Properties

Label 7225.2.a.bb.1.4
Level $7225$
Weight $2$
Character 7225.1
Self dual yes
Analytic conductor $57.692$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [7225,2,Mod(1,7225)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("7225.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7225, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 7225 = 5^{2} \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7225.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,-2,4,6,0,-4,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(57.6919154604\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.7718912.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 7x^{4} + 4x^{3} + 9x^{2} - 2x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 85)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-1.35757\) of defining polynomial
Character \(\chi\) \(=\) 7225.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.677603 q^{2} +2.35757 q^{3} -1.54085 q^{4} +1.59750 q^{6} +4.27746 q^{7} -2.39929 q^{8} +2.55814 q^{9} -1.65650 q^{11} -3.63267 q^{12} -6.21427 q^{13} +2.89842 q^{14} +1.45594 q^{16} +1.73340 q^{18} -3.38977 q^{19} +10.0844 q^{21} -1.12245 q^{22} -4.67439 q^{23} -5.65650 q^{24} -4.21081 q^{26} -1.04172 q^{27} -6.59095 q^{28} +3.64759 q^{29} -2.99963 q^{31} +5.78514 q^{32} -3.90532 q^{33} -3.94171 q^{36} -5.35017 q^{37} -2.29692 q^{38} -14.6506 q^{39} +2.18836 q^{41} +6.83324 q^{42} +0.998176 q^{43} +2.55243 q^{44} -3.16739 q^{46} -2.00393 q^{47} +3.43248 q^{48} +11.2967 q^{49} +9.57528 q^{52} +6.95444 q^{53} -0.705876 q^{54} -10.2629 q^{56} -7.99163 q^{57} +2.47162 q^{58} -6.30165 q^{59} -6.53502 q^{61} -2.03256 q^{62} +10.9423 q^{63} +1.00815 q^{64} -2.64626 q^{66} -5.80078 q^{67} -11.0202 q^{69} -13.5865 q^{71} -6.13772 q^{72} -9.92480 q^{73} -3.62530 q^{74} +5.22314 q^{76} -7.08564 q^{77} -9.92728 q^{78} +1.16097 q^{79} -10.1303 q^{81} +1.48284 q^{82} -3.65934 q^{83} -15.5386 q^{84} +0.676367 q^{86} +8.59945 q^{87} +3.97444 q^{88} -2.69634 q^{89} -26.5813 q^{91} +7.20256 q^{92} -7.07184 q^{93} -1.35787 q^{94} +13.6389 q^{96} +10.4701 q^{97} +7.65468 q^{98} -4.23756 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 2 q^{2} + 4 q^{3} + 6 q^{4} - 4 q^{6} + 8 q^{7} - 6 q^{8} + 2 q^{9} + 8 q^{12} - 8 q^{14} + 2 q^{16} - 14 q^{18} - 12 q^{19} + 8 q^{21} + 16 q^{22} - 24 q^{24} - 12 q^{26} - 8 q^{27} - 8 q^{28} - 8 q^{29}+ \cdots - 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.677603 0.479138 0.239569 0.970879i \(-0.422994\pi\)
0.239569 + 0.970879i \(0.422994\pi\)
\(3\) 2.35757 1.36114 0.680572 0.732681i \(-0.261731\pi\)
0.680572 + 0.732681i \(0.261731\pi\)
\(4\) −1.54085 −0.770427
\(5\) 0 0
\(6\) 1.59750 0.652176
\(7\) 4.27746 1.61673 0.808365 0.588682i \(-0.200353\pi\)
0.808365 + 0.588682i \(0.200353\pi\)
\(8\) −2.39929 −0.848279
\(9\) 2.55814 0.852712
\(10\) 0 0
\(11\) −1.65650 −0.499455 −0.249727 0.968316i \(-0.580341\pi\)
−0.249727 + 0.968316i \(0.580341\pi\)
\(12\) −3.63267 −1.04866
\(13\) −6.21427 −1.72353 −0.861764 0.507309i \(-0.830640\pi\)
−0.861764 + 0.507309i \(0.830640\pi\)
\(14\) 2.89842 0.774636
\(15\) 0 0
\(16\) 1.45594 0.363984
\(17\) 0 0
\(18\) 1.73340 0.408567
\(19\) −3.38977 −0.777667 −0.388834 0.921308i \(-0.627122\pi\)
−0.388834 + 0.921308i \(0.627122\pi\)
\(20\) 0 0
\(21\) 10.0844 2.20060
\(22\) −1.12245 −0.239308
\(23\) −4.67439 −0.974679 −0.487339 0.873213i \(-0.662033\pi\)
−0.487339 + 0.873213i \(0.662033\pi\)
\(24\) −5.65650 −1.15463
\(25\) 0 0
\(26\) −4.21081 −0.825808
\(27\) −1.04172 −0.200480
\(28\) −6.59095 −1.24557
\(29\) 3.64759 0.677340 0.338670 0.940905i \(-0.390023\pi\)
0.338670 + 0.940905i \(0.390023\pi\)
\(30\) 0 0
\(31\) −2.99963 −0.538749 −0.269375 0.963035i \(-0.586817\pi\)
−0.269375 + 0.963035i \(0.586817\pi\)
\(32\) 5.78514 1.02268
\(33\) −3.90532 −0.679830
\(34\) 0 0
\(35\) 0 0
\(36\) −3.94171 −0.656952
\(37\) −5.35017 −0.879563 −0.439782 0.898105i \(-0.644944\pi\)
−0.439782 + 0.898105i \(0.644944\pi\)
\(38\) −2.29692 −0.372610
\(39\) −14.6506 −2.34597
\(40\) 0 0
\(41\) 2.18836 0.341765 0.170882 0.985291i \(-0.445338\pi\)
0.170882 + 0.985291i \(0.445338\pi\)
\(42\) 6.83324 1.05439
\(43\) 0.998176 0.152220 0.0761102 0.997099i \(-0.475750\pi\)
0.0761102 + 0.997099i \(0.475750\pi\)
\(44\) 2.55243 0.384793
\(45\) 0 0
\(46\) −3.16739 −0.467006
\(47\) −2.00393 −0.292303 −0.146152 0.989262i \(-0.546689\pi\)
−0.146152 + 0.989262i \(0.546689\pi\)
\(48\) 3.43248 0.495435
\(49\) 11.2967 1.61381
\(50\) 0 0
\(51\) 0 0
\(52\) 9.57528 1.32785
\(53\) 6.95444 0.955266 0.477633 0.878560i \(-0.341495\pi\)
0.477633 + 0.878560i \(0.341495\pi\)
\(54\) −0.705876 −0.0960575
\(55\) 0 0
\(56\) −10.2629 −1.37144
\(57\) −7.99163 −1.05852
\(58\) 2.47162 0.324539
\(59\) −6.30165 −0.820405 −0.410202 0.911995i \(-0.634542\pi\)
−0.410202 + 0.911995i \(0.634542\pi\)
\(60\) 0 0
\(61\) −6.53502 −0.836724 −0.418362 0.908280i \(-0.637396\pi\)
−0.418362 + 0.908280i \(0.637396\pi\)
\(62\) −2.03256 −0.258135
\(63\) 10.9423 1.37860
\(64\) 1.00815 0.126019
\(65\) 0 0
\(66\) −2.64626 −0.325732
\(67\) −5.80078 −0.708678 −0.354339 0.935117i \(-0.615294\pi\)
−0.354339 + 0.935117i \(0.615294\pi\)
\(68\) 0 0
\(69\) −11.0202 −1.32668
\(70\) 0 0
\(71\) −13.5865 −1.61243 −0.806213 0.591625i \(-0.798486\pi\)
−0.806213 + 0.591625i \(0.798486\pi\)
\(72\) −6.13772 −0.723337
\(73\) −9.92480 −1.16161 −0.580805 0.814043i \(-0.697262\pi\)
−0.580805 + 0.814043i \(0.697262\pi\)
\(74\) −3.62530 −0.421432
\(75\) 0 0
\(76\) 5.22314 0.599136
\(77\) −7.08564 −0.807483
\(78\) −9.92728 −1.12404
\(79\) 1.16097 0.130619 0.0653096 0.997865i \(-0.479197\pi\)
0.0653096 + 0.997865i \(0.479197\pi\)
\(80\) 0 0
\(81\) −10.1303 −1.12559
\(82\) 1.48284 0.163752
\(83\) −3.65934 −0.401665 −0.200832 0.979626i \(-0.564365\pi\)
−0.200832 + 0.979626i \(0.564365\pi\)
\(84\) −15.5386 −1.69540
\(85\) 0 0
\(86\) 0.676367 0.0729346
\(87\) 8.59945 0.921958
\(88\) 3.97444 0.423677
\(89\) −2.69634 −0.285811 −0.142906 0.989736i \(-0.545645\pi\)
−0.142906 + 0.989736i \(0.545645\pi\)
\(90\) 0 0
\(91\) −26.5813 −2.78648
\(92\) 7.20256 0.750919
\(93\) −7.07184 −0.733315
\(94\) −1.35787 −0.140054
\(95\) 0 0
\(96\) 13.6389 1.39201
\(97\) 10.4701 1.06308 0.531539 0.847034i \(-0.321614\pi\)
0.531539 + 0.847034i \(0.321614\pi\)
\(98\) 7.65468 0.773239
\(99\) −4.23756 −0.425891
\(100\) 0 0
\(101\) 11.5529 1.14956 0.574779 0.818309i \(-0.305088\pi\)
0.574779 + 0.818309i \(0.305088\pi\)
\(102\) 0 0
\(103\) −11.3302 −1.11640 −0.558198 0.829708i \(-0.688507\pi\)
−0.558198 + 0.829708i \(0.688507\pi\)
\(104\) 14.9099 1.46203
\(105\) 0 0
\(106\) 4.71235 0.457704
\(107\) −6.07097 −0.586903 −0.293451 0.955974i \(-0.594804\pi\)
−0.293451 + 0.955974i \(0.594804\pi\)
\(108\) 1.60514 0.154455
\(109\) 3.06935 0.293990 0.146995 0.989137i \(-0.453040\pi\)
0.146995 + 0.989137i \(0.453040\pi\)
\(110\) 0 0
\(111\) −12.6134 −1.19721
\(112\) 6.22772 0.588464
\(113\) −7.38421 −0.694648 −0.347324 0.937745i \(-0.612910\pi\)
−0.347324 + 0.937745i \(0.612910\pi\)
\(114\) −5.41515 −0.507175
\(115\) 0 0
\(116\) −5.62040 −0.521841
\(117\) −15.8969 −1.46967
\(118\) −4.27002 −0.393087
\(119\) 0 0
\(120\) 0 0
\(121\) −8.25599 −0.750545
\(122\) −4.42815 −0.400906
\(123\) 5.15921 0.465191
\(124\) 4.62199 0.415067
\(125\) 0 0
\(126\) 7.41456 0.660542
\(127\) 14.3835 1.27633 0.638164 0.769900i \(-0.279694\pi\)
0.638164 + 0.769900i \(0.279694\pi\)
\(128\) −10.8871 −0.962297
\(129\) 2.35327 0.207194
\(130\) 0 0
\(131\) 4.66403 0.407498 0.203749 0.979023i \(-0.434687\pi\)
0.203749 + 0.979023i \(0.434687\pi\)
\(132\) 6.01753 0.523759
\(133\) −14.4996 −1.25728
\(134\) −3.93063 −0.339554
\(135\) 0 0
\(136\) 0 0
\(137\) 14.5618 1.24410 0.622049 0.782978i \(-0.286300\pi\)
0.622049 + 0.782978i \(0.286300\pi\)
\(138\) −7.46733 −0.635662
\(139\) −5.36952 −0.455437 −0.227718 0.973727i \(-0.573127\pi\)
−0.227718 + 0.973727i \(0.573127\pi\)
\(140\) 0 0
\(141\) −4.72440 −0.397867
\(142\) −9.20629 −0.772574
\(143\) 10.2940 0.860824
\(144\) 3.72449 0.310374
\(145\) 0 0
\(146\) −6.72507 −0.556571
\(147\) 26.6328 2.19663
\(148\) 8.24384 0.677639
\(149\) 12.6885 1.03948 0.519741 0.854324i \(-0.326029\pi\)
0.519741 + 0.854324i \(0.326029\pi\)
\(150\) 0 0
\(151\) −16.2607 −1.32327 −0.661637 0.749824i \(-0.730138\pi\)
−0.661637 + 0.749824i \(0.730138\pi\)
\(152\) 8.13306 0.659678
\(153\) 0 0
\(154\) −4.80125 −0.386896
\(155\) 0 0
\(156\) 22.5744 1.80740
\(157\) 10.0238 0.799985 0.399993 0.916518i \(-0.369013\pi\)
0.399993 + 0.916518i \(0.369013\pi\)
\(158\) 0.786676 0.0625846
\(159\) 16.3956 1.30025
\(160\) 0 0
\(161\) −19.9946 −1.57579
\(162\) −6.86436 −0.539315
\(163\) −8.04592 −0.630205 −0.315102 0.949058i \(-0.602039\pi\)
−0.315102 + 0.949058i \(0.602039\pi\)
\(164\) −3.37194 −0.263305
\(165\) 0 0
\(166\) −2.47958 −0.192453
\(167\) −12.9027 −0.998444 −0.499222 0.866474i \(-0.666381\pi\)
−0.499222 + 0.866474i \(0.666381\pi\)
\(168\) −24.1955 −1.86672
\(169\) 25.6171 1.97055
\(170\) 0 0
\(171\) −8.67150 −0.663126
\(172\) −1.53804 −0.117275
\(173\) 16.4632 1.25167 0.625836 0.779955i \(-0.284758\pi\)
0.625836 + 0.779955i \(0.284758\pi\)
\(174\) 5.82701 0.441745
\(175\) 0 0
\(176\) −2.41177 −0.181794
\(177\) −14.8566 −1.11669
\(178\) −1.82705 −0.136943
\(179\) −13.9304 −1.04121 −0.520603 0.853799i \(-0.674293\pi\)
−0.520603 + 0.853799i \(0.674293\pi\)
\(180\) 0 0
\(181\) −13.0497 −0.969978 −0.484989 0.874520i \(-0.661176\pi\)
−0.484989 + 0.874520i \(0.661176\pi\)
\(182\) −18.0116 −1.33511
\(183\) −15.4068 −1.13890
\(184\) 11.2152 0.826799
\(185\) 0 0
\(186\) −4.79190 −0.351359
\(187\) 0 0
\(188\) 3.08776 0.225198
\(189\) −4.45594 −0.324122
\(190\) 0 0
\(191\) −4.75563 −0.344105 −0.172053 0.985088i \(-0.555040\pi\)
−0.172053 + 0.985088i \(0.555040\pi\)
\(192\) 2.37679 0.171530
\(193\) 13.9400 1.00342 0.501711 0.865036i \(-0.332704\pi\)
0.501711 + 0.865036i \(0.332704\pi\)
\(194\) 7.09457 0.509361
\(195\) 0 0
\(196\) −17.4066 −1.24333
\(197\) 15.1100 1.07655 0.538273 0.842771i \(-0.319077\pi\)
0.538273 + 0.842771i \(0.319077\pi\)
\(198\) −2.87139 −0.204061
\(199\) 2.04982 0.145308 0.0726538 0.997357i \(-0.476853\pi\)
0.0726538 + 0.997357i \(0.476853\pi\)
\(200\) 0 0
\(201\) −13.6757 −0.964612
\(202\) 7.82829 0.550797
\(203\) 15.6024 1.09508
\(204\) 0 0
\(205\) 0 0
\(206\) −7.67737 −0.534907
\(207\) −11.9577 −0.831120
\(208\) −9.04759 −0.627337
\(209\) 5.61517 0.388410
\(210\) 0 0
\(211\) 0.438284 0.0301727 0.0150864 0.999886i \(-0.495198\pi\)
0.0150864 + 0.999886i \(0.495198\pi\)
\(212\) −10.7158 −0.735962
\(213\) −32.0312 −2.19474
\(214\) −4.11371 −0.281207
\(215\) 0 0
\(216\) 2.49940 0.170063
\(217\) −12.8308 −0.871012
\(218\) 2.07980 0.140862
\(219\) −23.3984 −1.58112
\(220\) 0 0
\(221\) 0 0
\(222\) −8.54689 −0.573630
\(223\) −27.2421 −1.82427 −0.912134 0.409893i \(-0.865566\pi\)
−0.912134 + 0.409893i \(0.865566\pi\)
\(224\) 24.7457 1.65339
\(225\) 0 0
\(226\) −5.00357 −0.332832
\(227\) −9.26138 −0.614699 −0.307350 0.951597i \(-0.599442\pi\)
−0.307350 + 0.951597i \(0.599442\pi\)
\(228\) 12.3139 0.815510
\(229\) 11.0731 0.731728 0.365864 0.930668i \(-0.380773\pi\)
0.365864 + 0.930668i \(0.380773\pi\)
\(230\) 0 0
\(231\) −16.7049 −1.09910
\(232\) −8.75164 −0.574573
\(233\) −15.4853 −1.01448 −0.507239 0.861806i \(-0.669334\pi\)
−0.507239 + 0.861806i \(0.669334\pi\)
\(234\) −10.7718 −0.704176
\(235\) 0 0
\(236\) 9.70992 0.632062
\(237\) 2.73706 0.177791
\(238\) 0 0
\(239\) 2.34216 0.151501 0.0757507 0.997127i \(-0.475865\pi\)
0.0757507 + 0.997127i \(0.475865\pi\)
\(240\) 0 0
\(241\) 30.5342 1.96688 0.983441 0.181227i \(-0.0580068\pi\)
0.983441 + 0.181227i \(0.0580068\pi\)
\(242\) −5.59429 −0.359615
\(243\) −20.7578 −1.33162
\(244\) 10.0695 0.644635
\(245\) 0 0
\(246\) 3.49590 0.222890
\(247\) 21.0650 1.34033
\(248\) 7.19699 0.457009
\(249\) −8.62715 −0.546724
\(250\) 0 0
\(251\) 9.23001 0.582593 0.291297 0.956633i \(-0.405913\pi\)
0.291297 + 0.956633i \(0.405913\pi\)
\(252\) −16.8605 −1.06211
\(253\) 7.74315 0.486808
\(254\) 9.74630 0.611537
\(255\) 0 0
\(256\) −9.39347 −0.587092
\(257\) −3.23036 −0.201504 −0.100752 0.994912i \(-0.532125\pi\)
−0.100752 + 0.994912i \(0.532125\pi\)
\(258\) 1.59458 0.0992744
\(259\) −22.8852 −1.42202
\(260\) 0 0
\(261\) 9.33103 0.577576
\(262\) 3.16036 0.195248
\(263\) −12.4719 −0.769051 −0.384526 0.923114i \(-0.625635\pi\)
−0.384526 + 0.923114i \(0.625635\pi\)
\(264\) 9.37002 0.576685
\(265\) 0 0
\(266\) −9.82500 −0.602409
\(267\) −6.35681 −0.389030
\(268\) 8.93815 0.545984
\(269\) 0.310023 0.0189024 0.00945120 0.999955i \(-0.496992\pi\)
0.00945120 + 0.999955i \(0.496992\pi\)
\(270\) 0 0
\(271\) −18.3441 −1.11433 −0.557164 0.830403i \(-0.688110\pi\)
−0.557164 + 0.830403i \(0.688110\pi\)
\(272\) 0 0
\(273\) −62.6673 −3.79280
\(274\) 9.86712 0.596094
\(275\) 0 0
\(276\) 16.9805 1.02211
\(277\) 12.7545 0.766342 0.383171 0.923677i \(-0.374832\pi\)
0.383171 + 0.923677i \(0.374832\pi\)
\(278\) −3.63840 −0.218217
\(279\) −7.67346 −0.459398
\(280\) 0 0
\(281\) 31.1275 1.85691 0.928457 0.371441i \(-0.121136\pi\)
0.928457 + 0.371441i \(0.121136\pi\)
\(282\) −3.20127 −0.190633
\(283\) 27.8553 1.65582 0.827912 0.560858i \(-0.189528\pi\)
0.827912 + 0.560858i \(0.189528\pi\)
\(284\) 20.9349 1.24226
\(285\) 0 0
\(286\) 6.97522 0.412454
\(287\) 9.36063 0.552541
\(288\) 14.7992 0.872049
\(289\) 0 0
\(290\) 0 0
\(291\) 24.6840 1.44700
\(292\) 15.2927 0.894935
\(293\) 31.4302 1.83617 0.918086 0.396381i \(-0.129734\pi\)
0.918086 + 0.396381i \(0.129734\pi\)
\(294\) 18.0464 1.05249
\(295\) 0 0
\(296\) 12.8366 0.746115
\(297\) 1.72562 0.100131
\(298\) 8.59776 0.498055
\(299\) 29.0479 1.67989
\(300\) 0 0
\(301\) 4.26966 0.246099
\(302\) −11.0183 −0.634031
\(303\) 27.2368 1.56471
\(304\) −4.93530 −0.283059
\(305\) 0 0
\(306\) 0 0
\(307\) 4.21985 0.240839 0.120420 0.992723i \(-0.461576\pi\)
0.120420 + 0.992723i \(0.461576\pi\)
\(308\) 10.9179 0.622107
\(309\) −26.7117 −1.51957
\(310\) 0 0
\(311\) −15.4099 −0.873818 −0.436909 0.899506i \(-0.643927\pi\)
−0.436909 + 0.899506i \(0.643927\pi\)
\(312\) 35.1510 1.99004
\(313\) 10.8608 0.613891 0.306945 0.951727i \(-0.400693\pi\)
0.306945 + 0.951727i \(0.400693\pi\)
\(314\) 6.79215 0.383303
\(315\) 0 0
\(316\) −1.78888 −0.100633
\(317\) −28.8872 −1.62247 −0.811233 0.584723i \(-0.801203\pi\)
−0.811233 + 0.584723i \(0.801203\pi\)
\(318\) 11.1097 0.623001
\(319\) −6.04225 −0.338301
\(320\) 0 0
\(321\) −14.3127 −0.798859
\(322\) −13.5484 −0.755022
\(323\) 0 0
\(324\) 15.6094 0.867188
\(325\) 0 0
\(326\) −5.45194 −0.301955
\(327\) 7.23620 0.400163
\(328\) −5.25052 −0.289912
\(329\) −8.57174 −0.472575
\(330\) 0 0
\(331\) −7.29249 −0.400832 −0.200416 0.979711i \(-0.564229\pi\)
−0.200416 + 0.979711i \(0.564229\pi\)
\(332\) 5.63851 0.309453
\(333\) −13.6865 −0.750014
\(334\) −8.74294 −0.478392
\(335\) 0 0
\(336\) 14.6823 0.800985
\(337\) 13.4064 0.730295 0.365148 0.930950i \(-0.381018\pi\)
0.365148 + 0.930950i \(0.381018\pi\)
\(338\) 17.3583 0.944165
\(339\) −17.4088 −0.945516
\(340\) 0 0
\(341\) 4.96890 0.269081
\(342\) −5.87584 −0.317729
\(343\) 18.3790 0.992371
\(344\) −2.39492 −0.129125
\(345\) 0 0
\(346\) 11.1555 0.599723
\(347\) −33.4156 −1.79384 −0.896921 0.442190i \(-0.854202\pi\)
−0.896921 + 0.442190i \(0.854202\pi\)
\(348\) −13.2505 −0.710301
\(349\) −22.4213 −1.20019 −0.600093 0.799930i \(-0.704870\pi\)
−0.600093 + 0.799930i \(0.704870\pi\)
\(350\) 0 0
\(351\) 6.47356 0.345533
\(352\) −9.58310 −0.510781
\(353\) 22.2555 1.18454 0.592270 0.805739i \(-0.298232\pi\)
0.592270 + 0.805739i \(0.298232\pi\)
\(354\) −10.0669 −0.535048
\(355\) 0 0
\(356\) 4.15466 0.220197
\(357\) 0 0
\(358\) −9.43927 −0.498881
\(359\) −36.6674 −1.93523 −0.967617 0.252424i \(-0.918772\pi\)
−0.967617 + 0.252424i \(0.918772\pi\)
\(360\) 0 0
\(361\) −7.50945 −0.395234
\(362\) −8.84253 −0.464753
\(363\) −19.4641 −1.02160
\(364\) 40.9579 2.14678
\(365\) 0 0
\(366\) −10.4397 −0.545691
\(367\) −0.135781 −0.00708768 −0.00354384 0.999994i \(-0.501128\pi\)
−0.00354384 + 0.999994i \(0.501128\pi\)
\(368\) −6.80563 −0.354768
\(369\) 5.59812 0.291427
\(370\) 0 0
\(371\) 29.7474 1.54441
\(372\) 10.8967 0.564966
\(373\) 0.927465 0.0480223 0.0240111 0.999712i \(-0.492356\pi\)
0.0240111 + 0.999712i \(0.492356\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 4.80802 0.247955
\(377\) −22.6671 −1.16742
\(378\) −3.01936 −0.155299
\(379\) −8.38647 −0.430784 −0.215392 0.976528i \(-0.569103\pi\)
−0.215392 + 0.976528i \(0.569103\pi\)
\(380\) 0 0
\(381\) 33.9101 1.73727
\(382\) −3.22243 −0.164874
\(383\) −21.9106 −1.11958 −0.559789 0.828635i \(-0.689118\pi\)
−0.559789 + 0.828635i \(0.689118\pi\)
\(384\) −25.6672 −1.30982
\(385\) 0 0
\(386\) 9.44577 0.480777
\(387\) 2.55347 0.129800
\(388\) −16.1329 −0.819023
\(389\) 12.7622 0.647071 0.323536 0.946216i \(-0.395128\pi\)
0.323536 + 0.946216i \(0.395128\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −27.1041 −1.36896
\(393\) 10.9958 0.554663
\(394\) 10.2386 0.515814
\(395\) 0 0
\(396\) 6.52947 0.328118
\(397\) 25.1771 1.26360 0.631800 0.775131i \(-0.282316\pi\)
0.631800 + 0.775131i \(0.282316\pi\)
\(398\) 1.38896 0.0696223
\(399\) −34.1839 −1.71133
\(400\) 0 0
\(401\) −5.77896 −0.288588 −0.144294 0.989535i \(-0.546091\pi\)
−0.144294 + 0.989535i \(0.546091\pi\)
\(402\) −9.26673 −0.462182
\(403\) 18.6405 0.928550
\(404\) −17.8014 −0.885650
\(405\) 0 0
\(406\) 10.5723 0.524693
\(407\) 8.86259 0.439302
\(408\) 0 0
\(409\) −15.4742 −0.765149 −0.382575 0.923925i \(-0.624963\pi\)
−0.382575 + 0.923925i \(0.624963\pi\)
\(410\) 0 0
\(411\) 34.3304 1.69340
\(412\) 17.4581 0.860101
\(413\) −26.9551 −1.32637
\(414\) −8.10260 −0.398221
\(415\) 0 0
\(416\) −35.9504 −1.76261
\(417\) −12.6590 −0.619915
\(418\) 3.80486 0.186102
\(419\) 18.1317 0.885790 0.442895 0.896574i \(-0.353952\pi\)
0.442895 + 0.896574i \(0.353952\pi\)
\(420\) 0 0
\(421\) −9.81137 −0.478177 −0.239089 0.970998i \(-0.576849\pi\)
−0.239089 + 0.970998i \(0.576849\pi\)
\(422\) 0.296983 0.0144569
\(423\) −5.12633 −0.249250
\(424\) −16.6857 −0.810331
\(425\) 0 0
\(426\) −21.7045 −1.05158
\(427\) −27.9533 −1.35276
\(428\) 9.35448 0.452166
\(429\) 24.2687 1.17171
\(430\) 0 0
\(431\) 18.1257 0.873085 0.436542 0.899684i \(-0.356203\pi\)
0.436542 + 0.899684i \(0.356203\pi\)
\(432\) −1.51669 −0.0729716
\(433\) −12.8308 −0.616610 −0.308305 0.951287i \(-0.599762\pi\)
−0.308305 + 0.951287i \(0.599762\pi\)
\(434\) −8.69420 −0.417335
\(435\) 0 0
\(436\) −4.72942 −0.226498
\(437\) 15.8451 0.757976
\(438\) −15.8548 −0.757573
\(439\) −24.2848 −1.15905 −0.579526 0.814954i \(-0.696762\pi\)
−0.579526 + 0.814954i \(0.696762\pi\)
\(440\) 0 0
\(441\) 28.8985 1.37612
\(442\) 0 0
\(443\) 16.1216 0.765962 0.382981 0.923756i \(-0.374897\pi\)
0.382981 + 0.923756i \(0.374897\pi\)
\(444\) 19.4354 0.922364
\(445\) 0 0
\(446\) −18.4594 −0.874076
\(447\) 29.9140 1.41488
\(448\) 4.31234 0.203739
\(449\) −19.1265 −0.902634 −0.451317 0.892364i \(-0.649046\pi\)
−0.451317 + 0.892364i \(0.649046\pi\)
\(450\) 0 0
\(451\) −3.62503 −0.170696
\(452\) 11.3780 0.535176
\(453\) −38.3357 −1.80117
\(454\) −6.27554 −0.294526
\(455\) 0 0
\(456\) 19.1743 0.897917
\(457\) 3.68314 0.172290 0.0861451 0.996283i \(-0.472545\pi\)
0.0861451 + 0.996283i \(0.472545\pi\)
\(458\) 7.50314 0.350599
\(459\) 0 0
\(460\) 0 0
\(461\) −19.7569 −0.920172 −0.460086 0.887874i \(-0.652181\pi\)
−0.460086 + 0.887874i \(0.652181\pi\)
\(462\) −11.3193 −0.526621
\(463\) 23.6496 1.09909 0.549545 0.835464i \(-0.314801\pi\)
0.549545 + 0.835464i \(0.314801\pi\)
\(464\) 5.31066 0.246541
\(465\) 0 0
\(466\) −10.4929 −0.486074
\(467\) 5.50118 0.254564 0.127282 0.991867i \(-0.459375\pi\)
0.127282 + 0.991867i \(0.459375\pi\)
\(468\) 24.4949 1.13228
\(469\) −24.8126 −1.14574
\(470\) 0 0
\(471\) 23.6318 1.08889
\(472\) 15.1195 0.695932
\(473\) −1.65348 −0.0760272
\(474\) 1.85464 0.0851866
\(475\) 0 0
\(476\) 0 0
\(477\) 17.7904 0.814567
\(478\) 1.58705 0.0725901
\(479\) 11.1650 0.510143 0.255072 0.966922i \(-0.417901\pi\)
0.255072 + 0.966922i \(0.417901\pi\)
\(480\) 0 0
\(481\) 33.2474 1.51595
\(482\) 20.6901 0.942408
\(483\) −47.1386 −2.14488
\(484\) 12.7213 0.578240
\(485\) 0 0
\(486\) −14.0656 −0.638027
\(487\) 35.4428 1.60607 0.803034 0.595933i \(-0.203218\pi\)
0.803034 + 0.595933i \(0.203218\pi\)
\(488\) 15.6794 0.709775
\(489\) −18.9688 −0.857799
\(490\) 0 0
\(491\) −12.8558 −0.580175 −0.290087 0.957000i \(-0.593684\pi\)
−0.290087 + 0.957000i \(0.593684\pi\)
\(492\) −7.94959 −0.358395
\(493\) 0 0
\(494\) 14.2737 0.642203
\(495\) 0 0
\(496\) −4.36727 −0.196096
\(497\) −58.1159 −2.60686
\(498\) −5.84579 −0.261956
\(499\) −18.5876 −0.832094 −0.416047 0.909343i \(-0.636585\pi\)
−0.416047 + 0.909343i \(0.636585\pi\)
\(500\) 0 0
\(501\) −30.4191 −1.35903
\(502\) 6.25429 0.279143
\(503\) −34.0067 −1.51628 −0.758142 0.652090i \(-0.773892\pi\)
−0.758142 + 0.652090i \(0.773892\pi\)
\(504\) −26.2539 −1.16944
\(505\) 0 0
\(506\) 5.24679 0.233248
\(507\) 60.3942 2.68220
\(508\) −22.1629 −0.983318
\(509\) −29.8369 −1.32250 −0.661249 0.750167i \(-0.729973\pi\)
−0.661249 + 0.750167i \(0.729973\pi\)
\(510\) 0 0
\(511\) −42.4530 −1.87801
\(512\) 15.4092 0.680999
\(513\) 3.53121 0.155907
\(514\) −2.18890 −0.0965483
\(515\) 0 0
\(516\) −3.62604 −0.159628
\(517\) 3.31952 0.145992
\(518\) −15.5071 −0.681342
\(519\) 38.8131 1.70370
\(520\) 0 0
\(521\) −38.4178 −1.68312 −0.841558 0.540167i \(-0.818361\pi\)
−0.841558 + 0.540167i \(0.818361\pi\)
\(522\) 6.32274 0.276739
\(523\) 20.2414 0.885093 0.442547 0.896745i \(-0.354075\pi\)
0.442547 + 0.896745i \(0.354075\pi\)
\(524\) −7.18658 −0.313947
\(525\) 0 0
\(526\) −8.45101 −0.368482
\(527\) 0 0
\(528\) −5.68591 −0.247447
\(529\) −1.15003 −0.0500014
\(530\) 0 0
\(531\) −16.1205 −0.699569
\(532\) 22.3418 0.968640
\(533\) −13.5991 −0.589041
\(534\) −4.30739 −0.186399
\(535\) 0 0
\(536\) 13.9178 0.601156
\(537\) −32.8418 −1.41723
\(538\) 0.210072 0.00905686
\(539\) −18.7130 −0.806027
\(540\) 0 0
\(541\) 7.30589 0.314105 0.157052 0.987590i \(-0.449801\pi\)
0.157052 + 0.987590i \(0.449801\pi\)
\(542\) −12.4301 −0.533916
\(543\) −30.7656 −1.32028
\(544\) 0 0
\(545\) 0 0
\(546\) −42.4636 −1.81727
\(547\) 43.7144 1.86909 0.934547 0.355841i \(-0.115806\pi\)
0.934547 + 0.355841i \(0.115806\pi\)
\(548\) −22.4376 −0.958486
\(549\) −16.7175 −0.713485
\(550\) 0 0
\(551\) −12.3645 −0.526745
\(552\) 26.4407 1.12539
\(553\) 4.96600 0.211176
\(554\) 8.64247 0.367183
\(555\) 0 0
\(556\) 8.27364 0.350881
\(557\) 29.0497 1.23088 0.615438 0.788185i \(-0.288979\pi\)
0.615438 + 0.788185i \(0.288979\pi\)
\(558\) −5.19956 −0.220115
\(559\) −6.20293 −0.262356
\(560\) 0 0
\(561\) 0 0
\(562\) 21.0921 0.889718
\(563\) −39.3006 −1.65632 −0.828162 0.560489i \(-0.810613\pi\)
−0.828162 + 0.560489i \(0.810613\pi\)
\(564\) 7.27962 0.306527
\(565\) 0 0
\(566\) 18.8748 0.793368
\(567\) −43.3322 −1.81978
\(568\) 32.5981 1.36779
\(569\) −14.3009 −0.599525 −0.299763 0.954014i \(-0.596907\pi\)
−0.299763 + 0.954014i \(0.596907\pi\)
\(570\) 0 0
\(571\) −23.9174 −1.00091 −0.500455 0.865762i \(-0.666834\pi\)
−0.500455 + 0.865762i \(0.666834\pi\)
\(572\) −15.8615 −0.663202
\(573\) −11.2117 −0.468377
\(574\) 6.34280 0.264743
\(575\) 0 0
\(576\) 2.57899 0.107458
\(577\) 5.85190 0.243618 0.121809 0.992554i \(-0.461131\pi\)
0.121809 + 0.992554i \(0.461131\pi\)
\(578\) 0 0
\(579\) 32.8645 1.36580
\(580\) 0 0
\(581\) −15.6527 −0.649384
\(582\) 16.7259 0.693313
\(583\) −11.5201 −0.477112
\(584\) 23.8125 0.985369
\(585\) 0 0
\(586\) 21.2972 0.879779
\(587\) 2.30210 0.0950176 0.0475088 0.998871i \(-0.484872\pi\)
0.0475088 + 0.998871i \(0.484872\pi\)
\(588\) −41.0372 −1.69234
\(589\) 10.1681 0.418968
\(590\) 0 0
\(591\) 35.6230 1.46533
\(592\) −7.78952 −0.320147
\(593\) 4.89325 0.200942 0.100471 0.994940i \(-0.467965\pi\)
0.100471 + 0.994940i \(0.467965\pi\)
\(594\) 1.16929 0.0479764
\(595\) 0 0
\(596\) −19.5511 −0.800844
\(597\) 4.83258 0.197784
\(598\) 19.6830 0.804897
\(599\) 6.54372 0.267369 0.133685 0.991024i \(-0.457319\pi\)
0.133685 + 0.991024i \(0.457319\pi\)
\(600\) 0 0
\(601\) 16.0671 0.655390 0.327695 0.944784i \(-0.393728\pi\)
0.327695 + 0.944784i \(0.393728\pi\)
\(602\) 2.89314 0.117915
\(603\) −14.8392 −0.604298
\(604\) 25.0553 1.01949
\(605\) 0 0
\(606\) 18.4557 0.749714
\(607\) 43.6245 1.77066 0.885331 0.464961i \(-0.153932\pi\)
0.885331 + 0.464961i \(0.153932\pi\)
\(608\) −19.6103 −0.795302
\(609\) 36.7838 1.49056
\(610\) 0 0
\(611\) 12.4530 0.503793
\(612\) 0 0
\(613\) 24.9253 1.00672 0.503362 0.864076i \(-0.332096\pi\)
0.503362 + 0.864076i \(0.332096\pi\)
\(614\) 2.85938 0.115395
\(615\) 0 0
\(616\) 17.0005 0.684971
\(617\) −17.8320 −0.717890 −0.358945 0.933359i \(-0.616863\pi\)
−0.358945 + 0.933359i \(0.616863\pi\)
\(618\) −18.0999 −0.728086
\(619\) −27.6196 −1.11012 −0.555062 0.831809i \(-0.687306\pi\)
−0.555062 + 0.831809i \(0.687306\pi\)
\(620\) 0 0
\(621\) 4.86943 0.195404
\(622\) −10.4418 −0.418679
\(623\) −11.5335 −0.462080
\(624\) −21.3303 −0.853896
\(625\) 0 0
\(626\) 7.35934 0.294138
\(627\) 13.2382 0.528681
\(628\) −15.4452 −0.616330
\(629\) 0 0
\(630\) 0 0
\(631\) 38.2023 1.52081 0.760406 0.649448i \(-0.225000\pi\)
0.760406 + 0.649448i \(0.225000\pi\)
\(632\) −2.78550 −0.110801
\(633\) 1.03329 0.0410694
\(634\) −19.5741 −0.777385
\(635\) 0 0
\(636\) −25.2632 −1.00175
\(637\) −70.2007 −2.78145
\(638\) −4.09425 −0.162093
\(639\) −34.7562 −1.37494
\(640\) 0 0
\(641\) 23.2598 0.918706 0.459353 0.888254i \(-0.348081\pi\)
0.459353 + 0.888254i \(0.348081\pi\)
\(642\) −9.69836 −0.382764
\(643\) 6.84489 0.269936 0.134968 0.990850i \(-0.456907\pi\)
0.134968 + 0.990850i \(0.456907\pi\)
\(644\) 30.8087 1.21403
\(645\) 0 0
\(646\) 0 0
\(647\) −39.1427 −1.53886 −0.769429 0.638732i \(-0.779459\pi\)
−0.769429 + 0.638732i \(0.779459\pi\)
\(648\) 24.3057 0.954817
\(649\) 10.4387 0.409755
\(650\) 0 0
\(651\) −30.2495 −1.18557
\(652\) 12.3976 0.485527
\(653\) 13.7584 0.538409 0.269204 0.963083i \(-0.413239\pi\)
0.269204 + 0.963083i \(0.413239\pi\)
\(654\) 4.90327 0.191733
\(655\) 0 0
\(656\) 3.18612 0.124397
\(657\) −25.3890 −0.990519
\(658\) −5.80824 −0.226429
\(659\) 19.0767 0.743124 0.371562 0.928408i \(-0.378822\pi\)
0.371562 + 0.928408i \(0.378822\pi\)
\(660\) 0 0
\(661\) −3.89804 −0.151616 −0.0758082 0.997122i \(-0.524154\pi\)
−0.0758082 + 0.997122i \(0.524154\pi\)
\(662\) −4.94142 −0.192054
\(663\) 0 0
\(664\) 8.77984 0.340724
\(665\) 0 0
\(666\) −9.27400 −0.359360
\(667\) −17.0503 −0.660189
\(668\) 19.8812 0.769228
\(669\) −64.2252 −2.48309
\(670\) 0 0
\(671\) 10.8253 0.417906
\(672\) 58.3398 2.25050
\(673\) −8.97910 −0.346119 −0.173059 0.984911i \(-0.555365\pi\)
−0.173059 + 0.984911i \(0.555365\pi\)
\(674\) 9.08425 0.349912
\(675\) 0 0
\(676\) −39.4723 −1.51816
\(677\) −30.8503 −1.18567 −0.592836 0.805323i \(-0.701992\pi\)
−0.592836 + 0.805323i \(0.701992\pi\)
\(678\) −11.7963 −0.453033
\(679\) 44.7855 1.71871
\(680\) 0 0
\(681\) −21.8343 −0.836694
\(682\) 3.36694 0.128927
\(683\) −4.46924 −0.171011 −0.0855055 0.996338i \(-0.527251\pi\)
−0.0855055 + 0.996338i \(0.527251\pi\)
\(684\) 13.3615 0.510890
\(685\) 0 0
\(686\) 12.4537 0.475483
\(687\) 26.1055 0.995988
\(688\) 1.45328 0.0554059
\(689\) −43.2168 −1.64643
\(690\) 0 0
\(691\) 12.0975 0.460211 0.230105 0.973166i \(-0.426093\pi\)
0.230105 + 0.973166i \(0.426093\pi\)
\(692\) −25.3673 −0.964321
\(693\) −18.1260 −0.688551
\(694\) −22.6425 −0.859498
\(695\) 0 0
\(696\) −20.6326 −0.782077
\(697\) 0 0
\(698\) −15.1928 −0.575054
\(699\) −36.5077 −1.38085
\(700\) 0 0
\(701\) 8.83630 0.333742 0.166871 0.985979i \(-0.446634\pi\)
0.166871 + 0.985979i \(0.446634\pi\)
\(702\) 4.38650 0.165558
\(703\) 18.1359 0.684007
\(704\) −1.67001 −0.0629408
\(705\) 0 0
\(706\) 15.0804 0.567558
\(707\) 49.4172 1.85852
\(708\) 22.8918 0.860327
\(709\) −26.7907 −1.00615 −0.503073 0.864244i \(-0.667797\pi\)
−0.503073 + 0.864244i \(0.667797\pi\)
\(710\) 0 0
\(711\) 2.96992 0.111381
\(712\) 6.46931 0.242448
\(713\) 14.0214 0.525107
\(714\) 0 0
\(715\) 0 0
\(716\) 21.4647 0.802172
\(717\) 5.52180 0.206215
\(718\) −24.8460 −0.927244
\(719\) −43.9096 −1.63755 −0.818775 0.574114i \(-0.805347\pi\)
−0.818775 + 0.574114i \(0.805347\pi\)
\(720\) 0 0
\(721\) −48.4644 −1.80491
\(722\) −5.08842 −0.189372
\(723\) 71.9866 2.67721
\(724\) 20.1077 0.747297
\(725\) 0 0
\(726\) −13.1889 −0.489487
\(727\) −2.37306 −0.0880118 −0.0440059 0.999031i \(-0.514012\pi\)
−0.0440059 + 0.999031i \(0.514012\pi\)
\(728\) 63.7764 2.36371
\(729\) −18.5470 −0.686926
\(730\) 0 0
\(731\) 0 0
\(732\) 23.7396 0.877440
\(733\) 27.2035 1.00478 0.502391 0.864640i \(-0.332454\pi\)
0.502391 + 0.864640i \(0.332454\pi\)
\(734\) −0.0920053 −0.00339598
\(735\) 0 0
\(736\) −27.0420 −0.996782
\(737\) 9.60901 0.353952
\(738\) 3.79331 0.139634
\(739\) −10.3375 −0.380270 −0.190135 0.981758i \(-0.560893\pi\)
−0.190135 + 0.981758i \(0.560893\pi\)
\(740\) 0 0
\(741\) 49.6621 1.82438
\(742\) 20.1569 0.739983
\(743\) −11.8092 −0.433236 −0.216618 0.976256i \(-0.569503\pi\)
−0.216618 + 0.976256i \(0.569503\pi\)
\(744\) 16.9674 0.622056
\(745\) 0 0
\(746\) 0.628453 0.0230093
\(747\) −9.36110 −0.342505
\(748\) 0 0
\(749\) −25.9684 −0.948863
\(750\) 0 0
\(751\) 20.0214 0.730592 0.365296 0.930891i \(-0.380968\pi\)
0.365296 + 0.930891i \(0.380968\pi\)
\(752\) −2.91760 −0.106394
\(753\) 21.7604 0.792993
\(754\) −15.3593 −0.559353
\(755\) 0 0
\(756\) 6.86595 0.249712
\(757\) 4.41769 0.160564 0.0802818 0.996772i \(-0.474418\pi\)
0.0802818 + 0.996772i \(0.474418\pi\)
\(758\) −5.68270 −0.206405
\(759\) 18.2550 0.662616
\(760\) 0 0
\(761\) 41.6749 1.51071 0.755357 0.655314i \(-0.227463\pi\)
0.755357 + 0.655314i \(0.227463\pi\)
\(762\) 22.9776 0.832390
\(763\) 13.1290 0.475303
\(764\) 7.32773 0.265108
\(765\) 0 0
\(766\) −14.8467 −0.536432
\(767\) 39.1601 1.41399
\(768\) −22.1458 −0.799116
\(769\) 30.7653 1.10942 0.554712 0.832043i \(-0.312829\pi\)
0.554712 + 0.832043i \(0.312829\pi\)
\(770\) 0 0
\(771\) −7.61579 −0.274276
\(772\) −21.4795 −0.773063
\(773\) 25.2932 0.909735 0.454867 0.890559i \(-0.349687\pi\)
0.454867 + 0.890559i \(0.349687\pi\)
\(774\) 1.73024 0.0621922
\(775\) 0 0
\(776\) −25.1208 −0.901786
\(777\) −53.9534 −1.93557
\(778\) 8.64773 0.310036
\(779\) −7.41804 −0.265779
\(780\) 0 0
\(781\) 22.5062 0.805334
\(782\) 0 0
\(783\) −3.79978 −0.135793
\(784\) 16.4473 0.587403
\(785\) 0 0
\(786\) 7.45077 0.265760
\(787\) 19.6586 0.700755 0.350377 0.936609i \(-0.386053\pi\)
0.350377 + 0.936609i \(0.386053\pi\)
\(788\) −23.2823 −0.829399
\(789\) −29.4034 −1.04679
\(790\) 0 0
\(791\) −31.5857 −1.12306
\(792\) 10.1672 0.361274
\(793\) 40.6104 1.44212
\(794\) 17.0601 0.605439
\(795\) 0 0
\(796\) −3.15847 −0.111949
\(797\) −27.3888 −0.970159 −0.485080 0.874470i \(-0.661209\pi\)
−0.485080 + 0.874470i \(0.661209\pi\)
\(798\) −23.1631 −0.819965
\(799\) 0 0
\(800\) 0 0
\(801\) −6.89760 −0.243715
\(802\) −3.91584 −0.138273
\(803\) 16.4405 0.580171
\(804\) 21.0723 0.743163
\(805\) 0 0
\(806\) 12.6309 0.444903
\(807\) 0.730900 0.0257289
\(808\) −27.7188 −0.975145
\(809\) 3.76870 0.132500 0.0662502 0.997803i \(-0.478896\pi\)
0.0662502 + 0.997803i \(0.478896\pi\)
\(810\) 0 0
\(811\) −33.9594 −1.19248 −0.596239 0.802807i \(-0.703339\pi\)
−0.596239 + 0.802807i \(0.703339\pi\)
\(812\) −24.0411 −0.843676
\(813\) −43.2476 −1.51676
\(814\) 6.00532 0.210486
\(815\) 0 0
\(816\) 0 0
\(817\) −3.38359 −0.118377
\(818\) −10.4854 −0.366612
\(819\) −67.9986 −2.37606
\(820\) 0 0
\(821\) −27.1413 −0.947236 −0.473618 0.880730i \(-0.657052\pi\)
−0.473618 + 0.880730i \(0.657052\pi\)
\(822\) 23.2624 0.811370
\(823\) −1.93168 −0.0673340 −0.0336670 0.999433i \(-0.510719\pi\)
−0.0336670 + 0.999433i \(0.510719\pi\)
\(824\) 27.1844 0.947015
\(825\) 0 0
\(826\) −18.2648 −0.635515
\(827\) 19.6867 0.684574 0.342287 0.939595i \(-0.388799\pi\)
0.342287 + 0.939595i \(0.388799\pi\)
\(828\) 18.4251 0.640317
\(829\) 21.3907 0.742930 0.371465 0.928447i \(-0.378855\pi\)
0.371465 + 0.928447i \(0.378855\pi\)
\(830\) 0 0
\(831\) 30.0696 1.04310
\(832\) −6.26493 −0.217197
\(833\) 0 0
\(834\) −8.57779 −0.297025
\(835\) 0 0
\(836\) −8.65216 −0.299241
\(837\) 3.12479 0.108008
\(838\) 12.2861 0.424415
\(839\) 28.8319 0.995389 0.497695 0.867352i \(-0.334180\pi\)
0.497695 + 0.867352i \(0.334180\pi\)
\(840\) 0 0
\(841\) −15.6951 −0.541210
\(842\) −6.64822 −0.229113
\(843\) 73.3854 2.52753
\(844\) −0.675331 −0.0232459
\(845\) 0 0
\(846\) −3.47362 −0.119425
\(847\) −35.3147 −1.21343
\(848\) 10.1252 0.347702
\(849\) 65.6708 2.25382
\(850\) 0 0
\(851\) 25.0088 0.857292
\(852\) 49.3554 1.69089
\(853\) 11.5079 0.394023 0.197012 0.980401i \(-0.436876\pi\)
0.197012 + 0.980401i \(0.436876\pi\)
\(854\) −18.9413 −0.648157
\(855\) 0 0
\(856\) 14.5660 0.497857
\(857\) 21.7731 0.743754 0.371877 0.928282i \(-0.378714\pi\)
0.371877 + 0.928282i \(0.378714\pi\)
\(858\) 16.4446 0.561409
\(859\) −0.00614837 −0.000209780 0 −0.000104890 1.00000i \(-0.500033\pi\)
−0.000104890 1.00000i \(0.500033\pi\)
\(860\) 0 0
\(861\) 22.0683 0.752087
\(862\) 12.2820 0.418328
\(863\) 21.5322 0.732964 0.366482 0.930425i \(-0.380562\pi\)
0.366482 + 0.930425i \(0.380562\pi\)
\(864\) −6.02652 −0.205026
\(865\) 0 0
\(866\) −8.69421 −0.295441
\(867\) 0 0
\(868\) 19.7704 0.671051
\(869\) −1.92315 −0.0652384
\(870\) 0 0
\(871\) 36.0476 1.22143
\(872\) −7.36427 −0.249386
\(873\) 26.7839 0.906499
\(874\) 10.7367 0.363175
\(875\) 0 0
\(876\) 36.0535 1.21814
\(877\) −1.11706 −0.0377205 −0.0188602 0.999822i \(-0.506004\pi\)
−0.0188602 + 0.999822i \(0.506004\pi\)
\(878\) −16.4555 −0.555345
\(879\) 74.0989 2.49929
\(880\) 0 0
\(881\) −47.5945 −1.60350 −0.801750 0.597660i \(-0.796097\pi\)
−0.801750 + 0.597660i \(0.796097\pi\)
\(882\) 19.5817 0.659351
\(883\) 20.9432 0.704796 0.352398 0.935850i \(-0.385366\pi\)
0.352398 + 0.935850i \(0.385366\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 10.9241 0.367001
\(887\) 19.0070 0.638193 0.319096 0.947722i \(-0.396621\pi\)
0.319096 + 0.947722i \(0.396621\pi\)
\(888\) 30.2633 1.01557
\(889\) 61.5249 2.06348
\(890\) 0 0
\(891\) 16.7810 0.562183
\(892\) 41.9761 1.40546
\(893\) 6.79286 0.227315
\(894\) 20.2698 0.677924
\(895\) 0 0
\(896\) −46.5694 −1.55577
\(897\) 68.4826 2.28657
\(898\) −12.9602 −0.432486
\(899\) −10.9414 −0.364917
\(900\) 0 0
\(901\) 0 0
\(902\) −2.45633 −0.0817869
\(903\) 10.0660 0.334976
\(904\) 17.7169 0.589255
\(905\) 0 0
\(906\) −25.9764 −0.863007
\(907\) −13.6294 −0.452556 −0.226278 0.974063i \(-0.572656\pi\)
−0.226278 + 0.974063i \(0.572656\pi\)
\(908\) 14.2704 0.473581
\(909\) 29.5539 0.980242
\(910\) 0 0
\(911\) 33.7729 1.11895 0.559473 0.828849i \(-0.311004\pi\)
0.559473 + 0.828849i \(0.311004\pi\)
\(912\) −11.6353 −0.385284
\(913\) 6.06171 0.200613
\(914\) 2.49571 0.0825507
\(915\) 0 0
\(916\) −17.0620 −0.563743
\(917\) 19.9502 0.658814
\(918\) 0 0
\(919\) −31.7339 −1.04681 −0.523403 0.852085i \(-0.675338\pi\)
−0.523403 + 0.852085i \(0.675338\pi\)
\(920\) 0 0
\(921\) 9.94859 0.327817
\(922\) −13.3874 −0.440889
\(923\) 84.4304 2.77906
\(924\) 25.7398 0.846777
\(925\) 0 0
\(926\) 16.0251 0.526616
\(927\) −28.9841 −0.951964
\(928\) 21.1018 0.692701
\(929\) 8.44901 0.277203 0.138601 0.990348i \(-0.455739\pi\)
0.138601 + 0.990348i \(0.455739\pi\)
\(930\) 0 0
\(931\) −38.2932 −1.25501
\(932\) 23.8606 0.781581
\(933\) −36.3300 −1.18939
\(934\) 3.72762 0.121971
\(935\) 0 0
\(936\) 38.1415 1.24669
\(937\) −18.0115 −0.588409 −0.294205 0.955742i \(-0.595055\pi\)
−0.294205 + 0.955742i \(0.595055\pi\)
\(938\) −16.8131 −0.548968
\(939\) 25.6052 0.835593
\(940\) 0 0
\(941\) −21.4128 −0.698036 −0.349018 0.937116i \(-0.613485\pi\)
−0.349018 + 0.937116i \(0.613485\pi\)
\(942\) 16.0130 0.521731
\(943\) −10.2293 −0.333111
\(944\) −9.17481 −0.298615
\(945\) 0 0
\(946\) −1.12041 −0.0364275
\(947\) 46.7780 1.52008 0.760040 0.649876i \(-0.225179\pi\)
0.760040 + 0.649876i \(0.225179\pi\)
\(948\) −4.21742 −0.136975
\(949\) 61.6754 2.00207
\(950\) 0 0
\(951\) −68.1036 −2.20841
\(952\) 0 0
\(953\) −8.60527 −0.278752 −0.139376 0.990240i \(-0.544510\pi\)
−0.139376 + 0.990240i \(0.544510\pi\)
\(954\) 12.0548 0.390290
\(955\) 0 0
\(956\) −3.60892 −0.116721
\(957\) −14.2450 −0.460476
\(958\) 7.56546 0.244429
\(959\) 62.2875 2.01137
\(960\) 0 0
\(961\) −22.0022 −0.709749
\(962\) 22.5286 0.726350
\(963\) −15.5304 −0.500459
\(964\) −47.0488 −1.51534
\(965\) 0 0
\(966\) −31.9412 −1.02769
\(967\) −29.7257 −0.955913 −0.477957 0.878383i \(-0.658622\pi\)
−0.477957 + 0.878383i \(0.658622\pi\)
\(968\) 19.8086 0.636671
\(969\) 0 0
\(970\) 0 0
\(971\) −5.92180 −0.190040 −0.0950198 0.995475i \(-0.530291\pi\)
−0.0950198 + 0.995475i \(0.530291\pi\)
\(972\) 31.9848 1.02591
\(973\) −22.9679 −0.736318
\(974\) 24.0162 0.769528
\(975\) 0 0
\(976\) −9.51459 −0.304555
\(977\) 51.4273 1.64530 0.822652 0.568545i \(-0.192493\pi\)
0.822652 + 0.568545i \(0.192493\pi\)
\(978\) −12.8533 −0.411004
\(979\) 4.46650 0.142750
\(980\) 0 0
\(981\) 7.85181 0.250689
\(982\) −8.71114 −0.277984
\(983\) −13.6951 −0.436805 −0.218403 0.975859i \(-0.570085\pi\)
−0.218403 + 0.975859i \(0.570085\pi\)
\(984\) −12.3785 −0.394611
\(985\) 0 0
\(986\) 0 0
\(987\) −20.2085 −0.643243
\(988\) −32.4580 −1.03263
\(989\) −4.66587 −0.148366
\(990\) 0 0
\(991\) 53.4998 1.69948 0.849739 0.527203i \(-0.176759\pi\)
0.849739 + 0.527203i \(0.176759\pi\)
\(992\) −17.3533 −0.550967
\(993\) −17.1926 −0.545589
\(994\) −39.3796 −1.24904
\(995\) 0 0
\(996\) 13.2932 0.421211
\(997\) 23.1517 0.733221 0.366610 0.930375i \(-0.380518\pi\)
0.366610 + 0.930375i \(0.380518\pi\)
\(998\) −12.5950 −0.398688
\(999\) 5.57341 0.176335
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7225.2.a.bb.1.4 6
5.4 even 2 1445.2.a.n.1.3 6
17.2 even 8 425.2.e.f.276.4 12
17.9 even 8 425.2.e.f.251.3 12
17.16 even 2 7225.2.a.z.1.4 6
85.2 odd 8 425.2.j.c.174.3 12
85.4 even 4 1445.2.d.g.866.8 12
85.9 even 8 85.2.e.a.81.4 yes 12
85.19 even 8 85.2.e.a.21.3 12
85.43 odd 8 425.2.j.c.149.3 12
85.53 odd 8 425.2.j.b.174.4 12
85.64 even 4 1445.2.d.g.866.7 12
85.77 odd 8 425.2.j.b.149.4 12
85.84 even 2 1445.2.a.o.1.3 6
255.104 odd 8 765.2.k.b.361.4 12
255.179 odd 8 765.2.k.b.676.3 12
340.19 odd 8 1360.2.bt.d.1041.5 12
340.179 odd 8 1360.2.bt.d.81.5 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.2.e.a.21.3 12 85.19 even 8
85.2.e.a.81.4 yes 12 85.9 even 8
425.2.e.f.251.3 12 17.9 even 8
425.2.e.f.276.4 12 17.2 even 8
425.2.j.b.149.4 12 85.77 odd 8
425.2.j.b.174.4 12 85.53 odd 8
425.2.j.c.149.3 12 85.43 odd 8
425.2.j.c.174.3 12 85.2 odd 8
765.2.k.b.361.4 12 255.104 odd 8
765.2.k.b.676.3 12 255.179 odd 8
1360.2.bt.d.81.5 12 340.179 odd 8
1360.2.bt.d.1041.5 12 340.19 odd 8
1445.2.a.n.1.3 6 5.4 even 2
1445.2.a.o.1.3 6 85.84 even 2
1445.2.d.g.866.7 12 85.64 even 4
1445.2.d.g.866.8 12 85.4 even 4
7225.2.a.z.1.4 6 17.16 even 2
7225.2.a.bb.1.4 6 1.1 even 1 trivial