Properties

Label 425.2.j.c.149.3
Level $425$
Weight $2$
Character 425.149
Analytic conductor $3.394$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [425,2,Mod(149,425)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("425.149"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(425, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 425 = 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 425.j (of order \(4\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,4,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.39364208590\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 18x^{10} + 83x^{8} + 152x^{6} + 111x^{4} + 22x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 85)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 149.3
Root \(1.35757i\) of defining polynomial
Character \(\chi\) \(=\) 425.149
Dual form 425.2.j.c.174.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.677603 q^{2} +(-1.66705 + 1.66705i) q^{3} -1.54085 q^{4} +(1.12960 - 1.12960i) q^{6} +(3.02462 + 3.02462i) q^{7} +2.39929 q^{8} -2.55814i q^{9} +(-1.17133 + 1.17133i) q^{11} +(2.56869 - 2.56869i) q^{12} +6.21427i q^{13} +(-2.04950 - 2.04950i) q^{14} +1.45594 q^{16} +(-3.90279 - 1.32974i) q^{17} +1.73340i q^{18} -3.38977i q^{19} -10.0844 q^{21} +(0.793694 - 0.793694i) q^{22} +(-3.30530 - 3.30530i) q^{23} +(-3.99975 + 3.99975i) q^{24} -4.21081i q^{26} +(-0.736610 - 0.736610i) q^{27} +(-4.66050 - 4.66050i) q^{28} +(2.57924 + 2.57924i) q^{29} +(-2.12106 - 2.12106i) q^{31} -5.78514 q^{32} -3.90532i q^{33} +(2.64455 + 0.901035i) q^{34} +3.94171i q^{36} +(-3.78314 + 3.78314i) q^{37} +2.29692i q^{38} +(-10.3595 - 10.3595i) q^{39} +(-1.54740 + 1.54740i) q^{41} +6.83324 q^{42} -0.998176 q^{43} +(1.80484 - 1.80484i) q^{44} +(2.23968 + 2.23968i) q^{46} -2.00393i q^{47} +(-2.42713 + 2.42713i) q^{48} +11.2967i q^{49} +(8.72291 - 4.28942i) q^{51} -9.57528i q^{52} +6.95444 q^{53} +(0.499130 + 0.499130i) q^{54} +(7.25696 + 7.25696i) q^{56} +(5.65093 + 5.65093i) q^{57} +(-1.74770 - 1.74770i) q^{58} +6.30165i q^{59} +(4.62096 - 4.62096i) q^{61} +(1.43724 + 1.43724i) q^{62} +(7.73740 - 7.73740i) q^{63} +1.00815 q^{64} +2.64626i q^{66} +5.80078i q^{67} +(6.01363 + 2.04893i) q^{68} +11.0202 q^{69} +(-9.60714 - 9.60714i) q^{71} -6.13772i q^{72} +(-7.01789 + 7.01789i) q^{73} +(2.56347 - 2.56347i) q^{74} +5.22314i q^{76} -7.08564 q^{77} +(7.01965 + 7.01965i) q^{78} +(-0.820929 + 0.820929i) q^{79} +10.1303 q^{81} +(1.04853 - 1.04853i) q^{82} -3.65934 q^{83} +15.5386 q^{84} +0.676367 q^{86} -8.59945 q^{87} +(-2.81035 + 2.81035i) q^{88} -2.69634 q^{89} +(-18.7958 + 18.7958i) q^{91} +(5.09298 + 5.09298i) q^{92} +7.07184 q^{93} +1.35787i q^{94} +(9.64413 - 9.64413i) q^{96} +(-7.40348 + 7.40348i) q^{97} -7.65468i q^{98} +(2.99641 + 2.99641i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 4 q^{2} - 4 q^{3} + 12 q^{4} + 12 q^{8} - 4 q^{11} + 8 q^{12} + 4 q^{14} + 4 q^{16} + 8 q^{17} - 16 q^{21} - 20 q^{22} - 12 q^{23} - 4 q^{24} - 4 q^{27} - 4 q^{28} + 12 q^{29} - 12 q^{32} + 12 q^{34}+ \cdots - 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/425\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(326\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.677603 −0.479138 −0.239569 0.970879i \(-0.577006\pi\)
−0.239569 + 0.970879i \(0.577006\pi\)
\(3\) −1.66705 + 1.66705i −0.962474 + 0.962474i −0.999321 0.0368470i \(-0.988269\pi\)
0.0368470 + 0.999321i \(0.488269\pi\)
\(4\) −1.54085 −0.770427
\(5\) 0 0
\(6\) 1.12960 1.12960i 0.461158 0.461158i
\(7\) 3.02462 + 3.02462i 1.14320 + 1.14320i 0.987861 + 0.155339i \(0.0496470\pi\)
0.155339 + 0.987861i \(0.450353\pi\)
\(8\) 2.39929 0.848279
\(9\) 2.55814i 0.852712i
\(10\) 0 0
\(11\) −1.17133 + 1.17133i −0.353168 + 0.353168i −0.861287 0.508119i \(-0.830341\pi\)
0.508119 + 0.861287i \(0.330341\pi\)
\(12\) 2.56869 2.56869i 0.741516 0.741516i
\(13\) 6.21427i 1.72353i 0.507309 + 0.861764i \(0.330640\pi\)
−0.507309 + 0.861764i \(0.669360\pi\)
\(14\) −2.04950 2.04950i −0.547751 0.547751i
\(15\) 0 0
\(16\) 1.45594 0.363984
\(17\) −3.90279 1.32974i −0.946566 0.322509i
\(18\) 1.73340i 0.408567i
\(19\) 3.38977i 0.777667i −0.921308 0.388834i \(-0.872878\pi\)
0.921308 0.388834i \(-0.127122\pi\)
\(20\) 0 0
\(21\) −10.0844 −2.20060
\(22\) 0.793694 0.793694i 0.169216 0.169216i
\(23\) −3.30530 3.30530i −0.689202 0.689202i 0.272854 0.962056i \(-0.412033\pi\)
−0.962056 + 0.272854i \(0.912033\pi\)
\(24\) −3.99975 + 3.99975i −0.816446 + 0.816446i
\(25\) 0 0
\(26\) 4.21081i 0.825808i
\(27\) −0.736610 0.736610i −0.141761 0.141761i
\(28\) −4.66050 4.66050i −0.880752 0.880752i
\(29\) 2.57924 + 2.57924i 0.478952 + 0.478952i 0.904796 0.425844i \(-0.140023\pi\)
−0.425844 + 0.904796i \(0.640023\pi\)
\(30\) 0 0
\(31\) −2.12106 2.12106i −0.380953 0.380953i 0.490492 0.871446i \(-0.336817\pi\)
−0.871446 + 0.490492i \(0.836817\pi\)
\(32\) −5.78514 −1.02268
\(33\) 3.90532i 0.679830i
\(34\) 2.64455 + 0.901035i 0.453536 + 0.154526i
\(35\) 0 0
\(36\) 3.94171i 0.656952i
\(37\) −3.78314 + 3.78314i −0.621945 + 0.621945i −0.946029 0.324083i \(-0.894944\pi\)
0.324083 + 0.946029i \(0.394944\pi\)
\(38\) 2.29692i 0.372610i
\(39\) −10.3595 10.3595i −1.65885 1.65885i
\(40\) 0 0
\(41\) −1.54740 + 1.54740i −0.241664 + 0.241664i −0.817538 0.575874i \(-0.804662\pi\)
0.575874 + 0.817538i \(0.304662\pi\)
\(42\) 6.83324 1.05439
\(43\) −0.998176 −0.152220 −0.0761102 0.997099i \(-0.524250\pi\)
−0.0761102 + 0.997099i \(0.524250\pi\)
\(44\) 1.80484 1.80484i 0.272090 0.272090i
\(45\) 0 0
\(46\) 2.23968 + 2.23968i 0.330223 + 0.330223i
\(47\) 2.00393i 0.292303i −0.989262 0.146152i \(-0.953311\pi\)
0.989262 0.146152i \(-0.0466887\pi\)
\(48\) −2.42713 + 2.42713i −0.350326 + 0.350326i
\(49\) 11.2967i 1.61381i
\(50\) 0 0
\(51\) 8.72291 4.28942i 1.22145 0.600639i
\(52\) 9.57528i 1.32785i
\(53\) 6.95444 0.955266 0.477633 0.878560i \(-0.341495\pi\)
0.477633 + 0.878560i \(0.341495\pi\)
\(54\) 0.499130 + 0.499130i 0.0679229 + 0.0679229i
\(55\) 0 0
\(56\) 7.25696 + 7.25696i 0.969752 + 0.969752i
\(57\) 5.65093 + 5.65093i 0.748484 + 0.748484i
\(58\) −1.74770 1.74770i −0.229484 0.229484i
\(59\) 6.30165i 0.820405i 0.911995 + 0.410202i \(0.134542\pi\)
−0.911995 + 0.410202i \(0.865458\pi\)
\(60\) 0 0
\(61\) 4.62096 4.62096i 0.591653 0.591653i −0.346425 0.938078i \(-0.612604\pi\)
0.938078 + 0.346425i \(0.112604\pi\)
\(62\) 1.43724 + 1.43724i 0.182529 + 0.182529i
\(63\) 7.73740 7.73740i 0.974821 0.974821i
\(64\) 1.00815 0.126019
\(65\) 0 0
\(66\) 2.64626i 0.325732i
\(67\) 5.80078i 0.708678i 0.935117 + 0.354339i \(0.115294\pi\)
−0.935117 + 0.354339i \(0.884706\pi\)
\(68\) 6.01363 + 2.04893i 0.729260 + 0.248469i
\(69\) 11.0202 1.32668
\(70\) 0 0
\(71\) −9.60714 9.60714i −1.14016 1.14016i −0.988421 0.151736i \(-0.951514\pi\)
−0.151736 0.988421i \(-0.548486\pi\)
\(72\) 6.13772i 0.723337i
\(73\) −7.01789 + 7.01789i −0.821382 + 0.821382i −0.986306 0.164924i \(-0.947262\pi\)
0.164924 + 0.986306i \(0.447262\pi\)
\(74\) 2.56347 2.56347i 0.297997 0.297997i
\(75\) 0 0
\(76\) 5.22314i 0.599136i
\(77\) −7.08564 −0.807483
\(78\) 7.01965 + 7.01965i 0.794818 + 0.794818i
\(79\) −0.820929 + 0.820929i −0.0923617 + 0.0923617i −0.751778 0.659416i \(-0.770803\pi\)
0.659416 + 0.751778i \(0.270803\pi\)
\(80\) 0 0
\(81\) 10.1303 1.12559
\(82\) 1.04853 1.04853i 0.115790 0.115790i
\(83\) −3.65934 −0.401665 −0.200832 0.979626i \(-0.564365\pi\)
−0.200832 + 0.979626i \(0.564365\pi\)
\(84\) 15.5386 1.69540
\(85\) 0 0
\(86\) 0.676367 0.0729346
\(87\) −8.59945 −0.921958
\(88\) −2.81035 + 2.81035i −0.299585 + 0.299585i
\(89\) −2.69634 −0.285811 −0.142906 0.989736i \(-0.545645\pi\)
−0.142906 + 0.989736i \(0.545645\pi\)
\(90\) 0 0
\(91\) −18.7958 + 18.7958i −1.97034 + 1.97034i
\(92\) 5.09298 + 5.09298i 0.530980 + 0.530980i
\(93\) 7.07184 0.733315
\(94\) 1.35787i 0.140054i
\(95\) 0 0
\(96\) 9.64413 9.64413i 0.984300 0.984300i
\(97\) −7.40348 + 7.40348i −0.751709 + 0.751709i −0.974798 0.223089i \(-0.928386\pi\)
0.223089 + 0.974798i \(0.428386\pi\)
\(98\) 7.65468i 0.773239i
\(99\) 2.99641 + 2.99641i 0.301151 + 0.301151i
\(100\) 0 0
\(101\) 11.5529 1.14956 0.574779 0.818309i \(-0.305088\pi\)
0.574779 + 0.818309i \(0.305088\pi\)
\(102\) −5.91067 + 2.90653i −0.585244 + 0.287789i
\(103\) 11.3302i 1.11640i −0.829708 0.558198i \(-0.811493\pi\)
0.829708 0.558198i \(-0.188507\pi\)
\(104\) 14.9099i 1.46203i
\(105\) 0 0
\(106\) −4.71235 −0.457704
\(107\) 4.29282 4.29282i 0.415003 0.415003i −0.468474 0.883477i \(-0.655196\pi\)
0.883477 + 0.468474i \(0.155196\pi\)
\(108\) 1.13501 + 1.13501i 0.109216 + 0.109216i
\(109\) 2.17036 2.17036i 0.207882 0.207882i −0.595484 0.803367i \(-0.703040\pi\)
0.803367 + 0.595484i \(0.203040\pi\)
\(110\) 0 0
\(111\) 12.6134i 1.19721i
\(112\) 4.40366 + 4.40366i 0.416107 + 0.416107i
\(113\) −5.22143 5.22143i −0.491191 0.491191i 0.417491 0.908681i \(-0.362910\pi\)
−0.908681 + 0.417491i \(0.862910\pi\)
\(114\) −3.82909 3.82909i −0.358627 0.358627i
\(115\) 0 0
\(116\) −3.97422 3.97422i −0.368998 0.368998i
\(117\) 15.8969 1.46967
\(118\) 4.27002i 0.393087i
\(119\) −7.78253 15.8264i −0.713423 1.45081i
\(120\) 0 0
\(121\) 8.25599i 0.750545i
\(122\) −3.13118 + 3.13118i −0.283484 + 0.283484i
\(123\) 5.15921i 0.465191i
\(124\) 3.26824 + 3.26824i 0.293497 + 0.293497i
\(125\) 0 0
\(126\) −5.24289 + 5.24289i −0.467074 + 0.467074i
\(127\) 14.3835 1.27633 0.638164 0.769900i \(-0.279694\pi\)
0.638164 + 0.769900i \(0.279694\pi\)
\(128\) 10.8871 0.962297
\(129\) 1.66401 1.66401i 0.146508 0.146508i
\(130\) 0 0
\(131\) −3.29797 3.29797i −0.288145 0.288145i 0.548202 0.836346i \(-0.315313\pi\)
−0.836346 + 0.548202i \(0.815313\pi\)
\(132\) 6.01753i 0.523759i
\(133\) 10.2528 10.2528i 0.889029 0.889029i
\(134\) 3.93063i 0.339554i
\(135\) 0 0
\(136\) −9.36395 3.19043i −0.802952 0.273577i
\(137\) 14.5618i 1.24410i −0.782978 0.622049i \(-0.786300\pi\)
0.782978 0.622049i \(-0.213700\pi\)
\(138\) −7.46733 −0.635662
\(139\) 3.79682 + 3.79682i 0.322042 + 0.322042i 0.849550 0.527508i \(-0.176873\pi\)
−0.527508 + 0.849550i \(0.676873\pi\)
\(140\) 0 0
\(141\) 3.34066 + 3.34066i 0.281334 + 0.281334i
\(142\) 6.50983 + 6.50983i 0.546293 + 0.546293i
\(143\) −7.27893 7.27893i −0.608695 0.608695i
\(144\) 3.72449i 0.310374i
\(145\) 0 0
\(146\) 4.75535 4.75535i 0.393555 0.393555i
\(147\) −18.8322 18.8322i −1.55325 1.55325i
\(148\) 5.82927 5.82927i 0.479163 0.479163i
\(149\) 12.6885 1.03948 0.519741 0.854324i \(-0.326029\pi\)
0.519741 + 0.854324i \(0.326029\pi\)
\(150\) 0 0
\(151\) 16.2607i 1.32327i 0.749824 + 0.661637i \(0.230138\pi\)
−0.749824 + 0.661637i \(0.769862\pi\)
\(152\) 8.13306i 0.659678i
\(153\) −3.40165 + 9.98388i −0.275007 + 0.807149i
\(154\) 4.80125 0.386896
\(155\) 0 0
\(156\) 15.9625 + 15.9625i 1.27802 + 1.27802i
\(157\) 10.0238i 0.799985i 0.916518 + 0.399993i \(0.130987\pi\)
−0.916518 + 0.399993i \(0.869013\pi\)
\(158\) 0.556264 0.556264i 0.0442540 0.0442540i
\(159\) −11.5934 + 11.5934i −0.919418 + 0.919418i
\(160\) 0 0
\(161\) 19.9946i 1.57579i
\(162\) −6.86436 −0.539315
\(163\) 5.68932 + 5.68932i 0.445622 + 0.445622i 0.893896 0.448274i \(-0.147961\pi\)
−0.448274 + 0.893896i \(0.647961\pi\)
\(164\) 2.38432 2.38432i 0.186184 0.186184i
\(165\) 0 0
\(166\) 2.47958 0.192453
\(167\) −9.12361 + 9.12361i −0.706006 + 0.706006i −0.965693 0.259687i \(-0.916381\pi\)
0.259687 + 0.965693i \(0.416381\pi\)
\(168\) −24.1955 −1.86672
\(169\) −25.6171 −1.97055
\(170\) 0 0
\(171\) −8.67150 −0.663126
\(172\) 1.53804 0.117275
\(173\) −11.6412 + 11.6412i −0.885065 + 0.885065i −0.994044 0.108979i \(-0.965242\pi\)
0.108979 + 0.994044i \(0.465242\pi\)
\(174\) 5.82701 0.441745
\(175\) 0 0
\(176\) −1.70538 + 1.70538i −0.128548 + 0.128548i
\(177\) −10.5052 10.5052i −0.789618 0.789618i
\(178\) 1.82705 0.136943
\(179\) 13.9304i 1.04121i 0.853799 + 0.520603i \(0.174293\pi\)
−0.853799 + 0.520603i \(0.825707\pi\)
\(180\) 0 0
\(181\) −9.22755 + 9.22755i −0.685878 + 0.685878i −0.961318 0.275440i \(-0.911176\pi\)
0.275440 + 0.961318i \(0.411176\pi\)
\(182\) 12.7361 12.7361i 0.944064 0.944064i
\(183\) 15.4068i 1.13890i
\(184\) −7.93038 7.93038i −0.584635 0.584635i
\(185\) 0 0
\(186\) −4.79190 −0.351359
\(187\) 6.12900 3.01389i 0.448197 0.220397i
\(188\) 3.08776i 0.225198i
\(189\) 4.45594i 0.324122i
\(190\) 0 0
\(191\) 4.75563 0.344105 0.172053 0.985088i \(-0.444960\pi\)
0.172053 + 0.985088i \(0.444960\pi\)
\(192\) −1.68064 + 1.68064i −0.121290 + 0.121290i
\(193\) 9.85705 + 9.85705i 0.709526 + 0.709526i 0.966435 0.256910i \(-0.0827042\pi\)
−0.256910 + 0.966435i \(0.582704\pi\)
\(194\) 5.01662 5.01662i 0.360172 0.360172i
\(195\) 0 0
\(196\) 17.4066i 1.24333i
\(197\) 10.6844 + 10.6844i 0.761232 + 0.761232i 0.976545 0.215313i \(-0.0690771\pi\)
−0.215313 + 0.976545i \(0.569077\pi\)
\(198\) −2.03038 2.03038i −0.144293 0.144293i
\(199\) 1.44944 + 1.44944i 0.102748 + 0.102748i 0.756612 0.653864i \(-0.226853\pi\)
−0.653864 + 0.756612i \(0.726853\pi\)
\(200\) 0 0
\(201\) −9.67021 9.67021i −0.682084 0.682084i
\(202\) −7.82829 −0.550797
\(203\) 15.6024i 1.09508i
\(204\) −13.4407 + 6.60937i −0.941039 + 0.462749i
\(205\) 0 0
\(206\) 7.67737i 0.534907i
\(207\) −8.45540 + 8.45540i −0.587691 + 0.587691i
\(208\) 9.04759i 0.627337i
\(209\) 3.97053 + 3.97053i 0.274647 + 0.274647i
\(210\) 0 0
\(211\) −0.309914 + 0.309914i −0.0213353 + 0.0213353i −0.717694 0.696359i \(-0.754802\pi\)
0.696359 + 0.717694i \(0.254802\pi\)
\(212\) −10.7158 −0.735962
\(213\) 32.0312 2.19474
\(214\) −2.90883 + 2.90883i −0.198844 + 0.198844i
\(215\) 0 0
\(216\) −1.76734 1.76734i −0.120253 0.120253i
\(217\) 12.8308i 0.871012i
\(218\) −1.47064 + 1.47064i −0.0996044 + 0.0996044i
\(219\) 23.3984i 1.58112i
\(220\) 0 0
\(221\) 8.26335 24.2530i 0.555853 1.63143i
\(222\) 8.54689i 0.573630i
\(223\) −27.2421 −1.82427 −0.912134 0.409893i \(-0.865566\pi\)
−0.912134 + 0.409893i \(0.865566\pi\)
\(224\) −17.4979 17.4979i −1.16913 1.16913i
\(225\) 0 0
\(226\) 3.53806 + 3.53806i 0.235348 + 0.235348i
\(227\) 6.54878 + 6.54878i 0.434658 + 0.434658i 0.890209 0.455551i \(-0.150558\pi\)
−0.455551 + 0.890209i \(0.650558\pi\)
\(228\) −8.70726 8.70726i −0.576652 0.576652i
\(229\) 11.0731i 0.731728i −0.930668 0.365864i \(-0.880773\pi\)
0.930668 0.365864i \(-0.119227\pi\)
\(230\) 0 0
\(231\) 11.8121 11.8121i 0.777182 0.777182i
\(232\) 6.18835 + 6.18835i 0.406285 + 0.406285i
\(233\) −10.9498 + 10.9498i −0.717344 + 0.717344i −0.968060 0.250717i \(-0.919334\pi\)
0.250717 + 0.968060i \(0.419334\pi\)
\(234\) −10.7718 −0.704176
\(235\) 0 0
\(236\) 9.70992i 0.632062i
\(237\) 2.73706i 0.177791i
\(238\) 5.27347 + 10.7240i 0.341828 + 0.695137i
\(239\) −2.34216 −0.151501 −0.0757507 0.997127i \(-0.524135\pi\)
−0.0757507 + 0.997127i \(0.524135\pi\)
\(240\) 0 0
\(241\) 21.5910 + 21.5910i 1.39080 + 1.39080i 0.823545 + 0.567251i \(0.191993\pi\)
0.567251 + 0.823545i \(0.308007\pi\)
\(242\) 5.59429i 0.359615i
\(243\) −14.6780 + 14.6780i −0.941594 + 0.941594i
\(244\) −7.12022 + 7.12022i −0.455826 + 0.455826i
\(245\) 0 0
\(246\) 3.49590i 0.222890i
\(247\) 21.0650 1.34033
\(248\) −5.08904 5.08904i −0.323154 0.323154i
\(249\) 6.10032 6.10032i 0.386592 0.386592i
\(250\) 0 0
\(251\) −9.23001 −0.582593 −0.291297 0.956633i \(-0.594087\pi\)
−0.291297 + 0.956633i \(0.594087\pi\)
\(252\) −11.9222 + 11.9222i −0.751028 + 0.751028i
\(253\) 7.74315 0.486808
\(254\) −9.74630 −0.611537
\(255\) 0 0
\(256\) −9.39347 −0.587092
\(257\) 3.23036 0.201504 0.100752 0.994912i \(-0.467875\pi\)
0.100752 + 0.994912i \(0.467875\pi\)
\(258\) −1.12754 + 1.12754i −0.0701976 + 0.0701976i
\(259\) −22.8852 −1.42202
\(260\) 0 0
\(261\) 6.59804 6.59804i 0.408408 0.408408i
\(262\) 2.23471 + 2.23471i 0.138061 + 0.138061i
\(263\) 12.4719 0.769051 0.384526 0.923114i \(-0.374365\pi\)
0.384526 + 0.923114i \(0.374365\pi\)
\(264\) 9.37002i 0.576685i
\(265\) 0 0
\(266\) −6.94732 + 6.94732i −0.425968 + 0.425968i
\(267\) 4.49494 4.49494i 0.275086 0.275086i
\(268\) 8.93815i 0.545984i
\(269\) −0.219219 0.219219i −0.0133660 0.0133660i 0.700392 0.713758i \(-0.253008\pi\)
−0.713758 + 0.700392i \(0.753008\pi\)
\(270\) 0 0
\(271\) −18.3441 −1.11433 −0.557164 0.830403i \(-0.688110\pi\)
−0.557164 + 0.830403i \(0.688110\pi\)
\(272\) −5.68222 1.93602i −0.344535 0.117388i
\(273\) 62.6673i 3.79280i
\(274\) 9.86712i 0.596094i
\(275\) 0 0
\(276\) −16.9805 −1.02211
\(277\) −9.01877 + 9.01877i −0.541885 + 0.541885i −0.924081 0.382196i \(-0.875168\pi\)
0.382196 + 0.924081i \(0.375168\pi\)
\(278\) −2.57274 2.57274i −0.154303 0.154303i
\(279\) −5.42596 + 5.42596i −0.324843 + 0.324843i
\(280\) 0 0
\(281\) 31.1275i 1.85691i 0.371441 + 0.928457i \(0.378864\pi\)
−0.371441 + 0.928457i \(0.621136\pi\)
\(282\) −2.26364 2.26364i −0.134798 0.134798i
\(283\) 19.6967 + 19.6967i 1.17084 + 1.17084i 0.982009 + 0.188836i \(0.0604715\pi\)
0.188836 + 0.982009i \(0.439528\pi\)
\(284\) 14.8032 + 14.8032i 0.878408 + 0.878408i
\(285\) 0 0
\(286\) 4.93223 + 4.93223i 0.291649 + 0.291649i
\(287\) −9.36063 −0.552541
\(288\) 14.7992i 0.872049i
\(289\) 13.4636 + 10.3794i 0.791976 + 0.610552i
\(290\) 0 0
\(291\) 24.6840i 1.44700i
\(292\) 10.8135 10.8135i 0.632815 0.632815i
\(293\) 31.4302i 1.83617i −0.396381 0.918086i \(-0.629734\pi\)
0.396381 0.918086i \(-0.370266\pi\)
\(294\) 12.7608 + 12.7608i 0.744223 + 0.744223i
\(295\) 0 0
\(296\) −9.07688 + 9.07688i −0.527583 + 0.527583i
\(297\) 1.72562 0.100131
\(298\) −8.59776 −0.498055
\(299\) 20.5400 20.5400i 1.18786 1.18786i
\(300\) 0 0
\(301\) −3.01911 3.01911i −0.174018 0.174018i
\(302\) 11.0183i 0.634031i
\(303\) −19.2593 + 19.2593i −1.10642 + 1.10642i
\(304\) 4.93530i 0.283059i
\(305\) 0 0
\(306\) 2.30497 6.76511i 0.131766 0.386736i
\(307\) 4.21985i 0.240839i −0.992723 0.120420i \(-0.961576\pi\)
0.992723 0.120420i \(-0.0384240\pi\)
\(308\) 10.9179 0.622107
\(309\) 18.8880 + 18.8880i 1.07450 + 1.07450i
\(310\) 0 0
\(311\) 10.8965 + 10.8965i 0.617882 + 0.617882i 0.944988 0.327105i \(-0.106073\pi\)
−0.327105 + 0.944988i \(0.606073\pi\)
\(312\) −24.8555 24.8555i −1.40717 1.40717i
\(313\) −7.67977 7.67977i −0.434086 0.434086i 0.455930 0.890016i \(-0.349307\pi\)
−0.890016 + 0.455930i \(0.849307\pi\)
\(314\) 6.79215i 0.383303i
\(315\) 0 0
\(316\) 1.26493 1.26493i 0.0711579 0.0711579i
\(317\) 20.4263 + 20.4263i 1.14726 + 1.14726i 0.987090 + 0.160167i \(0.0512032\pi\)
0.160167 + 0.987090i \(0.448797\pi\)
\(318\) 7.85574 7.85574i 0.440528 0.440528i
\(319\) −6.04225 −0.338301
\(320\) 0 0
\(321\) 14.3127i 0.798859i
\(322\) 13.5484i 0.755022i
\(323\) −4.50751 + 13.2296i −0.250804 + 0.736114i
\(324\) −15.6094 −0.867188
\(325\) 0 0
\(326\) −3.85510 3.85510i −0.213514 0.213514i
\(327\) 7.23620i 0.400163i
\(328\) −3.71268 + 3.71268i −0.204998 + 0.204998i
\(329\) 6.06113 6.06113i 0.334161 0.334161i
\(330\) 0 0
\(331\) 7.29249i 0.400832i −0.979711 0.200416i \(-0.935771\pi\)
0.979711 0.200416i \(-0.0642293\pi\)
\(332\) 5.63851 0.309453
\(333\) 9.67780 + 9.67780i 0.530340 + 0.530340i
\(334\) 6.18219 6.18219i 0.338274 0.338274i
\(335\) 0 0
\(336\) −14.6823 −0.800985
\(337\) 9.47979 9.47979i 0.516397 0.516397i −0.400082 0.916479i \(-0.631018\pi\)
0.916479 + 0.400082i \(0.131018\pi\)
\(338\) 17.3583 0.944165
\(339\) 17.4088 0.945516
\(340\) 0 0
\(341\) 4.96890 0.269081
\(342\) 5.87584 0.317729
\(343\) −12.9959 + 12.9959i −0.701712 + 0.701712i
\(344\) −2.39492 −0.129125
\(345\) 0 0
\(346\) 7.88813 7.88813i 0.424068 0.424068i
\(347\) −23.6284 23.6284i −1.26844 1.26844i −0.946895 0.321543i \(-0.895798\pi\)
−0.321543 0.946895i \(-0.604202\pi\)
\(348\) 13.2505 0.710301
\(349\) 22.4213i 1.20019i 0.799930 + 0.600093i \(0.204870\pi\)
−0.799930 + 0.600093i \(0.795130\pi\)
\(350\) 0 0
\(351\) 4.57749 4.57749i 0.244329 0.244329i
\(352\) 6.77628 6.77628i 0.361177 0.361177i
\(353\) 22.2555i 1.18454i −0.805739 0.592270i \(-0.798232\pi\)
0.805739 0.592270i \(-0.201768\pi\)
\(354\) 7.11835 + 7.11835i 0.378336 + 0.378336i
\(355\) 0 0
\(356\) 4.15466 0.220197
\(357\) 39.3574 + 13.4096i 2.08302 + 0.709713i
\(358\) 9.43927i 0.498881i
\(359\) 36.6674i 1.93523i −0.252424 0.967617i \(-0.581228\pi\)
0.252424 0.967617i \(-0.418772\pi\)
\(360\) 0 0
\(361\) 7.50945 0.395234
\(362\) 6.25262 6.25262i 0.328630 0.328630i
\(363\) −13.7632 13.7632i −0.722380 0.722380i
\(364\) 28.9616 28.9616i 1.51800 1.51800i
\(365\) 0 0
\(366\) 10.4397i 0.545691i
\(367\) −0.0960113 0.0960113i −0.00501175 0.00501175i 0.704596 0.709608i \(-0.251128\pi\)
−0.709608 + 0.704596i \(0.751128\pi\)
\(368\) −4.81231 4.81231i −0.250859 0.250859i
\(369\) 3.95847 + 3.95847i 0.206070 + 0.206070i
\(370\) 0 0
\(371\) 21.0346 + 21.0346i 1.09206 + 1.09206i
\(372\) −10.8967 −0.564966
\(373\) 0.927465i 0.0480223i 0.999712 + 0.0240111i \(0.00764372\pi\)
−0.999712 + 0.0240111i \(0.992356\pi\)
\(374\) −4.15303 + 2.04222i −0.214748 + 0.105601i
\(375\) 0 0
\(376\) 4.80802i 0.247955i
\(377\) −16.0281 + 16.0281i −0.825487 + 0.825487i
\(378\) 3.01936i 0.155299i
\(379\) −5.93013 5.93013i −0.304610 0.304610i 0.538204 0.842814i \(-0.319103\pi\)
−0.842814 + 0.538204i \(0.819103\pi\)
\(380\) 0 0
\(381\) −23.9780 + 23.9780i −1.22843 + 1.22843i
\(382\) −3.22243 −0.164874
\(383\) 21.9106 1.11958 0.559789 0.828635i \(-0.310882\pi\)
0.559789 + 0.828635i \(0.310882\pi\)
\(384\) −18.1495 + 18.1495i −0.926186 + 0.926186i
\(385\) 0 0
\(386\) −6.67917 6.67917i −0.339961 0.339961i
\(387\) 2.55347i 0.129800i
\(388\) 11.4077 11.4077i 0.579137 0.579137i
\(389\) 12.7622i 0.647071i 0.946216 + 0.323536i \(0.104872\pi\)
−0.946216 + 0.323536i \(0.895128\pi\)
\(390\) 0 0
\(391\) 8.50471 + 17.2951i 0.430102 + 0.874649i
\(392\) 27.1041i 1.36896i
\(393\) 10.9958 0.554663
\(394\) −7.23979 7.23979i −0.364735 0.364735i
\(395\) 0 0
\(396\) −4.61703 4.61703i −0.232014 0.232014i
\(397\) −17.8029 17.8029i −0.893501 0.893501i 0.101350 0.994851i \(-0.467684\pi\)
−0.994851 + 0.101350i \(0.967684\pi\)
\(398\) −0.982144 0.982144i −0.0492304 0.0492304i
\(399\) 34.1839i 1.71133i
\(400\) 0 0
\(401\) 4.08634 4.08634i 0.204062 0.204062i −0.597676 0.801738i \(-0.703909\pi\)
0.801738 + 0.597676i \(0.203909\pi\)
\(402\) 6.55256 + 6.55256i 0.326812 + 0.326812i
\(403\) 13.1808 13.1808i 0.656584 0.656584i
\(404\) −17.8014 −0.885650
\(405\) 0 0
\(406\) 10.5723i 0.524693i
\(407\) 8.86259i 0.439302i
\(408\) 20.9288 10.2916i 1.03613 0.509509i
\(409\) 15.4742 0.765149 0.382575 0.923925i \(-0.375037\pi\)
0.382575 + 0.923925i \(0.375037\pi\)
\(410\) 0 0
\(411\) 24.2753 + 24.2753i 1.19741 + 1.19741i
\(412\) 17.4581i 0.860101i
\(413\) −19.0601 + 19.0601i −0.937887 + 0.937887i
\(414\) 5.72941 5.72941i 0.281585 0.281585i
\(415\) 0 0
\(416\) 35.9504i 1.76261i
\(417\) −12.6590 −0.619915
\(418\) −2.69044 2.69044i −0.131594 0.131594i
\(419\) −12.8210 + 12.8210i −0.626348 + 0.626348i −0.947147 0.320799i \(-0.896048\pi\)
0.320799 + 0.947147i \(0.396048\pi\)
\(420\) 0 0
\(421\) 9.81137 0.478177 0.239089 0.970998i \(-0.423151\pi\)
0.239089 + 0.970998i \(0.423151\pi\)
\(422\) 0.209998 0.209998i 0.0102226 0.0102226i
\(423\) −5.12633 −0.249250
\(424\) 16.6857 0.810331
\(425\) 0 0
\(426\) −21.7045 −1.05158
\(427\) 27.9533 1.35276
\(428\) −6.61461 + 6.61461i −0.319729 + 0.319729i
\(429\) 24.2687 1.17171
\(430\) 0 0
\(431\) 12.8168 12.8168i 0.617364 0.617364i −0.327490 0.944855i \(-0.606203\pi\)
0.944855 + 0.327490i \(0.106203\pi\)
\(432\) −1.07246 1.07246i −0.0515987 0.0515987i
\(433\) 12.8308 0.616610 0.308305 0.951287i \(-0.400238\pi\)
0.308305 + 0.951287i \(0.400238\pi\)
\(434\) 8.69420i 0.417335i
\(435\) 0 0
\(436\) −3.34420 + 3.34420i −0.160158 + 0.160158i
\(437\) −11.2042 + 11.2042i −0.535970 + 0.535970i
\(438\) 15.8548i 0.757573i
\(439\) 17.1720 + 17.1720i 0.819573 + 0.819573i 0.986046 0.166473i \(-0.0532379\pi\)
−0.166473 + 0.986046i \(0.553238\pi\)
\(440\) 0 0
\(441\) 28.8985 1.37612
\(442\) −5.59927 + 16.4339i −0.266330 + 0.781682i
\(443\) 16.1216i 0.765962i 0.923756 + 0.382981i \(0.125103\pi\)
−0.923756 + 0.382981i \(0.874897\pi\)
\(444\) 19.4354i 0.922364i
\(445\) 0 0
\(446\) 18.4594 0.874076
\(447\) −21.1524 + 21.1524i −1.00047 + 1.00047i
\(448\) 3.04928 + 3.04928i 0.144065 + 0.144065i
\(449\) −13.5245 + 13.5245i −0.638259 + 0.638259i −0.950126 0.311867i \(-0.899046\pi\)
0.311867 + 0.950126i \(0.399046\pi\)
\(450\) 0 0
\(451\) 3.62503i 0.170696i
\(452\) 8.04546 + 8.04546i 0.378426 + 0.378426i
\(453\) −27.1074 27.1074i −1.27362 1.27362i
\(454\) −4.43748 4.43748i −0.208261 0.208261i
\(455\) 0 0
\(456\) 13.5582 + 13.5582i 0.634923 + 0.634923i
\(457\) −3.68314 −0.172290 −0.0861451 0.996283i \(-0.527455\pi\)
−0.0861451 + 0.996283i \(0.527455\pi\)
\(458\) 7.50314i 0.350599i
\(459\) 1.89534 + 3.85434i 0.0884669 + 0.179905i
\(460\) 0 0
\(461\) 19.7569i 0.920172i 0.887874 + 0.460086i \(0.152181\pi\)
−0.887874 + 0.460086i \(0.847819\pi\)
\(462\) −8.00394 + 8.00394i −0.372377 + 0.372377i
\(463\) 23.6496i 1.09909i −0.835464 0.549545i \(-0.814801\pi\)
0.835464 0.549545i \(-0.185199\pi\)
\(464\) 3.75521 + 3.75521i 0.174331 + 0.174331i
\(465\) 0 0
\(466\) 7.41961 7.41961i 0.343707 0.343707i
\(467\) 5.50118 0.254564 0.127282 0.991867i \(-0.459375\pi\)
0.127282 + 0.991867i \(0.459375\pi\)
\(468\) −24.4949 −1.13228
\(469\) −17.5452 + 17.5452i −0.810161 + 0.810161i
\(470\) 0 0
\(471\) −16.7102 16.7102i −0.769965 0.769965i
\(472\) 15.1195i 0.695932i
\(473\) 1.16919 1.16919i 0.0537594 0.0537594i
\(474\) 1.85464i 0.0851866i
\(475\) 0 0
\(476\) 11.9917 + 24.3862i 0.549640 + 1.11774i
\(477\) 17.7904i 0.814567i
\(478\) 1.58705 0.0725901
\(479\) −7.89487 7.89487i −0.360726 0.360726i 0.503354 0.864080i \(-0.332099\pi\)
−0.864080 + 0.503354i \(0.832099\pi\)
\(480\) 0 0
\(481\) −23.5095 23.5095i −1.07194 1.07194i
\(482\) −14.6301 14.6301i −0.666383 0.666383i
\(483\) 33.3320 + 33.3320i 1.51666 + 1.51666i
\(484\) 12.7213i 0.578240i
\(485\) 0 0
\(486\) 9.94586 9.94586i 0.451154 0.451154i
\(487\) −25.0619 25.0619i −1.13566 1.13566i −0.989219 0.146443i \(-0.953218\pi\)
−0.146443 0.989219i \(-0.546782\pi\)
\(488\) 11.0870 11.0870i 0.501887 0.501887i
\(489\) −18.9688 −0.857799
\(490\) 0 0
\(491\) 12.8558i 0.580175i 0.957000 + 0.290087i \(0.0936844\pi\)
−0.957000 + 0.290087i \(0.906316\pi\)
\(492\) 7.94959i 0.358395i
\(493\) −6.63652 13.4959i −0.298894 0.607826i
\(494\) −14.2737 −0.642203
\(495\) 0 0
\(496\) −3.08813 3.08813i −0.138661 0.138661i
\(497\) 58.1159i 2.60686i
\(498\) −4.13360 + 4.13360i −0.185231 + 0.185231i
\(499\) 13.1434 13.1434i 0.588380 0.588380i −0.348813 0.937192i \(-0.613415\pi\)
0.937192 + 0.348813i \(0.113415\pi\)
\(500\) 0 0
\(501\) 30.4191i 1.35903i
\(502\) 6.25429 0.279143
\(503\) 24.0464 + 24.0464i 1.07217 + 1.07217i 0.997184 + 0.0749899i \(0.0238925\pi\)
0.0749899 + 0.997184i \(0.476108\pi\)
\(504\) 18.5643 18.5643i 0.826920 0.826920i
\(505\) 0 0
\(506\) −5.24679 −0.233248
\(507\) 42.7052 42.7052i 1.89660 1.89660i
\(508\) −22.1629 −0.983318
\(509\) 29.8369 1.32250 0.661249 0.750167i \(-0.270027\pi\)
0.661249 + 0.750167i \(0.270027\pi\)
\(510\) 0 0
\(511\) −42.4530 −1.87801
\(512\) −15.4092 −0.680999
\(513\) −2.49694 + 2.49694i −0.110243 + 0.110243i
\(514\) −2.18890 −0.0965483
\(515\) 0 0
\(516\) −2.56400 + 2.56400i −0.112874 + 0.112874i
\(517\) 2.34725 + 2.34725i 0.103232 + 0.103232i
\(518\) 15.5071 0.681342
\(519\) 38.8131i 1.70370i
\(520\) 0 0
\(521\) −27.1655 + 27.1655i −1.19014 + 1.19014i −0.213116 + 0.977027i \(0.568361\pi\)
−0.977027 + 0.213116i \(0.931639\pi\)
\(522\) −4.47085 + 4.47085i −0.195684 + 0.195684i
\(523\) 20.2414i 0.885093i −0.896745 0.442547i \(-0.854075\pi\)
0.896745 0.442547i \(-0.145925\pi\)
\(524\) 5.08168 + 5.08168i 0.221994 + 0.221994i
\(525\) 0 0
\(526\) −8.45101 −0.368482
\(527\) 5.45760 + 11.0985i 0.237737 + 0.483458i
\(528\) 5.68591i 0.247447i
\(529\) 1.15003i 0.0500014i
\(530\) 0 0
\(531\) 16.1205 0.699569
\(532\) −15.7980 + 15.7980i −0.684932 + 0.684932i
\(533\) −9.61599 9.61599i −0.416515 0.416515i
\(534\) −3.04579 + 3.04579i −0.131804 + 0.131804i
\(535\) 0 0
\(536\) 13.9178i 0.601156i
\(537\) −23.2227 23.2227i −1.00213 1.00213i
\(538\) 0.148544 + 0.148544i 0.00640417 + 0.00640417i
\(539\) −13.2321 13.2321i −0.569947 0.569947i
\(540\) 0 0
\(541\) 5.16605 + 5.16605i 0.222106 + 0.222106i 0.809385 0.587279i \(-0.199801\pi\)
−0.587279 + 0.809385i \(0.699801\pi\)
\(542\) 12.4301 0.533916
\(543\) 30.7656i 1.32028i
\(544\) 22.5782 + 7.69271i 0.968032 + 0.329822i
\(545\) 0 0
\(546\) 42.4636i 1.81727i
\(547\) 30.9108 30.9108i 1.32165 1.32165i 0.409207 0.912442i \(-0.365806\pi\)
0.912442 0.409207i \(-0.134194\pi\)
\(548\) 22.4376i 0.958486i
\(549\) −11.8210 11.8210i −0.504510 0.504510i
\(550\) 0 0
\(551\) 8.74302 8.74302i 0.372465 0.372465i
\(552\) 26.4407 1.12539
\(553\) −4.96600 −0.211176
\(554\) 6.11115 6.11115i 0.259638 0.259638i
\(555\) 0 0
\(556\) −5.85035 5.85035i −0.248110 0.248110i
\(557\) 29.0497i 1.23088i 0.788185 + 0.615438i \(0.211021\pi\)
−0.788185 + 0.615438i \(0.788979\pi\)
\(558\) 3.67665 3.67665i 0.155645 0.155645i
\(559\) 6.20293i 0.262356i
\(560\) 0 0
\(561\) −5.19306 + 15.2417i −0.219251 + 0.643504i
\(562\) 21.0921i 0.889718i
\(563\) −39.3006 −1.65632 −0.828162 0.560489i \(-0.810613\pi\)
−0.828162 + 0.560489i \(0.810613\pi\)
\(564\) −5.14747 5.14747i −0.216747 0.216747i
\(565\) 0 0
\(566\) −13.3465 13.3465i −0.560996 0.560996i
\(567\) 30.6405 + 30.6405i 1.28678 + 1.28678i
\(568\) −23.0503 23.0503i −0.967171 0.967171i
\(569\) 14.3009i 0.599525i 0.954014 + 0.299763i \(0.0969075\pi\)
−0.954014 + 0.299763i \(0.903093\pi\)
\(570\) 0 0
\(571\) 16.9121 16.9121i 0.707750 0.707750i −0.258311 0.966062i \(-0.583166\pi\)
0.966062 + 0.258311i \(0.0831660\pi\)
\(572\) 11.2158 + 11.2158i 0.468955 + 0.468955i
\(573\) −7.92789 + 7.92789i −0.331192 + 0.331192i
\(574\) 6.34280 0.264743
\(575\) 0 0
\(576\) 2.57899i 0.107458i
\(577\) 5.85190i 0.243618i −0.992554 0.121809i \(-0.961131\pi\)
0.992554 0.121809i \(-0.0388695\pi\)
\(578\) −9.12298 7.03310i −0.379466 0.292539i
\(579\) −32.8645 −1.36580
\(580\) 0 0
\(581\) −11.0681 11.0681i −0.459183 0.459183i
\(582\) 16.7259i 0.693313i
\(583\) −8.14591 + 8.14591i −0.337369 + 0.337369i
\(584\) −16.8380 + 16.8380i −0.696761 + 0.696761i
\(585\) 0 0
\(586\) 21.2972i 0.879779i
\(587\) 2.30210 0.0950176 0.0475088 0.998871i \(-0.484872\pi\)
0.0475088 + 0.998871i \(0.484872\pi\)
\(588\) 29.0177 + 29.0177i 1.19667 + 1.19667i
\(589\) −7.18990 + 7.18990i −0.296255 + 0.296255i
\(590\) 0 0
\(591\) −35.6230 −1.46533
\(592\) −5.50802 + 5.50802i −0.226378 + 0.226378i
\(593\) 4.89325 0.200942 0.100471 0.994940i \(-0.467965\pi\)
0.100471 + 0.994940i \(0.467965\pi\)
\(594\) −1.16929 −0.0479764
\(595\) 0 0
\(596\) −19.5511 −0.800844
\(597\) −4.83258 −0.197784
\(598\) −13.9180 + 13.9180i −0.569148 + 0.569148i
\(599\) 6.54372 0.267369 0.133685 0.991024i \(-0.457319\pi\)
0.133685 + 0.991024i \(0.457319\pi\)
\(600\) 0 0
\(601\) 11.3611 11.3611i 0.463431 0.463431i −0.436347 0.899778i \(-0.643728\pi\)
0.899778 + 0.436347i \(0.143728\pi\)
\(602\) 2.04576 + 2.04576i 0.0833788 + 0.0833788i
\(603\) 14.8392 0.604298
\(604\) 25.0553i 1.01949i
\(605\) 0 0
\(606\) 13.0502 13.0502i 0.530128 0.530128i
\(607\) −30.8472 + 30.8472i −1.25205 + 1.25205i −0.297247 + 0.954801i \(0.596068\pi\)
−0.954801 + 0.297247i \(0.903932\pi\)
\(608\) 19.6103i 0.795302i
\(609\) −26.0101 26.0101i −1.05398 1.05398i
\(610\) 0 0
\(611\) 12.4530 0.503793
\(612\) 5.24145 15.3837i 0.211873 0.621849i
\(613\) 24.9253i 1.00672i 0.864076 + 0.503362i \(0.167904\pi\)
−0.864076 + 0.503362i \(0.832096\pi\)
\(614\) 2.85938i 0.115395i
\(615\) 0 0
\(616\) −17.0005 −0.684971
\(617\) 12.6091 12.6091i 0.507625 0.507625i −0.406172 0.913797i \(-0.633137\pi\)
0.913797 + 0.406172i \(0.133137\pi\)
\(618\) −12.7986 12.7986i −0.514834 0.514834i
\(619\) −19.5300 + 19.5300i −0.784977 + 0.784977i −0.980666 0.195689i \(-0.937306\pi\)
0.195689 + 0.980666i \(0.437306\pi\)
\(620\) 0 0
\(621\) 4.86943i 0.195404i
\(622\) −7.38349 7.38349i −0.296051 0.296051i
\(623\) −8.15541 8.15541i −0.326740 0.326740i
\(624\) −15.0828 15.0828i −0.603796 0.603796i
\(625\) 0 0
\(626\) 5.20384 + 5.20384i 0.207987 + 0.207987i
\(627\) −13.2382 −0.528681
\(628\) 15.4452i 0.616330i
\(629\) 19.7954 9.73424i 0.789295 0.388130i
\(630\) 0 0
\(631\) 38.2023i 1.52081i −0.649448 0.760406i \(-0.725000\pi\)
0.649448 0.760406i \(-0.275000\pi\)
\(632\) −1.96965 + 1.96965i −0.0783484 + 0.0783484i
\(633\) 1.03329i 0.0410694i
\(634\) −13.8409 13.8409i −0.549694 0.549694i
\(635\) 0 0
\(636\) 17.8638 17.8638i 0.708345 0.708345i
\(637\) −70.2007 −2.78145
\(638\) 4.09425 0.162093
\(639\) −24.5764 + 24.5764i −0.972226 + 0.972226i
\(640\) 0 0
\(641\) −16.4472 16.4472i −0.649623 0.649623i 0.303279 0.952902i \(-0.401919\pi\)
−0.952902 + 0.303279i \(0.901919\pi\)
\(642\) 9.69836i 0.382764i
\(643\) −4.84007 + 4.84007i −0.190874 + 0.190874i −0.796074 0.605200i \(-0.793093\pi\)
0.605200 + 0.796074i \(0.293093\pi\)
\(644\) 30.8087i 1.21403i
\(645\) 0 0
\(646\) 3.05430 8.96441i 0.120170 0.352700i
\(647\) 39.1427i 1.53886i 0.638732 + 0.769429i \(0.279459\pi\)
−0.638732 + 0.769429i \(0.720541\pi\)
\(648\) 24.3057 0.954817
\(649\) −7.38128 7.38128i −0.289741 0.289741i
\(650\) 0 0
\(651\) 21.3896 + 21.3896i 0.838326 + 0.838326i
\(652\) −8.76641 8.76641i −0.343319 0.343319i
\(653\) −9.72867 9.72867i −0.380712 0.380712i 0.490646 0.871359i \(-0.336761\pi\)
−0.871359 + 0.490646i \(0.836761\pi\)
\(654\) 4.90327i 0.191733i
\(655\) 0 0
\(656\) −2.25292 + 2.25292i −0.0879619 + 0.0879619i
\(657\) 17.9527 + 17.9527i 0.700402 + 0.700402i
\(658\) −4.10704 + 4.10704i −0.160109 + 0.160109i
\(659\) 19.0767 0.743124 0.371562 0.928408i \(-0.378822\pi\)
0.371562 + 0.928408i \(0.378822\pi\)
\(660\) 0 0
\(661\) 3.89804i 0.151616i 0.997122 + 0.0758082i \(0.0241537\pi\)
−0.997122 + 0.0758082i \(0.975846\pi\)
\(662\) 4.94142i 0.192054i
\(663\) 26.6556 + 54.2065i 1.03522 + 2.10521i
\(664\) −8.77984 −0.340724
\(665\) 0 0
\(666\) −6.55771 6.55771i −0.254106 0.254106i
\(667\) 17.0503i 0.660189i
\(668\) 14.0582 14.0582i 0.543926 0.543926i
\(669\) 45.4141 45.4141i 1.75581 1.75581i
\(670\) 0 0
\(671\) 10.8253i 0.417906i
\(672\) 58.3398 2.25050
\(673\) 6.34918 + 6.34918i 0.244743 + 0.244743i 0.818809 0.574066i \(-0.194635\pi\)
−0.574066 + 0.818809i \(0.694635\pi\)
\(674\) −6.42353 + 6.42353i −0.247425 + 0.247425i
\(675\) 0 0
\(676\) 39.4723 1.51816
\(677\) −21.8144 + 21.8144i −0.838397 + 0.838397i −0.988648 0.150251i \(-0.951992\pi\)
0.150251 + 0.988648i \(0.451992\pi\)
\(678\) −11.7963 −0.453033
\(679\) −44.7855 −1.71871
\(680\) 0 0
\(681\) −21.8343 −0.836694
\(682\) −3.36694 −0.128927
\(683\) 3.16023 3.16023i 0.120923 0.120923i −0.644056 0.764979i \(-0.722749\pi\)
0.764979 + 0.644056i \(0.222749\pi\)
\(684\) 13.3615 0.510890
\(685\) 0 0
\(686\) 8.80606 8.80606i 0.336217 0.336217i
\(687\) 18.4594 + 18.4594i 0.704270 + 0.704270i
\(688\) −1.45328 −0.0554059
\(689\) 43.2168i 1.64643i
\(690\) 0 0
\(691\) 8.55423 8.55423i 0.325418 0.325418i −0.525423 0.850841i \(-0.676093\pi\)
0.850841 + 0.525423i \(0.176093\pi\)
\(692\) 17.9374 17.9374i 0.681878 0.681878i
\(693\) 18.1260i 0.688551i
\(694\) 16.0107 + 16.0107i 0.607757 + 0.607757i
\(695\) 0 0
\(696\) −20.6326 −0.782077
\(697\) 8.09684 3.98156i 0.306690 0.150812i
\(698\) 15.1928i 0.575054i
\(699\) 36.5077i 1.38085i
\(700\) 0 0
\(701\) −8.83630 −0.333742 −0.166871 0.985979i \(-0.553366\pi\)
−0.166871 + 0.985979i \(0.553366\pi\)
\(702\) −3.10173 + 3.10173i −0.117067 + 0.117067i
\(703\) 12.8240 + 12.8240i 0.483666 + 0.483666i
\(704\) −1.18087 + 1.18087i −0.0445059 + 0.0445059i
\(705\) 0 0
\(706\) 15.0804i 0.567558i
\(707\) 34.9432 + 34.9432i 1.31418 + 1.31418i
\(708\) 16.1870 + 16.1870i 0.608343 + 0.608343i
\(709\) −18.9439 18.9439i −0.711452 0.711452i 0.255387 0.966839i \(-0.417797\pi\)
−0.966839 + 0.255387i \(0.917797\pi\)
\(710\) 0 0
\(711\) 2.10005 + 2.10005i 0.0787579 + 0.0787579i
\(712\) −6.46931 −0.242448
\(713\) 14.0214i 0.525107i
\(714\) −26.6687 9.08641i −0.998052 0.340050i
\(715\) 0 0
\(716\) 21.4647i 0.802172i
\(717\) 3.90450 3.90450i 0.145816 0.145816i
\(718\) 24.8460i 0.927244i
\(719\) −31.0488 31.0488i −1.15792 1.15792i −0.984922 0.173001i \(-0.944653\pi\)
−0.173001 0.984922i \(-0.555347\pi\)
\(720\) 0 0
\(721\) 34.2695 34.2695i 1.27626 1.27626i
\(722\) −5.08842 −0.189372
\(723\) −71.9866 −2.67721
\(724\) 14.2183 14.2183i 0.528419 0.528419i
\(725\) 0 0
\(726\) 9.32598 + 9.32598i 0.346120 + 0.346120i
\(727\) 2.37306i 0.0880118i −0.999031 0.0440059i \(-0.985988\pi\)
0.999031 0.0440059i \(-0.0140120\pi\)
\(728\) −45.0967 + 45.0967i −1.67140 + 1.67140i
\(729\) 18.5470i 0.686926i
\(730\) 0 0
\(731\) 3.89567 + 1.32731i 0.144087 + 0.0490924i
\(732\) 23.7396i 0.877440i
\(733\) 27.2035 1.00478 0.502391 0.864640i \(-0.332454\pi\)
0.502391 + 0.864640i \(0.332454\pi\)
\(734\) 0.0650576 + 0.0650576i 0.00240132 + 0.00240132i
\(735\) 0 0
\(736\) 19.1216 + 19.1216i 0.704831 + 0.704831i
\(737\) −6.79460 6.79460i −0.250282 0.250282i
\(738\) −2.68227 2.68227i −0.0987359 0.0987359i
\(739\) 10.3375i 0.380270i 0.981758 + 0.190135i \(0.0608926\pi\)
−0.981758 + 0.190135i \(0.939107\pi\)
\(740\) 0 0
\(741\) −35.1164 + 35.1164i −1.29003 + 1.29003i
\(742\) −14.2531 14.2531i −0.523247 0.523247i
\(743\) −8.35033 + 8.35033i −0.306344 + 0.306344i −0.843490 0.537146i \(-0.819503\pi\)
0.537146 + 0.843490i \(0.319503\pi\)
\(744\) 16.9674 0.622056
\(745\) 0 0
\(746\) 0.628453i 0.0230093i
\(747\) 9.36110i 0.342505i
\(748\) −9.44389 + 4.64396i −0.345303 + 0.169800i
\(749\) 25.9684 0.948863
\(750\) 0 0
\(751\) 14.1573 + 14.1573i 0.516607 + 0.516607i 0.916543 0.399936i \(-0.130968\pi\)
−0.399936 + 0.916543i \(0.630968\pi\)
\(752\) 2.91760i 0.106394i
\(753\) 15.3869 15.3869i 0.560731 0.560731i
\(754\) 10.8607 10.8607i 0.395522 0.395522i
\(755\) 0 0
\(756\) 6.86595i 0.249712i
\(757\) 4.41769 0.160564 0.0802818 0.996772i \(-0.474418\pi\)
0.0802818 + 0.996772i \(0.474418\pi\)
\(758\) 4.01827 + 4.01827i 0.145950 + 0.145950i
\(759\) −12.9083 + 12.9083i −0.468540 + 0.468540i
\(760\) 0 0
\(761\) −41.6749 −1.51071 −0.755357 0.655314i \(-0.772537\pi\)
−0.755357 + 0.655314i \(0.772537\pi\)
\(762\) 16.2476 16.2476i 0.588589 0.588589i
\(763\) 13.1290 0.475303
\(764\) −7.32773 −0.265108
\(765\) 0 0
\(766\) −14.8467 −0.536432
\(767\) −39.1601 −1.41399
\(768\) 15.6594 15.6594i 0.565061 0.565061i
\(769\) 30.7653 1.10942 0.554712 0.832043i \(-0.312829\pi\)
0.554712 + 0.832043i \(0.312829\pi\)
\(770\) 0 0
\(771\) −5.38518 + 5.38518i −0.193942 + 0.193942i
\(772\) −15.1883 15.1883i −0.546638 0.546638i
\(773\) −25.2932 −0.909735 −0.454867 0.890559i \(-0.650313\pi\)
−0.454867 + 0.890559i \(0.650313\pi\)
\(774\) 1.73024i 0.0621922i
\(775\) 0 0
\(776\) −17.7631 + 17.7631i −0.637659 + 0.637659i
\(777\) 38.1508 38.1508i 1.36865 1.36865i
\(778\) 8.64773i 0.310036i
\(779\) 5.24535 + 5.24535i 0.187934 + 0.187934i
\(780\) 0 0
\(781\) 22.5062 0.805334
\(782\) −5.76282 11.7192i −0.206078 0.419078i
\(783\) 3.79978i 0.135793i
\(784\) 16.4473i 0.587403i
\(785\) 0 0
\(786\) −7.45077 −0.265760
\(787\) −13.9008 + 13.9008i −0.495509 + 0.495509i −0.910037 0.414528i \(-0.863947\pi\)
0.414528 + 0.910037i \(0.363947\pi\)
\(788\) −16.4631 16.4631i −0.586474 0.586474i
\(789\) −20.7913 + 20.7913i −0.740192 + 0.740192i
\(790\) 0 0
\(791\) 31.5857i 1.12306i
\(792\) 7.18927 + 7.18927i 0.255460 + 0.255460i
\(793\) 28.7159 + 28.7159i 1.01973 + 1.01973i
\(794\) 12.0633 + 12.0633i 0.428110 + 0.428110i
\(795\) 0 0
\(796\) −2.23337 2.23337i −0.0791598 0.0791598i
\(797\) 27.3888 0.970159 0.485080 0.874470i \(-0.338791\pi\)
0.485080 + 0.874470i \(0.338791\pi\)
\(798\) 23.1631i 0.819965i
\(799\) −2.66470 + 7.82092i −0.0942703 + 0.276684i
\(800\) 0 0
\(801\) 6.89760i 0.243715i
\(802\) −2.76892 + 2.76892i −0.0977739 + 0.0977739i
\(803\) 16.4405i 0.580171i
\(804\) 14.9004 + 14.9004i 0.525496 + 0.525496i
\(805\) 0 0
\(806\) −8.93137 + 8.93137i −0.314594 + 0.314594i
\(807\) 0.730900 0.0257289
\(808\) 27.7188 0.975145
\(809\) 2.66487 2.66487i 0.0936919 0.0936919i −0.658707 0.752399i \(-0.728896\pi\)
0.752399 + 0.658707i \(0.228896\pi\)
\(810\) 0 0
\(811\) 24.0130 + 24.0130i 0.843209 + 0.843209i 0.989275 0.146066i \(-0.0466612\pi\)
−0.146066 + 0.989275i \(0.546661\pi\)
\(812\) 24.0411i 0.843676i
\(813\) 30.5807 30.5807i 1.07251 1.07251i
\(814\) 6.00532i 0.210486i
\(815\) 0 0
\(816\) 12.7000 6.24513i 0.444589 0.218623i
\(817\) 3.38359i 0.118377i
\(818\) −10.4854 −0.366612
\(819\) 48.0823 + 48.0823i 1.68013 + 1.68013i
\(820\) 0 0
\(821\) 19.1918 + 19.1918i 0.669797 + 0.669797i 0.957669 0.287872i \(-0.0929477\pi\)
−0.287872 + 0.957669i \(0.592948\pi\)
\(822\) −16.4490 16.4490i −0.573725 0.573725i
\(823\) 1.36590 + 1.36590i 0.0476123 + 0.0476123i 0.730512 0.682900i \(-0.239281\pi\)
−0.682900 + 0.730512i \(0.739281\pi\)
\(824\) 27.1844i 0.947015i
\(825\) 0 0
\(826\) 12.9152 12.9152i 0.449377 0.449377i
\(827\) −13.9206 13.9206i −0.484067 0.484067i 0.422361 0.906428i \(-0.361201\pi\)
−0.906428 + 0.422361i \(0.861201\pi\)
\(828\) 13.0285 13.0285i 0.452773 0.452773i
\(829\) 21.3907 0.742930 0.371465 0.928447i \(-0.378855\pi\)
0.371465 + 0.928447i \(0.378855\pi\)
\(830\) 0 0
\(831\) 30.0696i 1.04310i
\(832\) 6.26493i 0.217197i
\(833\) 15.0216 44.0887i 0.520469 1.52758i
\(834\) 8.57779 0.297025
\(835\) 0 0
\(836\) −6.11800 6.11800i −0.211595 0.211595i
\(837\) 3.12479i 0.108008i
\(838\) 8.68757 8.68757i 0.300107 0.300107i
\(839\) −20.3873 + 20.3873i −0.703846 + 0.703846i −0.965234 0.261387i \(-0.915820\pi\)
0.261387 + 0.965234i \(0.415820\pi\)
\(840\) 0 0
\(841\) 15.6951i 0.541210i
\(842\) −6.64822 −0.229113
\(843\) −51.8913 51.8913i −1.78723 1.78723i
\(844\) 0.477531 0.477531i 0.0164373 0.0164373i
\(845\) 0 0
\(846\) 3.47362 0.119425
\(847\) −24.9713 + 24.9713i −0.858023 + 0.858023i
\(848\) 10.1252 0.347702
\(849\) −65.6708 −2.25382
\(850\) 0 0
\(851\) 25.0088 0.857292
\(852\) −49.3554 −1.69089
\(853\) −8.13732 + 8.13732i −0.278617 + 0.278617i −0.832557 0.553940i \(-0.813124\pi\)
0.553940 + 0.832557i \(0.313124\pi\)
\(854\) −18.9413 −0.648157
\(855\) 0 0
\(856\) 10.2997 10.2997i 0.352038 0.352038i
\(857\) 15.3959 + 15.3959i 0.525913 + 0.525913i 0.919351 0.393438i \(-0.128714\pi\)
−0.393438 + 0.919351i \(0.628714\pi\)
\(858\) −16.4446 −0.561409
\(859\) 0.00614837i 0.000209780i 1.00000 0.000104890i \(3.33875e-5\pi\)
−1.00000 0.000104890i \(0.999967\pi\)
\(860\) 0 0
\(861\) 15.6047 15.6047i 0.531806 0.531806i
\(862\) −8.68472 + 8.68472i −0.295803 + 0.295803i
\(863\) 21.5322i 0.732964i −0.930425 0.366482i \(-0.880562\pi\)
0.930425 0.366482i \(-0.119438\pi\)
\(864\) 4.26139 + 4.26139i 0.144975 + 0.144975i
\(865\) 0 0
\(866\) −8.69421 −0.295441
\(867\) −39.7475 + 5.14155i −1.34990 + 0.174616i
\(868\) 19.7704i 0.671051i
\(869\) 1.92315i 0.0652384i
\(870\) 0 0
\(871\) −36.0476 −1.22143
\(872\) 5.20732 5.20732i 0.176342 0.176342i
\(873\) 18.9391 + 18.9391i 0.640991 + 0.640991i
\(874\) 7.59200 7.59200i 0.256803 0.256803i
\(875\) 0 0
\(876\) 36.0535i 1.21814i
\(877\) −0.789882 0.789882i −0.0266724 0.0266724i 0.693645 0.720317i \(-0.256004\pi\)
−0.720317 + 0.693645i \(0.756004\pi\)
\(878\) −11.6358 11.6358i −0.392688 0.392688i
\(879\) 52.3958 + 52.3958i 1.76727 + 1.76727i
\(880\) 0 0
\(881\) −33.6544 33.6544i −1.13385 1.13385i −0.989532 0.144313i \(-0.953903\pi\)
−0.144313 0.989532i \(-0.546097\pi\)
\(882\) −19.5817 −0.659351
\(883\) 20.9432i 0.704796i 0.935850 + 0.352398i \(0.114634\pi\)
−0.935850 + 0.352398i \(0.885366\pi\)
\(884\) −12.7326 + 37.3703i −0.428244 + 1.25690i
\(885\) 0 0
\(886\) 10.9241i 0.367001i
\(887\) 13.4400 13.4400i 0.451271 0.451271i −0.444506 0.895776i \(-0.646621\pi\)
0.895776 + 0.444506i \(0.146621\pi\)
\(888\) 30.2633i 1.01557i
\(889\) 43.5046 + 43.5046i 1.45910 + 1.45910i
\(890\) 0 0
\(891\) −11.8659 + 11.8659i −0.397524 + 0.397524i
\(892\) 41.9761 1.40546
\(893\) −6.79286 −0.227315
\(894\) 14.3329 14.3329i 0.479365 0.479365i
\(895\) 0 0
\(896\) 32.9295 + 32.9295i 1.10010 + 1.10010i
\(897\) 68.4826i 2.28657i
\(898\) 9.16422 9.16422i 0.305814 0.305814i
\(899\) 10.9414i 0.364917i
\(900\) 0 0
\(901\) −27.1417 9.24758i −0.904222 0.308082i
\(902\) 2.45633i 0.0817869i
\(903\) 10.0660 0.334976
\(904\) −12.5277 12.5277i −0.416667 0.416667i
\(905\) 0 0
\(906\) 18.3681 + 18.3681i 0.610238 + 0.610238i
\(907\) 9.63742 + 9.63742i 0.320005 + 0.320005i 0.848769 0.528764i \(-0.177344\pi\)
−0.528764 + 0.848769i \(0.677344\pi\)
\(908\) −10.0907 10.0907i −0.334872 0.334872i
\(909\) 29.5539i 0.980242i
\(910\) 0 0
\(911\) −23.8810 + 23.8810i −0.791214 + 0.791214i −0.981692 0.190477i \(-0.938996\pi\)
0.190477 + 0.981692i \(0.438996\pi\)
\(912\) 8.22741 + 8.22741i 0.272437 + 0.272437i
\(913\) 4.28628 4.28628i 0.141855 0.141855i
\(914\) 2.49571 0.0825507
\(915\) 0 0
\(916\) 17.0620i 0.563743i
\(917\) 19.9502i 0.658814i
\(918\) −1.28429 2.61171i −0.0423878 0.0861993i
\(919\) 31.7339 1.04681 0.523403 0.852085i \(-0.324662\pi\)
0.523403 + 0.852085i \(0.324662\pi\)
\(920\) 0 0
\(921\) 7.03471 + 7.03471i 0.231802 + 0.231802i
\(922\) 13.3874i 0.440889i
\(923\) 59.7013 59.7013i 1.96509 1.96509i
\(924\) −18.2008 + 18.2008i −0.598762 + 0.598762i
\(925\) 0 0
\(926\) 16.0251i 0.526616i
\(927\) −28.9841 −0.951964
\(928\) −14.9212 14.9212i −0.489813 0.489813i
\(929\) −5.97435 + 5.97435i −0.196012 + 0.196012i −0.798288 0.602276i \(-0.794261\pi\)
0.602276 + 0.798288i \(0.294261\pi\)
\(930\) 0 0
\(931\) 38.2932 1.25501
\(932\) 16.8720 16.8720i 0.552661 0.552661i
\(933\) −36.3300 −1.18939
\(934\) −3.72762 −0.121971
\(935\) 0 0
\(936\) 38.1415 1.24669
\(937\) 18.0115 0.588409 0.294205 0.955742i \(-0.404945\pi\)
0.294205 + 0.955742i \(0.404945\pi\)
\(938\) 11.8887 11.8887i 0.388179 0.388179i
\(939\) 25.6052 0.835593
\(940\) 0 0
\(941\) −15.1411 + 15.1411i −0.493586 + 0.493586i −0.909434 0.415848i \(-0.863485\pi\)
0.415848 + 0.909434i \(0.363485\pi\)
\(942\) 11.3229 + 11.3229i 0.368919 + 0.368919i
\(943\) 10.2293 0.333111
\(944\) 9.17481i 0.298615i
\(945\) 0 0
\(946\) −0.792246 + 0.792246i −0.0257581 + 0.0257581i
\(947\) −33.0770 + 33.0770i −1.07486 + 1.07486i −0.0778975 + 0.996961i \(0.524821\pi\)
−0.996961 + 0.0778975i \(0.975179\pi\)
\(948\) 4.21742i 0.136975i
\(949\) −43.6111 43.6111i −1.41568 1.41568i
\(950\) 0 0
\(951\) −68.1036 −2.20841
\(952\) −18.6726 37.9723i −0.605181 1.23069i
\(953\) 8.60527i 0.278752i −0.990240 0.139376i \(-0.955490\pi\)
0.990240 0.139376i \(-0.0445097\pi\)
\(954\) 12.0548i 0.390290i
\(955\) 0 0
\(956\) 3.60892 0.116721
\(957\) 10.0728 10.0728i 0.325606 0.325606i
\(958\) 5.34959 + 5.34959i 0.172837 + 0.172837i
\(959\) 44.0439 44.0439i 1.42225 1.42225i
\(960\) 0 0
\(961\) 22.0022i 0.709749i
\(962\) 15.9301 + 15.9301i 0.513607 + 0.513607i
\(963\) −10.9816 10.9816i −0.353878 0.353878i
\(964\) −33.2685 33.2685i −1.07151 1.07151i
\(965\) 0 0
\(966\) −22.5859 22.5859i −0.726689 0.726689i
\(967\) 29.7257 0.955913 0.477957 0.878383i \(-0.341378\pi\)
0.477957 + 0.878383i \(0.341378\pi\)
\(968\) 19.8086i 0.636671i
\(969\) −14.5402 29.5687i −0.467097 0.949883i
\(970\) 0 0
\(971\) 5.92180i 0.190040i 0.995475 + 0.0950198i \(0.0302915\pi\)
−0.995475 + 0.0950198i \(0.969709\pi\)
\(972\) 22.6167 22.6167i 0.725430 0.725430i
\(973\) 22.9679i 0.736318i
\(974\) 16.9820 + 16.9820i 0.544139 + 0.544139i
\(975\) 0 0
\(976\) 6.72783 6.72783i 0.215353 0.215353i
\(977\) 51.4273 1.64530 0.822652 0.568545i \(-0.192493\pi\)
0.822652 + 0.568545i \(0.192493\pi\)
\(978\) 12.8533 0.411004
\(979\) 3.15829 3.15829i 0.100939 0.100939i
\(980\) 0 0
\(981\) −5.55207 5.55207i −0.177264 0.177264i
\(982\) 8.71114i 0.277984i
\(983\) 9.68389 9.68389i 0.308868 0.308868i −0.535602 0.844470i \(-0.679915\pi\)
0.844470 + 0.535602i \(0.179915\pi\)
\(984\) 12.3785i 0.394611i
\(985\) 0 0
\(986\) 4.49693 + 9.14489i 0.143211 + 0.291233i
\(987\) 20.2085i 0.643243i
\(988\) −32.4580 −1.03263
\(989\) 3.29927 + 3.29927i 0.104911 + 0.104911i
\(990\) 0 0
\(991\) −37.8301 37.8301i −1.20171 1.20171i −0.973645 0.228067i \(-0.926759\pi\)
−0.228067 0.973645i \(-0.573241\pi\)
\(992\) 12.2706 + 12.2706i 0.389592 + 0.389592i
\(993\) 12.1570 + 12.1570i 0.385790 + 0.385790i
\(994\) 39.3796i 1.24904i
\(995\) 0 0
\(996\) −9.39970 + 9.39970i −0.297841 + 0.297841i
\(997\) −16.3707 16.3707i −0.518465 0.518465i 0.398642 0.917107i \(-0.369482\pi\)
−0.917107 + 0.398642i \(0.869482\pi\)
\(998\) −8.90601 + 8.90601i −0.281915 + 0.281915i
\(999\) 5.57341 0.176335
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 425.2.j.c.149.3 12
5.2 odd 4 425.2.e.f.251.3 12
5.3 odd 4 85.2.e.a.81.4 yes 12
5.4 even 2 425.2.j.b.149.4 12
15.8 even 4 765.2.k.b.676.3 12
17.4 even 4 425.2.j.b.174.4 12
20.3 even 4 1360.2.bt.d.81.5 12
85.2 odd 8 7225.2.a.bb.1.4 6
85.4 even 4 inner 425.2.j.c.174.3 12
85.8 odd 8 1445.2.d.g.866.8 12
85.32 odd 8 7225.2.a.z.1.4 6
85.38 odd 4 85.2.e.a.21.3 12
85.43 odd 8 1445.2.d.g.866.7 12
85.53 odd 8 1445.2.a.n.1.3 6
85.72 odd 4 425.2.e.f.276.4 12
85.83 odd 8 1445.2.a.o.1.3 6
255.38 even 4 765.2.k.b.361.4 12
340.123 even 4 1360.2.bt.d.1041.5 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.2.e.a.21.3 12 85.38 odd 4
85.2.e.a.81.4 yes 12 5.3 odd 4
425.2.e.f.251.3 12 5.2 odd 4
425.2.e.f.276.4 12 85.72 odd 4
425.2.j.b.149.4 12 5.4 even 2
425.2.j.b.174.4 12 17.4 even 4
425.2.j.c.149.3 12 1.1 even 1 trivial
425.2.j.c.174.3 12 85.4 even 4 inner
765.2.k.b.361.4 12 255.38 even 4
765.2.k.b.676.3 12 15.8 even 4
1360.2.bt.d.81.5 12 20.3 even 4
1360.2.bt.d.1041.5 12 340.123 even 4
1445.2.a.n.1.3 6 85.53 odd 8
1445.2.a.o.1.3 6 85.83 odd 8
1445.2.d.g.866.7 12 85.43 odd 8
1445.2.d.g.866.8 12 85.8 odd 8
7225.2.a.z.1.4 6 85.32 odd 8
7225.2.a.bb.1.4 6 85.2 odd 8