Properties

Label 960.2.y.f.847.1
Level $960$
Weight $2$
Character 960.847
Analytic conductor $7.666$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [960,2,Mod(847,960)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(960, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 1, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("960.847"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 960 = 2^{6} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 960.y (of order \(4\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,0,20,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.66563859404\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 2 x^{19} + 3 x^{18} - 6 x^{17} + 2 x^{16} + 4 x^{14} + 20 x^{13} - 24 x^{12} + 40 x^{11} + \cdots + 1024 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{17} \)
Twist minimal: no (minimal twist has level 240)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 847.1
Root \(0.0912451 + 1.41127i\) of defining polynomial
Character \(\chi\) \(=\) 960.847
Dual form 960.2.y.f.943.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{3} +(-2.18964 - 0.453294i) q^{5} +(-1.25143 - 1.25143i) q^{7} +1.00000 q^{9} +(-2.47980 + 2.47980i) q^{11} +1.81790i q^{13} +(-2.18964 - 0.453294i) q^{15} +(4.52932 + 4.52932i) q^{17} +(-2.39150 + 2.39150i) q^{19} +(-1.25143 - 1.25143i) q^{21} +(-4.06513 + 4.06513i) q^{23} +(4.58905 + 1.98510i) q^{25} +1.00000 q^{27} +(6.27721 + 6.27721i) q^{29} -4.33993i q^{31} +(-2.47980 + 2.47980i) q^{33} +(2.17292 + 3.30745i) q^{35} -2.92026i q^{37} +1.81790i q^{39} +4.26875i q^{41} +10.4167i q^{43} +(-2.18964 - 0.453294i) q^{45} +(0.150104 - 0.150104i) q^{47} -3.86784i q^{49} +(4.52932 + 4.52932i) q^{51} -10.6378 q^{53} +(6.55396 - 4.30580i) q^{55} +(-2.39150 + 2.39150i) q^{57} +(3.17716 + 3.17716i) q^{59} +(-4.76865 + 4.76865i) q^{61} +(-1.25143 - 1.25143i) q^{63} +(0.824041 - 3.98054i) q^{65} -10.8215i q^{67} +(-4.06513 + 4.06513i) q^{69} +5.04598 q^{71} +(-2.92958 - 2.92958i) q^{73} +(4.58905 + 1.98510i) q^{75} +6.20661 q^{77} -4.75216 q^{79} +1.00000 q^{81} -15.3571 q^{83} +(-7.86446 - 11.9707i) q^{85} +(6.27721 + 6.27721i) q^{87} -3.95627 q^{89} +(2.27497 - 2.27497i) q^{91} -4.33993i q^{93} +(6.32059 - 4.15248i) q^{95} +(2.46797 + 2.46797i) q^{97} +(-2.47980 + 2.47980i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 20 q^{3} + 4 q^{7} + 20 q^{9} - 8 q^{11} + 12 q^{17} - 16 q^{19} + 4 q^{21} + 16 q^{23} + 4 q^{25} + 20 q^{27} - 8 q^{33} + 28 q^{35} + 12 q^{51} + 8 q^{53} + 4 q^{55} - 16 q^{57} + 16 q^{59} - 12 q^{61}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/960\mathbb{Z}\right)^\times\).

\(n\) \(511\) \(577\) \(641\) \(901\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{4}\right)\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000 0.577350
\(4\) 0 0
\(5\) −2.18964 0.453294i −0.979237 0.202719i
\(6\) 0 0
\(7\) −1.25143 1.25143i −0.472996 0.472996i 0.429887 0.902883i \(-0.358554\pi\)
−0.902883 + 0.429887i \(0.858554\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) −2.47980 + 2.47980i −0.747689 + 0.747689i −0.974045 0.226356i \(-0.927319\pi\)
0.226356 + 0.974045i \(0.427319\pi\)
\(12\) 0 0
\(13\) 1.81790i 0.504194i 0.967702 + 0.252097i \(0.0811201\pi\)
−0.967702 + 0.252097i \(0.918880\pi\)
\(14\) 0 0
\(15\) −2.18964 0.453294i −0.565363 0.117040i
\(16\) 0 0
\(17\) 4.52932 + 4.52932i 1.09852 + 1.09852i 0.994584 + 0.103936i \(0.0331438\pi\)
0.103936 + 0.994584i \(0.466856\pi\)
\(18\) 0 0
\(19\) −2.39150 + 2.39150i −0.548649 + 0.548649i −0.926050 0.377401i \(-0.876818\pi\)
0.377401 + 0.926050i \(0.376818\pi\)
\(20\) 0 0
\(21\) −1.25143 1.25143i −0.273085 0.273085i
\(22\) 0 0
\(23\) −4.06513 + 4.06513i −0.847639 + 0.847639i −0.989838 0.142199i \(-0.954583\pi\)
0.142199 + 0.989838i \(0.454583\pi\)
\(24\) 0 0
\(25\) 4.58905 + 1.98510i 0.917810 + 0.397020i
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) 6.27721 + 6.27721i 1.16565 + 1.16565i 0.983219 + 0.182430i \(0.0583963\pi\)
0.182430 + 0.983219i \(0.441604\pi\)
\(30\) 0 0
\(31\) 4.33993i 0.779474i −0.920926 0.389737i \(-0.872566\pi\)
0.920926 0.389737i \(-0.127434\pi\)
\(32\) 0 0
\(33\) −2.47980 + 2.47980i −0.431679 + 0.431679i
\(34\) 0 0
\(35\) 2.17292 + 3.30745i 0.367290 + 0.559061i
\(36\) 0 0
\(37\) 2.92026i 0.480087i −0.970762 0.240044i \(-0.922838\pi\)
0.970762 0.240044i \(-0.0771617\pi\)
\(38\) 0 0
\(39\) 1.81790i 0.291096i
\(40\) 0 0
\(41\) 4.26875i 0.666667i 0.942809 + 0.333334i \(0.108174\pi\)
−0.942809 + 0.333334i \(0.891826\pi\)
\(42\) 0 0
\(43\) 10.4167i 1.58853i 0.607572 + 0.794264i \(0.292144\pi\)
−0.607572 + 0.794264i \(0.707856\pi\)
\(44\) 0 0
\(45\) −2.18964 0.453294i −0.326412 0.0675731i
\(46\) 0 0
\(47\) 0.150104 0.150104i 0.0218950 0.0218950i −0.696075 0.717970i \(-0.745072\pi\)
0.717970 + 0.696075i \(0.245072\pi\)
\(48\) 0 0
\(49\) 3.86784i 0.552549i
\(50\) 0 0
\(51\) 4.52932 + 4.52932i 0.634231 + 0.634231i
\(52\) 0 0
\(53\) −10.6378 −1.46122 −0.730608 0.682797i \(-0.760763\pi\)
−0.730608 + 0.682797i \(0.760763\pi\)
\(54\) 0 0
\(55\) 6.55396 4.30580i 0.883736 0.580594i
\(56\) 0 0
\(57\) −2.39150 + 2.39150i −0.316762 + 0.316762i
\(58\) 0 0
\(59\) 3.17716 + 3.17716i 0.413632 + 0.413632i 0.883002 0.469370i \(-0.155519\pi\)
−0.469370 + 0.883002i \(0.655519\pi\)
\(60\) 0 0
\(61\) −4.76865 + 4.76865i −0.610563 + 0.610563i −0.943093 0.332530i \(-0.892098\pi\)
0.332530 + 0.943093i \(0.392098\pi\)
\(62\) 0 0
\(63\) −1.25143 1.25143i −0.157665 0.157665i
\(64\) 0 0
\(65\) 0.824041 3.98054i 0.102210 0.493725i
\(66\) 0 0
\(67\) 10.8215i 1.32206i −0.750361 0.661029i \(-0.770120\pi\)
0.750361 0.661029i \(-0.229880\pi\)
\(68\) 0 0
\(69\) −4.06513 + 4.06513i −0.489385 + 0.489385i
\(70\) 0 0
\(71\) 5.04598 0.598847 0.299424 0.954120i \(-0.403206\pi\)
0.299424 + 0.954120i \(0.403206\pi\)
\(72\) 0 0
\(73\) −2.92958 2.92958i −0.342881 0.342881i 0.514568 0.857449i \(-0.327952\pi\)
−0.857449 + 0.514568i \(0.827952\pi\)
\(74\) 0 0
\(75\) 4.58905 + 1.98510i 0.529898 + 0.229220i
\(76\) 0 0
\(77\) 6.20661 0.707309
\(78\) 0 0
\(79\) −4.75216 −0.534660 −0.267330 0.963605i \(-0.586141\pi\)
−0.267330 + 0.963605i \(0.586141\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) −15.3571 −1.68567 −0.842833 0.538175i \(-0.819114\pi\)
−0.842833 + 0.538175i \(0.819114\pi\)
\(84\) 0 0
\(85\) −7.86446 11.9707i −0.853020 1.29840i
\(86\) 0 0
\(87\) 6.27721 + 6.27721i 0.672988 + 0.672988i
\(88\) 0 0
\(89\) −3.95627 −0.419364 −0.209682 0.977770i \(-0.567243\pi\)
−0.209682 + 0.977770i \(0.567243\pi\)
\(90\) 0 0
\(91\) 2.27497 2.27497i 0.238482 0.238482i
\(92\) 0 0
\(93\) 4.33993i 0.450030i
\(94\) 0 0
\(95\) 6.32059 4.15248i 0.648478 0.426035i
\(96\) 0 0
\(97\) 2.46797 + 2.46797i 0.250585 + 0.250585i 0.821210 0.570626i \(-0.193299\pi\)
−0.570626 + 0.821210i \(0.693299\pi\)
\(98\) 0 0
\(99\) −2.47980 + 2.47980i −0.249230 + 0.249230i
\(100\) 0 0
\(101\) 9.40099 + 9.40099i 0.935433 + 0.935433i 0.998038 0.0626050i \(-0.0199408\pi\)
−0.0626050 + 0.998038i \(0.519941\pi\)
\(102\) 0 0
\(103\) −3.79353 + 3.79353i −0.373788 + 0.373788i −0.868855 0.495067i \(-0.835143\pi\)
0.495067 + 0.868855i \(0.335143\pi\)
\(104\) 0 0
\(105\) 2.17292 + 3.30745i 0.212055 + 0.322774i
\(106\) 0 0
\(107\) −12.1814 −1.17762 −0.588810 0.808271i \(-0.700403\pi\)
−0.588810 + 0.808271i \(0.700403\pi\)
\(108\) 0 0
\(109\) −4.04384 4.04384i −0.387329 0.387329i 0.486404 0.873734i \(-0.338308\pi\)
−0.873734 + 0.486404i \(0.838308\pi\)
\(110\) 0 0
\(111\) 2.92026i 0.277178i
\(112\) 0 0
\(113\) 12.4221 12.4221i 1.16857 1.16857i 0.186023 0.982545i \(-0.440440\pi\)
0.982545 0.186023i \(-0.0595599\pi\)
\(114\) 0 0
\(115\) 10.7439 7.05848i 1.00187 0.658207i
\(116\) 0 0
\(117\) 1.81790i 0.168065i
\(118\) 0 0
\(119\) 11.3362i 1.03919i
\(120\) 0 0
\(121\) 1.29886i 0.118078i
\(122\) 0 0
\(123\) 4.26875i 0.384900i
\(124\) 0 0
\(125\) −9.14853 6.42685i −0.818270 0.574835i
\(126\) 0 0
\(127\) 7.35799 7.35799i 0.652916 0.652916i −0.300778 0.953694i \(-0.597246\pi\)
0.953694 + 0.300778i \(0.0972463\pi\)
\(128\) 0 0
\(129\) 10.4167i 0.917138i
\(130\) 0 0
\(131\) 4.51593 + 4.51593i 0.394559 + 0.394559i 0.876309 0.481750i \(-0.159999\pi\)
−0.481750 + 0.876309i \(0.659999\pi\)
\(132\) 0 0
\(133\) 5.98560 0.519018
\(134\) 0 0
\(135\) −2.18964 0.453294i −0.188454 0.0390133i
\(136\) 0 0
\(137\) 2.55390 2.55390i 0.218194 0.218194i −0.589543 0.807737i \(-0.700692\pi\)
0.807737 + 0.589543i \(0.200692\pi\)
\(138\) 0 0
\(139\) 2.95289 + 2.95289i 0.250461 + 0.250461i 0.821159 0.570699i \(-0.193328\pi\)
−0.570699 + 0.821159i \(0.693328\pi\)
\(140\) 0 0
\(141\) 0.150104 0.150104i 0.0126411 0.0126411i
\(142\) 0 0
\(143\) −4.50803 4.50803i −0.376980 0.376980i
\(144\) 0 0
\(145\) −10.8994 16.5903i −0.905147 1.37775i
\(146\) 0 0
\(147\) 3.86784i 0.319014i
\(148\) 0 0
\(149\) −15.1940 + 15.1940i −1.24474 + 1.24474i −0.286728 + 0.958012i \(0.592568\pi\)
−0.958012 + 0.286728i \(0.907432\pi\)
\(150\) 0 0
\(151\) 2.66712 0.217047 0.108523 0.994094i \(-0.465388\pi\)
0.108523 + 0.994094i \(0.465388\pi\)
\(152\) 0 0
\(153\) 4.52932 + 4.52932i 0.366173 + 0.366173i
\(154\) 0 0
\(155\) −1.96726 + 9.50288i −0.158014 + 0.763290i
\(156\) 0 0
\(157\) −3.79875 −0.303173 −0.151587 0.988444i \(-0.548438\pi\)
−0.151587 + 0.988444i \(0.548438\pi\)
\(158\) 0 0
\(159\) −10.6378 −0.843633
\(160\) 0 0
\(161\) 10.1745 0.801860
\(162\) 0 0
\(163\) 20.0096 1.56727 0.783637 0.621219i \(-0.213362\pi\)
0.783637 + 0.621219i \(0.213362\pi\)
\(164\) 0 0
\(165\) 6.55396 4.30580i 0.510225 0.335206i
\(166\) 0 0
\(167\) 7.50240 + 7.50240i 0.580553 + 0.580553i 0.935055 0.354502i \(-0.115350\pi\)
−0.354502 + 0.935055i \(0.615350\pi\)
\(168\) 0 0
\(169\) 9.69526 0.745789
\(170\) 0 0
\(171\) −2.39150 + 2.39150i −0.182883 + 0.182883i
\(172\) 0 0
\(173\) 15.3776i 1.16914i 0.811345 + 0.584568i \(0.198736\pi\)
−0.811345 + 0.584568i \(0.801264\pi\)
\(174\) 0 0
\(175\) −3.25866 8.22709i −0.246332 0.621910i
\(176\) 0 0
\(177\) 3.17716 + 3.17716i 0.238810 + 0.238810i
\(178\) 0 0
\(179\) −5.67467 + 5.67467i −0.424145 + 0.424145i −0.886628 0.462483i \(-0.846959\pi\)
0.462483 + 0.886628i \(0.346959\pi\)
\(180\) 0 0
\(181\) −0.760920 0.760920i −0.0565587 0.0565587i 0.678262 0.734820i \(-0.262734\pi\)
−0.734820 + 0.678262i \(0.762734\pi\)
\(182\) 0 0
\(183\) −4.76865 + 4.76865i −0.352509 + 0.352509i
\(184\) 0 0
\(185\) −1.32373 + 6.39431i −0.0973229 + 0.470119i
\(186\) 0 0
\(187\) −22.4636 −1.64270
\(188\) 0 0
\(189\) −1.25143 1.25143i −0.0910282 0.0910282i
\(190\) 0 0
\(191\) 15.1246i 1.09437i 0.837010 + 0.547187i \(0.184301\pi\)
−0.837010 + 0.547187i \(0.815699\pi\)
\(192\) 0 0
\(193\) −7.66759 + 7.66759i −0.551925 + 0.551925i −0.926996 0.375071i \(-0.877618\pi\)
0.375071 + 0.926996i \(0.377618\pi\)
\(194\) 0 0
\(195\) 0.824041 3.98054i 0.0590108 0.285052i
\(196\) 0 0
\(197\) 25.5893i 1.82316i −0.411120 0.911581i \(-0.634862\pi\)
0.411120 0.911581i \(-0.365138\pi\)
\(198\) 0 0
\(199\) 13.0408i 0.924440i −0.886765 0.462220i \(-0.847053\pi\)
0.886765 0.462220i \(-0.152947\pi\)
\(200\) 0 0
\(201\) 10.8215i 0.763290i
\(202\) 0 0
\(203\) 15.7110i 1.10270i
\(204\) 0 0
\(205\) 1.93500 9.34703i 0.135146 0.652825i
\(206\) 0 0
\(207\) −4.06513 + 4.06513i −0.282546 + 0.282546i
\(208\) 0 0
\(209\) 11.8609i 0.820437i
\(210\) 0 0
\(211\) 4.04713 + 4.04713i 0.278616 + 0.278616i 0.832556 0.553940i \(-0.186876\pi\)
−0.553940 + 0.832556i \(0.686876\pi\)
\(212\) 0 0
\(213\) 5.04598 0.345745
\(214\) 0 0
\(215\) 4.72182 22.8088i 0.322025 1.55555i
\(216\) 0 0
\(217\) −5.43112 + 5.43112i −0.368688 + 0.368688i
\(218\) 0 0
\(219\) −2.92958 2.92958i −0.197962 0.197962i
\(220\) 0 0
\(221\) −8.23382 + 8.23382i −0.553867 + 0.553867i
\(222\) 0 0
\(223\) −6.94039 6.94039i −0.464763 0.464763i 0.435450 0.900213i \(-0.356589\pi\)
−0.900213 + 0.435450i \(0.856589\pi\)
\(224\) 0 0
\(225\) 4.58905 + 1.98510i 0.305937 + 0.132340i
\(226\) 0 0
\(227\) 3.34643i 0.222110i 0.993814 + 0.111055i \(0.0354230\pi\)
−0.993814 + 0.111055i \(0.964577\pi\)
\(228\) 0 0
\(229\) 11.9644 11.9644i 0.790629 0.790629i −0.190968 0.981596i \(-0.561163\pi\)
0.981596 + 0.190968i \(0.0611626\pi\)
\(230\) 0 0
\(231\) 6.20661 0.408365
\(232\) 0 0
\(233\) −12.4324 12.4324i −0.814474 0.814474i 0.170827 0.985301i \(-0.445356\pi\)
−0.985301 + 0.170827i \(0.945356\pi\)
\(234\) 0 0
\(235\) −0.396716 + 0.260633i −0.0258789 + 0.0170018i
\(236\) 0 0
\(237\) −4.75216 −0.308686
\(238\) 0 0
\(239\) 24.7355 1.60000 0.800002 0.599997i \(-0.204832\pi\)
0.800002 + 0.599997i \(0.204832\pi\)
\(240\) 0 0
\(241\) 17.1334 1.10366 0.551829 0.833957i \(-0.313930\pi\)
0.551829 + 0.833957i \(0.313930\pi\)
\(242\) 0 0
\(243\) 1.00000 0.0641500
\(244\) 0 0
\(245\) −1.75327 + 8.46918i −0.112012 + 0.541076i
\(246\) 0 0
\(247\) −4.34750 4.34750i −0.276625 0.276625i
\(248\) 0 0
\(249\) −15.3571 −0.973219
\(250\) 0 0
\(251\) 21.3875 21.3875i 1.34997 1.34997i 0.464274 0.885692i \(-0.346315\pi\)
0.885692 0.464274i \(-0.153685\pi\)
\(252\) 0 0
\(253\) 20.1615i 1.26754i
\(254\) 0 0
\(255\) −7.86446 11.9707i −0.492492 0.749633i
\(256\) 0 0
\(257\) −17.3996 17.3996i −1.08536 1.08536i −0.996000 0.0893560i \(-0.971519\pi\)
−0.0893560 0.996000i \(-0.528481\pi\)
\(258\) 0 0
\(259\) −3.65450 + 3.65450i −0.227080 + 0.227080i
\(260\) 0 0
\(261\) 6.27721 + 6.27721i 0.388550 + 0.388550i
\(262\) 0 0
\(263\) −8.76818 + 8.76818i −0.540669 + 0.540669i −0.923725 0.383056i \(-0.874872\pi\)
0.383056 + 0.923725i \(0.374872\pi\)
\(264\) 0 0
\(265\) 23.2930 + 4.82206i 1.43088 + 0.296217i
\(266\) 0 0
\(267\) −3.95627 −0.242120
\(268\) 0 0
\(269\) 14.1435 + 14.1435i 0.862347 + 0.862347i 0.991610 0.129263i \(-0.0412611\pi\)
−0.129263 + 0.991610i \(0.541261\pi\)
\(270\) 0 0
\(271\) 24.2463i 1.47286i 0.676515 + 0.736429i \(0.263490\pi\)
−0.676515 + 0.736429i \(0.736510\pi\)
\(272\) 0 0
\(273\) 2.27497 2.27497i 0.137687 0.137687i
\(274\) 0 0
\(275\) −16.3026 + 6.45728i −0.983084 + 0.389389i
\(276\) 0 0
\(277\) 0.247833i 0.0148909i 0.999972 + 0.00744543i \(0.00236998\pi\)
−0.999972 + 0.00744543i \(0.997630\pi\)
\(278\) 0 0
\(279\) 4.33993i 0.259825i
\(280\) 0 0
\(281\) 13.2279i 0.789109i −0.918872 0.394555i \(-0.870899\pi\)
0.918872 0.394555i \(-0.129101\pi\)
\(282\) 0 0
\(283\) 22.2111i 1.32031i −0.751128 0.660157i \(-0.770490\pi\)
0.751128 0.660157i \(-0.229510\pi\)
\(284\) 0 0
\(285\) 6.32059 4.15248i 0.374399 0.245972i
\(286\) 0 0
\(287\) 5.34205 5.34205i 0.315331 0.315331i
\(288\) 0 0
\(289\) 24.0294i 1.41349i
\(290\) 0 0
\(291\) 2.46797 + 2.46797i 0.144675 + 0.144675i
\(292\) 0 0
\(293\) 2.93570 0.171505 0.0857526 0.996316i \(-0.472671\pi\)
0.0857526 + 0.996316i \(0.472671\pi\)
\(294\) 0 0
\(295\) −5.51666 8.39704i −0.321192 0.488894i
\(296\) 0 0
\(297\) −2.47980 + 2.47980i −0.143893 + 0.143893i
\(298\) 0 0
\(299\) −7.38999 7.38999i −0.427374 0.427374i
\(300\) 0 0
\(301\) 13.0358 13.0358i 0.751368 0.751368i
\(302\) 0 0
\(303\) 9.40099 + 9.40099i 0.540073 + 0.540073i
\(304\) 0 0
\(305\) 12.6032 8.28003i 0.721659 0.474113i
\(306\) 0 0
\(307\) 20.2428i 1.15532i −0.816278 0.577659i \(-0.803966\pi\)
0.816278 0.577659i \(-0.196034\pi\)
\(308\) 0 0
\(309\) −3.79353 + 3.79353i −0.215806 + 0.215806i
\(310\) 0 0
\(311\) 14.0432 0.796315 0.398157 0.917317i \(-0.369650\pi\)
0.398157 + 0.917317i \(0.369650\pi\)
\(312\) 0 0
\(313\) −10.3861 10.3861i −0.587058 0.587058i 0.349775 0.936834i \(-0.386258\pi\)
−0.936834 + 0.349775i \(0.886258\pi\)
\(314\) 0 0
\(315\) 2.17292 + 3.30745i 0.122430 + 0.186354i
\(316\) 0 0
\(317\) 11.6769 0.655839 0.327920 0.944706i \(-0.393653\pi\)
0.327920 + 0.944706i \(0.393653\pi\)
\(318\) 0 0
\(319\) −31.1325 −1.74309
\(320\) 0 0
\(321\) −12.1814 −0.679899
\(322\) 0 0
\(323\) −21.6637 −1.20540
\(324\) 0 0
\(325\) −3.60871 + 8.34241i −0.200175 + 0.462754i
\(326\) 0 0
\(327\) −4.04384 4.04384i −0.223625 0.223625i
\(328\) 0 0
\(329\) −0.375690 −0.0207125
\(330\) 0 0
\(331\) 12.0411 12.0411i 0.661841 0.661841i −0.293973 0.955814i \(-0.594978\pi\)
0.955814 + 0.293973i \(0.0949775\pi\)
\(332\) 0 0
\(333\) 2.92026i 0.160029i
\(334\) 0 0
\(335\) −4.90532 + 23.6952i −0.268006 + 1.29461i
\(336\) 0 0
\(337\) −0.558895 0.558895i −0.0304449 0.0304449i 0.691720 0.722165i \(-0.256853\pi\)
−0.722165 + 0.691720i \(0.756853\pi\)
\(338\) 0 0
\(339\) 12.4221 12.4221i 0.674673 0.674673i
\(340\) 0 0
\(341\) 10.7622 + 10.7622i 0.582804 + 0.582804i
\(342\) 0 0
\(343\) −13.6004 + 13.6004i −0.734350 + 0.734350i
\(344\) 0 0
\(345\) 10.7439 7.05848i 0.578431 0.380016i
\(346\) 0 0
\(347\) −0.0770157 −0.00413442 −0.00206721 0.999998i \(-0.500658\pi\)
−0.00206721 + 0.999998i \(0.500658\pi\)
\(348\) 0 0
\(349\) −15.0145 15.0145i −0.803708 0.803708i 0.179965 0.983673i \(-0.442402\pi\)
−0.983673 + 0.179965i \(0.942402\pi\)
\(350\) 0 0
\(351\) 1.81790i 0.0970321i
\(352\) 0 0
\(353\) −23.6193 + 23.6193i −1.25713 + 1.25713i −0.304668 + 0.952459i \(0.598546\pi\)
−0.952459 + 0.304668i \(0.901454\pi\)
\(354\) 0 0
\(355\) −11.0489 2.28731i −0.586413 0.121398i
\(356\) 0 0
\(357\) 11.3362i 0.599978i
\(358\) 0 0
\(359\) 9.21900i 0.486560i 0.969956 + 0.243280i \(0.0782234\pi\)
−0.969956 + 0.243280i \(0.921777\pi\)
\(360\) 0 0
\(361\) 7.56142i 0.397970i
\(362\) 0 0
\(363\) 1.29886i 0.0681725i
\(364\) 0 0
\(365\) 5.08676 + 7.74268i 0.266253 + 0.405270i
\(366\) 0 0
\(367\) 3.46414 3.46414i 0.180827 0.180827i −0.610889 0.791716i \(-0.709188\pi\)
0.791716 + 0.610889i \(0.209188\pi\)
\(368\) 0 0
\(369\) 4.26875i 0.222222i
\(370\) 0 0
\(371\) 13.3125 + 13.3125i 0.691150 + 0.691150i
\(372\) 0 0
\(373\) 19.1403 0.991049 0.495524 0.868594i \(-0.334976\pi\)
0.495524 + 0.868594i \(0.334976\pi\)
\(374\) 0 0
\(375\) −9.14853 6.42685i −0.472428 0.331881i
\(376\) 0 0
\(377\) −11.4113 + 11.4113i −0.587713 + 0.587713i
\(378\) 0 0
\(379\) 19.8802 + 19.8802i 1.02118 + 1.02118i 0.999771 + 0.0214054i \(0.00681406\pi\)
0.0214054 + 0.999771i \(0.493186\pi\)
\(380\) 0 0
\(381\) 7.35799 7.35799i 0.376961 0.376961i
\(382\) 0 0
\(383\) 8.84171 + 8.84171i 0.451790 + 0.451790i 0.895948 0.444158i \(-0.146497\pi\)
−0.444158 + 0.895948i \(0.646497\pi\)
\(384\) 0 0
\(385\) −13.5902 2.81342i −0.692623 0.143385i
\(386\) 0 0
\(387\) 10.4167i 0.529510i
\(388\) 0 0
\(389\) −1.06003 + 1.06003i −0.0537454 + 0.0537454i −0.733469 0.679723i \(-0.762100\pi\)
0.679723 + 0.733469i \(0.262100\pi\)
\(390\) 0 0
\(391\) −36.8245 −1.86230
\(392\) 0 0
\(393\) 4.51593 + 4.51593i 0.227799 + 0.227799i
\(394\) 0 0
\(395\) 10.4055 + 2.15413i 0.523559 + 0.108386i
\(396\) 0 0
\(397\) 4.35137 0.218389 0.109194 0.994020i \(-0.465173\pi\)
0.109194 + 0.994020i \(0.465173\pi\)
\(398\) 0 0
\(399\) 5.98560 0.299655
\(400\) 0 0
\(401\) −21.1334 −1.05535 −0.527676 0.849445i \(-0.676937\pi\)
−0.527676 + 0.849445i \(0.676937\pi\)
\(402\) 0 0
\(403\) 7.88954 0.393006
\(404\) 0 0
\(405\) −2.18964 0.453294i −0.108804 0.0225244i
\(406\) 0 0
\(407\) 7.24167 + 7.24167i 0.358956 + 0.358956i
\(408\) 0 0
\(409\) 0.142915 0.00706670 0.00353335 0.999994i \(-0.498875\pi\)
0.00353335 + 0.999994i \(0.498875\pi\)
\(410\) 0 0
\(411\) 2.55390 2.55390i 0.125975 0.125975i
\(412\) 0 0
\(413\) 7.95200i 0.391292i
\(414\) 0 0
\(415\) 33.6266 + 6.96130i 1.65067 + 0.341717i
\(416\) 0 0
\(417\) 2.95289 + 2.95289i 0.144604 + 0.144604i
\(418\) 0 0
\(419\) −3.14176 + 3.14176i −0.153485 + 0.153485i −0.779673 0.626187i \(-0.784614\pi\)
0.626187 + 0.779673i \(0.284614\pi\)
\(420\) 0 0
\(421\) 25.8144 + 25.8144i 1.25812 + 1.25812i 0.951992 + 0.306124i \(0.0990322\pi\)
0.306124 + 0.951992i \(0.400968\pi\)
\(422\) 0 0
\(423\) 0.150104 0.150104i 0.00729832 0.00729832i
\(424\) 0 0
\(425\) 11.7941 + 29.7764i 0.572098 + 1.44437i
\(426\) 0 0
\(427\) 11.9353 0.577588
\(428\) 0 0
\(429\) −4.50803 4.50803i −0.217650 0.217650i
\(430\) 0 0
\(431\) 6.52096i 0.314104i 0.987590 + 0.157052i \(0.0501990\pi\)
−0.987590 + 0.157052i \(0.949801\pi\)
\(432\) 0 0
\(433\) −25.1367 + 25.1367i −1.20799 + 1.20799i −0.236314 + 0.971677i \(0.575939\pi\)
−0.971677 + 0.236314i \(0.924061\pi\)
\(434\) 0 0
\(435\) −10.8994 16.5903i −0.522587 0.795442i
\(436\) 0 0
\(437\) 19.4436i 0.930112i
\(438\) 0 0
\(439\) 39.1063i 1.86644i 0.359305 + 0.933220i \(0.383014\pi\)
−0.359305 + 0.933220i \(0.616986\pi\)
\(440\) 0 0
\(441\) 3.86784i 0.184183i
\(442\) 0 0
\(443\) 20.4880i 0.973414i −0.873565 0.486707i \(-0.838198\pi\)
0.873565 0.486707i \(-0.161802\pi\)
\(444\) 0 0
\(445\) 8.66281 + 1.79335i 0.410656 + 0.0850131i
\(446\) 0 0
\(447\) −15.1940 + 15.1940i −0.718651 + 0.718651i
\(448\) 0 0
\(449\) 4.34217i 0.204920i −0.994737 0.102460i \(-0.967329\pi\)
0.994737 0.102460i \(-0.0326713\pi\)
\(450\) 0 0
\(451\) −10.5857 10.5857i −0.498460 0.498460i
\(452\) 0 0
\(453\) 2.66712 0.125312
\(454\) 0 0
\(455\) −6.01260 + 3.95014i −0.281875 + 0.185185i
\(456\) 0 0
\(457\) −14.7916 + 14.7916i −0.691921 + 0.691921i −0.962654 0.270733i \(-0.912734\pi\)
0.270733 + 0.962654i \(0.412734\pi\)
\(458\) 0 0
\(459\) 4.52932 + 4.52932i 0.211410 + 0.211410i
\(460\) 0 0
\(461\) −15.0255 + 15.0255i −0.699809 + 0.699809i −0.964369 0.264561i \(-0.914773\pi\)
0.264561 + 0.964369i \(0.414773\pi\)
\(462\) 0 0
\(463\) 6.10691 + 6.10691i 0.283812 + 0.283812i 0.834627 0.550815i \(-0.185683\pi\)
−0.550815 + 0.834627i \(0.685683\pi\)
\(464\) 0 0
\(465\) −1.96726 + 9.50288i −0.0912296 + 0.440686i
\(466\) 0 0
\(467\) 23.9704i 1.10922i −0.832111 0.554610i \(-0.812868\pi\)
0.832111 0.554610i \(-0.187132\pi\)
\(468\) 0 0
\(469\) −13.5424 + 13.5424i −0.625328 + 0.625328i
\(470\) 0 0
\(471\) −3.79875 −0.175037
\(472\) 0 0
\(473\) −25.8313 25.8313i −1.18773 1.18773i
\(474\) 0 0
\(475\) −15.7221 + 6.22735i −0.721380 + 0.285730i
\(476\) 0 0
\(477\) −10.6378 −0.487072
\(478\) 0 0
\(479\) 36.1197 1.65035 0.825176 0.564876i \(-0.191076\pi\)
0.825176 + 0.564876i \(0.191076\pi\)
\(480\) 0 0
\(481\) 5.30872 0.242057
\(482\) 0 0
\(483\) 10.1745 0.462954
\(484\) 0 0
\(485\) −4.28526 6.52269i −0.194583 0.296180i
\(486\) 0 0
\(487\) 25.3967 + 25.3967i 1.15083 + 1.15083i 0.986386 + 0.164447i \(0.0525839\pi\)
0.164447 + 0.986386i \(0.447416\pi\)
\(488\) 0 0
\(489\) 20.0096 0.904866
\(490\) 0 0
\(491\) −6.18543 + 6.18543i −0.279145 + 0.279145i −0.832768 0.553623i \(-0.813245\pi\)
0.553623 + 0.832768i \(0.313245\pi\)
\(492\) 0 0
\(493\) 56.8629i 2.56098i
\(494\) 0 0
\(495\) 6.55396 4.30580i 0.294579 0.193531i
\(496\) 0 0
\(497\) −6.31469 6.31469i −0.283253 0.283253i
\(498\) 0 0
\(499\) −25.3089 + 25.3089i −1.13298 + 1.13298i −0.143306 + 0.989678i \(0.545773\pi\)
−0.989678 + 0.143306i \(0.954227\pi\)
\(500\) 0 0
\(501\) 7.50240 + 7.50240i 0.335183 + 0.335183i
\(502\) 0 0
\(503\) −1.94744 + 1.94744i −0.0868322 + 0.0868322i −0.749189 0.662357i \(-0.769556\pi\)
0.662357 + 0.749189i \(0.269556\pi\)
\(504\) 0 0
\(505\) −16.3234 24.8462i −0.726381 1.10564i
\(506\) 0 0
\(507\) 9.69526 0.430581
\(508\) 0 0
\(509\) −17.9336 17.9336i −0.794891 0.794891i 0.187394 0.982285i \(-0.439996\pi\)
−0.982285 + 0.187394i \(0.939996\pi\)
\(510\) 0 0
\(511\) 7.33232i 0.324363i
\(512\) 0 0
\(513\) −2.39150 + 2.39150i −0.105587 + 0.105587i
\(514\) 0 0
\(515\) 10.0261 6.58688i 0.441801 0.290253i
\(516\) 0 0
\(517\) 0.744459i 0.0327413i
\(518\) 0 0
\(519\) 15.3776i 0.675001i
\(520\) 0 0
\(521\) 11.3666i 0.497981i −0.968506 0.248990i \(-0.919901\pi\)
0.968506 0.248990i \(-0.0800988\pi\)
\(522\) 0 0
\(523\) 19.1692i 0.838209i 0.907938 + 0.419104i \(0.137656\pi\)
−0.907938 + 0.419104i \(0.862344\pi\)
\(524\) 0 0
\(525\) −3.25866 8.22709i −0.142220 0.359060i
\(526\) 0 0
\(527\) 19.6569 19.6569i 0.856268 0.856268i
\(528\) 0 0
\(529\) 10.0506i 0.436983i
\(530\) 0 0
\(531\) 3.17716 + 3.17716i 0.137877 + 0.137877i
\(532\) 0 0
\(533\) −7.76015 −0.336129
\(534\) 0 0
\(535\) 26.6729 + 5.52176i 1.15317 + 0.238726i
\(536\) 0 0
\(537\) −5.67467 + 5.67467i −0.244880 + 0.244880i
\(538\) 0 0
\(539\) 9.59149 + 9.59149i 0.413135 + 0.413135i
\(540\) 0 0
\(541\) −4.06490 + 4.06490i −0.174764 + 0.174764i −0.789069 0.614305i \(-0.789436\pi\)
0.614305 + 0.789069i \(0.289436\pi\)
\(542\) 0 0
\(543\) −0.760920 0.760920i −0.0326542 0.0326542i
\(544\) 0 0
\(545\) 7.02150 + 10.6876i 0.300768 + 0.457806i
\(546\) 0 0
\(547\) 28.7783i 1.23047i 0.788344 + 0.615235i \(0.210939\pi\)
−0.788344 + 0.615235i \(0.789061\pi\)
\(548\) 0 0
\(549\) −4.76865 + 4.76865i −0.203521 + 0.203521i
\(550\) 0 0
\(551\) −30.0239 −1.27906
\(552\) 0 0
\(553\) 5.94700 + 5.94700i 0.252892 + 0.252892i
\(554\) 0 0
\(555\) −1.32373 + 6.39431i −0.0561894 + 0.271423i
\(556\) 0 0
\(557\) 8.96058 0.379672 0.189836 0.981816i \(-0.439204\pi\)
0.189836 + 0.981816i \(0.439204\pi\)
\(558\) 0 0
\(559\) −18.9364 −0.800926
\(560\) 0 0
\(561\) −22.4636 −0.948415
\(562\) 0 0
\(563\) −9.62086 −0.405471 −0.202736 0.979234i \(-0.564983\pi\)
−0.202736 + 0.979234i \(0.564983\pi\)
\(564\) 0 0
\(565\) −32.8307 + 21.5690i −1.38120 + 0.907414i
\(566\) 0 0
\(567\) −1.25143 1.25143i −0.0525552 0.0525552i
\(568\) 0 0
\(569\) 26.7360 1.12083 0.560415 0.828212i \(-0.310642\pi\)
0.560415 + 0.828212i \(0.310642\pi\)
\(570\) 0 0
\(571\) 28.0517 28.0517i 1.17393 1.17393i 0.192661 0.981265i \(-0.438288\pi\)
0.981265 0.192661i \(-0.0617117\pi\)
\(572\) 0 0
\(573\) 15.1246i 0.631837i
\(574\) 0 0
\(575\) −26.7248 + 10.5854i −1.11450 + 0.441441i
\(576\) 0 0
\(577\) 17.8580 + 17.8580i 0.743437 + 0.743437i 0.973238 0.229801i \(-0.0738075\pi\)
−0.229801 + 0.973238i \(0.573808\pi\)
\(578\) 0 0
\(579\) −7.66759 + 7.66759i −0.318654 + 0.318654i
\(580\) 0 0
\(581\) 19.2184 + 19.2184i 0.797314 + 0.797314i
\(582\) 0 0
\(583\) 26.3797 26.3797i 1.09254 1.09254i
\(584\) 0 0
\(585\) 0.824041 3.98054i 0.0340699 0.164575i
\(586\) 0 0
\(587\) 1.40264 0.0578931 0.0289465 0.999581i \(-0.490785\pi\)
0.0289465 + 0.999581i \(0.490785\pi\)
\(588\) 0 0
\(589\) 10.3790 + 10.3790i 0.427657 + 0.427657i
\(590\) 0 0
\(591\) 25.5893i 1.05260i
\(592\) 0 0
\(593\) 5.81813 5.81813i 0.238922 0.238922i −0.577482 0.816404i \(-0.695965\pi\)
0.816404 + 0.577482i \(0.195965\pi\)
\(594\) 0 0
\(595\) −5.13865 + 24.8223i −0.210664 + 1.01762i
\(596\) 0 0
\(597\) 13.0408i 0.533726i
\(598\) 0 0
\(599\) 13.1194i 0.536045i −0.963413 0.268023i \(-0.913630\pi\)
0.963413 0.268023i \(-0.0863702\pi\)
\(600\) 0 0
\(601\) 29.0758i 1.18603i −0.805193 0.593013i \(-0.797938\pi\)
0.805193 0.593013i \(-0.202062\pi\)
\(602\) 0 0
\(603\) 10.8215i 0.440686i
\(604\) 0 0
\(605\) −0.588766 + 2.84404i −0.0239367 + 0.115627i
\(606\) 0 0
\(607\) −8.32107 + 8.32107i −0.337742 + 0.337742i −0.855517 0.517775i \(-0.826760\pi\)
0.517775 + 0.855517i \(0.326760\pi\)
\(608\) 0 0
\(609\) 15.7110i 0.636642i
\(610\) 0 0
\(611\) 0.272874 + 0.272874i 0.0110393 + 0.0110393i
\(612\) 0 0
\(613\) 17.2991 0.698705 0.349353 0.936991i \(-0.386401\pi\)
0.349353 + 0.936991i \(0.386401\pi\)
\(614\) 0 0
\(615\) 1.93500 9.34703i 0.0780267 0.376909i
\(616\) 0 0
\(617\) 15.9755 15.9755i 0.643149 0.643149i −0.308179 0.951328i \(-0.599720\pi\)
0.951328 + 0.308179i \(0.0997197\pi\)
\(618\) 0 0
\(619\) 7.13212 + 7.13212i 0.286664 + 0.286664i 0.835760 0.549096i \(-0.185028\pi\)
−0.549096 + 0.835760i \(0.685028\pi\)
\(620\) 0 0
\(621\) −4.06513 + 4.06513i −0.163128 + 0.163128i
\(622\) 0 0
\(623\) 4.95100 + 4.95100i 0.198358 + 0.198358i
\(624\) 0 0
\(625\) 17.1187 + 18.2195i 0.684750 + 0.728778i
\(626\) 0 0
\(627\) 11.8609i 0.473680i
\(628\) 0 0
\(629\) 13.2268 13.2268i 0.527386 0.527386i
\(630\) 0 0
\(631\) −20.4868 −0.815565 −0.407782 0.913079i \(-0.633698\pi\)
−0.407782 + 0.913079i \(0.633698\pi\)
\(632\) 0 0
\(633\) 4.04713 + 4.04713i 0.160859 + 0.160859i
\(634\) 0 0
\(635\) −19.4467 + 12.7760i −0.771718 + 0.507001i
\(636\) 0 0
\(637\) 7.03133 0.278592
\(638\) 0 0
\(639\) 5.04598 0.199616
\(640\) 0 0
\(641\) 0.884584 0.0349390 0.0174695 0.999847i \(-0.494439\pi\)
0.0174695 + 0.999847i \(0.494439\pi\)
\(642\) 0 0
\(643\) 5.29313 0.208741 0.104370 0.994539i \(-0.466717\pi\)
0.104370 + 0.994539i \(0.466717\pi\)
\(644\) 0 0
\(645\) 4.72182 22.8088i 0.185921 0.898095i
\(646\) 0 0
\(647\) −9.15703 9.15703i −0.360000 0.360000i 0.503813 0.863813i \(-0.331930\pi\)
−0.863813 + 0.503813i \(0.831930\pi\)
\(648\) 0 0
\(649\) −15.7575 −0.618536
\(650\) 0 0
\(651\) −5.43112 + 5.43112i −0.212862 + 0.212862i
\(652\) 0 0
\(653\) 7.81012i 0.305634i −0.988255 0.152817i \(-0.951166\pi\)
0.988255 0.152817i \(-0.0488345\pi\)
\(654\) 0 0
\(655\) −7.84122 11.9353i −0.306382 0.466351i
\(656\) 0 0
\(657\) −2.92958 2.92958i −0.114294 0.114294i
\(658\) 0 0
\(659\) 4.73630 4.73630i 0.184500 0.184500i −0.608813 0.793313i \(-0.708354\pi\)
0.793313 + 0.608813i \(0.208354\pi\)
\(660\) 0 0
\(661\) −19.8678 19.8678i −0.772766 0.772766i 0.205823 0.978589i \(-0.434013\pi\)
−0.978589 + 0.205823i \(0.934013\pi\)
\(662\) 0 0
\(663\) −8.23382 + 8.23382i −0.319775 + 0.319775i
\(664\) 0 0
\(665\) −13.1063 2.71324i −0.508241 0.105215i
\(666\) 0 0
\(667\) −51.0354 −1.97610
\(668\) 0 0
\(669\) −6.94039 6.94039i −0.268331 0.268331i
\(670\) 0 0
\(671\) 23.6506i 0.913023i
\(672\) 0 0
\(673\) −15.4993 + 15.4993i −0.597455 + 0.597455i −0.939635 0.342180i \(-0.888835\pi\)
0.342180 + 0.939635i \(0.388835\pi\)
\(674\) 0 0
\(675\) 4.58905 + 1.98510i 0.176633 + 0.0764066i
\(676\) 0 0
\(677\) 4.91631i 0.188949i −0.995527 0.0944745i \(-0.969883\pi\)
0.995527 0.0944745i \(-0.0301171\pi\)
\(678\) 0 0
\(679\) 6.17699i 0.237051i
\(680\) 0 0
\(681\) 3.34643i 0.128236i
\(682\) 0 0
\(683\) 38.8999i 1.48846i −0.667922 0.744231i \(-0.732816\pi\)
0.667922 0.744231i \(-0.267184\pi\)
\(684\) 0 0
\(685\) −6.74979 + 4.43446i −0.257896 + 0.169432i
\(686\) 0 0
\(687\) 11.9644 11.9644i 0.456470 0.456470i
\(688\) 0 0
\(689\) 19.3384i 0.736735i
\(690\) 0 0
\(691\) −10.5822 10.5822i −0.402567 0.402567i 0.476570 0.879137i \(-0.341880\pi\)
−0.879137 + 0.476570i \(0.841880\pi\)
\(692\) 0 0
\(693\) 6.20661 0.235770
\(694\) 0 0
\(695\) −5.12724 7.80429i −0.194487 0.296034i
\(696\) 0 0
\(697\) −19.3345 + 19.3345i −0.732347 + 0.732347i
\(698\) 0 0
\(699\) −12.4324 12.4324i −0.470237 0.470237i
\(700\) 0 0
\(701\) 30.4758 30.4758i 1.15106 1.15106i 0.164715 0.986341i \(-0.447329\pi\)
0.986341 0.164715i \(-0.0526706\pi\)
\(702\) 0 0
\(703\) 6.98380 + 6.98380i 0.263399 + 0.263399i
\(704\) 0 0
\(705\) −0.396716 + 0.260633i −0.0149412 + 0.00981601i
\(706\) 0 0
\(707\) 23.5294i 0.884913i
\(708\) 0 0
\(709\) 14.5515 14.5515i 0.546493 0.546493i −0.378932 0.925425i \(-0.623709\pi\)
0.925425 + 0.378932i \(0.123709\pi\)
\(710\) 0 0
\(711\) −4.75216 −0.178220
\(712\) 0 0
\(713\) 17.6424 + 17.6424i 0.660713 + 0.660713i
\(714\) 0 0
\(715\) 7.82749 + 11.9144i 0.292732 + 0.445574i
\(716\) 0 0
\(717\) 24.7355 0.923763
\(718\) 0 0
\(719\) −31.9412 −1.19120 −0.595602 0.803279i \(-0.703087\pi\)
−0.595602 + 0.803279i \(0.703087\pi\)
\(720\) 0 0
\(721\) 9.49468 0.353600
\(722\) 0 0
\(723\) 17.1334 0.637197
\(724\) 0 0
\(725\) 16.3455 + 41.2673i 0.607058 + 1.53263i
\(726\) 0 0
\(727\) 32.0532 + 32.0532i 1.18879 + 1.18879i 0.977403 + 0.211384i \(0.0677970\pi\)
0.211384 + 0.977403i \(0.432203\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −47.1804 + 47.1804i −1.74503 + 1.74503i
\(732\) 0 0
\(733\) 24.7535i 0.914293i −0.889391 0.457146i \(-0.848872\pi\)
0.889391 0.457146i \(-0.151128\pi\)
\(734\) 0 0
\(735\) −1.75327 + 8.46918i −0.0646703 + 0.312390i
\(736\) 0 0
\(737\) 26.8352 + 26.8352i 0.988488 + 0.988488i
\(738\) 0 0
\(739\) 17.6246 17.6246i 0.648333 0.648333i −0.304257 0.952590i \(-0.598408\pi\)
0.952590 + 0.304257i \(0.0984081\pi\)
\(740\) 0 0
\(741\) −4.34750 4.34750i −0.159710 0.159710i
\(742\) 0 0
\(743\) 4.45488 4.45488i 0.163434 0.163434i −0.620652 0.784086i \(-0.713132\pi\)
0.784086 + 0.620652i \(0.213132\pi\)
\(744\) 0 0
\(745\) 40.1567 26.3820i 1.47123 0.966563i
\(746\) 0 0
\(747\) −15.3571 −0.561889
\(748\) 0 0
\(749\) 15.2442 + 15.2442i 0.557010 + 0.557010i
\(750\) 0 0
\(751\) 14.9291i 0.544770i 0.962188 + 0.272385i \(0.0878124\pi\)
−0.962188 + 0.272385i \(0.912188\pi\)
\(752\) 0 0
\(753\) 21.3875 21.3875i 0.779403 0.779403i
\(754\) 0 0
\(755\) −5.84002 1.20899i −0.212540 0.0439995i
\(756\) 0 0
\(757\) 43.9059i 1.59579i 0.602798 + 0.797894i \(0.294053\pi\)
−0.602798 + 0.797894i \(0.705947\pi\)
\(758\) 0 0
\(759\) 20.1615i 0.731815i
\(760\) 0 0
\(761\) 2.39481i 0.0868119i −0.999058 0.0434059i \(-0.986179\pi\)
0.999058 0.0434059i \(-0.0138209\pi\)
\(762\) 0 0
\(763\) 10.1212i 0.366411i
\(764\) 0 0
\(765\) −7.86446 11.9707i −0.284340 0.432801i
\(766\) 0 0
\(767\) −5.77575 + 5.77575i −0.208550 + 0.208550i
\(768\) 0 0
\(769\) 12.9527i 0.467085i 0.972347 + 0.233542i \(0.0750318\pi\)
−0.972347 + 0.233542i \(0.924968\pi\)
\(770\) 0 0
\(771\) −17.3996 17.3996i −0.626630 0.626630i
\(772\) 0 0
\(773\) −16.1575 −0.581143 −0.290572 0.956853i \(-0.593845\pi\)
−0.290572 + 0.956853i \(0.593845\pi\)
\(774\) 0 0
\(775\) 8.61520 19.9161i 0.309467 0.715409i
\(776\) 0 0
\(777\) −3.65450 + 3.65450i −0.131104 + 0.131104i
\(778\) 0 0
\(779\) −10.2087 10.2087i −0.365766 0.365766i
\(780\) 0 0
\(781\) −12.5130 + 12.5130i −0.447752 + 0.447752i
\(782\) 0 0
\(783\) 6.27721 + 6.27721i 0.224329 + 0.224329i
\(784\) 0 0
\(785\) 8.31790 + 1.72195i 0.296878 + 0.0614590i
\(786\) 0 0
\(787\) 36.6090i 1.30497i 0.757802 + 0.652485i \(0.226273\pi\)
−0.757802 + 0.652485i \(0.773727\pi\)
\(788\) 0 0
\(789\) −8.76818 + 8.76818i −0.312155 + 0.312155i
\(790\) 0 0
\(791\) −31.0907 −1.10546
\(792\) 0 0
\(793\) −8.66891 8.66891i −0.307842 0.307842i
\(794\) 0 0
\(795\) 23.2930 + 4.82206i 0.826117 + 0.171021i
\(796\) 0 0
\(797\) 3.96964 0.140612 0.0703060 0.997525i \(-0.477602\pi\)
0.0703060 + 0.997525i \(0.477602\pi\)
\(798\) 0 0
\(799\) 1.35974 0.0481041
\(800\) 0 0
\(801\) −3.95627 −0.139788
\(802\) 0 0
\(803\) 14.5295 0.512737
\(804\) 0 0
\(805\) −22.2784 4.61202i −0.785211 0.162552i
\(806\) 0 0
\(807\) 14.1435 + 14.1435i 0.497876 + 0.497876i
\(808\) 0 0
\(809\) 54.3213 1.90984 0.954918 0.296868i \(-0.0959423\pi\)
0.954918 + 0.296868i \(0.0959423\pi\)
\(810\) 0 0
\(811\) 15.8944 15.8944i 0.558127 0.558127i −0.370647 0.928774i \(-0.620864\pi\)
0.928774 + 0.370647i \(0.120864\pi\)
\(812\) 0 0
\(813\) 24.2463i 0.850355i
\(814\) 0 0
\(815\) −43.8139 9.07024i −1.53473 0.317717i
\(816\) 0 0
\(817\) −24.9115 24.9115i −0.871544 0.871544i
\(818\) 0 0
\(819\) 2.27497 2.27497i 0.0794939 0.0794939i
\(820\) 0 0
\(821\) −25.7579 25.7579i −0.898956 0.898956i 0.0963881 0.995344i \(-0.469271\pi\)
−0.995344 + 0.0963881i \(0.969271\pi\)
\(822\) 0 0
\(823\) 9.20810 9.20810i 0.320974 0.320974i −0.528167 0.849141i \(-0.677120\pi\)
0.849141 + 0.528167i \(0.177120\pi\)
\(824\) 0 0
\(825\) −16.3026 + 6.45728i −0.567584 + 0.224814i
\(826\) 0 0
\(827\) 40.4359 1.40609 0.703047 0.711143i \(-0.251822\pi\)
0.703047 + 0.711143i \(0.251822\pi\)
\(828\) 0 0
\(829\) −18.6969 18.6969i −0.649370 0.649370i 0.303471 0.952841i \(-0.401855\pi\)
−0.952841 + 0.303471i \(0.901855\pi\)
\(830\) 0 0
\(831\) 0.247833i 0.00859724i
\(832\) 0 0
\(833\) 17.5187 17.5187i 0.606986 0.606986i
\(834\) 0 0
\(835\) −13.0268 19.8284i −0.450810 0.686189i
\(836\) 0 0
\(837\) 4.33993i 0.150010i
\(838\) 0 0
\(839\) 7.89003i 0.272394i −0.990682 0.136197i \(-0.956512\pi\)
0.990682 0.136197i \(-0.0434880\pi\)
\(840\) 0 0
\(841\) 49.8068i 1.71748i
\(842\) 0 0
\(843\) 13.2279i 0.455593i
\(844\) 0 0
\(845\) −21.2291 4.39480i −0.730304 0.151186i
\(846\) 0 0
\(847\) −1.62543 + 1.62543i −0.0558506 + 0.0558506i
\(848\) 0 0
\(849\) 22.2111i 0.762283i
\(850\) 0 0
\(851\) 11.8712 + 11.8712i 0.406941 + 0.406941i
\(852\) 0 0
\(853\) 6.59967 0.225968 0.112984 0.993597i \(-0.463959\pi\)
0.112984 + 0.993597i \(0.463959\pi\)
\(854\) 0 0
\(855\) 6.32059 4.15248i 0.216159 0.142012i
\(856\) 0 0
\(857\) −31.8196 + 31.8196i −1.08694 + 1.08694i −0.0910940 + 0.995842i \(0.529036\pi\)
−0.995842 + 0.0910940i \(0.970964\pi\)
\(858\) 0 0
\(859\) −12.6182 12.6182i −0.430527 0.430527i 0.458280 0.888808i \(-0.348466\pi\)
−0.888808 + 0.458280i \(0.848466\pi\)
\(860\) 0 0
\(861\) 5.34205 5.34205i 0.182056 0.182056i
\(862\) 0 0
\(863\) −6.97660 6.97660i −0.237486 0.237486i 0.578322 0.815808i \(-0.303708\pi\)
−0.815808 + 0.578322i \(0.803708\pi\)
\(864\) 0 0
\(865\) 6.97056 33.6714i 0.237006 1.14486i
\(866\) 0 0
\(867\) 24.0294i 0.816081i
\(868\) 0 0
\(869\) 11.7844 11.7844i 0.399760 0.399760i
\(870\) 0 0
\(871\) 19.6724 0.666573
\(872\) 0 0
\(873\) 2.46797 + 2.46797i 0.0835282 + 0.0835282i
\(874\) 0 0
\(875\) 3.40600 + 19.4915i 0.115144 + 0.658933i
\(876\) 0 0
\(877\) 22.3460 0.754572 0.377286 0.926097i \(-0.376857\pi\)
0.377286 + 0.926097i \(0.376857\pi\)
\(878\) 0 0
\(879\) 2.93570 0.0990185
\(880\) 0 0
\(881\) −18.6246 −0.627478 −0.313739 0.949509i \(-0.601582\pi\)
−0.313739 + 0.949509i \(0.601582\pi\)
\(882\) 0 0
\(883\) 8.08610 0.272119 0.136060 0.990701i \(-0.456556\pi\)
0.136060 + 0.990701i \(0.456556\pi\)
\(884\) 0 0
\(885\) −5.51666 8.39704i −0.185440 0.282263i
\(886\) 0 0
\(887\) −10.9628 10.9628i −0.368095 0.368095i 0.498687 0.866782i \(-0.333816\pi\)
−0.866782 + 0.498687i \(0.833816\pi\)
\(888\) 0 0
\(889\) −18.4160 −0.617654
\(890\) 0 0
\(891\) −2.47980 + 2.47980i −0.0830766 + 0.0830766i
\(892\) 0 0
\(893\) 0.717950i 0.0240253i
\(894\) 0 0
\(895\) 14.9978 9.85320i 0.501321 0.329356i
\(896\) 0 0
\(897\) −7.38999 7.38999i −0.246745 0.246745i
\(898\) 0 0
\(899\) 27.2426 27.2426i 0.908593 0.908593i
\(900\) 0 0
\(901\) −48.1820 48.1820i −1.60518 1.60518i
\(902\) 0 0
\(903\) 13.0358 13.0358i 0.433803 0.433803i
\(904\) 0 0
\(905\) 1.32122 + 2.01106i 0.0439189 + 0.0668499i
\(906\) 0 0
\(907\) 8.71157 0.289263 0.144631 0.989486i \(-0.453800\pi\)
0.144631 + 0.989486i \(0.453800\pi\)
\(908\) 0 0
\(909\) 9.40099 + 9.40099i 0.311811 + 0.311811i
\(910\) 0 0
\(911\) 2.71760i 0.0900381i 0.998986 + 0.0450190i \(0.0143348\pi\)
−0.998986 + 0.0450190i \(0.985665\pi\)
\(912\) 0 0
\(913\) 38.0827 38.0827i 1.26035 1.26035i
\(914\) 0 0
\(915\) 12.6032 8.28003i 0.416650 0.273729i
\(916\) 0 0
\(917\) 11.3027i 0.373250i
\(918\) 0 0
\(919\) 26.3244i 0.868361i −0.900826 0.434181i \(-0.857038\pi\)
0.900826 0.434181i \(-0.142962\pi\)
\(920\) 0 0
\(921\) 20.2428i 0.667023i
\(922\) 0 0
\(923\) 9.17306i 0.301935i
\(924\) 0 0
\(925\) 5.79701 13.4012i 0.190604 0.440629i
\(926\) 0 0
\(927\) −3.79353 + 3.79353i −0.124596 + 0.124596i
\(928\) 0 0
\(929\) 17.2416i 0.565677i 0.959168 + 0.282839i \(0.0912761\pi\)
−0.959168 + 0.282839i \(0.908724\pi\)
\(930\) 0 0
\(931\) 9.24996 + 9.24996i 0.303155 + 0.303155i
\(932\) 0 0
\(933\) 14.0432 0.459753
\(934\) 0 0
\(935\) 49.1873 + 10.1826i 1.60860 + 0.333008i
\(936\) 0 0
\(937\) 6.71407 6.71407i 0.219339 0.219339i −0.588881 0.808220i \(-0.700431\pi\)
0.808220 + 0.588881i \(0.200431\pi\)
\(938\) 0 0
\(939\) −10.3861 10.3861i −0.338938 0.338938i
\(940\) 0 0
\(941\) 10.9220 10.9220i 0.356048 0.356048i −0.506306 0.862354i \(-0.668989\pi\)
0.862354 + 0.506306i \(0.168989\pi\)
\(942\) 0 0
\(943\) −17.3530 17.3530i −0.565093 0.565093i
\(944\) 0 0
\(945\) 2.17292 + 3.30745i 0.0706850 + 0.107591i
\(946\) 0 0
\(947\) 8.31220i 0.270110i −0.990838 0.135055i \(-0.956879\pi\)
0.990838 0.135055i \(-0.0431212\pi\)
\(948\) 0 0
\(949\) 5.32566 5.32566i 0.172878 0.172878i
\(950\) 0 0
\(951\) 11.6769 0.378649
\(952\) 0 0
\(953\) −25.5971 25.5971i −0.829170 0.829170i 0.158232 0.987402i \(-0.449421\pi\)
−0.987402 + 0.158232i \(0.949421\pi\)
\(954\) 0 0
\(955\) 6.85587 33.1173i 0.221851 1.07165i
\(956\) 0 0
\(957\) −31.1325 −1.00637
\(958\) 0 0
\(959\) −6.39206 −0.206410
\(960\) 0 0
\(961\) 12.1650 0.392420
\(962\) 0 0
\(963\) −12.1814 −0.392540
\(964\) 0 0
\(965\) 20.2649 13.3136i 0.652351 0.428580i
\(966\) 0 0
\(967\) −31.3819 31.3819i −1.00918 1.00918i −0.999958 0.00921754i \(-0.997066\pi\)
−0.00921754 0.999958i \(-0.502934\pi\)
\(968\) 0 0
\(969\) −21.6637 −0.695940
\(970\) 0 0
\(971\) −5.68257 + 5.68257i −0.182362 + 0.182362i −0.792384 0.610022i \(-0.791161\pi\)
0.610022 + 0.792384i \(0.291161\pi\)
\(972\) 0 0
\(973\) 7.39067i 0.236934i
\(974\) 0 0
\(975\) −3.60871 + 8.34241i −0.115571 + 0.267171i
\(976\) 0 0
\(977\) 15.4116 + 15.4116i 0.493062 + 0.493062i 0.909270 0.416208i \(-0.136641\pi\)
−0.416208 + 0.909270i \(0.636641\pi\)
\(978\) 0 0
\(979\) 9.81078 9.81078i 0.313554 0.313554i
\(980\) 0 0
\(981\) −4.04384 4.04384i −0.129110 0.129110i
\(982\) 0 0
\(983\) −10.5760 + 10.5760i −0.337323 + 0.337323i −0.855359 0.518036i \(-0.826663\pi\)
0.518036 + 0.855359i \(0.326663\pi\)
\(984\) 0 0
\(985\) −11.5995 + 56.0314i −0.369590 + 1.78531i
\(986\) 0 0
\(987\) −0.375690 −0.0119584
\(988\) 0 0
\(989\) −42.3452 42.3452i −1.34650 1.34650i
\(990\) 0 0
\(991\) 29.6786i 0.942771i −0.881927 0.471385i \(-0.843754\pi\)
0.881927 0.471385i \(-0.156246\pi\)
\(992\) 0 0
\(993\) 12.0411 12.0411i 0.382114 0.382114i
\(994\) 0 0
\(995\) −5.91133 + 28.5547i −0.187402 + 0.905246i
\(996\) 0 0
\(997\) 9.96003i 0.315437i −0.987484 0.157719i \(-0.949586\pi\)
0.987484 0.157719i \(-0.0504139\pi\)
\(998\) 0 0
\(999\) 2.92026i 0.0923928i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 960.2.y.f.847.1 20
4.3 odd 2 240.2.y.f.187.1 yes 20
5.3 odd 4 960.2.bc.f.463.4 20
8.3 odd 2 1920.2.y.l.1567.10 20
8.5 even 2 1920.2.y.k.1567.10 20
12.11 even 2 720.2.z.h.667.10 20
16.3 odd 4 960.2.bc.f.367.4 20
16.5 even 4 1920.2.bc.k.607.7 20
16.11 odd 4 1920.2.bc.l.607.7 20
16.13 even 4 240.2.bc.f.67.5 yes 20
20.3 even 4 240.2.bc.f.43.5 yes 20
40.3 even 4 1920.2.bc.k.1183.7 20
40.13 odd 4 1920.2.bc.l.1183.7 20
48.29 odd 4 720.2.bd.h.307.6 20
60.23 odd 4 720.2.bd.h.523.6 20
80.3 even 4 inner 960.2.y.f.943.1 20
80.13 odd 4 240.2.y.f.163.1 20
80.43 even 4 1920.2.y.k.223.10 20
80.53 odd 4 1920.2.y.l.223.10 20
240.173 even 4 720.2.z.h.163.10 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
240.2.y.f.163.1 20 80.13 odd 4
240.2.y.f.187.1 yes 20 4.3 odd 2
240.2.bc.f.43.5 yes 20 20.3 even 4
240.2.bc.f.67.5 yes 20 16.13 even 4
720.2.z.h.163.10 20 240.173 even 4
720.2.z.h.667.10 20 12.11 even 2
720.2.bd.h.307.6 20 48.29 odd 4
720.2.bd.h.523.6 20 60.23 odd 4
960.2.y.f.847.1 20 1.1 even 1 trivial
960.2.y.f.943.1 20 80.3 even 4 inner
960.2.bc.f.367.4 20 16.3 odd 4
960.2.bc.f.463.4 20 5.3 odd 4
1920.2.y.k.223.10 20 80.43 even 4
1920.2.y.k.1567.10 20 8.5 even 2
1920.2.y.l.223.10 20 80.53 odd 4
1920.2.y.l.1567.10 20 8.3 odd 2
1920.2.bc.k.607.7 20 16.5 even 4
1920.2.bc.k.1183.7 20 40.3 even 4
1920.2.bc.l.607.7 20 16.11 odd 4
1920.2.bc.l.1183.7 20 40.13 odd 4