Properties

Label 425.2.j.b.149.4
Level $425$
Weight $2$
Character 425.149
Analytic conductor $3.394$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [425,2,Mod(149,425)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("425.149"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(425, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 425 = 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 425.j (of order \(4\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,-4,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.39364208590\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 18x^{10} + 83x^{8} + 152x^{6} + 111x^{4} + 22x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 85)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 149.4
Root \(1.35757i\) of defining polynomial
Character \(\chi\) \(=\) 425.149
Dual form 425.2.j.b.174.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.677603 q^{2} +(1.66705 - 1.66705i) q^{3} -1.54085 q^{4} +(1.12960 - 1.12960i) q^{6} +(-3.02462 - 3.02462i) q^{7} -2.39929 q^{8} -2.55814i q^{9} +(-1.17133 + 1.17133i) q^{11} +(-2.56869 + 2.56869i) q^{12} -6.21427i q^{13} +(-2.04950 - 2.04950i) q^{14} +1.45594 q^{16} +(3.90279 + 1.32974i) q^{17} -1.73340i q^{18} -3.38977i q^{19} -10.0844 q^{21} +(-0.793694 + 0.793694i) q^{22} +(3.30530 + 3.30530i) q^{23} +(-3.99975 + 3.99975i) q^{24} -4.21081i q^{26} +(0.736610 + 0.736610i) q^{27} +(4.66050 + 4.66050i) q^{28} +(2.57924 + 2.57924i) q^{29} +(-2.12106 - 2.12106i) q^{31} +5.78514 q^{32} +3.90532i q^{33} +(2.64455 + 0.901035i) q^{34} +3.94171i q^{36} +(3.78314 - 3.78314i) q^{37} -2.29692i q^{38} +(-10.3595 - 10.3595i) q^{39} +(-1.54740 + 1.54740i) q^{41} -6.83324 q^{42} +0.998176 q^{43} +(1.80484 - 1.80484i) q^{44} +(2.23968 + 2.23968i) q^{46} +2.00393i q^{47} +(2.42713 - 2.42713i) q^{48} +11.2967i q^{49} +(8.72291 - 4.28942i) q^{51} +9.57528i q^{52} -6.95444 q^{53} +(0.499130 + 0.499130i) q^{54} +(7.25696 + 7.25696i) q^{56} +(-5.65093 - 5.65093i) q^{57} +(1.74770 + 1.74770i) q^{58} +6.30165i q^{59} +(4.62096 - 4.62096i) q^{61} +(-1.43724 - 1.43724i) q^{62} +(-7.73740 + 7.73740i) q^{63} +1.00815 q^{64} +2.64626i q^{66} -5.80078i q^{67} +(-6.01363 - 2.04893i) q^{68} +11.0202 q^{69} +(-9.60714 - 9.60714i) q^{71} +6.13772i q^{72} +(7.01789 - 7.01789i) q^{73} +(2.56347 - 2.56347i) q^{74} +5.22314i q^{76} +7.08564 q^{77} +(-7.01965 - 7.01965i) q^{78} +(-0.820929 + 0.820929i) q^{79} +10.1303 q^{81} +(-1.04853 + 1.04853i) q^{82} +3.65934 q^{83} +15.5386 q^{84} +0.676367 q^{86} +8.59945 q^{87} +(2.81035 - 2.81035i) q^{88} -2.69634 q^{89} +(-18.7958 + 18.7958i) q^{91} +(-5.09298 - 5.09298i) q^{92} -7.07184 q^{93} +1.35787i q^{94} +(9.64413 - 9.64413i) q^{96} +(7.40348 - 7.40348i) q^{97} +7.65468i q^{98} +(2.99641 + 2.99641i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 4 q^{2} + 4 q^{3} + 12 q^{4} - 12 q^{8} - 4 q^{11} - 8 q^{12} + 4 q^{14} + 4 q^{16} - 8 q^{17} - 16 q^{21} + 20 q^{22} + 12 q^{23} - 4 q^{24} + 4 q^{27} + 4 q^{28} + 12 q^{29} + 12 q^{32} + 12 q^{34}+ \cdots + 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/425\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(326\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.677603 0.479138 0.239569 0.970879i \(-0.422994\pi\)
0.239569 + 0.970879i \(0.422994\pi\)
\(3\) 1.66705 1.66705i 0.962474 0.962474i −0.0368470 0.999321i \(-0.511731\pi\)
0.999321 + 0.0368470i \(0.0117314\pi\)
\(4\) −1.54085 −0.770427
\(5\) 0 0
\(6\) 1.12960 1.12960i 0.461158 0.461158i
\(7\) −3.02462 3.02462i −1.14320 1.14320i −0.987861 0.155339i \(-0.950353\pi\)
−0.155339 0.987861i \(-0.549647\pi\)
\(8\) −2.39929 −0.848279
\(9\) 2.55814i 0.852712i
\(10\) 0 0
\(11\) −1.17133 + 1.17133i −0.353168 + 0.353168i −0.861287 0.508119i \(-0.830341\pi\)
0.508119 + 0.861287i \(0.330341\pi\)
\(12\) −2.56869 + 2.56869i −0.741516 + 0.741516i
\(13\) 6.21427i 1.72353i −0.507309 0.861764i \(-0.669360\pi\)
0.507309 0.861764i \(-0.330640\pi\)
\(14\) −2.04950 2.04950i −0.547751 0.547751i
\(15\) 0 0
\(16\) 1.45594 0.363984
\(17\) 3.90279 + 1.32974i 0.946566 + 0.322509i
\(18\) 1.73340i 0.408567i
\(19\) 3.38977i 0.777667i −0.921308 0.388834i \(-0.872878\pi\)
0.921308 0.388834i \(-0.127122\pi\)
\(20\) 0 0
\(21\) −10.0844 −2.20060
\(22\) −0.793694 + 0.793694i −0.169216 + 0.169216i
\(23\) 3.30530 + 3.30530i 0.689202 + 0.689202i 0.962056 0.272854i \(-0.0879675\pi\)
−0.272854 + 0.962056i \(0.587967\pi\)
\(24\) −3.99975 + 3.99975i −0.816446 + 0.816446i
\(25\) 0 0
\(26\) 4.21081i 0.825808i
\(27\) 0.736610 + 0.736610i 0.141761 + 0.141761i
\(28\) 4.66050 + 4.66050i 0.880752 + 0.880752i
\(29\) 2.57924 + 2.57924i 0.478952 + 0.478952i 0.904796 0.425844i \(-0.140023\pi\)
−0.425844 + 0.904796i \(0.640023\pi\)
\(30\) 0 0
\(31\) −2.12106 2.12106i −0.380953 0.380953i 0.490492 0.871446i \(-0.336817\pi\)
−0.871446 + 0.490492i \(0.836817\pi\)
\(32\) 5.78514 1.02268
\(33\) 3.90532i 0.679830i
\(34\) 2.64455 + 0.901035i 0.453536 + 0.154526i
\(35\) 0 0
\(36\) 3.94171i 0.656952i
\(37\) 3.78314 3.78314i 0.621945 0.621945i −0.324083 0.946029i \(-0.605056\pi\)
0.946029 + 0.324083i \(0.105056\pi\)
\(38\) 2.29692i 0.372610i
\(39\) −10.3595 10.3595i −1.65885 1.65885i
\(40\) 0 0
\(41\) −1.54740 + 1.54740i −0.241664 + 0.241664i −0.817538 0.575874i \(-0.804662\pi\)
0.575874 + 0.817538i \(0.304662\pi\)
\(42\) −6.83324 −1.05439
\(43\) 0.998176 0.152220 0.0761102 0.997099i \(-0.475750\pi\)
0.0761102 + 0.997099i \(0.475750\pi\)
\(44\) 1.80484 1.80484i 0.272090 0.272090i
\(45\) 0 0
\(46\) 2.23968 + 2.23968i 0.330223 + 0.330223i
\(47\) 2.00393i 0.292303i 0.989262 + 0.146152i \(0.0466887\pi\)
−0.989262 + 0.146152i \(0.953311\pi\)
\(48\) 2.42713 2.42713i 0.350326 0.350326i
\(49\) 11.2967i 1.61381i
\(50\) 0 0
\(51\) 8.72291 4.28942i 1.22145 0.600639i
\(52\) 9.57528i 1.32785i
\(53\) −6.95444 −0.955266 −0.477633 0.878560i \(-0.658505\pi\)
−0.477633 + 0.878560i \(0.658505\pi\)
\(54\) 0.499130 + 0.499130i 0.0679229 + 0.0679229i
\(55\) 0 0
\(56\) 7.25696 + 7.25696i 0.969752 + 0.969752i
\(57\) −5.65093 5.65093i −0.748484 0.748484i
\(58\) 1.74770 + 1.74770i 0.229484 + 0.229484i
\(59\) 6.30165i 0.820405i 0.911995 + 0.410202i \(0.134542\pi\)
−0.911995 + 0.410202i \(0.865458\pi\)
\(60\) 0 0
\(61\) 4.62096 4.62096i 0.591653 0.591653i −0.346425 0.938078i \(-0.612604\pi\)
0.938078 + 0.346425i \(0.112604\pi\)
\(62\) −1.43724 1.43724i −0.182529 0.182529i
\(63\) −7.73740 + 7.73740i −0.974821 + 0.974821i
\(64\) 1.00815 0.126019
\(65\) 0 0
\(66\) 2.64626i 0.325732i
\(67\) 5.80078i 0.708678i −0.935117 0.354339i \(-0.884706\pi\)
0.935117 0.354339i \(-0.115294\pi\)
\(68\) −6.01363 2.04893i −0.729260 0.248469i
\(69\) 11.0202 1.32668
\(70\) 0 0
\(71\) −9.60714 9.60714i −1.14016 1.14016i −0.988421 0.151736i \(-0.951514\pi\)
−0.151736 0.988421i \(-0.548486\pi\)
\(72\) 6.13772i 0.723337i
\(73\) 7.01789 7.01789i 0.821382 0.821382i −0.164924 0.986306i \(-0.552738\pi\)
0.986306 + 0.164924i \(0.0527380\pi\)
\(74\) 2.56347 2.56347i 0.297997 0.297997i
\(75\) 0 0
\(76\) 5.22314i 0.599136i
\(77\) 7.08564 0.807483
\(78\) −7.01965 7.01965i −0.794818 0.794818i
\(79\) −0.820929 + 0.820929i −0.0923617 + 0.0923617i −0.751778 0.659416i \(-0.770803\pi\)
0.659416 + 0.751778i \(0.270803\pi\)
\(80\) 0 0
\(81\) 10.1303 1.12559
\(82\) −1.04853 + 1.04853i −0.115790 + 0.115790i
\(83\) 3.65934 0.401665 0.200832 0.979626i \(-0.435635\pi\)
0.200832 + 0.979626i \(0.435635\pi\)
\(84\) 15.5386 1.69540
\(85\) 0 0
\(86\) 0.676367 0.0729346
\(87\) 8.59945 0.921958
\(88\) 2.81035 2.81035i 0.299585 0.299585i
\(89\) −2.69634 −0.285811 −0.142906 0.989736i \(-0.545645\pi\)
−0.142906 + 0.989736i \(0.545645\pi\)
\(90\) 0 0
\(91\) −18.7958 + 18.7958i −1.97034 + 1.97034i
\(92\) −5.09298 5.09298i −0.530980 0.530980i
\(93\) −7.07184 −0.733315
\(94\) 1.35787i 0.140054i
\(95\) 0 0
\(96\) 9.64413 9.64413i 0.984300 0.984300i
\(97\) 7.40348 7.40348i 0.751709 0.751709i −0.223089 0.974798i \(-0.571614\pi\)
0.974798 + 0.223089i \(0.0716141\pi\)
\(98\) 7.65468i 0.773239i
\(99\) 2.99641 + 2.99641i 0.301151 + 0.301151i
\(100\) 0 0
\(101\) 11.5529 1.14956 0.574779 0.818309i \(-0.305088\pi\)
0.574779 + 0.818309i \(0.305088\pi\)
\(102\) 5.91067 2.90653i 0.585244 0.287789i
\(103\) 11.3302i 1.11640i 0.829708 + 0.558198i \(0.188507\pi\)
−0.829708 + 0.558198i \(0.811493\pi\)
\(104\) 14.9099i 1.46203i
\(105\) 0 0
\(106\) −4.71235 −0.457704
\(107\) −4.29282 + 4.29282i −0.415003 + 0.415003i −0.883477 0.468474i \(-0.844804\pi\)
0.468474 + 0.883477i \(0.344804\pi\)
\(108\) −1.13501 1.13501i −0.109216 0.109216i
\(109\) 2.17036 2.17036i 0.207882 0.207882i −0.595484 0.803367i \(-0.703040\pi\)
0.803367 + 0.595484i \(0.203040\pi\)
\(110\) 0 0
\(111\) 12.6134i 1.19721i
\(112\) −4.40366 4.40366i −0.416107 0.416107i
\(113\) 5.22143 + 5.22143i 0.491191 + 0.491191i 0.908681 0.417491i \(-0.137090\pi\)
−0.417491 + 0.908681i \(0.637090\pi\)
\(114\) −3.82909 3.82909i −0.358627 0.358627i
\(115\) 0 0
\(116\) −3.97422 3.97422i −0.368998 0.368998i
\(117\) −15.8969 −1.46967
\(118\) 4.27002i 0.393087i
\(119\) −7.78253 15.8264i −0.713423 1.45081i
\(120\) 0 0
\(121\) 8.25599i 0.750545i
\(122\) 3.13118 3.13118i 0.283484 0.283484i
\(123\) 5.15921i 0.465191i
\(124\) 3.26824 + 3.26824i 0.293497 + 0.293497i
\(125\) 0 0
\(126\) −5.24289 + 5.24289i −0.467074 + 0.467074i
\(127\) −14.3835 −1.27633 −0.638164 0.769900i \(-0.720306\pi\)
−0.638164 + 0.769900i \(0.720306\pi\)
\(128\) −10.8871 −0.962297
\(129\) 1.66401 1.66401i 0.146508 0.146508i
\(130\) 0 0
\(131\) −3.29797 3.29797i −0.288145 0.288145i 0.548202 0.836346i \(-0.315313\pi\)
−0.836346 + 0.548202i \(0.815313\pi\)
\(132\) 6.01753i 0.523759i
\(133\) −10.2528 + 10.2528i −0.889029 + 0.889029i
\(134\) 3.93063i 0.339554i
\(135\) 0 0
\(136\) −9.36395 3.19043i −0.802952 0.273577i
\(137\) 14.5618i 1.24410i 0.782978 + 0.622049i \(0.213700\pi\)
−0.782978 + 0.622049i \(0.786300\pi\)
\(138\) 7.46733 0.635662
\(139\) 3.79682 + 3.79682i 0.322042 + 0.322042i 0.849550 0.527508i \(-0.176873\pi\)
−0.527508 + 0.849550i \(0.676873\pi\)
\(140\) 0 0
\(141\) 3.34066 + 3.34066i 0.281334 + 0.281334i
\(142\) −6.50983 6.50983i −0.546293 0.546293i
\(143\) 7.27893 + 7.27893i 0.608695 + 0.608695i
\(144\) 3.72449i 0.310374i
\(145\) 0 0
\(146\) 4.75535 4.75535i 0.393555 0.393555i
\(147\) 18.8322 + 18.8322i 1.55325 + 1.55325i
\(148\) −5.82927 + 5.82927i −0.479163 + 0.479163i
\(149\) 12.6885 1.03948 0.519741 0.854324i \(-0.326029\pi\)
0.519741 + 0.854324i \(0.326029\pi\)
\(150\) 0 0
\(151\) 16.2607i 1.32327i 0.749824 + 0.661637i \(0.230138\pi\)
−0.749824 + 0.661637i \(0.769862\pi\)
\(152\) 8.13306i 0.659678i
\(153\) 3.40165 9.98388i 0.275007 0.807149i
\(154\) 4.80125 0.386896
\(155\) 0 0
\(156\) 15.9625 + 15.9625i 1.27802 + 1.27802i
\(157\) 10.0238i 0.799985i −0.916518 0.399993i \(-0.869013\pi\)
0.916518 0.399993i \(-0.130987\pi\)
\(158\) −0.556264 + 0.556264i −0.0442540 + 0.0442540i
\(159\) −11.5934 + 11.5934i −0.919418 + 0.919418i
\(160\) 0 0
\(161\) 19.9946i 1.57579i
\(162\) 6.86436 0.539315
\(163\) −5.68932 5.68932i −0.445622 0.445622i 0.448274 0.893896i \(-0.352039\pi\)
−0.893896 + 0.448274i \(0.852039\pi\)
\(164\) 2.38432 2.38432i 0.186184 0.186184i
\(165\) 0 0
\(166\) 2.47958 0.192453
\(167\) 9.12361 9.12361i 0.706006 0.706006i −0.259687 0.965693i \(-0.583619\pi\)
0.965693 + 0.259687i \(0.0836192\pi\)
\(168\) 24.1955 1.86672
\(169\) −25.6171 −1.97055
\(170\) 0 0
\(171\) −8.67150 −0.663126
\(172\) −1.53804 −0.117275
\(173\) 11.6412 11.6412i 0.885065 0.885065i −0.108979 0.994044i \(-0.534758\pi\)
0.994044 + 0.108979i \(0.0347581\pi\)
\(174\) 5.82701 0.441745
\(175\) 0 0
\(176\) −1.70538 + 1.70538i −0.128548 + 0.128548i
\(177\) 10.5052 + 10.5052i 0.789618 + 0.789618i
\(178\) −1.82705 −0.136943
\(179\) 13.9304i 1.04121i 0.853799 + 0.520603i \(0.174293\pi\)
−0.853799 + 0.520603i \(0.825707\pi\)
\(180\) 0 0
\(181\) −9.22755 + 9.22755i −0.685878 + 0.685878i −0.961318 0.275440i \(-0.911176\pi\)
0.275440 + 0.961318i \(0.411176\pi\)
\(182\) −12.7361 + 12.7361i −0.944064 + 0.944064i
\(183\) 15.4068i 1.13890i
\(184\) −7.93038 7.93038i −0.584635 0.584635i
\(185\) 0 0
\(186\) −4.79190 −0.351359
\(187\) −6.12900 + 3.01389i −0.448197 + 0.220397i
\(188\) 3.08776i 0.225198i
\(189\) 4.45594i 0.324122i
\(190\) 0 0
\(191\) 4.75563 0.344105 0.172053 0.985088i \(-0.444960\pi\)
0.172053 + 0.985088i \(0.444960\pi\)
\(192\) 1.68064 1.68064i 0.121290 0.121290i
\(193\) −9.85705 9.85705i −0.709526 0.709526i 0.256910 0.966435i \(-0.417296\pi\)
−0.966435 + 0.256910i \(0.917296\pi\)
\(194\) 5.01662 5.01662i 0.360172 0.360172i
\(195\) 0 0
\(196\) 17.4066i 1.24333i
\(197\) −10.6844 10.6844i −0.761232 0.761232i 0.215313 0.976545i \(-0.430923\pi\)
−0.976545 + 0.215313i \(0.930923\pi\)
\(198\) 2.03038 + 2.03038i 0.144293 + 0.144293i
\(199\) 1.44944 + 1.44944i 0.102748 + 0.102748i 0.756612 0.653864i \(-0.226853\pi\)
−0.653864 + 0.756612i \(0.726853\pi\)
\(200\) 0 0
\(201\) −9.67021 9.67021i −0.682084 0.682084i
\(202\) 7.82829 0.550797
\(203\) 15.6024i 1.09508i
\(204\) −13.4407 + 6.60937i −0.941039 + 0.462749i
\(205\) 0 0
\(206\) 7.67737i 0.534907i
\(207\) 8.45540 8.45540i 0.587691 0.587691i
\(208\) 9.04759i 0.627337i
\(209\) 3.97053 + 3.97053i 0.274647 + 0.274647i
\(210\) 0 0
\(211\) −0.309914 + 0.309914i −0.0213353 + 0.0213353i −0.717694 0.696359i \(-0.754802\pi\)
0.696359 + 0.717694i \(0.254802\pi\)
\(212\) 10.7158 0.735962
\(213\) −32.0312 −2.19474
\(214\) −2.90883 + 2.90883i −0.198844 + 0.198844i
\(215\) 0 0
\(216\) −1.76734 1.76734i −0.120253 0.120253i
\(217\) 12.8308i 0.871012i
\(218\) 1.47064 1.47064i 0.0996044 0.0996044i
\(219\) 23.3984i 1.58112i
\(220\) 0 0
\(221\) 8.26335 24.2530i 0.555853 1.63143i
\(222\) 8.54689i 0.573630i
\(223\) 27.2421 1.82427 0.912134 0.409893i \(-0.134434\pi\)
0.912134 + 0.409893i \(0.134434\pi\)
\(224\) −17.4979 17.4979i −1.16913 1.16913i
\(225\) 0 0
\(226\) 3.53806 + 3.53806i 0.235348 + 0.235348i
\(227\) −6.54878 6.54878i −0.434658 0.434658i 0.455551 0.890209i \(-0.349442\pi\)
−0.890209 + 0.455551i \(0.849442\pi\)
\(228\) 8.70726 + 8.70726i 0.576652 + 0.576652i
\(229\) 11.0731i 0.731728i −0.930668 0.365864i \(-0.880773\pi\)
0.930668 0.365864i \(-0.119227\pi\)
\(230\) 0 0
\(231\) 11.8121 11.8121i 0.777182 0.777182i
\(232\) −6.18835 6.18835i −0.406285 0.406285i
\(233\) 10.9498 10.9498i 0.717344 0.717344i −0.250717 0.968060i \(-0.580666\pi\)
0.968060 + 0.250717i \(0.0806663\pi\)
\(234\) −10.7718 −0.704176
\(235\) 0 0
\(236\) 9.70992i 0.632062i
\(237\) 2.73706i 0.177791i
\(238\) −5.27347 10.7240i −0.341828 0.695137i
\(239\) −2.34216 −0.151501 −0.0757507 0.997127i \(-0.524135\pi\)
−0.0757507 + 0.997127i \(0.524135\pi\)
\(240\) 0 0
\(241\) 21.5910 + 21.5910i 1.39080 + 1.39080i 0.823545 + 0.567251i \(0.191993\pi\)
0.567251 + 0.823545i \(0.308007\pi\)
\(242\) 5.59429i 0.359615i
\(243\) 14.6780 14.6780i 0.941594 0.941594i
\(244\) −7.12022 + 7.12022i −0.455826 + 0.455826i
\(245\) 0 0
\(246\) 3.49590i 0.222890i
\(247\) −21.0650 −1.34033
\(248\) 5.08904 + 5.08904i 0.323154 + 0.323154i
\(249\) 6.10032 6.10032i 0.386592 0.386592i
\(250\) 0 0
\(251\) −9.23001 −0.582593 −0.291297 0.956633i \(-0.594087\pi\)
−0.291297 + 0.956633i \(0.594087\pi\)
\(252\) 11.9222 11.9222i 0.751028 0.751028i
\(253\) −7.74315 −0.486808
\(254\) −9.74630 −0.611537
\(255\) 0 0
\(256\) −9.39347 −0.587092
\(257\) −3.23036 −0.201504 −0.100752 0.994912i \(-0.532125\pi\)
−0.100752 + 0.994912i \(0.532125\pi\)
\(258\) 1.12754 1.12754i 0.0701976 0.0701976i
\(259\) −22.8852 −1.42202
\(260\) 0 0
\(261\) 6.59804 6.59804i 0.408408 0.408408i
\(262\) −2.23471 2.23471i −0.138061 0.138061i
\(263\) −12.4719 −0.769051 −0.384526 0.923114i \(-0.625635\pi\)
−0.384526 + 0.923114i \(0.625635\pi\)
\(264\) 9.37002i 0.576685i
\(265\) 0 0
\(266\) −6.94732 + 6.94732i −0.425968 + 0.425968i
\(267\) −4.49494 + 4.49494i −0.275086 + 0.275086i
\(268\) 8.93815i 0.545984i
\(269\) −0.219219 0.219219i −0.0133660 0.0133660i 0.700392 0.713758i \(-0.253008\pi\)
−0.713758 + 0.700392i \(0.753008\pi\)
\(270\) 0 0
\(271\) −18.3441 −1.11433 −0.557164 0.830403i \(-0.688110\pi\)
−0.557164 + 0.830403i \(0.688110\pi\)
\(272\) 5.68222 + 1.93602i 0.344535 + 0.117388i
\(273\) 62.6673i 3.79280i
\(274\) 9.86712i 0.596094i
\(275\) 0 0
\(276\) −16.9805 −1.02211
\(277\) 9.01877 9.01877i 0.541885 0.541885i −0.382196 0.924081i \(-0.624832\pi\)
0.924081 + 0.382196i \(0.124832\pi\)
\(278\) 2.57274 + 2.57274i 0.154303 + 0.154303i
\(279\) −5.42596 + 5.42596i −0.324843 + 0.324843i
\(280\) 0 0
\(281\) 31.1275i 1.85691i 0.371441 + 0.928457i \(0.378864\pi\)
−0.371441 + 0.928457i \(0.621136\pi\)
\(282\) 2.26364 + 2.26364i 0.134798 + 0.134798i
\(283\) −19.6967 19.6967i −1.17084 1.17084i −0.982009 0.188836i \(-0.939528\pi\)
−0.188836 0.982009i \(-0.560472\pi\)
\(284\) 14.8032 + 14.8032i 0.878408 + 0.878408i
\(285\) 0 0
\(286\) 4.93223 + 4.93223i 0.291649 + 0.291649i
\(287\) 9.36063 0.552541
\(288\) 14.7992i 0.872049i
\(289\) 13.4636 + 10.3794i 0.791976 + 0.610552i
\(290\) 0 0
\(291\) 24.6840i 1.44700i
\(292\) −10.8135 + 10.8135i −0.632815 + 0.632815i
\(293\) 31.4302i 1.83617i 0.396381 + 0.918086i \(0.370266\pi\)
−0.396381 + 0.918086i \(0.629734\pi\)
\(294\) 12.7608 + 12.7608i 0.744223 + 0.744223i
\(295\) 0 0
\(296\) −9.07688 + 9.07688i −0.527583 + 0.527583i
\(297\) −1.72562 −0.100131
\(298\) 8.59776 0.498055
\(299\) 20.5400 20.5400i 1.18786 1.18786i
\(300\) 0 0
\(301\) −3.01911 3.01911i −0.174018 0.174018i
\(302\) 11.0183i 0.634031i
\(303\) 19.2593 19.2593i 1.10642 1.10642i
\(304\) 4.93530i 0.283059i
\(305\) 0 0
\(306\) 2.30497 6.76511i 0.131766 0.386736i
\(307\) 4.21985i 0.240839i 0.992723 + 0.120420i \(0.0384240\pi\)
−0.992723 + 0.120420i \(0.961576\pi\)
\(308\) −10.9179 −0.622107
\(309\) 18.8880 + 18.8880i 1.07450 + 1.07450i
\(310\) 0 0
\(311\) 10.8965 + 10.8965i 0.617882 + 0.617882i 0.944988 0.327105i \(-0.106073\pi\)
−0.327105 + 0.944988i \(0.606073\pi\)
\(312\) 24.8555 + 24.8555i 1.40717 + 1.40717i
\(313\) 7.67977 + 7.67977i 0.434086 + 0.434086i 0.890016 0.455930i \(-0.150693\pi\)
−0.455930 + 0.890016i \(0.650693\pi\)
\(314\) 6.79215i 0.383303i
\(315\) 0 0
\(316\) 1.26493 1.26493i 0.0711579 0.0711579i
\(317\) −20.4263 20.4263i −1.14726 1.14726i −0.987090 0.160167i \(-0.948797\pi\)
−0.160167 0.987090i \(-0.551203\pi\)
\(318\) −7.85574 + 7.85574i −0.440528 + 0.440528i
\(319\) −6.04225 −0.338301
\(320\) 0 0
\(321\) 14.3127i 0.798859i
\(322\) 13.5484i 0.755022i
\(323\) 4.50751 13.2296i 0.250804 0.736114i
\(324\) −15.6094 −0.867188
\(325\) 0 0
\(326\) −3.85510 3.85510i −0.213514 0.213514i
\(327\) 7.23620i 0.400163i
\(328\) 3.71268 3.71268i 0.204998 0.204998i
\(329\) 6.06113 6.06113i 0.334161 0.334161i
\(330\) 0 0
\(331\) 7.29249i 0.400832i −0.979711 0.200416i \(-0.935771\pi\)
0.979711 0.200416i \(-0.0642293\pi\)
\(332\) −5.63851 −0.309453
\(333\) −9.67780 9.67780i −0.530340 0.530340i
\(334\) 6.18219 6.18219i 0.338274 0.338274i
\(335\) 0 0
\(336\) −14.6823 −0.800985
\(337\) −9.47979 + 9.47979i −0.516397 + 0.516397i −0.916479 0.400082i \(-0.868982\pi\)
0.400082 + 0.916479i \(0.368982\pi\)
\(338\) −17.3583 −0.944165
\(339\) 17.4088 0.945516
\(340\) 0 0
\(341\) 4.96890 0.269081
\(342\) −5.87584 −0.317729
\(343\) 12.9959 12.9959i 0.701712 0.701712i
\(344\) −2.39492 −0.129125
\(345\) 0 0
\(346\) 7.88813 7.88813i 0.424068 0.424068i
\(347\) 23.6284 + 23.6284i 1.26844 + 1.26844i 0.946895 + 0.321543i \(0.104202\pi\)
0.321543 + 0.946895i \(0.395798\pi\)
\(348\) −13.2505 −0.710301
\(349\) 22.4213i 1.20019i 0.799930 + 0.600093i \(0.204870\pi\)
−0.799930 + 0.600093i \(0.795130\pi\)
\(350\) 0 0
\(351\) 4.57749 4.57749i 0.244329 0.244329i
\(352\) −6.77628 + 6.77628i −0.361177 + 0.361177i
\(353\) 22.2555i 1.18454i 0.805739 + 0.592270i \(0.201768\pi\)
−0.805739 + 0.592270i \(0.798232\pi\)
\(354\) 7.11835 + 7.11835i 0.378336 + 0.378336i
\(355\) 0 0
\(356\) 4.15466 0.220197
\(357\) −39.3574 13.4096i −2.08302 0.709713i
\(358\) 9.43927i 0.498881i
\(359\) 36.6674i 1.93523i −0.252424 0.967617i \(-0.581228\pi\)
0.252424 0.967617i \(-0.418772\pi\)
\(360\) 0 0
\(361\) 7.50945 0.395234
\(362\) −6.25262 + 6.25262i −0.328630 + 0.328630i
\(363\) 13.7632 + 13.7632i 0.722380 + 0.722380i
\(364\) 28.9616 28.9616i 1.51800 1.51800i
\(365\) 0 0
\(366\) 10.4397i 0.545691i
\(367\) 0.0960113 + 0.0960113i 0.00501175 + 0.00501175i 0.709608 0.704596i \(-0.248872\pi\)
−0.704596 + 0.709608i \(0.748872\pi\)
\(368\) 4.81231 + 4.81231i 0.250859 + 0.250859i
\(369\) 3.95847 + 3.95847i 0.206070 + 0.206070i
\(370\) 0 0
\(371\) 21.0346 + 21.0346i 1.09206 + 1.09206i
\(372\) 10.8967 0.564966
\(373\) 0.927465i 0.0480223i −0.999712 0.0240111i \(-0.992356\pi\)
0.999712 0.0240111i \(-0.00764372\pi\)
\(374\) −4.15303 + 2.04222i −0.214748 + 0.105601i
\(375\) 0 0
\(376\) 4.80802i 0.247955i
\(377\) 16.0281 16.0281i 0.825487 0.825487i
\(378\) 3.01936i 0.155299i
\(379\) −5.93013 5.93013i −0.304610 0.304610i 0.538204 0.842814i \(-0.319103\pi\)
−0.842814 + 0.538204i \(0.819103\pi\)
\(380\) 0 0
\(381\) −23.9780 + 23.9780i −1.22843 + 1.22843i
\(382\) 3.22243 0.164874
\(383\) −21.9106 −1.11958 −0.559789 0.828635i \(-0.689118\pi\)
−0.559789 + 0.828635i \(0.689118\pi\)
\(384\) −18.1495 + 18.1495i −0.926186 + 0.926186i
\(385\) 0 0
\(386\) −6.67917 6.67917i −0.339961 0.339961i
\(387\) 2.55347i 0.129800i
\(388\) −11.4077 + 11.4077i −0.579137 + 0.579137i
\(389\) 12.7622i 0.647071i 0.946216 + 0.323536i \(0.104872\pi\)
−0.946216 + 0.323536i \(0.895128\pi\)
\(390\) 0 0
\(391\) 8.50471 + 17.2951i 0.430102 + 0.874649i
\(392\) 27.1041i 1.36896i
\(393\) −10.9958 −0.554663
\(394\) −7.23979 7.23979i −0.364735 0.364735i
\(395\) 0 0
\(396\) −4.61703 4.61703i −0.232014 0.232014i
\(397\) 17.8029 + 17.8029i 0.893501 + 0.893501i 0.994851 0.101350i \(-0.0323162\pi\)
−0.101350 + 0.994851i \(0.532316\pi\)
\(398\) 0.982144 + 0.982144i 0.0492304 + 0.0492304i
\(399\) 34.1839i 1.71133i
\(400\) 0 0
\(401\) 4.08634 4.08634i 0.204062 0.204062i −0.597676 0.801738i \(-0.703909\pi\)
0.801738 + 0.597676i \(0.203909\pi\)
\(402\) −6.55256 6.55256i −0.326812 0.326812i
\(403\) −13.1808 + 13.1808i −0.656584 + 0.656584i
\(404\) −17.8014 −0.885650
\(405\) 0 0
\(406\) 10.5723i 0.524693i
\(407\) 8.86259i 0.439302i
\(408\) −20.9288 + 10.2916i −1.03613 + 0.509509i
\(409\) 15.4742 0.765149 0.382575 0.923925i \(-0.375037\pi\)
0.382575 + 0.923925i \(0.375037\pi\)
\(410\) 0 0
\(411\) 24.2753 + 24.2753i 1.19741 + 1.19741i
\(412\) 17.4581i 0.860101i
\(413\) 19.0601 19.0601i 0.937887 0.937887i
\(414\) 5.72941 5.72941i 0.281585 0.281585i
\(415\) 0 0
\(416\) 35.9504i 1.76261i
\(417\) 12.6590 0.619915
\(418\) 2.69044 + 2.69044i 0.131594 + 0.131594i
\(419\) −12.8210 + 12.8210i −0.626348 + 0.626348i −0.947147 0.320799i \(-0.896048\pi\)
0.320799 + 0.947147i \(0.396048\pi\)
\(420\) 0 0
\(421\) 9.81137 0.478177 0.239089 0.970998i \(-0.423151\pi\)
0.239089 + 0.970998i \(0.423151\pi\)
\(422\) −0.209998 + 0.209998i −0.0102226 + 0.0102226i
\(423\) 5.12633 0.249250
\(424\) 16.6857 0.810331
\(425\) 0 0
\(426\) −21.7045 −1.05158
\(427\) −27.9533 −1.35276
\(428\) 6.61461 6.61461i 0.319729 0.319729i
\(429\) 24.2687 1.17171
\(430\) 0 0
\(431\) 12.8168 12.8168i 0.617364 0.617364i −0.327490 0.944855i \(-0.606203\pi\)
0.944855 + 0.327490i \(0.106203\pi\)
\(432\) 1.07246 + 1.07246i 0.0515987 + 0.0515987i
\(433\) −12.8308 −0.616610 −0.308305 0.951287i \(-0.599762\pi\)
−0.308305 + 0.951287i \(0.599762\pi\)
\(434\) 8.69420i 0.417335i
\(435\) 0 0
\(436\) −3.34420 + 3.34420i −0.160158 + 0.160158i
\(437\) 11.2042 11.2042i 0.535970 0.535970i
\(438\) 15.8548i 0.757573i
\(439\) 17.1720 + 17.1720i 0.819573 + 0.819573i 0.986046 0.166473i \(-0.0532379\pi\)
−0.166473 + 0.986046i \(0.553238\pi\)
\(440\) 0 0
\(441\) 28.8985 1.37612
\(442\) 5.59927 16.4339i 0.266330 0.781682i
\(443\) 16.1216i 0.765962i −0.923756 0.382981i \(-0.874897\pi\)
0.923756 0.382981i \(-0.125103\pi\)
\(444\) 19.4354i 0.922364i
\(445\) 0 0
\(446\) 18.4594 0.874076
\(447\) 21.1524 21.1524i 1.00047 1.00047i
\(448\) −3.04928 3.04928i −0.144065 0.144065i
\(449\) −13.5245 + 13.5245i −0.638259 + 0.638259i −0.950126 0.311867i \(-0.899046\pi\)
0.311867 + 0.950126i \(0.399046\pi\)
\(450\) 0 0
\(451\) 3.62503i 0.170696i
\(452\) −8.04546 8.04546i −0.378426 0.378426i
\(453\) 27.1074 + 27.1074i 1.27362 + 1.27362i
\(454\) −4.43748 4.43748i −0.208261 0.208261i
\(455\) 0 0
\(456\) 13.5582 + 13.5582i 0.634923 + 0.634923i
\(457\) 3.68314 0.172290 0.0861451 0.996283i \(-0.472545\pi\)
0.0861451 + 0.996283i \(0.472545\pi\)
\(458\) 7.50314i 0.350599i
\(459\) 1.89534 + 3.85434i 0.0884669 + 0.179905i
\(460\) 0 0
\(461\) 19.7569i 0.920172i 0.887874 + 0.460086i \(0.152181\pi\)
−0.887874 + 0.460086i \(0.847819\pi\)
\(462\) 8.00394 8.00394i 0.372377 0.372377i
\(463\) 23.6496i 1.09909i 0.835464 + 0.549545i \(0.185199\pi\)
−0.835464 + 0.549545i \(0.814801\pi\)
\(464\) 3.75521 + 3.75521i 0.174331 + 0.174331i
\(465\) 0 0
\(466\) 7.41961 7.41961i 0.343707 0.343707i
\(467\) −5.50118 −0.254564 −0.127282 0.991867i \(-0.540625\pi\)
−0.127282 + 0.991867i \(0.540625\pi\)
\(468\) 24.4949 1.13228
\(469\) −17.5452 + 17.5452i −0.810161 + 0.810161i
\(470\) 0 0
\(471\) −16.7102 16.7102i −0.769965 0.769965i
\(472\) 15.1195i 0.695932i
\(473\) −1.16919 + 1.16919i −0.0537594 + 0.0537594i
\(474\) 1.85464i 0.0851866i
\(475\) 0 0
\(476\) 11.9917 + 24.3862i 0.549640 + 1.11774i
\(477\) 17.7904i 0.814567i
\(478\) −1.58705 −0.0725901
\(479\) −7.89487 7.89487i −0.360726 0.360726i 0.503354 0.864080i \(-0.332099\pi\)
−0.864080 + 0.503354i \(0.832099\pi\)
\(480\) 0 0
\(481\) −23.5095 23.5095i −1.07194 1.07194i
\(482\) 14.6301 + 14.6301i 0.666383 + 0.666383i
\(483\) −33.3320 33.3320i −1.51666 1.51666i
\(484\) 12.7213i 0.578240i
\(485\) 0 0
\(486\) 9.94586 9.94586i 0.451154 0.451154i
\(487\) 25.0619 + 25.0619i 1.13566 + 1.13566i 0.989219 + 0.146443i \(0.0467825\pi\)
0.146443 + 0.989219i \(0.453218\pi\)
\(488\) −11.0870 + 11.0870i −0.501887 + 0.501887i
\(489\) −18.9688 −0.857799
\(490\) 0 0
\(491\) 12.8558i 0.580175i 0.957000 + 0.290087i \(0.0936844\pi\)
−0.957000 + 0.290087i \(0.906316\pi\)
\(492\) 7.94959i 0.358395i
\(493\) 6.63652 + 13.4959i 0.298894 + 0.607826i
\(494\) −14.2737 −0.642203
\(495\) 0 0
\(496\) −3.08813 3.08813i −0.138661 0.138661i
\(497\) 58.1159i 2.60686i
\(498\) 4.13360 4.13360i 0.185231 0.185231i
\(499\) 13.1434 13.1434i 0.588380 0.588380i −0.348813 0.937192i \(-0.613415\pi\)
0.937192 + 0.348813i \(0.113415\pi\)
\(500\) 0 0
\(501\) 30.4191i 1.35903i
\(502\) −6.25429 −0.279143
\(503\) −24.0464 24.0464i −1.07217 1.07217i −0.997184 0.0749899i \(-0.976108\pi\)
−0.0749899 0.997184i \(-0.523892\pi\)
\(504\) 18.5643 18.5643i 0.826920 0.826920i
\(505\) 0 0
\(506\) −5.24679 −0.233248
\(507\) −42.7052 + 42.7052i −1.89660 + 1.89660i
\(508\) 22.1629 0.983318
\(509\) 29.8369 1.32250 0.661249 0.750167i \(-0.270027\pi\)
0.661249 + 0.750167i \(0.270027\pi\)
\(510\) 0 0
\(511\) −42.4530 −1.87801
\(512\) 15.4092 0.680999
\(513\) 2.49694 2.49694i 0.110243 0.110243i
\(514\) −2.18890 −0.0965483
\(515\) 0 0
\(516\) −2.56400 + 2.56400i −0.112874 + 0.112874i
\(517\) −2.34725 2.34725i −0.103232 0.103232i
\(518\) −15.5071 −0.681342
\(519\) 38.8131i 1.70370i
\(520\) 0 0
\(521\) −27.1655 + 27.1655i −1.19014 + 1.19014i −0.213116 + 0.977027i \(0.568361\pi\)
−0.977027 + 0.213116i \(0.931639\pi\)
\(522\) 4.47085 4.47085i 0.195684 0.195684i
\(523\) 20.2414i 0.885093i 0.896745 + 0.442547i \(0.145925\pi\)
−0.896745 + 0.442547i \(0.854075\pi\)
\(524\) 5.08168 + 5.08168i 0.221994 + 0.221994i
\(525\) 0 0
\(526\) −8.45101 −0.368482
\(527\) −5.45760 11.0985i −0.237737 0.483458i
\(528\) 5.68591i 0.247447i
\(529\) 1.15003i 0.0500014i
\(530\) 0 0
\(531\) 16.1205 0.699569
\(532\) 15.7980 15.7980i 0.684932 0.684932i
\(533\) 9.61599 + 9.61599i 0.416515 + 0.416515i
\(534\) −3.04579 + 3.04579i −0.131804 + 0.131804i
\(535\) 0 0
\(536\) 13.9178i 0.601156i
\(537\) 23.2227 + 23.2227i 1.00213 + 1.00213i
\(538\) −0.148544 0.148544i −0.00640417 0.00640417i
\(539\) −13.2321 13.2321i −0.569947 0.569947i
\(540\) 0 0
\(541\) 5.16605 + 5.16605i 0.222106 + 0.222106i 0.809385 0.587279i \(-0.199801\pi\)
−0.587279 + 0.809385i \(0.699801\pi\)
\(542\) −12.4301 −0.533916
\(543\) 30.7656i 1.32028i
\(544\) 22.5782 + 7.69271i 0.968032 + 0.329822i
\(545\) 0 0
\(546\) 42.4636i 1.81727i
\(547\) −30.9108 + 30.9108i −1.32165 + 1.32165i −0.409207 + 0.912442i \(0.634194\pi\)
−0.912442 + 0.409207i \(0.865806\pi\)
\(548\) 22.4376i 0.958486i
\(549\) −11.8210 11.8210i −0.504510 0.504510i
\(550\) 0 0
\(551\) 8.74302 8.74302i 0.372465 0.372465i
\(552\) −26.4407 −1.12539
\(553\) 4.96600 0.211176
\(554\) 6.11115 6.11115i 0.259638 0.259638i
\(555\) 0 0
\(556\) −5.85035 5.85035i −0.248110 0.248110i
\(557\) 29.0497i 1.23088i −0.788185 0.615438i \(-0.788979\pi\)
0.788185 0.615438i \(-0.211021\pi\)
\(558\) −3.67665 + 3.67665i −0.155645 + 0.155645i
\(559\) 6.20293i 0.262356i
\(560\) 0 0
\(561\) −5.19306 + 15.2417i −0.219251 + 0.643504i
\(562\) 21.0921i 0.889718i
\(563\) 39.3006 1.65632 0.828162 0.560489i \(-0.189387\pi\)
0.828162 + 0.560489i \(0.189387\pi\)
\(564\) −5.14747 5.14747i −0.216747 0.216747i
\(565\) 0 0
\(566\) −13.3465 13.3465i −0.560996 0.560996i
\(567\) −30.6405 30.6405i −1.28678 1.28678i
\(568\) 23.0503 + 23.0503i 0.967171 + 0.967171i
\(569\) 14.3009i 0.599525i 0.954014 + 0.299763i \(0.0969075\pi\)
−0.954014 + 0.299763i \(0.903093\pi\)
\(570\) 0 0
\(571\) 16.9121 16.9121i 0.707750 0.707750i −0.258311 0.966062i \(-0.583166\pi\)
0.966062 + 0.258311i \(0.0831660\pi\)
\(572\) −11.2158 11.2158i −0.468955 0.468955i
\(573\) 7.92789 7.92789i 0.331192 0.331192i
\(574\) 6.34280 0.264743
\(575\) 0 0
\(576\) 2.57899i 0.107458i
\(577\) 5.85190i 0.243618i 0.992554 + 0.121809i \(0.0388695\pi\)
−0.992554 + 0.121809i \(0.961131\pi\)
\(578\) 9.12298 + 7.03310i 0.379466 + 0.292539i
\(579\) −32.8645 −1.36580
\(580\) 0 0
\(581\) −11.0681 11.0681i −0.459183 0.459183i
\(582\) 16.7259i 0.693313i
\(583\) 8.14591 8.14591i 0.337369 0.337369i
\(584\) −16.8380 + 16.8380i −0.696761 + 0.696761i
\(585\) 0 0
\(586\) 21.2972i 0.879779i
\(587\) −2.30210 −0.0950176 −0.0475088 0.998871i \(-0.515128\pi\)
−0.0475088 + 0.998871i \(0.515128\pi\)
\(588\) −29.0177 29.0177i −1.19667 1.19667i
\(589\) −7.18990 + 7.18990i −0.296255 + 0.296255i
\(590\) 0 0
\(591\) −35.6230 −1.46533
\(592\) 5.50802 5.50802i 0.226378 0.226378i
\(593\) −4.89325 −0.200942 −0.100471 0.994940i \(-0.532035\pi\)
−0.100471 + 0.994940i \(0.532035\pi\)
\(594\) −1.16929 −0.0479764
\(595\) 0 0
\(596\) −19.5511 −0.800844
\(597\) 4.83258 0.197784
\(598\) 13.9180 13.9180i 0.569148 0.569148i
\(599\) 6.54372 0.267369 0.133685 0.991024i \(-0.457319\pi\)
0.133685 + 0.991024i \(0.457319\pi\)
\(600\) 0 0
\(601\) 11.3611 11.3611i 0.463431 0.463431i −0.436347 0.899778i \(-0.643728\pi\)
0.899778 + 0.436347i \(0.143728\pi\)
\(602\) −2.04576 2.04576i −0.0833788 0.0833788i
\(603\) −14.8392 −0.604298
\(604\) 25.0553i 1.01949i
\(605\) 0 0
\(606\) 13.0502 13.0502i 0.530128 0.530128i
\(607\) 30.8472 30.8472i 1.25205 1.25205i 0.297247 0.954801i \(-0.403932\pi\)
0.954801 0.297247i \(-0.0960685\pi\)
\(608\) 19.6103i 0.795302i
\(609\) −26.0101 26.0101i −1.05398 1.05398i
\(610\) 0 0
\(611\) 12.4530 0.503793
\(612\) −5.24145 + 15.3837i −0.211873 + 0.621849i
\(613\) 24.9253i 1.00672i −0.864076 0.503362i \(-0.832096\pi\)
0.864076 0.503362i \(-0.167904\pi\)
\(614\) 2.85938i 0.115395i
\(615\) 0 0
\(616\) −17.0005 −0.684971
\(617\) −12.6091 + 12.6091i −0.507625 + 0.507625i −0.913797 0.406172i \(-0.866863\pi\)
0.406172 + 0.913797i \(0.366863\pi\)
\(618\) 12.7986 + 12.7986i 0.514834 + 0.514834i
\(619\) −19.5300 + 19.5300i −0.784977 + 0.784977i −0.980666 0.195689i \(-0.937306\pi\)
0.195689 + 0.980666i \(0.437306\pi\)
\(620\) 0 0
\(621\) 4.86943i 0.195404i
\(622\) 7.38349 + 7.38349i 0.296051 + 0.296051i
\(623\) 8.15541 + 8.15541i 0.326740 + 0.326740i
\(624\) −15.0828 15.0828i −0.603796 0.603796i
\(625\) 0 0
\(626\) 5.20384 + 5.20384i 0.207987 + 0.207987i
\(627\) 13.2382 0.528681
\(628\) 15.4452i 0.616330i
\(629\) 19.7954 9.73424i 0.789295 0.388130i
\(630\) 0 0
\(631\) 38.2023i 1.52081i −0.649448 0.760406i \(-0.725000\pi\)
0.649448 0.760406i \(-0.275000\pi\)
\(632\) 1.96965 1.96965i 0.0783484 0.0783484i
\(633\) 1.03329i 0.0410694i
\(634\) −13.8409 13.8409i −0.549694 0.549694i
\(635\) 0 0
\(636\) 17.8638 17.8638i 0.708345 0.708345i
\(637\) 70.2007 2.78145
\(638\) −4.09425 −0.162093
\(639\) −24.5764 + 24.5764i −0.972226 + 0.972226i
\(640\) 0 0
\(641\) −16.4472 16.4472i −0.649623 0.649623i 0.303279 0.952902i \(-0.401919\pi\)
−0.952902 + 0.303279i \(0.901919\pi\)
\(642\) 9.69836i 0.382764i
\(643\) 4.84007 4.84007i 0.190874 0.190874i −0.605200 0.796074i \(-0.706907\pi\)
0.796074 + 0.605200i \(0.206907\pi\)
\(644\) 30.8087i 1.21403i
\(645\) 0 0
\(646\) 3.05430 8.96441i 0.120170 0.352700i
\(647\) 39.1427i 1.53886i −0.638732 0.769429i \(-0.720541\pi\)
0.638732 0.769429i \(-0.279459\pi\)
\(648\) −24.3057 −0.954817
\(649\) −7.38128 7.38128i −0.289741 0.289741i
\(650\) 0 0
\(651\) 21.3896 + 21.3896i 0.838326 + 0.838326i
\(652\) 8.76641 + 8.76641i 0.343319 + 0.343319i
\(653\) 9.72867 + 9.72867i 0.380712 + 0.380712i 0.871359 0.490646i \(-0.163239\pi\)
−0.490646 + 0.871359i \(0.663239\pi\)
\(654\) 4.90327i 0.191733i
\(655\) 0 0
\(656\) −2.25292 + 2.25292i −0.0879619 + 0.0879619i
\(657\) −17.9527 17.9527i −0.700402 0.700402i
\(658\) 4.10704 4.10704i 0.160109 0.160109i
\(659\) 19.0767 0.743124 0.371562 0.928408i \(-0.378822\pi\)
0.371562 + 0.928408i \(0.378822\pi\)
\(660\) 0 0
\(661\) 3.89804i 0.151616i 0.997122 + 0.0758082i \(0.0241537\pi\)
−0.997122 + 0.0758082i \(0.975846\pi\)
\(662\) 4.94142i 0.192054i
\(663\) −26.6556 54.2065i −1.03522 2.10521i
\(664\) −8.77984 −0.340724
\(665\) 0 0
\(666\) −6.55771 6.55771i −0.254106 0.254106i
\(667\) 17.0503i 0.660189i
\(668\) −14.0582 + 14.0582i −0.543926 + 0.543926i
\(669\) 45.4141 45.4141i 1.75581 1.75581i
\(670\) 0 0
\(671\) 10.8253i 0.417906i
\(672\) −58.3398 −2.25050
\(673\) −6.34918 6.34918i −0.244743 0.244743i 0.574066 0.818809i \(-0.305365\pi\)
−0.818809 + 0.574066i \(0.805365\pi\)
\(674\) −6.42353 + 6.42353i −0.247425 + 0.247425i
\(675\) 0 0
\(676\) 39.4723 1.51816
\(677\) 21.8144 21.8144i 0.838397 0.838397i −0.150251 0.988648i \(-0.548008\pi\)
0.988648 + 0.150251i \(0.0480081\pi\)
\(678\) 11.7963 0.453033
\(679\) −44.7855 −1.71871
\(680\) 0 0
\(681\) −21.8343 −0.836694
\(682\) 3.36694 0.128927
\(683\) −3.16023 + 3.16023i −0.120923 + 0.120923i −0.764979 0.644056i \(-0.777251\pi\)
0.644056 + 0.764979i \(0.277251\pi\)
\(684\) 13.3615 0.510890
\(685\) 0 0
\(686\) 8.80606 8.80606i 0.336217 0.336217i
\(687\) −18.4594 18.4594i −0.704270 0.704270i
\(688\) 1.45328 0.0554059
\(689\) 43.2168i 1.64643i
\(690\) 0 0
\(691\) 8.55423 8.55423i 0.325418 0.325418i −0.525423 0.850841i \(-0.676093\pi\)
0.850841 + 0.525423i \(0.176093\pi\)
\(692\) −17.9374 + 17.9374i −0.681878 + 0.681878i
\(693\) 18.1260i 0.688551i
\(694\) 16.0107 + 16.0107i 0.607757 + 0.607757i
\(695\) 0 0
\(696\) −20.6326 −0.782077
\(697\) −8.09684 + 3.98156i −0.306690 + 0.150812i
\(698\) 15.1928i 0.575054i
\(699\) 36.5077i 1.38085i
\(700\) 0 0
\(701\) −8.83630 −0.333742 −0.166871 0.985979i \(-0.553366\pi\)
−0.166871 + 0.985979i \(0.553366\pi\)
\(702\) 3.10173 3.10173i 0.117067 0.117067i
\(703\) −12.8240 12.8240i −0.483666 0.483666i
\(704\) −1.18087 + 1.18087i −0.0445059 + 0.0445059i
\(705\) 0 0
\(706\) 15.0804i 0.567558i
\(707\) −34.9432 34.9432i −1.31418 1.31418i
\(708\) −16.1870 16.1870i −0.608343 0.608343i
\(709\) −18.9439 18.9439i −0.711452 0.711452i 0.255387 0.966839i \(-0.417797\pi\)
−0.966839 + 0.255387i \(0.917797\pi\)
\(710\) 0 0
\(711\) 2.10005 + 2.10005i 0.0787579 + 0.0787579i
\(712\) 6.46931 0.242448
\(713\) 14.0214i 0.525107i
\(714\) −26.6687 9.08641i −0.998052 0.340050i
\(715\) 0 0
\(716\) 21.4647i 0.802172i
\(717\) −3.90450 + 3.90450i −0.145816 + 0.145816i
\(718\) 24.8460i 0.927244i
\(719\) −31.0488 31.0488i −1.15792 1.15792i −0.984922 0.173001i \(-0.944653\pi\)
−0.173001 0.984922i \(-0.555347\pi\)
\(720\) 0 0
\(721\) 34.2695 34.2695i 1.27626 1.27626i
\(722\) 5.08842 0.189372
\(723\) 71.9866 2.67721
\(724\) 14.2183 14.2183i 0.528419 0.528419i
\(725\) 0 0
\(726\) 9.32598 + 9.32598i 0.346120 + 0.346120i
\(727\) 2.37306i 0.0880118i 0.999031 + 0.0440059i \(0.0140120\pi\)
−0.999031 + 0.0440059i \(0.985988\pi\)
\(728\) 45.0967 45.0967i 1.67140 1.67140i
\(729\) 18.5470i 0.686926i
\(730\) 0 0
\(731\) 3.89567 + 1.32731i 0.144087 + 0.0490924i
\(732\) 23.7396i 0.877440i
\(733\) −27.2035 −1.00478 −0.502391 0.864640i \(-0.667546\pi\)
−0.502391 + 0.864640i \(0.667546\pi\)
\(734\) 0.0650576 + 0.0650576i 0.00240132 + 0.00240132i
\(735\) 0 0
\(736\) 19.1216 + 19.1216i 0.704831 + 0.704831i
\(737\) 6.79460 + 6.79460i 0.250282 + 0.250282i
\(738\) 2.68227 + 2.68227i 0.0987359 + 0.0987359i
\(739\) 10.3375i 0.380270i 0.981758 + 0.190135i \(0.0608926\pi\)
−0.981758 + 0.190135i \(0.939107\pi\)
\(740\) 0 0
\(741\) −35.1164 + 35.1164i −1.29003 + 1.29003i
\(742\) 14.2531 + 14.2531i 0.523247 + 0.523247i
\(743\) 8.35033 8.35033i 0.306344 0.306344i −0.537146 0.843490i \(-0.680497\pi\)
0.843490 + 0.537146i \(0.180497\pi\)
\(744\) 16.9674 0.622056
\(745\) 0 0
\(746\) 0.628453i 0.0230093i
\(747\) 9.36110i 0.342505i
\(748\) 9.44389 4.64396i 0.345303 0.169800i
\(749\) 25.9684 0.948863
\(750\) 0 0
\(751\) 14.1573 + 14.1573i 0.516607 + 0.516607i 0.916543 0.399936i \(-0.130968\pi\)
−0.399936 + 0.916543i \(0.630968\pi\)
\(752\) 2.91760i 0.106394i
\(753\) −15.3869 + 15.3869i −0.560731 + 0.560731i
\(754\) 10.8607 10.8607i 0.395522 0.395522i
\(755\) 0 0
\(756\) 6.86595i 0.249712i
\(757\) −4.41769 −0.160564 −0.0802818 0.996772i \(-0.525582\pi\)
−0.0802818 + 0.996772i \(0.525582\pi\)
\(758\) −4.01827 4.01827i −0.145950 0.145950i
\(759\) −12.9083 + 12.9083i −0.468540 + 0.468540i
\(760\) 0 0
\(761\) −41.6749 −1.51071 −0.755357 0.655314i \(-0.772537\pi\)
−0.755357 + 0.655314i \(0.772537\pi\)
\(762\) −16.2476 + 16.2476i −0.588589 + 0.588589i
\(763\) −13.1290 −0.475303
\(764\) −7.32773 −0.265108
\(765\) 0 0
\(766\) −14.8467 −0.536432
\(767\) 39.1601 1.41399
\(768\) −15.6594 + 15.6594i −0.565061 + 0.565061i
\(769\) 30.7653 1.10942 0.554712 0.832043i \(-0.312829\pi\)
0.554712 + 0.832043i \(0.312829\pi\)
\(770\) 0 0
\(771\) −5.38518 + 5.38518i −0.193942 + 0.193942i
\(772\) 15.1883 + 15.1883i 0.546638 + 0.546638i
\(773\) 25.2932 0.909735 0.454867 0.890559i \(-0.349687\pi\)
0.454867 + 0.890559i \(0.349687\pi\)
\(774\) 1.73024i 0.0621922i
\(775\) 0 0
\(776\) −17.7631 + 17.7631i −0.637659 + 0.637659i
\(777\) −38.1508 + 38.1508i −1.36865 + 1.36865i
\(778\) 8.64773i 0.310036i
\(779\) 5.24535 + 5.24535i 0.187934 + 0.187934i
\(780\) 0 0
\(781\) 22.5062 0.805334
\(782\) 5.76282 + 11.7192i 0.206078 + 0.419078i
\(783\) 3.79978i 0.135793i
\(784\) 16.4473i 0.587403i
\(785\) 0 0
\(786\) −7.45077 −0.265760
\(787\) 13.9008 13.9008i 0.495509 0.495509i −0.414528 0.910037i \(-0.636053\pi\)
0.910037 + 0.414528i \(0.136053\pi\)
\(788\) 16.4631 + 16.4631i 0.586474 + 0.586474i
\(789\) −20.7913 + 20.7913i −0.740192 + 0.740192i
\(790\) 0 0
\(791\) 31.5857i 1.12306i
\(792\) −7.18927 7.18927i −0.255460 0.255460i
\(793\) −28.7159 28.7159i −1.01973 1.01973i
\(794\) 12.0633 + 12.0633i 0.428110 + 0.428110i
\(795\) 0 0
\(796\) −2.23337 2.23337i −0.0791598 0.0791598i
\(797\) −27.3888 −0.970159 −0.485080 0.874470i \(-0.661209\pi\)
−0.485080 + 0.874470i \(0.661209\pi\)
\(798\) 23.1631i 0.819965i
\(799\) −2.66470 + 7.82092i −0.0942703 + 0.276684i
\(800\) 0 0
\(801\) 6.89760i 0.243715i
\(802\) 2.76892 2.76892i 0.0977739 0.0977739i
\(803\) 16.4405i 0.580171i
\(804\) 14.9004 + 14.9004i 0.525496 + 0.525496i
\(805\) 0 0
\(806\) −8.93137 + 8.93137i −0.314594 + 0.314594i
\(807\) −0.730900 −0.0257289
\(808\) −27.7188 −0.975145
\(809\) 2.66487 2.66487i 0.0936919 0.0936919i −0.658707 0.752399i \(-0.728896\pi\)
0.752399 + 0.658707i \(0.228896\pi\)
\(810\) 0 0
\(811\) 24.0130 + 24.0130i 0.843209 + 0.843209i 0.989275 0.146066i \(-0.0466612\pi\)
−0.146066 + 0.989275i \(0.546661\pi\)
\(812\) 24.0411i 0.843676i
\(813\) −30.5807 + 30.5807i −1.07251 + 1.07251i
\(814\) 6.00532i 0.210486i
\(815\) 0 0
\(816\) 12.7000 6.24513i 0.444589 0.218623i
\(817\) 3.38359i 0.118377i
\(818\) 10.4854 0.366612
\(819\) 48.0823 + 48.0823i 1.68013 + 1.68013i
\(820\) 0 0
\(821\) 19.1918 + 19.1918i 0.669797 + 0.669797i 0.957669 0.287872i \(-0.0929477\pi\)
−0.287872 + 0.957669i \(0.592948\pi\)
\(822\) 16.4490 + 16.4490i 0.573725 + 0.573725i
\(823\) −1.36590 1.36590i −0.0476123 0.0476123i 0.682900 0.730512i \(-0.260719\pi\)
−0.730512 + 0.682900i \(0.760719\pi\)
\(824\) 27.1844i 0.947015i
\(825\) 0 0
\(826\) 12.9152 12.9152i 0.449377 0.449377i
\(827\) 13.9206 + 13.9206i 0.484067 + 0.484067i 0.906428 0.422361i \(-0.138799\pi\)
−0.422361 + 0.906428i \(0.638799\pi\)
\(828\) −13.0285 + 13.0285i −0.452773 + 0.452773i
\(829\) 21.3907 0.742930 0.371465 0.928447i \(-0.378855\pi\)
0.371465 + 0.928447i \(0.378855\pi\)
\(830\) 0 0
\(831\) 30.0696i 1.04310i
\(832\) 6.26493i 0.217197i
\(833\) −15.0216 + 44.0887i −0.520469 + 1.52758i
\(834\) 8.57779 0.297025
\(835\) 0 0
\(836\) −6.11800 6.11800i −0.211595 0.211595i
\(837\) 3.12479i 0.108008i
\(838\) −8.68757 + 8.68757i −0.300107 + 0.300107i
\(839\) −20.3873 + 20.3873i −0.703846 + 0.703846i −0.965234 0.261387i \(-0.915820\pi\)
0.261387 + 0.965234i \(0.415820\pi\)
\(840\) 0 0
\(841\) 15.6951i 0.541210i
\(842\) 6.64822 0.229113
\(843\) 51.8913 + 51.8913i 1.78723 + 1.78723i
\(844\) 0.477531 0.477531i 0.0164373 0.0164373i
\(845\) 0 0
\(846\) 3.47362 0.119425
\(847\) 24.9713 24.9713i 0.858023 0.858023i
\(848\) −10.1252 −0.347702
\(849\) −65.6708 −2.25382
\(850\) 0 0
\(851\) 25.0088 0.857292
\(852\) 49.3554 1.69089
\(853\) 8.13732 8.13732i 0.278617 0.278617i −0.553940 0.832557i \(-0.686876\pi\)
0.832557 + 0.553940i \(0.186876\pi\)
\(854\) −18.9413 −0.648157
\(855\) 0 0
\(856\) 10.2997 10.2997i 0.352038 0.352038i
\(857\) −15.3959 15.3959i −0.525913 0.525913i 0.393438 0.919351i \(-0.371286\pi\)
−0.919351 + 0.393438i \(0.871286\pi\)
\(858\) 16.4446 0.561409
\(859\) 0.00614837i 0.000209780i 1.00000 0.000104890i \(3.33875e-5\pi\)
−1.00000 0.000104890i \(0.999967\pi\)
\(860\) 0 0
\(861\) 15.6047 15.6047i 0.531806 0.531806i
\(862\) 8.68472 8.68472i 0.295803 0.295803i
\(863\) 21.5322i 0.732964i 0.930425 + 0.366482i \(0.119438\pi\)
−0.930425 + 0.366482i \(0.880562\pi\)
\(864\) 4.26139 + 4.26139i 0.144975 + 0.144975i
\(865\) 0 0
\(866\) −8.69421 −0.295441
\(867\) 39.7475 5.14155i 1.34990 0.174616i
\(868\) 19.7704i 0.671051i
\(869\) 1.92315i 0.0652384i
\(870\) 0 0
\(871\) −36.0476 −1.22143
\(872\) −5.20732 + 5.20732i −0.176342 + 0.176342i
\(873\) −18.9391 18.9391i −0.640991 0.640991i
\(874\) 7.59200 7.59200i 0.256803 0.256803i
\(875\) 0 0
\(876\) 36.0535i 1.21814i
\(877\) 0.789882 + 0.789882i 0.0266724 + 0.0266724i 0.720317 0.693645i \(-0.243996\pi\)
−0.693645 + 0.720317i \(0.743996\pi\)
\(878\) 11.6358 + 11.6358i 0.392688 + 0.392688i
\(879\) 52.3958 + 52.3958i 1.76727 + 1.76727i
\(880\) 0 0
\(881\) −33.6544 33.6544i −1.13385 1.13385i −0.989532 0.144313i \(-0.953903\pi\)
−0.144313 0.989532i \(-0.546097\pi\)
\(882\) 19.5817 0.659351
\(883\) 20.9432i 0.704796i −0.935850 0.352398i \(-0.885366\pi\)
0.935850 0.352398i \(-0.114634\pi\)
\(884\) −12.7326 + 37.3703i −0.428244 + 1.25690i
\(885\) 0 0
\(886\) 10.9241i 0.367001i
\(887\) −13.4400 + 13.4400i −0.451271 + 0.451271i −0.895776 0.444506i \(-0.853379\pi\)
0.444506 + 0.895776i \(0.353379\pi\)
\(888\) 30.2633i 1.01557i
\(889\) 43.5046 + 43.5046i 1.45910 + 1.45910i
\(890\) 0 0
\(891\) −11.8659 + 11.8659i −0.397524 + 0.397524i
\(892\) −41.9761 −1.40546
\(893\) 6.79286 0.227315
\(894\) 14.3329 14.3329i 0.479365 0.479365i
\(895\) 0 0
\(896\) 32.9295 + 32.9295i 1.10010 + 1.10010i
\(897\) 68.4826i 2.28657i
\(898\) −9.16422 + 9.16422i −0.305814 + 0.305814i
\(899\) 10.9414i 0.364917i
\(900\) 0 0
\(901\) −27.1417 9.24758i −0.904222 0.308082i
\(902\) 2.45633i 0.0817869i
\(903\) −10.0660 −0.334976
\(904\) −12.5277 12.5277i −0.416667 0.416667i
\(905\) 0 0
\(906\) 18.3681 + 18.3681i 0.610238 + 0.610238i
\(907\) −9.63742 9.63742i −0.320005 0.320005i 0.528764 0.848769i \(-0.322656\pi\)
−0.848769 + 0.528764i \(0.822656\pi\)
\(908\) 10.0907 + 10.0907i 0.334872 + 0.334872i
\(909\) 29.5539i 0.980242i
\(910\) 0 0
\(911\) −23.8810 + 23.8810i −0.791214 + 0.791214i −0.981692 0.190477i \(-0.938996\pi\)
0.190477 + 0.981692i \(0.438996\pi\)
\(912\) −8.22741 8.22741i −0.272437 0.272437i
\(913\) −4.28628 + 4.28628i −0.141855 + 0.141855i
\(914\) 2.49571 0.0825507
\(915\) 0 0
\(916\) 17.0620i 0.563743i
\(917\) 19.9502i 0.658814i
\(918\) 1.28429 + 2.61171i 0.0423878 + 0.0861993i
\(919\) 31.7339 1.04681 0.523403 0.852085i \(-0.324662\pi\)
0.523403 + 0.852085i \(0.324662\pi\)
\(920\) 0 0
\(921\) 7.03471 + 7.03471i 0.231802 + 0.231802i
\(922\) 13.3874i 0.440889i
\(923\) −59.7013 + 59.7013i −1.96509 + 1.96509i
\(924\) −18.2008 + 18.2008i −0.598762 + 0.598762i
\(925\) 0 0
\(926\) 16.0251i 0.526616i
\(927\) 28.9841 0.951964
\(928\) 14.9212 + 14.9212i 0.489813 + 0.489813i
\(929\) −5.97435 + 5.97435i −0.196012 + 0.196012i −0.798288 0.602276i \(-0.794261\pi\)
0.602276 + 0.798288i \(0.294261\pi\)
\(930\) 0 0
\(931\) 38.2932 1.25501
\(932\) −16.8720 + 16.8720i −0.552661 + 0.552661i
\(933\) 36.3300 1.18939
\(934\) −3.72762 −0.121971
\(935\) 0 0
\(936\) 38.1415 1.24669
\(937\) −18.0115 −0.588409 −0.294205 0.955742i \(-0.595055\pi\)
−0.294205 + 0.955742i \(0.595055\pi\)
\(938\) −11.8887 + 11.8887i −0.388179 + 0.388179i
\(939\) 25.6052 0.835593
\(940\) 0 0
\(941\) −15.1411 + 15.1411i −0.493586 + 0.493586i −0.909434 0.415848i \(-0.863485\pi\)
0.415848 + 0.909434i \(0.363485\pi\)
\(942\) −11.3229 11.3229i −0.368919 0.368919i
\(943\) −10.2293 −0.333111
\(944\) 9.17481i 0.298615i
\(945\) 0 0
\(946\) −0.792246 + 0.792246i −0.0257581 + 0.0257581i
\(947\) 33.0770 33.0770i 1.07486 1.07486i 0.0778975 0.996961i \(-0.475179\pi\)
0.996961 0.0778975i \(-0.0248207\pi\)
\(948\) 4.21742i 0.136975i
\(949\) −43.6111 43.6111i −1.41568 1.41568i
\(950\) 0 0
\(951\) −68.1036 −2.20841
\(952\) 18.6726 + 37.9723i 0.605181 + 1.23069i
\(953\) 8.60527i 0.278752i 0.990240 + 0.139376i \(0.0445097\pi\)
−0.990240 + 0.139376i \(0.955490\pi\)
\(954\) 12.0548i 0.390290i
\(955\) 0 0
\(956\) 3.60892 0.116721
\(957\) −10.0728 + 10.0728i −0.325606 + 0.325606i
\(958\) −5.34959 5.34959i −0.172837 0.172837i
\(959\) 44.0439 44.0439i 1.42225 1.42225i
\(960\) 0 0
\(961\) 22.0022i 0.709749i
\(962\) −15.9301 15.9301i −0.513607 0.513607i
\(963\) 10.9816 + 10.9816i 0.353878 + 0.353878i
\(964\) −33.2685 33.2685i −1.07151 1.07151i
\(965\) 0 0
\(966\) −22.5859 22.5859i −0.726689 0.726689i
\(967\) −29.7257 −0.955913 −0.477957 0.878383i \(-0.658622\pi\)
−0.477957 + 0.878383i \(0.658622\pi\)
\(968\) 19.8086i 0.636671i
\(969\) −14.5402 29.5687i −0.467097 0.949883i
\(970\) 0 0
\(971\) 5.92180i 0.190040i 0.995475 + 0.0950198i \(0.0302915\pi\)
−0.995475 + 0.0950198i \(0.969709\pi\)
\(972\) −22.6167 + 22.6167i −0.725430 + 0.725430i
\(973\) 22.9679i 0.736318i
\(974\) 16.9820 + 16.9820i 0.544139 + 0.544139i
\(975\) 0 0
\(976\) 6.72783 6.72783i 0.215353 0.215353i
\(977\) −51.4273 −1.64530 −0.822652 0.568545i \(-0.807507\pi\)
−0.822652 + 0.568545i \(0.807507\pi\)
\(978\) −12.8533 −0.411004
\(979\) 3.15829 3.15829i 0.100939 0.100939i
\(980\) 0 0
\(981\) −5.55207 5.55207i −0.177264 0.177264i
\(982\) 8.71114i 0.277984i
\(983\) −9.68389 + 9.68389i −0.308868 + 0.308868i −0.844470 0.535602i \(-0.820085\pi\)
0.535602 + 0.844470i \(0.320085\pi\)
\(984\) 12.3785i 0.394611i
\(985\) 0 0
\(986\) 4.49693 + 9.14489i 0.143211 + 0.291233i
\(987\) 20.2085i 0.643243i
\(988\) 32.4580 1.03263
\(989\) 3.29927 + 3.29927i 0.104911 + 0.104911i
\(990\) 0 0
\(991\) −37.8301 37.8301i −1.20171 1.20171i −0.973645 0.228067i \(-0.926759\pi\)
−0.228067 0.973645i \(-0.573241\pi\)
\(992\) −12.2706 12.2706i −0.389592 0.389592i
\(993\) −12.1570 12.1570i −0.385790 0.385790i
\(994\) 39.3796i 1.24904i
\(995\) 0 0
\(996\) −9.39970 + 9.39970i −0.297841 + 0.297841i
\(997\) 16.3707 + 16.3707i 0.518465 + 0.518465i 0.917107 0.398642i \(-0.130518\pi\)
−0.398642 + 0.917107i \(0.630518\pi\)
\(998\) 8.90601 8.90601i 0.281915 0.281915i
\(999\) 5.57341 0.176335
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 425.2.j.b.149.4 12
5.2 odd 4 85.2.e.a.81.4 yes 12
5.3 odd 4 425.2.e.f.251.3 12
5.4 even 2 425.2.j.c.149.3 12
15.2 even 4 765.2.k.b.676.3 12
17.4 even 4 425.2.j.c.174.3 12
20.7 even 4 1360.2.bt.d.81.5 12
85.2 odd 8 1445.2.a.n.1.3 6
85.4 even 4 inner 425.2.j.b.174.4 12
85.32 odd 8 1445.2.a.o.1.3 6
85.38 odd 4 425.2.e.f.276.4 12
85.42 odd 8 1445.2.d.g.866.8 12
85.53 odd 8 7225.2.a.bb.1.4 6
85.72 odd 4 85.2.e.a.21.3 12
85.77 odd 8 1445.2.d.g.866.7 12
85.83 odd 8 7225.2.a.z.1.4 6
255.242 even 4 765.2.k.b.361.4 12
340.327 even 4 1360.2.bt.d.1041.5 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.2.e.a.21.3 12 85.72 odd 4
85.2.e.a.81.4 yes 12 5.2 odd 4
425.2.e.f.251.3 12 5.3 odd 4
425.2.e.f.276.4 12 85.38 odd 4
425.2.j.b.149.4 12 1.1 even 1 trivial
425.2.j.b.174.4 12 85.4 even 4 inner
425.2.j.c.149.3 12 5.4 even 2
425.2.j.c.174.3 12 17.4 even 4
765.2.k.b.361.4 12 255.242 even 4
765.2.k.b.676.3 12 15.2 even 4
1360.2.bt.d.81.5 12 20.7 even 4
1360.2.bt.d.1041.5 12 340.327 even 4
1445.2.a.n.1.3 6 85.2 odd 8
1445.2.a.o.1.3 6 85.32 odd 8
1445.2.d.g.866.7 12 85.77 odd 8
1445.2.d.g.866.8 12 85.42 odd 8
7225.2.a.z.1.4 6 85.83 odd 8
7225.2.a.bb.1.4 6 85.53 odd 8