Properties

Label 720.2.bd.h.523.6
Level $720$
Weight $2$
Character 720.523
Analytic conductor $5.749$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [720,2,Mod(307,720)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(720, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 3, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("720.307"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 720 = 2^{4} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 720.bd (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,-2,0,-2,-8,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.74922894553\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 2 x^{19} + 3 x^{18} - 6 x^{17} + 2 x^{16} + 4 x^{14} + 20 x^{13} - 24 x^{12} + 40 x^{11} + \cdots + 1024 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: no (minimal twist has level 240)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 523.6
Root \(0.0912451 + 1.41127i\) of defining polynomial
Character \(\chi\) \(=\) 720.523
Dual form 720.2.bd.h.307.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.0912451 - 1.41127i) q^{2} +(-1.98335 + 0.257542i) q^{4} +(0.453294 + 2.18964i) q^{5} +(1.25143 - 1.25143i) q^{7} +(0.544432 + 2.77553i) q^{8} +(3.04881 - 0.839513i) q^{10} +(-2.47980 + 2.47980i) q^{11} -1.81790 q^{13} +(-1.88029 - 1.65192i) q^{14} +(3.86734 - 1.02159i) q^{16} +(-4.52932 + 4.52932i) q^{17} +(-2.39150 + 2.39150i) q^{19} +(-1.46296 - 4.22608i) q^{20} +(3.72594 + 3.27340i) q^{22} +(-4.06513 - 4.06513i) q^{23} +(-4.58905 + 1.98510i) q^{25} +(0.165874 + 2.56554i) q^{26} +(-2.15973 + 2.80432i) q^{28} +(6.27721 + 6.27721i) q^{29} +4.33993i q^{31} +(-1.79462 - 5.36464i) q^{32} +(6.80535 + 5.97880i) q^{34} +(3.30745 + 2.17292i) q^{35} -2.92026 q^{37} +(3.59326 + 3.15684i) q^{38} +(-5.83064 + 2.45024i) q^{40} -4.26875i q^{41} +10.4167 q^{43} +(4.27966 - 5.55697i) q^{44} +(-5.36607 + 6.10791i) q^{46} +(-0.150104 - 0.150104i) q^{47} +3.86784i q^{49} +(3.22024 + 6.29524i) q^{50} +(3.60552 - 0.468185i) q^{52} +10.6378i q^{53} +(-6.55396 - 4.30580i) q^{55} +(4.15471 + 2.79207i) q^{56} +(8.28606 - 9.43159i) q^{58} +(-3.17716 - 3.17716i) q^{59} +(-4.76865 + 4.76865i) q^{61} +(6.12480 - 0.395997i) q^{62} +(-7.40719 + 3.02218i) q^{64} +(-0.824041 - 3.98054i) q^{65} +10.8215 q^{67} +(7.81672 - 10.1497i) q^{68} +(2.76478 - 4.86596i) q^{70} +5.04598 q^{71} +(2.92958 - 2.92958i) q^{73} +(0.266459 + 4.12126i) q^{74} +(4.12727 - 5.35910i) q^{76} +6.20661i q^{77} -4.75216 q^{79} +(3.98996 + 8.00501i) q^{80} +(-6.02435 + 0.389502i) q^{82} -15.3571i q^{83} +(-11.9707 - 7.86446i) q^{85} +(-0.950471 - 14.7007i) q^{86} +(-8.23287 - 5.53270i) q^{88} -3.95627 q^{89} +(-2.27497 + 2.27497i) q^{91} +(9.10952 + 7.01563i) q^{92} +(-0.198141 + 0.225533i) q^{94} +(-6.32059 - 4.15248i) q^{95} +(2.46797 - 2.46797i) q^{97} +(5.45856 - 0.352921i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 2 q^{2} - 2 q^{4} - 8 q^{5} - 4 q^{7} - 8 q^{8} - 4 q^{10} - 8 q^{11} + 8 q^{13} + 10 q^{14} + 26 q^{16} - 12 q^{17} - 16 q^{19} + 4 q^{20} + 6 q^{22} + 16 q^{23} - 4 q^{25} + 20 q^{26} + 22 q^{28}+ \cdots - 4 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/720\mathbb{Z}\right)^\times\).

\(n\) \(181\) \(271\) \(577\) \(641\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(-1\) \(e\left(\frac{3}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.0912451 1.41127i −0.0645200 0.997916i
\(3\) 0 0
\(4\) −1.98335 + 0.257542i −0.991674 + 0.128771i
\(5\) 0.453294 + 2.18964i 0.202719 + 0.979237i
\(6\) 0 0
\(7\) 1.25143 1.25143i 0.472996 0.472996i −0.429887 0.902883i \(-0.641446\pi\)
0.902883 + 0.429887i \(0.141446\pi\)
\(8\) 0.544432 + 2.77553i 0.192486 + 0.981300i
\(9\) 0 0
\(10\) 3.04881 0.839513i 0.964117 0.265477i
\(11\) −2.47980 + 2.47980i −0.747689 + 0.747689i −0.974045 0.226356i \(-0.927319\pi\)
0.226356 + 0.974045i \(0.427319\pi\)
\(12\) 0 0
\(13\) −1.81790 −0.504194 −0.252097 0.967702i \(-0.581120\pi\)
−0.252097 + 0.967702i \(0.581120\pi\)
\(14\) −1.88029 1.65192i −0.502529 0.441493i
\(15\) 0 0
\(16\) 3.86734 1.02159i 0.966836 0.255398i
\(17\) −4.52932 + 4.52932i −1.09852 + 1.09852i −0.103936 + 0.994584i \(0.533144\pi\)
−0.994584 + 0.103936i \(0.966856\pi\)
\(18\) 0 0
\(19\) −2.39150 + 2.39150i −0.548649 + 0.548649i −0.926050 0.377401i \(-0.876818\pi\)
0.377401 + 0.926050i \(0.376818\pi\)
\(20\) −1.46296 4.22608i −0.327129 0.944980i
\(21\) 0 0
\(22\) 3.72594 + 3.27340i 0.794372 + 0.697890i
\(23\) −4.06513 4.06513i −0.847639 0.847639i 0.142199 0.989838i \(-0.454583\pi\)
−0.989838 + 0.142199i \(0.954583\pi\)
\(24\) 0 0
\(25\) −4.58905 + 1.98510i −0.917810 + 0.397020i
\(26\) 0.165874 + 2.56554i 0.0325306 + 0.503143i
\(27\) 0 0
\(28\) −2.15973 + 2.80432i −0.408150 + 0.529967i
\(29\) 6.27721 + 6.27721i 1.16565 + 1.16565i 0.983219 + 0.182430i \(0.0583963\pi\)
0.182430 + 0.983219i \(0.441604\pi\)
\(30\) 0 0
\(31\) 4.33993i 0.779474i 0.920926 + 0.389737i \(0.127434\pi\)
−0.920926 + 0.389737i \(0.872566\pi\)
\(32\) −1.79462 5.36464i −0.317246 0.948343i
\(33\) 0 0
\(34\) 6.80535 + 5.97880i 1.16711 + 1.02535i
\(35\) 3.30745 + 2.17292i 0.559061 + 0.367290i
\(36\) 0 0
\(37\) −2.92026 −0.480087 −0.240044 0.970762i \(-0.577162\pi\)
−0.240044 + 0.970762i \(0.577162\pi\)
\(38\) 3.59326 + 3.15684i 0.582904 + 0.512107i
\(39\) 0 0
\(40\) −5.83064 + 2.45024i −0.921904 + 0.387417i
\(41\) 4.26875i 0.666667i −0.942809 0.333334i \(-0.891826\pi\)
0.942809 0.333334i \(-0.108174\pi\)
\(42\) 0 0
\(43\) 10.4167 1.58853 0.794264 0.607572i \(-0.207856\pi\)
0.794264 + 0.607572i \(0.207856\pi\)
\(44\) 4.27966 5.55697i 0.645183 0.837745i
\(45\) 0 0
\(46\) −5.36607 + 6.10791i −0.791183 + 0.900562i
\(47\) −0.150104 0.150104i −0.0218950 0.0218950i 0.696075 0.717970i \(-0.254928\pi\)
−0.717970 + 0.696075i \(0.754928\pi\)
\(48\) 0 0
\(49\) 3.86784i 0.552549i
\(50\) 3.22024 + 6.29524i 0.455410 + 0.890282i
\(51\) 0 0
\(52\) 3.60552 0.468185i 0.499996 0.0649256i
\(53\) 10.6378i 1.46122i 0.682797 + 0.730608i \(0.260763\pi\)
−0.682797 + 0.730608i \(0.739237\pi\)
\(54\) 0 0
\(55\) −6.55396 4.30580i −0.883736 0.580594i
\(56\) 4.15471 + 2.79207i 0.555196 + 0.373106i
\(57\) 0 0
\(58\) 8.28606 9.43159i 1.08801 1.23843i
\(59\) −3.17716 3.17716i −0.413632 0.413632i 0.469370 0.883002i \(-0.344481\pi\)
−0.883002 + 0.469370i \(0.844481\pi\)
\(60\) 0 0
\(61\) −4.76865 + 4.76865i −0.610563 + 0.610563i −0.943093 0.332530i \(-0.892098\pi\)
0.332530 + 0.943093i \(0.392098\pi\)
\(62\) 6.12480 0.395997i 0.777850 0.0502917i
\(63\) 0 0
\(64\) −7.40719 + 3.02218i −0.925899 + 0.377772i
\(65\) −0.824041 3.98054i −0.102210 0.493725i
\(66\) 0 0
\(67\) 10.8215 1.32206 0.661029 0.750361i \(-0.270120\pi\)
0.661029 + 0.750361i \(0.270120\pi\)
\(68\) 7.81672 10.1497i 0.947917 1.23083i
\(69\) 0 0
\(70\) 2.76478 4.86596i 0.330454 0.581594i
\(71\) 5.04598 0.598847 0.299424 0.954120i \(-0.403206\pi\)
0.299424 + 0.954120i \(0.403206\pi\)
\(72\) 0 0
\(73\) 2.92958 2.92958i 0.342881 0.342881i −0.514568 0.857449i \(-0.672048\pi\)
0.857449 + 0.514568i \(0.172048\pi\)
\(74\) 0.266459 + 4.12126i 0.0309752 + 0.479087i
\(75\) 0 0
\(76\) 4.12727 5.35910i 0.473431 0.614731i
\(77\) 6.20661i 0.707309i
\(78\) 0 0
\(79\) −4.75216 −0.534660 −0.267330 0.963605i \(-0.586141\pi\)
−0.267330 + 0.963605i \(0.586141\pi\)
\(80\) 3.98996 + 8.00501i 0.446091 + 0.894987i
\(81\) 0 0
\(82\) −6.02435 + 0.389502i −0.665278 + 0.0430134i
\(83\) 15.3571i 1.68567i −0.538175 0.842833i \(-0.680886\pi\)
0.538175 0.842833i \(-0.319114\pi\)
\(84\) 0 0
\(85\) −11.9707 7.86446i −1.29840 0.853020i
\(86\) −0.950471 14.7007i −0.102492 1.58522i
\(87\) 0 0
\(88\) −8.23287 5.53270i −0.877627 0.589788i
\(89\) −3.95627 −0.419364 −0.209682 0.977770i \(-0.567243\pi\)
−0.209682 + 0.977770i \(0.567243\pi\)
\(90\) 0 0
\(91\) −2.27497 + 2.27497i −0.238482 + 0.238482i
\(92\) 9.10952 + 7.01563i 0.949733 + 0.731430i
\(93\) 0 0
\(94\) −0.198141 + 0.225533i −0.0204367 + 0.0232620i
\(95\) −6.32059 4.15248i −0.648478 0.426035i
\(96\) 0 0
\(97\) 2.46797 2.46797i 0.250585 0.250585i −0.570626 0.821210i \(-0.693299\pi\)
0.821210 + 0.570626i \(0.193299\pi\)
\(98\) 5.45856 0.352921i 0.551398 0.0356504i
\(99\) 0 0
\(100\) 8.59044 5.11902i 0.859044 0.511902i
\(101\) −9.40099 9.40099i −0.935433 0.935433i 0.0626050 0.998038i \(-0.480059\pi\)
−0.998038 + 0.0626050i \(0.980059\pi\)
\(102\) 0 0
\(103\) 3.79353 + 3.79353i 0.373788 + 0.373788i 0.868855 0.495067i \(-0.164857\pi\)
−0.495067 + 0.868855i \(0.664857\pi\)
\(104\) −0.989720 5.04563i −0.0970500 0.494765i
\(105\) 0 0
\(106\) 15.0128 0.970648i 1.45817 0.0942776i
\(107\) 12.1814i 1.17762i 0.808271 + 0.588810i \(0.200403\pi\)
−0.808271 + 0.588810i \(0.799597\pi\)
\(108\) 0 0
\(109\) 4.04384 + 4.04384i 0.387329 + 0.387329i 0.873734 0.486404i \(-0.161692\pi\)
−0.486404 + 0.873734i \(0.661692\pi\)
\(110\) −5.47862 + 9.64227i −0.522366 + 0.919354i
\(111\) 0 0
\(112\) 3.56126 6.11817i 0.336508 0.578112i
\(113\) −12.4221 12.4221i −1.16857 1.16857i −0.982545 0.186023i \(-0.940440\pi\)
−0.186023 0.982545i \(-0.559560\pi\)
\(114\) 0 0
\(115\) 7.05848 10.7439i 0.658207 1.00187i
\(116\) −14.0665 10.8333i −1.30605 1.00584i
\(117\) 0 0
\(118\) −4.19393 + 4.77373i −0.386082 + 0.439457i
\(119\) 11.3362i 1.03919i
\(120\) 0 0
\(121\) 1.29886i 0.118078i
\(122\) 7.16495 + 6.29472i 0.648684 + 0.569897i
\(123\) 0 0
\(124\) −1.11771 8.60759i −0.100374 0.772984i
\(125\) −6.42685 9.14853i −0.574835 0.818270i
\(126\) 0 0
\(127\) 7.35799 + 7.35799i 0.652916 + 0.652916i 0.953694 0.300778i \(-0.0972463\pi\)
−0.300778 + 0.953694i \(0.597246\pi\)
\(128\) 4.94097 + 10.1778i 0.436724 + 0.899596i
\(129\) 0 0
\(130\) −5.54241 + 1.52615i −0.486102 + 0.133852i
\(131\) 4.51593 + 4.51593i 0.394559 + 0.394559i 0.876309 0.481750i \(-0.159999\pi\)
−0.481750 + 0.876309i \(0.659999\pi\)
\(132\) 0 0
\(133\) 5.98560i 0.519018i
\(134\) −0.987409 15.2720i −0.0852991 1.31930i
\(135\) 0 0
\(136\) −15.0372 10.1054i −1.28943 0.866528i
\(137\) 2.55390 + 2.55390i 0.218194 + 0.218194i 0.807737 0.589543i \(-0.200692\pi\)
−0.589543 + 0.807737i \(0.700692\pi\)
\(138\) 0 0
\(139\) 2.95289 + 2.95289i 0.250461 + 0.250461i 0.821159 0.570699i \(-0.193328\pi\)
−0.570699 + 0.821159i \(0.693328\pi\)
\(140\) −7.11944 3.45784i −0.601703 0.292241i
\(141\) 0 0
\(142\) −0.460420 7.12122i −0.0386376 0.597600i
\(143\) 4.50803 4.50803i 0.376980 0.376980i
\(144\) 0 0
\(145\) −10.8994 + 16.5903i −0.905147 + 1.37775i
\(146\) −4.40172 3.86710i −0.364289 0.320044i
\(147\) 0 0
\(148\) 5.79189 0.752089i 0.476090 0.0618214i
\(149\) −15.1940 + 15.1940i −1.24474 + 1.24474i −0.286728 + 0.958012i \(0.592568\pi\)
−0.958012 + 0.286728i \(0.907432\pi\)
\(150\) 0 0
\(151\) −2.66712 −0.217047 −0.108523 0.994094i \(-0.534612\pi\)
−0.108523 + 0.994094i \(0.534612\pi\)
\(152\) −7.93971 5.33569i −0.643996 0.432782i
\(153\) 0 0
\(154\) 8.75918 0.566322i 0.705835 0.0456355i
\(155\) −9.50288 + 1.96726i −0.763290 + 0.158014i
\(156\) 0 0
\(157\) 3.79875i 0.303173i 0.988444 + 0.151587i \(0.0484383\pi\)
−0.988444 + 0.151587i \(0.951562\pi\)
\(158\) 0.433611 + 6.70657i 0.0344963 + 0.533546i
\(159\) 0 0
\(160\) 10.9331 6.36132i 0.864341 0.502907i
\(161\) −10.1745 −0.801860
\(162\) 0 0
\(163\) 20.0096i 1.56727i −0.621219 0.783637i \(-0.713362\pi\)
0.621219 0.783637i \(-0.286638\pi\)
\(164\) 1.09938 + 8.46642i 0.0858475 + 0.661117i
\(165\) 0 0
\(166\) −21.6730 + 1.40126i −1.68215 + 0.108759i
\(167\) 7.50240 7.50240i 0.580553 0.580553i −0.354502 0.935055i \(-0.615350\pi\)
0.935055 + 0.354502i \(0.115350\pi\)
\(168\) 0 0
\(169\) −9.69526 −0.745789
\(170\) −10.0066 + 17.6114i −0.767470 + 1.35073i
\(171\) 0 0
\(172\) −20.6599 + 2.68274i −1.57530 + 0.204557i
\(173\) 15.3776 1.16914 0.584568 0.811345i \(-0.301264\pi\)
0.584568 + 0.811345i \(0.301264\pi\)
\(174\) 0 0
\(175\) −3.25866 + 8.22709i −0.246332 + 0.621910i
\(176\) −7.05691 + 12.1236i −0.531934 + 0.913851i
\(177\) 0 0
\(178\) 0.360990 + 5.58335i 0.0270573 + 0.418490i
\(179\) 5.67467 5.67467i 0.424145 0.424145i −0.462483 0.886628i \(-0.653041\pi\)
0.886628 + 0.462483i \(0.153041\pi\)
\(180\) 0 0
\(181\) −0.760920 0.760920i −0.0565587 0.0565587i 0.678262 0.734820i \(-0.262734\pi\)
−0.734820 + 0.678262i \(0.762734\pi\)
\(182\) 3.41817 + 3.00301i 0.253372 + 0.222598i
\(183\) 0 0
\(184\) 9.06973 13.4961i 0.668630 0.994946i
\(185\) −1.32373 6.39431i −0.0973229 0.470119i
\(186\) 0 0
\(187\) 22.4636i 1.64270i
\(188\) 0.336367 + 0.259051i 0.0245321 + 0.0188932i
\(189\) 0 0
\(190\) −5.28353 + 9.29893i −0.383308 + 0.674615i
\(191\) 15.1246i 1.09437i 0.837010 + 0.547187i \(0.184301\pi\)
−0.837010 + 0.547187i \(0.815699\pi\)
\(192\) 0 0
\(193\) −7.66759 7.66759i −0.551925 0.551925i 0.375071 0.926996i \(-0.377618\pi\)
−0.926996 + 0.375071i \(0.877618\pi\)
\(194\) −3.70816 3.25778i −0.266230 0.233895i
\(195\) 0 0
\(196\) −0.996133 7.67128i −0.0711523 0.547949i
\(197\) 25.5893 1.82316 0.911581 0.411120i \(-0.134862\pi\)
0.911581 + 0.411120i \(0.134862\pi\)
\(198\) 0 0
\(199\) 13.0408i 0.924440i −0.886765 0.462220i \(-0.847053\pi\)
0.886765 0.462220i \(-0.152947\pi\)
\(200\) −8.00814 11.6563i −0.566261 0.824226i
\(201\) 0 0
\(202\) −12.4095 + 14.1251i −0.873130 + 0.993838i
\(203\) 15.7110 1.10270
\(204\) 0 0
\(205\) 9.34703 1.93500i 0.652825 0.135146i
\(206\) 5.00754 5.69983i 0.348892 0.397126i
\(207\) 0 0
\(208\) −7.03043 + 1.85715i −0.487472 + 0.128770i
\(209\) 11.8609i 0.820437i
\(210\) 0 0
\(211\) −4.04713 4.04713i −0.278616 0.278616i 0.553940 0.832556i \(-0.313124\pi\)
−0.832556 + 0.553940i \(0.813124\pi\)
\(212\) −2.73969 21.0985i −0.188162 1.44905i
\(213\) 0 0
\(214\) 17.1912 1.11149i 1.17517 0.0759801i
\(215\) 4.72182 + 22.8088i 0.322025 + 1.55555i
\(216\) 0 0
\(217\) 5.43112 + 5.43112i 0.368688 + 0.368688i
\(218\) 5.33795 6.07591i 0.361532 0.411513i
\(219\) 0 0
\(220\) 14.1077 + 6.85198i 0.951142 + 0.461960i
\(221\) 8.23382 8.23382i 0.553867 0.553867i
\(222\) 0 0
\(223\) −6.94039 + 6.94039i −0.464763 + 0.464763i −0.900213 0.435450i \(-0.856589\pi\)
0.435450 + 0.900213i \(0.356589\pi\)
\(224\) −8.95931 4.46764i −0.598619 0.298507i
\(225\) 0 0
\(226\) −16.3974 + 18.6643i −1.09074 + 1.24153i
\(227\) 3.34643 0.222110 0.111055 0.993814i \(-0.464577\pi\)
0.111055 + 0.993814i \(0.464577\pi\)
\(228\) 0 0
\(229\) −11.9644 + 11.9644i −0.790629 + 0.790629i −0.981596 0.190968i \(-0.938837\pi\)
0.190968 + 0.981596i \(0.438837\pi\)
\(230\) −15.8065 8.98107i −1.04225 0.592194i
\(231\) 0 0
\(232\) −14.0051 + 20.8401i −0.919480 + 1.36822i
\(233\) −12.4324 + 12.4324i −0.814474 + 0.814474i −0.985301 0.170827i \(-0.945356\pi\)
0.170827 + 0.985301i \(0.445356\pi\)
\(234\) 0 0
\(235\) 0.260633 0.396716i 0.0170018 0.0258789i
\(236\) 7.11968 + 5.48317i 0.463452 + 0.356924i
\(237\) 0 0
\(238\) 15.9985 1.03438i 1.03703 0.0670487i
\(239\) −24.7355 −1.60000 −0.800002 0.599997i \(-0.795168\pi\)
−0.800002 + 0.599997i \(0.795168\pi\)
\(240\) 0 0
\(241\) 17.1334 1.10366 0.551829 0.833957i \(-0.313930\pi\)
0.551829 + 0.833957i \(0.313930\pi\)
\(242\) −1.83304 + 0.118515i −0.117832 + 0.00761841i
\(243\) 0 0
\(244\) 8.22976 10.6860i 0.526857 0.684102i
\(245\) −8.46918 + 1.75327i −0.541076 + 0.112012i
\(246\) 0 0
\(247\) 4.34750 4.34750i 0.276625 0.276625i
\(248\) −12.0456 + 2.36279i −0.764898 + 0.150038i
\(249\) 0 0
\(250\) −12.3246 + 9.90475i −0.779476 + 0.626432i
\(251\) 21.3875 21.3875i 1.34997 1.34997i 0.464274 0.885692i \(-0.346315\pi\)
0.885692 0.464274i \(-0.153685\pi\)
\(252\) 0 0
\(253\) 20.1615 1.26754
\(254\) 9.71271 11.0555i 0.609430 0.693682i
\(255\) 0 0
\(256\) 13.9127 7.90170i 0.869544 0.493856i
\(257\) 17.3996 17.3996i 1.08536 1.08536i 0.0893560 0.996000i \(-0.471519\pi\)
0.996000 0.0893560i \(-0.0284809\pi\)
\(258\) 0 0
\(259\) −3.65450 + 3.65450i −0.227080 + 0.227080i
\(260\) 2.65952 + 7.68257i 0.164936 + 0.476453i
\(261\) 0 0
\(262\) 5.96113 6.78524i 0.368280 0.419193i
\(263\) −8.76818 8.76818i −0.540669 0.540669i 0.383056 0.923725i \(-0.374872\pi\)
−0.923725 + 0.383056i \(0.874872\pi\)
\(264\) 0 0
\(265\) −23.2930 + 4.82206i −1.43088 + 0.296217i
\(266\) 8.44728 0.546157i 0.517936 0.0334870i
\(267\) 0 0
\(268\) −21.4628 + 2.78700i −1.31105 + 0.170243i
\(269\) 14.1435 + 14.1435i 0.862347 + 0.862347i 0.991610 0.129263i \(-0.0412611\pi\)
−0.129263 + 0.991610i \(0.541261\pi\)
\(270\) 0 0
\(271\) 24.2463i 1.47286i −0.676515 0.736429i \(-0.736510\pi\)
0.676515 0.736429i \(-0.263490\pi\)
\(272\) −12.8893 + 22.1435i −0.781529 + 1.34265i
\(273\) 0 0
\(274\) 3.37120 3.83727i 0.203662 0.231818i
\(275\) 6.45728 16.3026i 0.389389 0.983084i
\(276\) 0 0
\(277\) 0.247833 0.0148909 0.00744543 0.999972i \(-0.497630\pi\)
0.00744543 + 0.999972i \(0.497630\pi\)
\(278\) 3.89788 4.43675i 0.233779 0.266099i
\(279\) 0 0
\(280\) −4.23033 + 10.3629i −0.252810 + 0.619304i
\(281\) 13.2279i 0.789109i 0.918872 + 0.394555i \(0.129101\pi\)
−0.918872 + 0.394555i \(0.870899\pi\)
\(282\) 0 0
\(283\) −22.2111 −1.32031 −0.660157 0.751128i \(-0.729510\pi\)
−0.660157 + 0.751128i \(0.729510\pi\)
\(284\) −10.0079 + 1.29955i −0.593862 + 0.0771142i
\(285\) 0 0
\(286\) −6.77336 5.95069i −0.400517 0.351872i
\(287\) −5.34205 5.34205i −0.315331 0.315331i
\(288\) 0 0
\(289\) 24.0294i 1.41349i
\(290\) 24.4078 + 13.8682i 1.43328 + 0.814369i
\(291\) 0 0
\(292\) −5.05588 + 6.56486i −0.295873 + 0.384179i
\(293\) 2.93570i 0.171505i −0.996316 0.0857526i \(-0.972671\pi\)
0.996316 0.0857526i \(-0.0273295\pi\)
\(294\) 0 0
\(295\) 5.51666 8.39704i 0.321192 0.488894i
\(296\) −1.58988 8.10527i −0.0924099 0.471110i
\(297\) 0 0
\(298\) 22.8291 + 20.0564i 1.32246 + 1.16184i
\(299\) 7.38999 + 7.38999i 0.427374 + 0.427374i
\(300\) 0 0
\(301\) 13.0358 13.0358i 0.751368 0.751368i
\(302\) 0.243361 + 3.76401i 0.0140039 + 0.216595i
\(303\) 0 0
\(304\) −6.80563 + 11.6919i −0.390329 + 0.670577i
\(305\) −12.6032 8.28003i −0.721659 0.474113i
\(306\) 0 0
\(307\) 20.2428 1.15532 0.577659 0.816278i \(-0.303966\pi\)
0.577659 + 0.816278i \(0.303966\pi\)
\(308\) −1.59846 12.3099i −0.0910809 0.701420i
\(309\) 0 0
\(310\) 3.64342 + 13.2316i 0.206933 + 0.751504i
\(311\) 14.0432 0.796315 0.398157 0.917317i \(-0.369650\pi\)
0.398157 + 0.917317i \(0.369650\pi\)
\(312\) 0 0
\(313\) 10.3861 10.3861i 0.587058 0.587058i −0.349775 0.936834i \(-0.613742\pi\)
0.936834 + 0.349775i \(0.113742\pi\)
\(314\) 5.36105 0.346617i 0.302542 0.0195607i
\(315\) 0 0
\(316\) 9.42520 1.22388i 0.530209 0.0688488i
\(317\) 11.6769i 0.655839i 0.944706 + 0.327920i \(0.106347\pi\)
−0.944706 + 0.327920i \(0.893653\pi\)
\(318\) 0 0
\(319\) −31.1325 −1.74309
\(320\) −9.97512 14.8491i −0.557626 0.830092i
\(321\) 0 0
\(322\) 0.928370 + 14.3589i 0.0517360 + 0.800190i
\(323\) 21.6637i 1.20540i
\(324\) 0 0
\(325\) 8.34241 3.60871i 0.462754 0.200175i
\(326\) −28.2389 + 1.82578i −1.56401 + 0.101121i
\(327\) 0 0
\(328\) 11.8481 2.32404i 0.654200 0.128324i
\(329\) −0.375690 −0.0207125
\(330\) 0 0
\(331\) −12.0411 + 12.0411i −0.661841 + 0.661841i −0.955814 0.293973i \(-0.905022\pi\)
0.293973 + 0.955814i \(0.405022\pi\)
\(332\) 3.95511 + 30.4586i 0.217065 + 1.67163i
\(333\) 0 0
\(334\) −11.2725 9.90334i −0.616801 0.541887i
\(335\) 4.90532 + 23.6952i 0.268006 + 1.29461i
\(336\) 0 0
\(337\) −0.558895 + 0.558895i −0.0304449 + 0.0304449i −0.722165 0.691720i \(-0.756853\pi\)
0.691720 + 0.722165i \(0.256853\pi\)
\(338\) 0.884644 + 13.6826i 0.0481183 + 0.744235i
\(339\) 0 0
\(340\) 25.7675 + 12.5150i 1.39744 + 0.678722i
\(341\) −10.7622 10.7622i −0.582804 0.582804i
\(342\) 0 0
\(343\) 13.6004 + 13.6004i 0.734350 + 0.734350i
\(344\) 5.67117 + 28.9119i 0.305769 + 1.55882i
\(345\) 0 0
\(346\) −1.40313 21.7019i −0.0754326 1.16670i
\(347\) 0.0770157i 0.00413442i 0.999998 + 0.00206721i \(0.000658013\pi\)
−0.999998 + 0.00206721i \(0.999342\pi\)
\(348\) 0 0
\(349\) 15.0145 + 15.0145i 0.803708 + 0.803708i 0.983673 0.179965i \(-0.0575984\pi\)
−0.179965 + 0.983673i \(0.557598\pi\)
\(350\) 11.9080 + 3.84816i 0.636507 + 0.205693i
\(351\) 0 0
\(352\) 17.7536 + 8.85296i 0.946268 + 0.471864i
\(353\) 23.6193 + 23.6193i 1.25713 + 1.25713i 0.952459 + 0.304668i \(0.0985456\pi\)
0.304668 + 0.952459i \(0.401454\pi\)
\(354\) 0 0
\(355\) 2.28731 + 11.0489i 0.121398 + 0.586413i
\(356\) 7.84666 1.01891i 0.415872 0.0540019i
\(357\) 0 0
\(358\) −8.52627 7.49069i −0.450627 0.395896i
\(359\) 9.21900i 0.486560i −0.969956 0.243280i \(-0.921777\pi\)
0.969956 0.243280i \(-0.0782234\pi\)
\(360\) 0 0
\(361\) 7.56142i 0.397970i
\(362\) −1.00443 + 1.14329i −0.0527917 + 0.0600900i
\(363\) 0 0
\(364\) 3.92616 5.09796i 0.205787 0.267206i
\(365\) 7.74268 + 5.08676i 0.405270 + 0.266253i
\(366\) 0 0
\(367\) 3.46414 + 3.46414i 0.180827 + 0.180827i 0.791716 0.610889i \(-0.209188\pi\)
−0.610889 + 0.791716i \(0.709188\pi\)
\(368\) −19.8742 11.5684i −1.03601 0.603042i
\(369\) 0 0
\(370\) −8.90330 + 2.45159i −0.462860 + 0.127452i
\(371\) 13.3125 + 13.3125i 0.691150 + 0.691150i
\(372\) 0 0
\(373\) 19.1403i 0.991049i 0.868594 + 0.495524i \(0.165024\pi\)
−0.868594 + 0.495524i \(0.834976\pi\)
\(374\) −31.7022 + 2.04970i −1.63928 + 0.105987i
\(375\) 0 0
\(376\) 0.334898 0.498341i 0.0172711 0.0257000i
\(377\) −11.4113 11.4113i −0.587713 0.587713i
\(378\) 0 0
\(379\) 19.8802 + 19.8802i 1.02118 + 1.02118i 0.999771 + 0.0214054i \(0.00681406\pi\)
0.0214054 + 0.999771i \(0.493186\pi\)
\(380\) 13.6054 + 6.60799i 0.697941 + 0.338983i
\(381\) 0 0
\(382\) 21.3448 1.38004i 1.09209 0.0706090i
\(383\) −8.84171 + 8.84171i −0.451790 + 0.451790i −0.895948 0.444158i \(-0.853503\pi\)
0.444158 + 0.895948i \(0.353503\pi\)
\(384\) 0 0
\(385\) −13.5902 + 2.81342i −0.692623 + 0.143385i
\(386\) −10.1214 + 11.5206i −0.515165 + 0.586385i
\(387\) 0 0
\(388\) −4.25924 + 5.53046i −0.216230 + 0.280766i
\(389\) −1.06003 + 1.06003i −0.0537454 + 0.0537454i −0.733469 0.679723i \(-0.762100\pi\)
0.679723 + 0.733469i \(0.262100\pi\)
\(390\) 0 0
\(391\) 36.8245 1.86230
\(392\) −10.7353 + 2.10578i −0.542216 + 0.106358i
\(393\) 0 0
\(394\) −2.33490 36.1133i −0.117630 1.81936i
\(395\) −2.15413 10.4055i −0.108386 0.523559i
\(396\) 0 0
\(397\) 4.35137i 0.218389i −0.994020 0.109194i \(-0.965173\pi\)
0.994020 0.109194i \(-0.0348271\pi\)
\(398\) −18.4041 + 1.18991i −0.922514 + 0.0596449i
\(399\) 0 0
\(400\) −15.7195 + 12.3652i −0.785973 + 0.618260i
\(401\) 21.1334 1.05535 0.527676 0.849445i \(-0.323063\pi\)
0.527676 + 0.849445i \(0.323063\pi\)
\(402\) 0 0
\(403\) 7.88954i 0.393006i
\(404\) 21.0666 + 16.2243i 1.04810 + 0.807188i
\(405\) 0 0
\(406\) −1.43355 22.1724i −0.0711459 1.10040i
\(407\) 7.24167 7.24167i 0.358956 0.358956i
\(408\) 0 0
\(409\) −0.142915 −0.00706670 −0.00353335 0.999994i \(-0.501125\pi\)
−0.00353335 + 0.999994i \(0.501125\pi\)
\(410\) −3.58367 13.0146i −0.176985 0.642745i
\(411\) 0 0
\(412\) −8.50089 6.54690i −0.418809 0.322543i
\(413\) −7.95200 −0.391292
\(414\) 0 0
\(415\) 33.6266 6.96130i 1.65067 0.341717i
\(416\) 3.26242 + 9.75235i 0.159953 + 0.478149i
\(417\) 0 0
\(418\) −16.7389 + 1.08225i −0.818728 + 0.0529346i
\(419\) 3.14176 3.14176i 0.153485 0.153485i −0.626187 0.779673i \(-0.715386\pi\)
0.779673 + 0.626187i \(0.215386\pi\)
\(420\) 0 0
\(421\) 25.8144 + 25.8144i 1.25812 + 1.25812i 0.951992 + 0.306124i \(0.0990322\pi\)
0.306124 + 0.951992i \(0.400968\pi\)
\(422\) −5.34231 + 6.08087i −0.260059 + 0.296012i
\(423\) 0 0
\(424\) −29.5256 + 5.79156i −1.43389 + 0.281263i
\(425\) 11.7941 29.7764i 0.572098 1.44437i
\(426\) 0 0
\(427\) 11.9353i 0.577588i
\(428\) −3.13723 24.1600i −0.151644 1.16782i
\(429\) 0 0
\(430\) 31.7584 8.74494i 1.53153 0.421718i
\(431\) 6.52096i 0.314104i 0.987590 + 0.157052i \(0.0501990\pi\)
−0.987590 + 0.157052i \(0.949801\pi\)
\(432\) 0 0
\(433\) −25.1367 25.1367i −1.20799 1.20799i −0.971677 0.236314i \(-0.924061\pi\)
−0.236314 0.971677i \(-0.575939\pi\)
\(434\) 7.16920 8.16032i 0.344132 0.391708i
\(435\) 0 0
\(436\) −9.06180 6.97888i −0.433981 0.334228i
\(437\) 19.4436 0.930112
\(438\) 0 0
\(439\) 39.1063i 1.86644i 0.359305 + 0.933220i \(0.383014\pi\)
−0.359305 + 0.933220i \(0.616986\pi\)
\(440\) 8.38271 20.5350i 0.399630 0.978966i
\(441\) 0 0
\(442\) −12.3714 10.8688i −0.588448 0.516977i
\(443\) 20.4880 0.973414 0.486707 0.873565i \(-0.338198\pi\)
0.486707 + 0.873565i \(0.338198\pi\)
\(444\) 0 0
\(445\) −1.79335 8.66281i −0.0850131 0.410656i
\(446\) 10.4280 + 9.16147i 0.493781 + 0.433808i
\(447\) 0 0
\(448\) −5.48754 + 13.0516i −0.259262 + 0.616632i
\(449\) 4.34217i 0.204920i −0.994737 0.102460i \(-0.967329\pi\)
0.994737 0.102460i \(-0.0326713\pi\)
\(450\) 0 0
\(451\) 10.5857 + 10.5857i 0.498460 + 0.498460i
\(452\) 27.8365 + 21.4381i 1.30932 + 1.00836i
\(453\) 0 0
\(454\) −0.305345 4.72271i −0.0143306 0.221648i
\(455\) −6.01260 3.95014i −0.281875 0.185185i
\(456\) 0 0
\(457\) 14.7916 + 14.7916i 0.691921 + 0.691921i 0.962654 0.270733i \(-0.0872661\pi\)
−0.270733 + 0.962654i \(0.587266\pi\)
\(458\) 17.9766 + 15.7932i 0.839993 + 0.737970i
\(459\) 0 0
\(460\) −11.2324 + 23.1267i −0.523714 + 1.07829i
\(461\) 15.0255 15.0255i 0.699809 0.699809i −0.264561 0.964369i \(-0.585227\pi\)
0.964369 + 0.264561i \(0.0852269\pi\)
\(462\) 0 0
\(463\) 6.10691 6.10691i 0.283812 0.283812i −0.550815 0.834627i \(-0.685683\pi\)
0.834627 + 0.550815i \(0.185683\pi\)
\(464\) 30.6889 + 17.8634i 1.42470 + 0.829287i
\(465\) 0 0
\(466\) 18.6798 + 16.4110i 0.865327 + 0.760227i
\(467\) −23.9704 −1.10922 −0.554610 0.832111i \(-0.687132\pi\)
−0.554610 + 0.832111i \(0.687132\pi\)
\(468\) 0 0
\(469\) 13.5424 13.5424i 0.625328 0.625328i
\(470\) −0.583653 0.331624i −0.0269219 0.0152967i
\(471\) 0 0
\(472\) 7.08858 10.5481i 0.326278 0.485515i
\(473\) −25.8313 + 25.8313i −1.18773 + 1.18773i
\(474\) 0 0
\(475\) 6.22735 15.7221i 0.285730 0.721380i
\(476\) −2.91956 22.4837i −0.133818 1.03054i
\(477\) 0 0
\(478\) 2.25699 + 34.9083i 0.103232 + 1.59667i
\(479\) −36.1197 −1.65035 −0.825176 0.564876i \(-0.808924\pi\)
−0.825176 + 0.564876i \(0.808924\pi\)
\(480\) 0 0
\(481\) 5.30872 0.242057
\(482\) −1.56334 24.1798i −0.0712080 1.10136i
\(483\) 0 0
\(484\) 0.334512 + 2.57609i 0.0152051 + 0.117095i
\(485\) 6.52269 + 4.28526i 0.296180 + 0.194583i
\(486\) 0 0
\(487\) −25.3967 + 25.3967i −1.15083 + 1.15083i −0.164447 + 0.986386i \(0.552584\pi\)
−0.986386 + 0.164447i \(0.947416\pi\)
\(488\) −15.8318 10.6393i −0.716670 0.481621i
\(489\) 0 0
\(490\) 3.24710 + 11.7923i 0.146689 + 0.532722i
\(491\) −6.18543 + 6.18543i −0.279145 + 0.279145i −0.832768 0.553623i \(-0.813245\pi\)
0.553623 + 0.832768i \(0.313245\pi\)
\(492\) 0 0
\(493\) −56.8629 −2.56098
\(494\) −6.53218 5.73880i −0.293897 0.258201i
\(495\) 0 0
\(496\) 4.43364 + 16.7840i 0.199076 + 0.753624i
\(497\) 6.31469 6.31469i 0.283253 0.283253i
\(498\) 0 0
\(499\) −25.3089 + 25.3089i −1.13298 + 1.13298i −0.143306 + 0.989678i \(0.545773\pi\)
−0.989678 + 0.143306i \(0.954227\pi\)
\(500\) 15.1028 + 16.4895i 0.675418 + 0.737435i
\(501\) 0 0
\(502\) −32.1349 28.2319i −1.43425 1.26005i
\(503\) −1.94744 1.94744i −0.0868322 0.0868322i 0.662357 0.749189i \(-0.269556\pi\)
−0.749189 + 0.662357i \(0.769556\pi\)
\(504\) 0 0
\(505\) 16.3234 24.8462i 0.726381 1.10564i
\(506\) −1.83963 28.4532i −0.0817817 1.26490i
\(507\) 0 0
\(508\) −16.4885 12.6985i −0.731557 0.563403i
\(509\) −17.9336 17.9336i −0.794891 0.794891i 0.187394 0.982285i \(-0.439996\pi\)
−0.982285 + 0.187394i \(0.939996\pi\)
\(510\) 0 0
\(511\) 7.33232i 0.324363i
\(512\) −12.4209 18.9135i −0.548930 0.835868i
\(513\) 0 0
\(514\) −26.1431 22.9678i −1.15312 1.01307i
\(515\) −6.58688 + 10.0261i −0.290253 + 0.441801i
\(516\) 0 0
\(517\) 0.744459 0.0327413
\(518\) 5.49093 + 4.82402i 0.241258 + 0.211955i
\(519\) 0 0
\(520\) 10.5995 4.45429i 0.464818 0.195333i
\(521\) 11.3666i 0.497981i 0.968506 + 0.248990i \(0.0800988\pi\)
−0.968506 + 0.248990i \(0.919901\pi\)
\(522\) 0 0
\(523\) 19.1692 0.838209 0.419104 0.907938i \(-0.362344\pi\)
0.419104 + 0.907938i \(0.362344\pi\)
\(524\) −10.1197 7.79362i −0.442081 0.340466i
\(525\) 0 0
\(526\) −11.5742 + 13.1743i −0.504659 + 0.574427i
\(527\) −19.6569 19.6569i −0.856268 0.856268i
\(528\) 0 0
\(529\) 10.0506i 0.436983i
\(530\) 8.93058 + 32.4326i 0.387919 + 1.40878i
\(531\) 0 0
\(532\) −1.54155 11.8715i −0.0668345 0.514696i
\(533\) 7.76015i 0.336129i
\(534\) 0 0
\(535\) −26.6729 + 5.52176i −1.15317 + 0.238726i
\(536\) 5.89157 + 30.0355i 0.254477 + 1.29733i
\(537\) 0 0
\(538\) 18.6698 21.2509i 0.804912 0.916189i
\(539\) −9.59149 9.59149i −0.413135 0.413135i
\(540\) 0 0
\(541\) −4.06490 + 4.06490i −0.174764 + 0.174764i −0.789069 0.614305i \(-0.789436\pi\)
0.614305 + 0.789069i \(0.289436\pi\)
\(542\) −34.2180 + 2.21236i −1.46979 + 0.0950288i
\(543\) 0 0
\(544\) 32.4265 + 16.1698i 1.39028 + 0.693273i
\(545\) −7.02150 + 10.6876i −0.300768 + 0.457806i
\(546\) 0 0
\(547\) −28.7783 −1.23047 −0.615235 0.788344i \(-0.710939\pi\)
−0.615235 + 0.788344i \(0.710939\pi\)
\(548\) −5.72301 4.40754i −0.244475 0.188281i
\(549\) 0 0
\(550\) −23.5965 7.62542i −1.00616 0.325149i
\(551\) −30.0239 −1.27906
\(552\) 0 0
\(553\) −5.94700 + 5.94700i −0.252892 + 0.252892i
\(554\) −0.0226136 0.349759i −0.000960759 0.0148598i
\(555\) 0 0
\(556\) −6.61710 5.09611i −0.280628 0.216123i
\(557\) 8.96058i 0.379672i 0.981816 + 0.189836i \(0.0607956\pi\)
−0.981816 + 0.189836i \(0.939204\pi\)
\(558\) 0 0
\(559\) −18.9364 −0.800926
\(560\) 15.0109 + 5.02455i 0.634325 + 0.212326i
\(561\) 0 0
\(562\) 18.6681 1.20698i 0.787465 0.0509133i
\(563\) 9.62086i 0.405471i −0.979234 0.202736i \(-0.935017\pi\)
0.979234 0.202736i \(-0.0649832\pi\)
\(564\) 0 0
\(565\) 21.5690 32.8307i 0.907414 1.38120i
\(566\) 2.02665 + 31.3458i 0.0851866 + 1.31756i
\(567\) 0 0
\(568\) 2.74719 + 14.0053i 0.115270 + 0.587649i
\(569\) 26.7360 1.12083 0.560415 0.828212i \(-0.310642\pi\)
0.560415 + 0.828212i \(0.310642\pi\)
\(570\) 0 0
\(571\) −28.0517 + 28.0517i −1.17393 + 1.17393i −0.192661 + 0.981265i \(0.561712\pi\)
−0.981265 + 0.192661i \(0.938288\pi\)
\(572\) −7.77998 + 10.1020i −0.325297 + 0.422386i
\(573\) 0 0
\(574\) −7.05162 + 8.02649i −0.294329 + 0.335019i
\(575\) 26.7248 + 10.5854i 1.11450 + 0.441441i
\(576\) 0 0
\(577\) 17.8580 17.8580i 0.743437 0.743437i −0.229801 0.973238i \(-0.573808\pi\)
0.973238 + 0.229801i \(0.0738075\pi\)
\(578\) −33.9119 + 2.19256i −1.41055 + 0.0911986i
\(579\) 0 0
\(580\) 17.3446 35.7113i 0.720197 1.48283i
\(581\) −19.2184 19.2184i −0.797314 0.797314i
\(582\) 0 0
\(583\) −26.3797 26.3797i −1.09254 1.09254i
\(584\) 9.72609 + 6.53619i 0.402469 + 0.270469i
\(585\) 0 0
\(586\) −4.14305 + 0.267868i −0.171148 + 0.0110655i
\(587\) 1.40264i 0.0578931i −0.999581 0.0289465i \(-0.990785\pi\)
0.999581 0.0289465i \(-0.00921525\pi\)
\(588\) 0 0
\(589\) −10.3790 10.3790i −0.427657 0.427657i
\(590\) −12.3538 7.01929i −0.508599 0.288980i
\(591\) 0 0
\(592\) −11.2936 + 2.98331i −0.464166 + 0.122613i
\(593\) −5.81813 5.81813i −0.238922 0.238922i 0.577482 0.816404i \(-0.304035\pi\)
−0.816404 + 0.577482i \(0.804035\pi\)
\(594\) 0 0
\(595\) −24.8223 + 5.13865i −1.01762 + 0.210664i
\(596\) 26.2219 34.0481i 1.07409 1.39466i
\(597\) 0 0
\(598\) 9.75495 11.1035i 0.398909 0.454058i
\(599\) 13.1194i 0.536045i 0.963413 + 0.268023i \(0.0863702\pi\)
−0.963413 + 0.268023i \(0.913630\pi\)
\(600\) 0 0
\(601\) 29.0758i 1.18603i −0.805193 0.593013i \(-0.797938\pi\)
0.805193 0.593013i \(-0.202062\pi\)
\(602\) −19.5864 17.2075i −0.798281 0.701325i
\(603\) 0 0
\(604\) 5.28982 0.686895i 0.215240 0.0279494i
\(605\) 2.84404 0.588766i 0.115627 0.0239367i
\(606\) 0 0
\(607\) −8.32107 8.32107i −0.337742 0.337742i 0.517775 0.855517i \(-0.326760\pi\)
−0.855517 + 0.517775i \(0.826760\pi\)
\(608\) 17.1214 + 8.53773i 0.694364 + 0.346250i
\(609\) 0 0
\(610\) −10.5353 + 18.5420i −0.426564 + 0.750745i
\(611\) 0.272874 + 0.272874i 0.0110393 + 0.0110393i
\(612\) 0 0
\(613\) 17.2991i 0.698705i 0.936991 + 0.349353i \(0.113599\pi\)
−0.936991 + 0.349353i \(0.886401\pi\)
\(614\) −1.84706 28.5680i −0.0745411 1.15291i
\(615\) 0 0
\(616\) −17.2267 + 3.37907i −0.694082 + 0.136147i
\(617\) 15.9755 + 15.9755i 0.643149 + 0.643149i 0.951328 0.308179i \(-0.0997197\pi\)
−0.308179 + 0.951328i \(0.599720\pi\)
\(618\) 0 0
\(619\) 7.13212 + 7.13212i 0.286664 + 0.286664i 0.835760 0.549096i \(-0.185028\pi\)
−0.549096 + 0.835760i \(0.685028\pi\)
\(620\) 18.3409 6.34916i 0.736587 0.254988i
\(621\) 0 0
\(622\) −1.28137 19.8187i −0.0513782 0.794656i
\(623\) −4.95100 + 4.95100i −0.198358 + 0.198358i
\(624\) 0 0
\(625\) 17.1187 18.2195i 0.684750 0.728778i
\(626\) −15.6053 13.7099i −0.623712 0.547958i
\(627\) 0 0
\(628\) −0.978339 7.53425i −0.0390400 0.300649i
\(629\) 13.2268 13.2268i 0.527386 0.527386i
\(630\) 0 0
\(631\) 20.4868 0.815565 0.407782 0.913079i \(-0.366302\pi\)
0.407782 + 0.913079i \(0.366302\pi\)
\(632\) −2.58723 13.1898i −0.102914 0.524662i
\(633\) 0 0
\(634\) 16.4792 1.06546i 0.654473 0.0423147i
\(635\) −12.7760 + 19.4467i −0.507001 + 0.771718i
\(636\) 0 0
\(637\) 7.03133i 0.278592i
\(638\) 2.84069 + 43.9363i 0.112464 + 1.73945i
\(639\) 0 0
\(640\) −20.0459 + 15.4325i −0.792385 + 0.610022i
\(641\) −0.884584 −0.0349390 −0.0174695 0.999847i \(-0.505561\pi\)
−0.0174695 + 0.999847i \(0.505561\pi\)
\(642\) 0 0
\(643\) 5.29313i 0.208741i −0.994539 0.104370i \(-0.966717\pi\)
0.994539 0.104370i \(-0.0332827\pi\)
\(644\) 20.1795 2.62035i 0.795184 0.103256i
\(645\) 0 0
\(646\) −30.5733 + 1.97671i −1.20289 + 0.0777726i
\(647\) −9.15703 + 9.15703i −0.360000 + 0.360000i −0.863813 0.503813i \(-0.831930\pi\)
0.503813 + 0.863813i \(0.331930\pi\)
\(648\) 0 0
\(649\) 15.7575 0.618536
\(650\) −5.85405 11.4441i −0.229615 0.448874i
\(651\) 0 0
\(652\) 5.15332 + 39.6861i 0.201820 + 1.55423i
\(653\) −7.81012 −0.305634 −0.152817 0.988255i \(-0.548834\pi\)
−0.152817 + 0.988255i \(0.548834\pi\)
\(654\) 0 0
\(655\) −7.84122 + 11.9353i −0.306382 + 0.466351i
\(656\) −4.36092 16.5087i −0.170265 0.644558i
\(657\) 0 0
\(658\) 0.0342799 + 0.530199i 0.00133637 + 0.0206693i
\(659\) −4.73630 + 4.73630i −0.184500 + 0.184500i −0.793313 0.608813i \(-0.791646\pi\)
0.608813 + 0.793313i \(0.291646\pi\)
\(660\) 0 0
\(661\) −19.8678 19.8678i −0.772766 0.772766i 0.205823 0.978589i \(-0.434013\pi\)
−0.978589 + 0.205823i \(0.934013\pi\)
\(662\) 18.0920 + 15.8946i 0.703164 + 0.617760i
\(663\) 0 0
\(664\) 42.6243 8.36091i 1.65414 0.324466i
\(665\) −13.1063 + 2.71324i −0.508241 + 0.105215i
\(666\) 0 0
\(667\) 51.0354i 1.97610i
\(668\) −12.9477 + 16.8121i −0.500961 + 0.650478i
\(669\) 0 0
\(670\) 32.9927 9.08479i 1.27462 0.350976i
\(671\) 23.6506i 0.913023i
\(672\) 0 0
\(673\) −15.4993 15.4993i −0.597455 0.597455i 0.342180 0.939635i \(-0.388835\pi\)
−0.939635 + 0.342180i \(0.888835\pi\)
\(674\) 0.839746 + 0.737753i 0.0323458 + 0.0284172i
\(675\) 0 0
\(676\) 19.2291 2.49694i 0.739580 0.0960361i
\(677\) 4.91631 0.188949 0.0944745 0.995527i \(-0.469883\pi\)
0.0944745 + 0.995527i \(0.469883\pi\)
\(678\) 0 0
\(679\) 6.17699i 0.237051i
\(680\) 15.3109 37.5067i 0.587145 1.43832i
\(681\) 0 0
\(682\) −14.2063 + 16.1703i −0.543988 + 0.619193i
\(683\) 38.8999 1.48846 0.744231 0.667922i \(-0.232816\pi\)
0.744231 + 0.667922i \(0.232816\pi\)
\(684\) 0 0
\(685\) −4.43446 + 6.74979i −0.169432 + 0.257896i
\(686\) 17.9528 20.4347i 0.685440 0.780200i
\(687\) 0 0
\(688\) 40.2849 10.6416i 1.53585 0.405707i
\(689\) 19.3384i 0.736735i
\(690\) 0 0
\(691\) 10.5822 + 10.5822i 0.402567 + 0.402567i 0.879137 0.476570i \(-0.158120\pi\)
−0.476570 + 0.879137i \(0.658120\pi\)
\(692\) −30.4991 + 3.96037i −1.15940 + 0.150551i
\(693\) 0 0
\(694\) 0.108690 0.00702730i 0.00412580 0.000266753i
\(695\) −5.12724 + 7.80429i −0.194487 + 0.296034i
\(696\) 0 0
\(697\) 19.3345 + 19.3345i 0.732347 + 0.732347i
\(698\) 19.8195 22.5595i 0.750178 0.853889i
\(699\) 0 0
\(700\) 4.34424 17.1564i 0.164197 0.648452i
\(701\) −30.4758 + 30.4758i −1.15106 + 1.15106i −0.164715 + 0.986341i \(0.552671\pi\)
−0.986341 + 0.164715i \(0.947329\pi\)
\(702\) 0 0
\(703\) 6.98380 6.98380i 0.263399 0.263399i
\(704\) 10.8740 25.8628i 0.409828 0.974741i
\(705\) 0 0
\(706\) 31.1780 35.4882i 1.17340 1.33562i
\(707\) −23.5294 −0.884913
\(708\) 0 0
\(709\) −14.5515 + 14.5515i −0.546493 + 0.546493i −0.925425 0.378932i \(-0.876291\pi\)
0.378932 + 0.925425i \(0.376291\pi\)
\(710\) 15.3842 4.23616i 0.577359 0.158980i
\(711\) 0 0
\(712\) −2.15392 10.9808i −0.0807215 0.411522i
\(713\) 17.6424 17.6424i 0.660713 0.660713i
\(714\) 0 0
\(715\) 11.9144 + 7.82749i 0.445574 + 0.292732i
\(716\) −9.79339 + 12.7163i −0.365996 + 0.475231i
\(717\) 0 0
\(718\) −13.0105 + 0.841188i −0.485546 + 0.0313929i
\(719\) 31.9412 1.19120 0.595602 0.803279i \(-0.296913\pi\)
0.595602 + 0.803279i \(0.296913\pi\)
\(720\) 0 0
\(721\) 9.49468 0.353600
\(722\) 10.6712 0.689942i 0.397140 0.0256770i
\(723\) 0 0
\(724\) 1.70514 + 1.31320i 0.0633710 + 0.0488047i
\(725\) −41.2673 16.3455i −1.53263 0.607058i
\(726\) 0 0
\(727\) −32.0532 + 32.0532i −1.18879 + 1.18879i −0.211384 + 0.977403i \(0.567797\pi\)
−0.977403 + 0.211384i \(0.932203\pi\)
\(728\) −7.55283 5.07569i −0.279926 0.188118i
\(729\) 0 0
\(730\) 6.47229 11.3911i 0.239550 0.421604i
\(731\) −47.1804 + 47.1804i −1.74503 + 1.74503i
\(732\) 0 0
\(733\) 24.7535 0.914293 0.457146 0.889391i \(-0.348872\pi\)
0.457146 + 0.889391i \(0.348872\pi\)
\(734\) 4.57274 5.20491i 0.168783 0.192117i
\(735\) 0 0
\(736\) −14.5126 + 29.1033i −0.534942 + 1.07276i
\(737\) −26.8352 + 26.8352i −0.988488 + 0.988488i
\(738\) 0 0
\(739\) 17.6246 17.6246i 0.648333 0.648333i −0.304257 0.952590i \(-0.598408\pi\)
0.952590 + 0.304257i \(0.0984081\pi\)
\(740\) 4.27223 + 12.3412i 0.157050 + 0.453673i
\(741\) 0 0
\(742\) 17.5728 20.0022i 0.645117 0.734303i
\(743\) 4.45488 + 4.45488i 0.163434 + 0.163434i 0.784086 0.620652i \(-0.213132\pi\)
−0.620652 + 0.784086i \(0.713132\pi\)
\(744\) 0 0
\(745\) −40.1567 26.3820i −1.47123 0.966563i
\(746\) 27.0121 1.74646i 0.988984 0.0639424i
\(747\) 0 0
\(748\) 5.78533 + 44.5532i 0.211533 + 1.62903i
\(749\) 15.2442 + 15.2442i 0.557010 + 0.557010i
\(750\) 0 0
\(751\) 14.9291i 0.544770i −0.962188 0.272385i \(-0.912188\pi\)
0.962188 0.272385i \(-0.0878124\pi\)
\(752\) −0.733850 0.427160i −0.0267608 0.0155769i
\(753\) 0 0
\(754\) −15.0632 + 17.1456i −0.548569 + 0.624407i
\(755\) −1.20899 5.84002i −0.0439995 0.212540i
\(756\) 0 0
\(757\) 43.9059 1.59579 0.797894 0.602798i \(-0.205947\pi\)
0.797894 + 0.602798i \(0.205947\pi\)
\(758\) 26.2423 29.8702i 0.953162 1.08493i
\(759\) 0 0
\(760\) 8.08422 19.8037i 0.293246 0.718357i
\(761\) 2.39481i 0.0868119i 0.999058 + 0.0434059i \(0.0138209\pi\)
−0.999058 + 0.0434059i \(0.986179\pi\)
\(762\) 0 0
\(763\) 10.1212 0.366411
\(764\) −3.89521 29.9973i −0.140924 1.08526i
\(765\) 0 0
\(766\) 13.2848 + 11.6712i 0.479998 + 0.421699i
\(767\) 5.77575 + 5.77575i 0.208550 + 0.208550i
\(768\) 0 0
\(769\) 12.9527i 0.467085i −0.972347 0.233542i \(-0.924968\pi\)
0.972347 0.233542i \(-0.0750318\pi\)
\(770\) 5.21053 + 18.9227i 0.187774 + 0.681928i
\(771\) 0 0
\(772\) 17.1822 + 13.2328i 0.618402 + 0.476258i
\(773\) 16.1575i 0.581143i 0.956853 + 0.290572i \(0.0938455\pi\)
−0.956853 + 0.290572i \(0.906155\pi\)
\(774\) 0 0
\(775\) −8.61520 19.9161i −0.309467 0.715409i
\(776\) 8.19359 + 5.50630i 0.294133 + 0.197665i
\(777\) 0 0
\(778\) 1.59270 + 1.39926i 0.0571011 + 0.0501658i
\(779\) 10.2087 + 10.2087i 0.365766 + 0.365766i
\(780\) 0 0
\(781\) −12.5130 + 12.5130i −0.447752 + 0.447752i
\(782\) −3.36006 51.9693i −0.120155 1.85842i
\(783\) 0 0
\(784\) 3.95136 + 14.9583i 0.141120 + 0.534224i
\(785\) −8.31790 + 1.72195i −0.296878 + 0.0614590i
\(786\) 0 0
\(787\) −36.6090 −1.30497 −0.652485 0.757802i \(-0.726273\pi\)
−0.652485 + 0.757802i \(0.726273\pi\)
\(788\) −50.7525 + 6.59033i −1.80798 + 0.234771i
\(789\) 0 0
\(790\) −14.4884 + 3.98950i −0.515475 + 0.141940i
\(791\) −31.0907 −1.10546
\(792\) 0 0
\(793\) 8.66891 8.66891i 0.307842 0.307842i
\(794\) −6.14094 + 0.397041i −0.217934 + 0.0140904i
\(795\) 0 0
\(796\) 3.35857 + 25.8645i 0.119041 + 0.916744i
\(797\) 3.96964i 0.140612i 0.997525 + 0.0703060i \(0.0223976\pi\)
−0.997525 + 0.0703060i \(0.977602\pi\)
\(798\) 0 0
\(799\) 1.35974 0.0481041
\(800\) 18.8849 + 21.0561i 0.667683 + 0.744446i
\(801\) 0 0
\(802\) −1.92832 29.8249i −0.0680914 1.05315i
\(803\) 14.5295i 0.512737i
\(804\) 0 0
\(805\) −4.61202 22.2784i −0.162552 0.785211i
\(806\) −11.1342 + 0.719881i −0.392187 + 0.0253567i
\(807\) 0 0
\(808\) 20.9746 31.2110i 0.737883 1.09800i
\(809\) 54.3213 1.90984 0.954918 0.296868i \(-0.0959423\pi\)
0.954918 + 0.296868i \(0.0959423\pi\)
\(810\) 0 0
\(811\) −15.8944 + 15.8944i −0.558127 + 0.558127i −0.928774 0.370647i \(-0.879136\pi\)
0.370647 + 0.928774i \(0.379136\pi\)
\(812\) −31.1604 + 4.04624i −1.09351 + 0.141995i
\(813\) 0 0
\(814\) −10.8807 9.55916i −0.381368 0.335048i
\(815\) 43.8139 9.07024i 1.53473 0.317717i
\(816\) 0 0
\(817\) −24.9115 + 24.9115i −0.871544 + 0.871544i
\(818\) 0.0130403 + 0.201691i 0.000455943 + 0.00705197i
\(819\) 0 0
\(820\) −18.0401 + 6.24503i −0.629987 + 0.218086i
\(821\) 25.7579 + 25.7579i 0.898956 + 0.898956i 0.995344 0.0963881i \(-0.0307290\pi\)
−0.0963881 + 0.995344i \(0.530729\pi\)
\(822\) 0 0
\(823\) −9.20810 9.20810i −0.320974 0.320974i 0.528167 0.849141i \(-0.322880\pi\)
−0.849141 + 0.528167i \(0.822880\pi\)
\(824\) −8.46376 + 12.5944i −0.294849 + 0.438747i
\(825\) 0 0
\(826\) 0.725581 + 11.2224i 0.0252462 + 0.390477i
\(827\) 40.4359i 1.40609i −0.711143 0.703047i \(-0.751822\pi\)
0.711143 0.703047i \(-0.248178\pi\)
\(828\) 0 0
\(829\) 18.6969 + 18.6969i 0.649370 + 0.649370i 0.952841 0.303471i \(-0.0981454\pi\)
−0.303471 + 0.952841i \(0.598145\pi\)
\(830\) −12.8925 46.8210i −0.447506 1.62518i
\(831\) 0 0
\(832\) 13.4655 5.49400i 0.466832 0.190470i
\(833\) −17.5187 17.5187i −0.606986 0.606986i
\(834\) 0 0
\(835\) 19.8284 + 13.0268i 0.686189 + 0.450810i
\(836\) 3.05469 + 23.5243i 0.105649 + 0.813606i
\(837\) 0 0
\(838\) −4.72054 4.14720i −0.163068 0.143262i
\(839\) 7.89003i 0.272394i 0.990682 + 0.136197i \(0.0434880\pi\)
−0.990682 + 0.136197i \(0.956512\pi\)
\(840\) 0 0
\(841\) 49.8068i 1.71748i
\(842\) 34.0755 38.7864i 1.17432 1.33667i
\(843\) 0 0
\(844\) 9.06919 + 6.98457i 0.312174 + 0.240419i
\(845\) −4.39480 21.2291i −0.151186 0.730304i
\(846\) 0 0
\(847\) −1.62543 1.62543i −0.0558506 0.0558506i
\(848\) 10.8675 + 41.1401i 0.373192 + 1.41276i
\(849\) 0 0
\(850\) −43.0986 13.9277i −1.47827 0.477715i
\(851\) 11.8712 + 11.8712i 0.406941 + 0.406941i
\(852\) 0 0
\(853\) 6.59967i 0.225968i 0.993597 + 0.112984i \(0.0360409\pi\)
−0.993597 + 0.112984i \(0.963959\pi\)
\(854\) 16.8438 1.08903i 0.576385 0.0372660i
\(855\) 0 0
\(856\) −33.8099 + 6.63194i −1.15560 + 0.226675i
\(857\) −31.8196 31.8196i −1.08694 1.08694i −0.995842 0.0910940i \(-0.970964\pi\)
−0.0910940 0.995842i \(-0.529036\pi\)
\(858\) 0 0
\(859\) −12.6182 12.6182i −0.430527 0.430527i 0.458280 0.888808i \(-0.348466\pi\)
−0.888808 + 0.458280i \(0.848466\pi\)
\(860\) −15.2392 44.0217i −0.519654 1.50113i
\(861\) 0 0
\(862\) 9.20282 0.595006i 0.313449 0.0202660i
\(863\) 6.97660 6.97660i 0.237486 0.237486i −0.578322 0.815808i \(-0.696292\pi\)
0.815808 + 0.578322i \(0.196292\pi\)
\(864\) 0 0
\(865\) 6.97056 + 33.6714i 0.237006 + 1.14486i
\(866\) −33.1809 + 37.7681i −1.12753 + 1.28341i
\(867\) 0 0
\(868\) −12.1705 9.37306i −0.413095 0.318142i
\(869\) 11.7844 11.7844i 0.399760 0.399760i
\(870\) 0 0
\(871\) −19.6724 −0.666573
\(872\) −9.02222 + 13.4254i −0.305531 + 0.454642i
\(873\) 0 0
\(874\) −1.77413 27.4401i −0.0600108 0.928174i
\(875\) −19.4915 3.40600i −0.658933 0.115144i
\(876\) 0 0
\(877\) 22.3460i 0.754572i −0.926097 0.377286i \(-0.876857\pi\)
0.926097 0.377286i \(-0.123143\pi\)
\(878\) 55.1894 3.56825i 1.86255 0.120423i
\(879\) 0 0
\(880\) −29.7452 9.95653i −1.00271 0.335635i
\(881\) 18.6246 0.627478 0.313739 0.949509i \(-0.398418\pi\)
0.313739 + 0.949509i \(0.398418\pi\)
\(882\) 0 0
\(883\) 8.08610i 0.272119i −0.990701 0.136060i \(-0.956556\pi\)
0.990701 0.136060i \(-0.0434438\pi\)
\(884\) −14.2100 + 18.4511i −0.477933 + 0.620578i
\(885\) 0 0
\(886\) −1.86943 28.9140i −0.0628046 0.971386i
\(887\) −10.9628 + 10.9628i −0.368095 + 0.368095i −0.866782 0.498687i \(-0.833816\pi\)
0.498687 + 0.866782i \(0.333816\pi\)
\(888\) 0 0
\(889\) 18.4160 0.617654
\(890\) −12.0619 + 3.32134i −0.404316 + 0.111332i
\(891\) 0 0
\(892\) 11.9778 15.5527i 0.401046 0.520742i
\(893\) 0.717950 0.0240253
\(894\) 0 0
\(895\) 14.9978 + 9.85320i 0.501321 + 0.329356i
\(896\) 18.9200 + 6.55348i 0.632074 + 0.218937i
\(897\) 0 0
\(898\) −6.12797 + 0.396202i −0.204493 + 0.0132214i
\(899\) −27.2426 + 27.2426i −0.908593 + 0.908593i
\(900\) 0 0
\(901\) −48.1820 48.1820i −1.60518 1.60518i
\(902\) 13.9733 15.9051i 0.465261 0.529582i
\(903\) 0 0
\(904\) 27.7149 41.2408i 0.921783 1.37165i
\(905\) 1.32122 2.01106i 0.0439189 0.0668499i
\(906\) 0 0
\(907\) 8.71157i 0.289263i 0.989486 + 0.144631i \(0.0461997\pi\)
−0.989486 + 0.144631i \(0.953800\pi\)
\(908\) −6.63714 + 0.861848i −0.220261 + 0.0286014i
\(909\) 0 0
\(910\) −5.02608 + 8.84581i −0.166613 + 0.293236i
\(911\) 2.71760i 0.0900381i 0.998986 + 0.0450190i \(0.0143348\pi\)
−0.998986 + 0.0450190i \(0.985665\pi\)
\(912\) 0 0
\(913\) 38.0827 + 38.0827i 1.26035 + 1.26035i
\(914\) 19.5252 22.2245i 0.645837 0.735122i
\(915\) 0 0
\(916\) 20.6482 26.8109i 0.682236 0.885856i
\(917\) 11.3027 0.373250
\(918\) 0 0
\(919\) 26.3244i 0.868361i −0.900826 0.434181i \(-0.857038\pi\)
0.900826 0.434181i \(-0.142962\pi\)
\(920\) 33.6629 + 13.7417i 1.10983 + 0.453052i
\(921\) 0 0
\(922\) −22.5760 19.8340i −0.743502 0.653199i
\(923\) −9.17306 −0.301935
\(924\) 0 0
\(925\) 13.4012 5.79701i 0.440629 0.190604i
\(926\) −9.17571 8.06126i −0.301532 0.264909i
\(927\) 0 0
\(928\) 22.4098 44.9402i 0.735638 1.47523i
\(929\) 17.2416i 0.565677i 0.959168 + 0.282839i \(0.0912761\pi\)
−0.959168 + 0.282839i \(0.908724\pi\)
\(930\) 0 0
\(931\) −9.24996 9.24996i −0.303155 0.303155i
\(932\) 21.4559 27.8597i 0.702812 0.912574i
\(933\) 0 0
\(934\) 2.18718 + 33.8287i 0.0715668 + 1.10691i
\(935\) 49.1873 10.1826i 1.60860 0.333008i
\(936\) 0 0
\(937\) −6.71407 6.71407i −0.219339 0.219339i 0.588881 0.808220i \(-0.299569\pi\)
−0.808220 + 0.588881i \(0.799569\pi\)
\(938\) −20.3476 17.8762i −0.664372 0.583679i
\(939\) 0 0
\(940\) −0.414755 + 0.853950i −0.0135278 + 0.0278528i
\(941\) −10.9220 + 10.9220i −0.356048 + 0.356048i −0.862354 0.506306i \(-0.831011\pi\)
0.506306 + 0.862354i \(0.331011\pi\)
\(942\) 0 0
\(943\) −17.3530 + 17.3530i −0.565093 + 0.565093i
\(944\) −15.5330 9.04142i −0.505555 0.294273i
\(945\) 0 0
\(946\) 38.8119 + 34.0979i 1.26188 + 1.10862i
\(947\) −8.31220 −0.270110 −0.135055 0.990838i \(-0.543121\pi\)
−0.135055 + 0.990838i \(0.543121\pi\)
\(948\) 0 0
\(949\) −5.32566 + 5.32566i −0.172878 + 0.172878i
\(950\) −22.7563 7.35389i −0.738312 0.238592i
\(951\) 0 0
\(952\) −31.4642 + 6.17181i −1.01976 + 0.200030i
\(953\) −25.5971 + 25.5971i −0.829170 + 0.829170i −0.987402 0.158232i \(-0.949421\pi\)
0.158232 + 0.987402i \(0.449421\pi\)
\(954\) 0 0
\(955\) −33.1173 + 6.85587i −1.07165 + 0.221851i
\(956\) 49.0591 6.37043i 1.58668 0.206034i
\(957\) 0 0
\(958\) 3.29574 + 50.9745i 0.106481 + 1.64691i
\(959\) 6.39206 0.206410
\(960\) 0 0
\(961\) 12.1650 0.392420
\(962\) −0.484395 7.49202i −0.0156175 0.241553i
\(963\) 0 0
\(964\) −33.9815 + 4.41257i −1.09447 + 0.142119i
\(965\) 13.3136 20.2649i 0.428580 0.652351i
\(966\) 0 0
\(967\) 31.3819 31.3819i 1.00918 1.00918i 0.00921754 0.999958i \(-0.497066\pi\)
0.999958 0.00921754i \(-0.00293408\pi\)
\(968\) 3.60503 0.707141i 0.115870 0.0227284i
\(969\) 0 0
\(970\) 5.45248 9.59627i 0.175068 0.308118i
\(971\) −5.68257 + 5.68257i −0.182362 + 0.182362i −0.792384 0.610022i \(-0.791161\pi\)
0.610022 + 0.792384i \(0.291161\pi\)
\(972\) 0 0
\(973\) 7.39067 0.236934
\(974\) 38.1588 + 33.5242i 1.22269 + 1.07418i
\(975\) 0 0
\(976\) −13.5704 + 23.3136i −0.434378 + 0.746251i
\(977\) −15.4116 + 15.4116i −0.493062 + 0.493062i −0.909270 0.416208i \(-0.863359\pi\)
0.416208 + 0.909270i \(0.363359\pi\)
\(978\) 0 0
\(979\) 9.81078 9.81078i 0.313554 0.313554i
\(980\) 16.3458 5.65852i 0.522147 0.180755i
\(981\) 0 0
\(982\) 9.29369 + 8.16491i 0.296574 + 0.260553i
\(983\) −10.5760 10.5760i −0.337323 0.337323i 0.518036 0.855359i \(-0.326663\pi\)
−0.855359 + 0.518036i \(0.826663\pi\)
\(984\) 0 0
\(985\) 11.5995 + 56.0314i 0.369590 + 1.78531i
\(986\) 5.18846 + 80.2488i 0.165234 + 2.55564i
\(987\) 0 0
\(988\) −7.50295 + 9.74228i −0.238701 + 0.309943i
\(989\) −42.3452 42.3452i −1.34650 1.34650i
\(990\) 0 0
\(991\) 29.6786i 0.942771i 0.881927 + 0.471385i \(0.156246\pi\)
−0.881927 + 0.471385i \(0.843754\pi\)
\(992\) 23.2821 7.78850i 0.739209 0.247285i
\(993\) 0 0
\(994\) −9.48790 8.33553i −0.300938 0.264387i
\(995\) 28.5547 5.91133i 0.905246 0.187402i
\(996\) 0 0
\(997\) −9.96003 −0.315437 −0.157719 0.987484i \(-0.550414\pi\)
−0.157719 + 0.987484i \(0.550414\pi\)
\(998\) 38.0270 + 33.4084i 1.20372 + 1.05752i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 720.2.bd.h.523.6 20
3.2 odd 2 240.2.bc.f.43.5 yes 20
5.2 odd 4 720.2.z.h.667.10 20
12.11 even 2 960.2.bc.f.463.4 20
15.2 even 4 240.2.y.f.187.1 yes 20
16.3 odd 4 720.2.z.h.163.10 20
24.5 odd 2 1920.2.bc.k.1183.7 20
24.11 even 2 1920.2.bc.l.1183.7 20
48.5 odd 4 1920.2.y.k.223.10 20
48.11 even 4 1920.2.y.l.223.10 20
48.29 odd 4 960.2.y.f.943.1 20
48.35 even 4 240.2.y.f.163.1 20
60.47 odd 4 960.2.y.f.847.1 20
80.67 even 4 inner 720.2.bd.h.307.6 20
120.77 even 4 1920.2.y.l.1567.10 20
120.107 odd 4 1920.2.y.k.1567.10 20
240.77 even 4 960.2.bc.f.367.4 20
240.107 odd 4 1920.2.bc.k.607.7 20
240.197 even 4 1920.2.bc.l.607.7 20
240.227 odd 4 240.2.bc.f.67.5 yes 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
240.2.y.f.163.1 20 48.35 even 4
240.2.y.f.187.1 yes 20 15.2 even 4
240.2.bc.f.43.5 yes 20 3.2 odd 2
240.2.bc.f.67.5 yes 20 240.227 odd 4
720.2.z.h.163.10 20 16.3 odd 4
720.2.z.h.667.10 20 5.2 odd 4
720.2.bd.h.307.6 20 80.67 even 4 inner
720.2.bd.h.523.6 20 1.1 even 1 trivial
960.2.y.f.847.1 20 60.47 odd 4
960.2.y.f.943.1 20 48.29 odd 4
960.2.bc.f.367.4 20 240.77 even 4
960.2.bc.f.463.4 20 12.11 even 2
1920.2.y.k.223.10 20 48.5 odd 4
1920.2.y.k.1567.10 20 120.107 odd 4
1920.2.y.l.223.10 20 48.11 even 4
1920.2.y.l.1567.10 20 120.77 even 4
1920.2.bc.k.607.7 20 240.107 odd 4
1920.2.bc.k.1183.7 20 24.5 odd 2
1920.2.bc.l.607.7 20 240.197 even 4
1920.2.bc.l.1183.7 20 24.11 even 2