309882
\(377\) −27.2726 −1.40461
\(378\) 0 0
\(379\) 14.9563 0.768255 0.384127 0.923280i \(-0.374502\pi\)
0.384127 + 0.923280i \(0.374502\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −18.6501 −0.954222
\(383\) −28.4094 −1.45165 −0.725826 0.687879i \(-0.758542\pi\)
−0.725826 + 0.687879i \(0.758542\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 41.3951 2.10695
\(387\) 0 0
\(388\) −6.40406 −0.325117
\(389\) 22.2240 1.12680 0.563401 0.826184i \(-0.309493\pi\)
0.563401 + 0.826184i \(0.309493\pi\)
\(390\) 0 0
\(391\) 1.24730 0.0630785
\(392\) 4.20070 0.212167
\(393\) 0 0
\(394\) −23.6454 −1.19124
\(395\) 0 0
\(396\) 0 0
\(397\) 1.76615 0.0886406 0.0443203 0.999017i \(-0.485888\pi\)
0.0443203 + 0.999017i \(0.485888\pi\)
\(398\) −27.9767 −1.40235
\(399\) 0 0
\(400\) 0 0
\(401\) 4.79423 0.239412 0.119706 0.992809i \(-0.461805\pi\)
0.119706 + 0.992809i \(0.461805\pi\)
\(402\) 0 0
\(403\) −45.2803 −2.25557
\(404\) −22.8764 −1.13814
\(405\) 0 0
\(406\) 39.7858 1.97454
\(407\) 22.5443 1.11748
\(408\) 0 0
\(409\) −36.2834 −1.79410 −0.897050 0.441929i \(-0.854294\pi\)
−0.897050 + 0.441929i \(0.854294\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −14.5206 −0.715379
\(413\) −38.9468 −1.91645
\(414\) 0 0
\(415\) 0 0
\(416\) 33.6543 1.65004
\(417\) 0 0
\(418\) 53.8102 2.63194
\(419\) 24.4452 1.19423 0.597113 0.802157i \(-0.296314\pi\)
0.597113 + 0.802157i \(0.296314\pi\)
\(420\) 0 0
\(421\) −14.0909 −0.686750 −0.343375 0.939198i \(-0.611570\pi\)
−0.343375 + 0.939198i \(0.611570\pi\)
\(422\) 57.8332 2.81527
\(423\) 0 0
\(424\) −8.61997 −0.418623
\(425\) 0 0
\(426\) 0 0
\(427\) 15.2182 0.736460
\(428\) −15.7966 −0.763556
\(429\) 0 0
\(430\) 0 0
\(431\) 17.5277 0.844282 0.422141 0.906530i \(-0.361279\pi\)
0.422141 + 0.906530i \(0.361279\pi\)
\(432\) 0 0
\(433\) −11.1755 −0.537059 −0.268530 0.963271i \(-0.586538\pi\)
−0.268530 + 0.963271i \(0.586538\pi\)
\(434\) 66.0558 3.17078
\(435\) 0 0
\(436\) −11.2109 −0.536902
\(437\) −5.70420 −0.272869
\(438\) 0 0
\(439\) −12.0419 −0.574727 −0.287363 0.957822i \(-0.592779\pi\)
−0.287363 + 0.957822i \(0.592779\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 10.0922 0.480039
\(443\) −39.5984 −1.88138 −0.940689 0.339269i \(-0.889820\pi\)
−0.940689 + 0.339269i \(0.889820\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −43.9552 −2.08134
\(447\) 0 0
\(448\) −38.6806 −1.82748
\(449\) −11.6778 −0.551107 −0.275554 0.961286i \(-0.588861\pi\)
−0.275554 + 0.961286i \(0.588861\pi\)
\(450\) 0 0
\(451\) −2.16877 −0.102123
\(452\) 2.57278 0.121014
\(453\) 0 0
\(454\) −29.1707 −1.36905
\(455\) 0 0
\(456\) 0 0
\(457\) 20.2148 0.945606 0.472803 0.881168i \(-0.343242\pi\)
0.472803 + 0.881168i \(0.343242\pi\)
\(458\) 21.9973 1.02787
\(459\) 0 0
\(460\) 0 0
\(461\) −2.77786 −0.129378 −0.0646890 0.997905i \(-0.520606\pi\)
−0.0646890 + 0.997905i \(0.520606\pi\)
\(462\) 0 0
\(463\) 33.8186 1.57168 0.785842 0.618427i \(-0.212230\pi\)
0.785842 + 0.618427i \(0.212230\pi\)
\(464\) −10.1009 −0.468924
\(465\) 0 0
\(466\) 11.2383 0.520605
\(467\) −41.1417 −1.90381 −0.951904 0.306395i \(-0.900877\pi\)
−0.951904 + 0.306395i \(0.900877\pi\)
\(468\) 0 0
\(469\) 20.8788 0.964092
\(470\) 0 0
\(471\) 0 0
\(472\) −22.8028 −1.04959
\(473\) −30.8916 −1.42039
\(474\) 0 0
\(475\) 0 0
\(476\) −8.60824 −0.394558
\(477\) 0 0
\(478\) 29.3327 1.34165
\(479\) 10.8273 0.494710 0.247355 0.968925i \(-0.420439\pi\)
0.247355 + 0.968925i \(0.420439\pi\)
\(480\) 0 0
\(481\) −19.3368 −0.881682
\(482\) −9.05426 −0.412410
\(483\) 0 0
\(484\) 49.9752 2.27160
\(485\) 0 0
\(486\) 0 0
\(487\) −17.2533 −0.781820 −0.390910 0.920429i \(-0.627840\pi\)
−0.390910 + 0.920429i \(0.627840\pi\)
\(488\) 8.91005 0.403339
\(489\) 0 0
\(490\) 0 0
\(491\) 28.6442 1.29269 0.646347 0.763043i \(-0.276296\pi\)
0.646347 + 0.763043i \(0.276296\pi\)
\(492\) 0 0
\(493\) −5.93018 −0.267082
\(494\) −46.1544 −2.07658
\(495\) 0 0
\(496\) −16.7704 −0.753014
\(497\) −36.5060 −1.63752
\(498\) 0 0
\(499\) −10.5083 −0.470418 −0.235209 0.971945i \(-0.575577\pi\)
−0.235209 + 0.971945i \(0.575577\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 16.9303 0.755638
\(503\) −14.7844 −0.659206 −0.329603 0.944120i \(-0.606915\pi\)
−0.329603 + 0.944120i \(0.606915\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −14.6760 −0.652430
\(507\) 0 0
\(508\) 23.6918 1.05115
\(509\) −32.5112 −1.44103 −0.720517 0.693438i \(-0.756095\pi\)
−0.720517 + 0.693438i \(0.756095\pi\)
\(510\) 0 0
\(511\) 33.2862 1.47250
\(512\) 18.5623 0.820344
\(513\) 0 0
\(514\) 40.5211 1.78731
\(515\) 0 0
\(516\) 0 0
\(517\) 17.9992 0.791603
\(518\) 28.2089 1.23943
\(519\) 0 0
\(520\) 0 0
\(521\) −40.4949 −1.77411 −0.887057 0.461660i \(-0.847254\pi\)
−0.887057 + 0.461660i \(0.847254\pi\)
\(522\) 0 0
\(523\) −19.7050 −0.861640 −0.430820 0.902438i \(-0.641776\pi\)
−0.430820 + 0.902438i \(0.641776\pi\)
\(524\) 3.79338 0.165715
\(525\) 0 0
\(526\) 41.1779 1.79544
\(527\) −9.84580 −0.428890
\(528\) 0 0
\(529\) −21.4443 −0.932359
\(530\) 0 0
\(531\) 0 0
\(532\) 39.3676 1.70680
\(533\) 1.86021 0.0805745
\(534\) 0 0
\(535\) 0 0
\(536\) 12.2242 0.528007
\(537\) 0 0
\(538\) −32.4446 −1.39879
\(539\) 12.5830 0.541988
\(540\) 0 0
\(541\) 21.0224 0.903824 0.451912 0.892062i \(-0.350742\pi\)
0.451912 + 0.892062i \(0.350742\pi\)
\(542\) −53.3080 −2.28977
\(543\) 0 0
\(544\) 7.31781 0.313749
\(545\) 0 0
\(546\) 0 0
\(547\) −25.1379 −1.07482 −0.537410 0.843321i \(-0.680597\pi\)
−0.537410 + 0.843321i \(0.680597\pi\)
\(548\) −35.3789 −1.51131
\(549\) 0 0
\(550\) 0 0
\(551\) 27.1202 1.15536
\(552\) 0 0
\(553\) 51.0986 2.17293
\(554\) −12.8262 −0.544935
\(555\) 0 0
\(556\) −27.6788 −1.17384
\(557\) 22.9470 0.972297 0.486149 0.873876i \(-0.338401\pi\)
0.486149 + 0.873876i \(0.338401\pi\)
\(558\) 0 0
\(559\) 26.4965 1.12068
\(560\) 0 0
\(561\) 0 0
\(562\) 1.43060 0.0603463
\(563\) 34.8974 1.47075 0.735374 0.677661i \(-0.237006\pi\)
0.735374 + 0.677661i \(0.237006\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 10.1483 0.426567
\(567\) 0 0
\(568\) −21.3738 −0.896823
\(569\) −6.87405 −0.288175 −0.144088 0.989565i \(-0.546025\pi\)
−0.144088 + 0.989565i \(0.546025\pi\)
\(570\) 0 0
\(571\) 24.7188 1.03445 0.517224 0.855850i \(-0.326965\pi\)
0.517224 + 0.855850i \(0.326965\pi\)
\(572\) −69.4309 −2.90305
\(573\) 0 0
\(574\) −2.71370 −0.113268
\(575\) 0 0
\(576\) 0 0
\(577\) −4.89908 −0.203951 −0.101976 0.994787i \(-0.532516\pi\)
−0.101976 + 0.994787i \(0.532516\pi\)
\(578\) 2.19447 0.0912777
\(579\) 0 0
\(580\) 0 0
\(581\) −12.5791 −0.521868
\(582\) 0 0
\(583\) −25.8207 −1.06938
\(584\) 19.4886 0.806446
\(585\) 0 0
\(586\) −7.59657 −0.313811
\(587\) 23.8761 0.985471 0.492736 0.870179i \(-0.335997\pi\)
0.492736 + 0.870179i \(0.335997\pi\)
\(588\) 0 0
\(589\) 45.0273 1.85532
\(590\) 0 0
\(591\) 0 0
\(592\) −7.16175 −0.294346
\(593\) −37.8742 −1.55531 −0.777654 0.628693i \(-0.783590\pi\)
−0.777654 + 0.628693i \(0.783590\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 25.4257 1.04148
\(597\) 0 0
\(598\) 12.5880 0.514762
\(599\) −43.9867 −1.79725 −0.898625 0.438718i \(-0.855433\pi\)
−0.898625 + 0.438718i \(0.855433\pi\)
\(600\) 0 0
\(601\) 11.4083 0.465355 0.232678 0.972554i \(-0.425251\pi\)
0.232678 + 0.972554i \(0.425251\pi\)
\(602\) −38.6535 −1.57540
\(603\) 0 0
\(604\) −16.8258 −0.684634
\(605\) 0 0
\(606\) 0 0
\(607\) 17.4364 0.707721 0.353861 0.935298i \(-0.384869\pi\)
0.353861 + 0.935298i \(0.384869\pi\)
\(608\) −33.4662 −1.35723
\(609\) 0 0
\(610\) 0 0
\(611\) −15.4384 −0.624569
\(612\) 0 0
\(613\) 0.620807 0.0250741 0.0125371 0.999921i \(-0.496009\pi\)
0.0125371 + 0.999921i \(0.496009\pi\)
\(614\) −43.3681 −1.75019
\(615\) 0 0
\(616\) 29.3420 1.18222
\(617\) 45.0359 1.81308 0.906539 0.422123i \(-0.138715\pi\)
0.906539 + 0.422123i \(0.138715\pi\)
\(618\) 0 0
\(619\) −11.4780 −0.461340 −0.230670 0.973032i \(-0.574092\pi\)
−0.230670 + 0.973032i \(0.574092\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −57.5753 −2.30856
\(623\) 31.8389 1.27560
\(624\) 0 0
\(625\) 0 0
\(626\) −50.4342 −2.01576
\(627\) 0 0
\(628\) −24.5246 −0.978639
\(629\) −4.20461 −0.167649
\(630\) 0 0
\(631\) −10.9485 −0.435853 −0.217926 0.975965i \(-0.569929\pi\)
−0.217926 + 0.975965i \(0.569929\pi\)
\(632\) 29.9176 1.19006
\(633\) 0 0
\(634\) −24.0116 −0.953623
\(635\) 0 0
\(636\) 0 0
\(637\) −10.7927 −0.427624
\(638\) 69.7762 2.76247
\(639\) 0 0
\(640\) 0 0
\(641\) 1.51186 0.0597147 0.0298574 0.999554i \(-0.490495\pi\)
0.0298574 + 0.999554i \(0.490495\pi\)
\(642\) 0 0
\(643\) −17.7547 −0.700179 −0.350089 0.936716i \(-0.613849\pi\)
−0.350089 + 0.936716i \(0.613849\pi\)
\(644\) −10.7370 −0.423098
\(645\) 0 0
\(646\) −10.0358 −0.394855
\(647\) 35.1787 1.38302 0.691508 0.722369i \(-0.256947\pi\)
0.691508 + 0.722369i \(0.256947\pi\)
\(648\) 0 0
\(649\) −68.3048 −2.68120
\(650\) 0 0
\(651\) 0 0
\(652\) 2.40039 0.0940065
\(653\) −9.99410 −0.391099 −0.195550 0.980694i \(-0.562649\pi\)
−0.195550 + 0.980694i \(0.562649\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0.688962 0.0268995
\(657\) 0 0
\(658\) 22.5218 0.877989
\(659\) 23.9165 0.931655 0.465827 0.884876i \(-0.345757\pi\)
0.465827 + 0.884876i \(0.345757\pi\)
\(660\) 0 0
\(661\) 28.6063 1.11266 0.556328 0.830963i \(-0.312210\pi\)
0.556328 + 0.830963i \(0.312210\pi\)
\(662\) 24.3667 0.947037
\(663\) 0 0
\(664\) −7.36488 −0.285813
\(665\) 0 0
\(666\) 0 0
\(667\) −7.39670 −0.286401
\(668\) −3.72013 −0.143936
\(669\) 0 0
\(670\) 0 0
\(671\) 26.6896 1.03034
\(672\) 0 0
\(673\) 12.9564 0.499431 0.249716 0.968319i \(-0.419663\pi\)
0.249716 + 0.968319i \(0.419663\pi\)
\(674\) 65.9130 2.53887
\(675\) 0 0
\(676\) 22.9488 0.882645
\(677\) 23.5326 0.904430 0.452215 0.891909i \(-0.350634\pi\)
0.452215 + 0.891909i \(0.350634\pi\)
\(678\) 0 0
\(679\) −6.95350 −0.266851
\(680\) 0 0
\(681\) 0 0
\(682\) 115.848 4.43607
\(683\) −25.4677 −0.974495 −0.487247 0.873264i \(-0.661999\pi\)
−0.487247 + 0.873264i \(0.661999\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −31.2186 −1.19193
\(687\) 0 0
\(688\) 9.81346 0.374135
\(689\) 22.1471 0.843736
\(690\) 0 0
\(691\) 47.8923 1.82191 0.910955 0.412507i \(-0.135347\pi\)
0.910955 + 0.412507i \(0.135347\pi\)
\(692\) 21.1084 0.802420
\(693\) 0 0
\(694\) −58.1437 −2.20710
\(695\) 0 0
\(696\) 0 0
\(697\) 0.404485 0.0153210
\(698\) 25.9442 0.982001
\(699\) 0 0
\(700\) 0 0
\(701\) 5.52783 0.208783 0.104392 0.994536i \(-0.466710\pi\)
0.104392 + 0.994536i \(0.466710\pi\)
\(702\) 0 0
\(703\) 19.2287 0.725226
\(704\) −67.8379 −2.55674
\(705\) 0 0
\(706\) −25.0140 −0.941414
\(707\) −24.8391 −0.934170
\(708\) 0 0
\(709\) 22.8895 0.859633 0.429817 0.902916i \(-0.358578\pi\)
0.429817 + 0.902916i \(0.358578\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 18.6413 0.698611
\(713\) −12.2806 −0.459913
\(714\) 0 0
\(715\) 0 0
\(716\) −45.0264 −1.68272
\(717\) 0 0
\(718\) −26.8020 −1.00024
\(719\) −0.748823 −0.0279264 −0.0139632 0.999903i \(-0.504445\pi\)
−0.0139632 + 0.999903i \(0.504445\pi\)
\(720\) 0 0
\(721\) −15.7664 −0.587172
\(722\) 4.20159 0.156367
\(723\) 0 0
\(724\) −31.0107 −1.15250
\(725\) 0 0
\(726\) 0 0
\(727\) −51.8312 −1.92231 −0.961157 0.276004i \(-0.910990\pi\)
−0.961157 + 0.276004i \(0.910990\pi\)
\(728\) −25.1674 −0.932766
\(729\) 0 0
\(730\) 0 0
\(731\) 5.76142 0.213094
\(732\) 0 0
\(733\) −0.440590 −0.0162735 −0.00813677 0.999967i \(-0.502590\pi\)
−0.00813677 + 0.999967i \(0.502590\pi\)
\(734\) −15.1780 −0.560232
\(735\) 0 0
\(736\) 9.12748 0.336443
\(737\) 36.6171 1.34881
\(738\) 0 0
\(739\) −30.4658 −1.12070 −0.560351 0.828255i \(-0.689334\pi\)
−0.560351 + 0.828255i \(0.689334\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −32.3086 −1.18608
\(743\) −15.1434 −0.555557 −0.277779 0.960645i \(-0.589598\pi\)
−0.277779 + 0.960645i \(0.589598\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −60.0157 −2.19733
\(747\) 0 0
\(748\) −15.0971 −0.552005
\(749\) −17.1518 −0.626714
\(750\) 0 0
\(751\) 34.1610 1.24655 0.623277 0.782001i \(-0.285801\pi\)
0.623277 + 0.782001i \(0.285801\pi\)
\(752\) −5.71789 −0.208510
\(753\) 0 0
\(754\) −59.8488 −2.17957
\(755\) 0 0
\(756\) 0 0
\(757\) 20.5792 0.747965 0.373982 0.927436i \(-0.377992\pi\)
0.373982 + 0.927436i \(0.377992\pi\)
\(758\) 32.8211 1.19212
\(759\) 0 0
\(760\) 0 0
\(761\) 18.8045 0.681661 0.340831 0.940125i \(-0.389292\pi\)
0.340831 + 0.940125i \(0.389292\pi\)
\(762\) 0 0
\(763\) −12.1727 −0.440681
\(764\) −23.9296 −0.865743
\(765\) 0 0
\(766\) −62.3434 −2.25256
\(767\) 58.5867 2.11544
\(768\) 0 0
\(769\) −36.5974 −1.31974 −0.659868 0.751382i \(-0.729388\pi\)
−0.659868 + 0.751382i \(0.729388\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 53.1133 1.91159
\(773\) −19.4040 −0.697912 −0.348956 0.937139i \(-0.613464\pi\)
−0.348956 + 0.937139i \(0.613464\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −4.07118 −0.146147
\(777\) 0 0
\(778\) 48.7698 1.74848
\(779\) −1.84981 −0.0662764
\(780\) 0 0
\(781\) −64.0240 −2.29096
\(782\) 2.73715 0.0978803
\(783\) 0 0
\(784\) −3.99730 −0.142761
\(785\) 0 0
\(786\) 0 0
\(787\) 28.7760 1.02575 0.512876 0.858462i \(-0.328580\pi\)
0.512876 + 0.858462i \(0.328580\pi\)
\(788\) −30.3389 −1.08078
\(789\) 0 0
\(790\) 0 0
\(791\) 2.79352 0.0993260
\(792\) 0 0
\(793\) −22.8924 −0.812932
\(794\) 3.87576 0.137546
\(795\) 0 0
\(796\) −35.8964 −1.27231
\(797\) −4.55967 −0.161512 −0.0807559 0.996734i \(-0.525733\pi\)
−0.0807559 + 0.996734i \(0.525733\pi\)
\(798\) 0 0
\(799\) −3.35693 −0.118760
\(800\) 0 0
\(801\) 0 0
\(802\) 10.5208 0.371501
\(803\) 58.3773 2.06009
\(804\) 0 0
\(805\) 0 0
\(806\) −99.3662 −3.50002
\(807\) 0 0
\(808\) −14.5430 −0.511620
\(809\) −37.0052 −1.30103 −0.650516 0.759493i \(-0.725447\pi\)
−0.650516 + 0.759493i \(0.725447\pi\)
\(810\) 0 0
\(811\) −30.4268 −1.06843 −0.534215 0.845349i \(-0.679393\pi\)
−0.534215 + 0.845349i \(0.679393\pi\)
\(812\) 51.0484 1.79145
\(813\) 0 0
\(814\) 49.4726 1.73402
\(815\) 0 0
\(816\) 0 0
\(817\) −26.3484 −0.921814
\(818\) −79.6227 −2.78394
\(819\) 0 0
\(820\) 0 0
\(821\) −2.43436 −0.0849596 −0.0424798 0.999097i \(-0.513526\pi\)
−0.0424798 + 0.999097i \(0.513526\pi\)
\(822\) 0 0
\(823\) −30.1177 −1.04984 −0.524918 0.851153i \(-0.675904\pi\)
−0.524918 + 0.851153i \(0.675904\pi\)
\(824\) −9.23103 −0.321578
\(825\) 0 0
\(826\) −85.4674 −2.97379
\(827\) 17.7944 0.618771 0.309385 0.950937i \(-0.399877\pi\)
0.309385 + 0.950937i \(0.399877\pi\)
\(828\) 0 0
\(829\) 27.9359 0.970254 0.485127 0.874444i \(-0.338773\pi\)
0.485127 + 0.874444i \(0.338773\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 58.1863 2.01725
\(833\) −2.34678 −0.0813113
\(834\) 0 0
\(835\) 0 0
\(836\) 69.0429 2.38790
\(837\) 0 0
\(838\) 53.6441 1.85311
\(839\) 40.4717 1.39724 0.698618 0.715494i \(-0.253799\pi\)
0.698618 + 0.715494i \(0.253799\pi\)
\(840\) 0 0
\(841\) 6.16706 0.212657
\(842\) −30.9221 −1.06565
\(843\) 0 0
\(844\) 74.2047 2.55423
\(845\) 0 0
\(846\) 0 0
\(847\) 54.2628 1.86449
\(848\) 8.20258 0.281678
\(849\) 0 0
\(850\) 0 0
\(851\) −5.24440 −0.179776
\(852\) 0 0
\(853\) 7.32217 0.250706 0.125353 0.992112i \(-0.459994\pi\)
0.125353 + 0.992112i \(0.459994\pi\)
\(854\) 33.3958 1.14278
\(855\) 0 0
\(856\) −10.0422 −0.343234
\(857\) −4.74086 −0.161945 −0.0809724 0.996716i \(-0.525803\pi\)
−0.0809724 + 0.996716i \(0.525803\pi\)
\(858\) 0 0
\(859\) 8.14829 0.278016 0.139008 0.990291i \(-0.455609\pi\)
0.139008 + 0.990291i \(0.455609\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 38.4640 1.31009
\(863\) −15.8044 −0.537988 −0.268994 0.963142i \(-0.586691\pi\)
−0.268994 + 0.963142i \(0.586691\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −24.5242 −0.833366
\(867\) 0 0
\(868\) 84.7550 2.87677
\(869\) 89.6166 3.04003
\(870\) 0 0
\(871\) −31.4074 −1.06420
\(872\) −7.12695 −0.241349
\(873\) 0 0
\(874\) −12.5177 −0.423417
\(875\) 0 0
\(876\) 0 0
\(877\) −22.3063 −0.753231 −0.376616 0.926370i \(-0.622912\pi\)
−0.376616 + 0.926370i \(0.622912\pi\)
\(878\) −26.4254 −0.891816
\(879\) 0 0
\(880\) 0 0
\(881\) −9.67865 −0.326082 −0.163041 0.986619i \(-0.552130\pi\)
−0.163041 + 0.986619i \(0.552130\pi\)
\(882\) 0 0
\(883\) 21.7255 0.731120 0.365560 0.930788i \(-0.380877\pi\)
0.365560 + 0.930788i \(0.380877\pi\)
\(884\) 12.9492 0.435528
\(885\) 0 0
\(886\) −86.8974 −2.91938
\(887\) −2.17244 −0.0729434 −0.0364717 0.999335i \(-0.511612\pi\)
−0.0364717 + 0.999335i \(0.511612\pi\)
\(888\) 0 0
\(889\) 25.7244 0.862768
\(890\) 0 0
\(891\) 0 0
\(892\) −56.3981 −1.88835
\(893\) 15.3521 0.513738
\(894\) 0 0
\(895\) 0 0
\(896\) −40.1384 −1.34093
\(897\) 0 0
\(898\) −25.6264 −0.855165
\(899\) 58.3874 1.94733
\(900\) 0 0
\(901\) 4.81568 0.160434
\(902\) −4.75928 −0.158467
\(903\) 0 0
\(904\) 1.63557 0.0543982
\(905\) 0 0
\(906\) 0 0
\(907\) 25.8704 0.859012 0.429506 0.903064i \(-0.358688\pi\)
0.429506 + 0.903064i \(0.358688\pi\)
\(908\) −37.4284 −1.24210
\(909\) 0 0
\(910\) 0 0
\(911\) 36.1769 1.19859 0.599297 0.800527i \(-0.295447\pi\)
0.599297 + 0.800527i \(0.295447\pi\)
\(912\) 0 0
\(913\) −22.0611 −0.730117
\(914\) 44.3606 1.46732
\(915\) 0 0
\(916\) 28.2243 0.932558
\(917\) 4.11883 0.136016
\(918\) 0 0
\(919\) 52.2475 1.72349 0.861743 0.507346i \(-0.169373\pi\)
0.861743 + 0.507346i \(0.169373\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −6.09592 −0.200759
\(923\) 54.9150 1.80755
\(924\) 0 0
\(925\) 0 0
\(926\) 74.2138 2.43882
\(927\) 0 0
\(928\) −43.3960 −1.42454
\(929\) −19.6884 −0.645955 −0.322978 0.946407i \(-0.604684\pi\)
−0.322978 + 0.946407i \(0.604684\pi\)
\(930\) 0 0
\(931\) 10.7324 0.351741
\(932\) 14.4197 0.472333
\(933\) 0 0
\(934\) −90.2840 −2.95418
\(935\) 0 0
\(936\) 0 0
\(937\) 15.0805 0.492657 0.246328 0.969186i \(-0.420776\pi\)
0.246328 + 0.969186i \(0.420776\pi\)
\(938\) 45.8177 1.49600
\(939\) 0 0
\(940\) 0 0
\(941\) 12.2054 0.397886 0.198943 0.980011i \(-0.436249\pi\)
0.198943 + 0.980011i \(0.436249\pi\)
\(942\) 0 0
\(943\) 0.504513 0.0164292
\(944\) 21.6987 0.706232
\(945\) 0 0
\(946\) −67.7904 −2.20406
\(947\) 23.4424 0.761776 0.380888 0.924621i \(-0.375618\pi\)
0.380888 + 0.924621i \(0.375618\pi\)
\(948\) 0 0
\(949\) −50.0717 −1.62540
\(950\) 0 0
\(951\) 0 0
\(952\) −5.47242 −0.177362
\(953\) 50.7165 1.64287 0.821435 0.570302i \(-0.193174\pi\)
0.821435 + 0.570302i \(0.193174\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 37.6363 1.21724
\(957\) 0 0
\(958\) 23.7600 0.767652
\(959\) −38.4143 −1.24046
\(960\) 0 0
\(961\) 65.9397 2.12709
\(962\) −42.4339 −1.36813
\(963\) 0 0
\(964\) −11.6174 −0.374170
\(965\) 0 0
\(966\) 0 0
\(967\) 41.6170 1.33831 0.669157 0.743121i \(-0.266656\pi\)
0.669157 + 0.743121i \(0.266656\pi\)
\(968\) 31.7702 1.02113
\(969\) 0 0
\(970\) 0 0
\(971\) −19.2045 −0.616302 −0.308151 0.951337i \(-0.599710\pi\)
−0.308151 + 0.951337i \(0.599710\pi\)
\(972\) 0 0
\(973\) −30.0535 −0.963472
\(974\) −37.8617 −1.21317
\(975\) 0 0
\(976\) −8.47862 −0.271394
\(977\) 21.0264 0.672696 0.336348 0.941738i \(-0.390808\pi\)
0.336348 + 0.941738i \(0.390808\pi\)
\(978\) 0 0
\(979\) 55.8390 1.78462
\(980\) 0 0
\(981\) 0 0
\(982\) 62.8587 2.00590
\(983\) −3.77964 −0.120552 −0.0602758 0.998182i \(-0.519198\pi\)
−0.0602758 + 0.998182i \(0.519198\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −13.0136 −0.414437
\(987\) 0 0
\(988\) −59.2198 −1.88403
\(989\) 7.18619 0.228508
\(990\) 0 0
\(991\) 35.7886 1.13686 0.568431 0.822731i \(-0.307551\pi\)
0.568431 + 0.822731i \(0.307551\pi\)
\(992\) −72.0497 −2.28758
\(993\) 0 0
\(994\) −80.1111 −2.54097
\(995\) 0 0
\(996\) 0 0
\(997\) 4.92887 0.156099 0.0780494 0.996949i \(-0.475131\pi\)
0.0780494 + 0.996949i \(0.475131\pi\)
\(998\) −23.0602 −0.729958
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3825.2.a.bq.1.4 5
3.2 odd 2 425.2.a.i.1.2 5
5.4 even 2 3825.2.a.bl.1.2 5
12.11 even 2 6800.2.a.bz.1.5 5
15.2 even 4 425.2.b.f.324.3 10
15.8 even 4 425.2.b.f.324.8 10
15.14 odd 2 425.2.a.j.1.4 yes 5
51.50 odd 2 7225.2.a.x.1.2 5
60.59 even 2 6800.2.a.cd.1.1 5
255.254 odd 2 7225.2.a.y.1.4 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
425.2.a.i.1.2 5 3.2 odd 2
425.2.a.j.1.4 yes 5 15.14 odd 2
425.2.b.f.324.3 10 15.2 even 4
425.2.b.f.324.8 10 15.8 even 4
3825.2.a.bl.1.2 5 5.4 even 2
3825.2.a.bq.1.4 5 1.1 even 1 trivial
6800.2.a.bz.1.5 5 12.11 even 2
6800.2.a.cd.1.1 5 60.59 even 2
7225.2.a.x.1.2 5 51.50 odd 2
7225.2.a.y.1.4 5 255.254 odd 2