Properties

Label 960.2.bc.f.463.4
Level $960$
Weight $2$
Character 960.463
Analytic conductor $7.666$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [960,2,Mod(367,960)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("960.367"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(960, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 3, 0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 960 = 2^{6} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 960.bc (of order \(4\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,0,0,0,8,0,4,0,-20,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.66563859404\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 2 x^{19} + 3 x^{18} - 6 x^{17} + 2 x^{16} + 4 x^{14} + 20 x^{13} - 24 x^{12} + 40 x^{11} + \cdots + 1024 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{17} \)
Twist minimal: no (minimal twist has level 240)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 463.4
Root \(0.0912451 - 1.41127i\) of defining polynomial
Character \(\chi\) \(=\) 960.463
Dual form 960.2.bc.f.367.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{3} +(-0.453294 - 2.18964i) q^{5} +(-1.25143 + 1.25143i) q^{7} -1.00000 q^{9} +(-2.47980 + 2.47980i) q^{11} -1.81790 q^{13} +(2.18964 - 0.453294i) q^{15} +(4.52932 - 4.52932i) q^{17} +(2.39150 - 2.39150i) q^{19} +(-1.25143 - 1.25143i) q^{21} +(-4.06513 - 4.06513i) q^{23} +(-4.58905 + 1.98510i) q^{25} -1.00000i q^{27} +(-6.27721 - 6.27721i) q^{29} -4.33993i q^{31} +(-2.47980 - 2.47980i) q^{33} +(3.30745 + 2.17292i) q^{35} -2.92026 q^{37} -1.81790i q^{39} +4.26875i q^{41} -10.4167 q^{43} +(0.453294 + 2.18964i) q^{45} +(-0.150104 - 0.150104i) q^{47} +3.86784i q^{49} +(4.52932 + 4.52932i) q^{51} -10.6378i q^{53} +(6.55396 + 4.30580i) q^{55} +(2.39150 + 2.39150i) q^{57} +(-3.17716 - 3.17716i) q^{59} +(-4.76865 + 4.76865i) q^{61} +(1.25143 - 1.25143i) q^{63} +(0.824041 + 3.98054i) q^{65} -10.8215 q^{67} +(4.06513 - 4.06513i) q^{69} +5.04598 q^{71} +(2.92958 - 2.92958i) q^{73} +(-1.98510 - 4.58905i) q^{75} -6.20661i q^{77} +4.75216 q^{79} +1.00000 q^{81} -15.3571i q^{83} +(-11.9707 - 7.86446i) q^{85} +(6.27721 - 6.27721i) q^{87} +3.95627 q^{89} +(2.27497 - 2.27497i) q^{91} +4.33993 q^{93} +(-6.32059 - 4.15248i) q^{95} +(2.46797 - 2.46797i) q^{97} +(2.47980 - 2.47980i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 8 q^{5} + 4 q^{7} - 20 q^{9} - 8 q^{11} + 8 q^{13} + 12 q^{17} + 16 q^{19} + 4 q^{21} + 16 q^{23} - 4 q^{25} - 8 q^{33} + 12 q^{35} + 24 q^{37} + 8 q^{43} - 8 q^{45} + 12 q^{51} + 4 q^{55} + 16 q^{57}+ \cdots + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/960\mathbb{Z}\right)^\times\).

\(n\) \(511\) \(577\) \(641\) \(901\)
\(\chi(n)\) \(-1\) \(e\left(\frac{3}{4}\right)\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000i 0.577350i
\(4\) 0 0
\(5\) −0.453294 2.18964i −0.202719 0.979237i
\(6\) 0 0
\(7\) −1.25143 + 1.25143i −0.472996 + 0.472996i −0.902883 0.429887i \(-0.858554\pi\)
0.429887 + 0.902883i \(0.358554\pi\)
\(8\) 0 0
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) −2.47980 + 2.47980i −0.747689 + 0.747689i −0.974045 0.226356i \(-0.927319\pi\)
0.226356 + 0.974045i \(0.427319\pi\)
\(12\) 0 0
\(13\) −1.81790 −0.504194 −0.252097 0.967702i \(-0.581120\pi\)
−0.252097 + 0.967702i \(0.581120\pi\)
\(14\) 0 0
\(15\) 2.18964 0.453294i 0.565363 0.117040i
\(16\) 0 0
\(17\) 4.52932 4.52932i 1.09852 1.09852i 0.103936 0.994584i \(-0.466856\pi\)
0.994584 0.103936i \(-0.0331438\pi\)
\(18\) 0 0
\(19\) 2.39150 2.39150i 0.548649 0.548649i −0.377401 0.926050i \(-0.623182\pi\)
0.926050 + 0.377401i \(0.123182\pi\)
\(20\) 0 0
\(21\) −1.25143 1.25143i −0.273085 0.273085i
\(22\) 0 0
\(23\) −4.06513 4.06513i −0.847639 0.847639i 0.142199 0.989838i \(-0.454583\pi\)
−0.989838 + 0.142199i \(0.954583\pi\)
\(24\) 0 0
\(25\) −4.58905 + 1.98510i −0.917810 + 0.397020i
\(26\) 0 0
\(27\) 1.00000i 0.192450i
\(28\) 0 0
\(29\) −6.27721 6.27721i −1.16565 1.16565i −0.983219 0.182430i \(-0.941604\pi\)
−0.182430 0.983219i \(-0.558396\pi\)
\(30\) 0 0
\(31\) 4.33993i 0.779474i −0.920926 0.389737i \(-0.872566\pi\)
0.920926 0.389737i \(-0.127434\pi\)
\(32\) 0 0
\(33\) −2.47980 2.47980i −0.431679 0.431679i
\(34\) 0 0
\(35\) 3.30745 + 2.17292i 0.559061 + 0.367290i
\(36\) 0 0
\(37\) −2.92026 −0.480087 −0.240044 0.970762i \(-0.577162\pi\)
−0.240044 + 0.970762i \(0.577162\pi\)
\(38\) 0 0
\(39\) 1.81790i 0.291096i
\(40\) 0 0
\(41\) 4.26875i 0.666667i 0.942809 + 0.333334i \(0.108174\pi\)
−0.942809 + 0.333334i \(0.891826\pi\)
\(42\) 0 0
\(43\) −10.4167 −1.58853 −0.794264 0.607572i \(-0.792144\pi\)
−0.794264 + 0.607572i \(0.792144\pi\)
\(44\) 0 0
\(45\) 0.453294 + 2.18964i 0.0675731 + 0.326412i
\(46\) 0 0
\(47\) −0.150104 0.150104i −0.0218950 0.0218950i 0.696075 0.717970i \(-0.254928\pi\)
−0.717970 + 0.696075i \(0.754928\pi\)
\(48\) 0 0
\(49\) 3.86784i 0.552549i
\(50\) 0 0
\(51\) 4.52932 + 4.52932i 0.634231 + 0.634231i
\(52\) 0 0
\(53\) 10.6378i 1.46122i −0.682797 0.730608i \(-0.739237\pi\)
0.682797 0.730608i \(-0.260763\pi\)
\(54\) 0 0
\(55\) 6.55396 + 4.30580i 0.883736 + 0.580594i
\(56\) 0 0
\(57\) 2.39150 + 2.39150i 0.316762 + 0.316762i
\(58\) 0 0
\(59\) −3.17716 3.17716i −0.413632 0.413632i 0.469370 0.883002i \(-0.344481\pi\)
−0.883002 + 0.469370i \(0.844481\pi\)
\(60\) 0 0
\(61\) −4.76865 + 4.76865i −0.610563 + 0.610563i −0.943093 0.332530i \(-0.892098\pi\)
0.332530 + 0.943093i \(0.392098\pi\)
\(62\) 0 0
\(63\) 1.25143 1.25143i 0.157665 0.157665i
\(64\) 0 0
\(65\) 0.824041 + 3.98054i 0.102210 + 0.493725i
\(66\) 0 0
\(67\) −10.8215 −1.32206 −0.661029 0.750361i \(-0.729880\pi\)
−0.661029 + 0.750361i \(0.729880\pi\)
\(68\) 0 0
\(69\) 4.06513 4.06513i 0.489385 0.489385i
\(70\) 0 0
\(71\) 5.04598 0.598847 0.299424 0.954120i \(-0.403206\pi\)
0.299424 + 0.954120i \(0.403206\pi\)
\(72\) 0 0
\(73\) 2.92958 2.92958i 0.342881 0.342881i −0.514568 0.857449i \(-0.672048\pi\)
0.857449 + 0.514568i \(0.172048\pi\)
\(74\) 0 0
\(75\) −1.98510 4.58905i −0.229220 0.529898i
\(76\) 0 0
\(77\) 6.20661i 0.707309i
\(78\) 0 0
\(79\) 4.75216 0.534660 0.267330 0.963605i \(-0.413859\pi\)
0.267330 + 0.963605i \(0.413859\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 15.3571i 1.68567i −0.538175 0.842833i \(-0.680886\pi\)
0.538175 0.842833i \(-0.319114\pi\)
\(84\) 0 0
\(85\) −11.9707 7.86446i −1.29840 0.853020i
\(86\) 0 0
\(87\) 6.27721 6.27721i 0.672988 0.672988i
\(88\) 0 0
\(89\) 3.95627 0.419364 0.209682 0.977770i \(-0.432757\pi\)
0.209682 + 0.977770i \(0.432757\pi\)
\(90\) 0 0
\(91\) 2.27497 2.27497i 0.238482 0.238482i
\(92\) 0 0
\(93\) 4.33993 0.450030
\(94\) 0 0
\(95\) −6.32059 4.15248i −0.648478 0.426035i
\(96\) 0 0
\(97\) 2.46797 2.46797i 0.250585 0.250585i −0.570626 0.821210i \(-0.693299\pi\)
0.821210 + 0.570626i \(0.193299\pi\)
\(98\) 0 0
\(99\) 2.47980 2.47980i 0.249230 0.249230i
\(100\) 0 0
\(101\) 9.40099 + 9.40099i 0.935433 + 0.935433i 0.998038 0.0626050i \(-0.0199408\pi\)
−0.0626050 + 0.998038i \(0.519941\pi\)
\(102\) 0 0
\(103\) −3.79353 3.79353i −0.373788 0.373788i 0.495067 0.868855i \(-0.335143\pi\)
−0.868855 + 0.495067i \(0.835143\pi\)
\(104\) 0 0
\(105\) −2.17292 + 3.30745i −0.212055 + 0.322774i
\(106\) 0 0
\(107\) 12.1814i 1.17762i 0.808271 + 0.588810i \(0.200403\pi\)
−0.808271 + 0.588810i \(0.799597\pi\)
\(108\) 0 0
\(109\) 4.04384 + 4.04384i 0.387329 + 0.387329i 0.873734 0.486404i \(-0.161692\pi\)
−0.486404 + 0.873734i \(0.661692\pi\)
\(110\) 0 0
\(111\) 2.92026i 0.277178i
\(112\) 0 0
\(113\) 12.4221 + 12.4221i 1.16857 + 1.16857i 0.982545 + 0.186023i \(0.0595599\pi\)
0.186023 + 0.982545i \(0.440440\pi\)
\(114\) 0 0
\(115\) −7.05848 + 10.7439i −0.658207 + 1.00187i
\(116\) 0 0
\(117\) 1.81790 0.168065
\(118\) 0 0
\(119\) 11.3362i 1.03919i
\(120\) 0 0
\(121\) 1.29886i 0.118078i
\(122\) 0 0
\(123\) −4.26875 −0.384900
\(124\) 0 0
\(125\) 6.42685 + 9.14853i 0.574835 + 0.818270i
\(126\) 0 0
\(127\) −7.35799 7.35799i −0.652916 0.652916i 0.300778 0.953694i \(-0.402754\pi\)
−0.953694 + 0.300778i \(0.902754\pi\)
\(128\) 0 0
\(129\) 10.4167i 0.917138i
\(130\) 0 0
\(131\) 4.51593 + 4.51593i 0.394559 + 0.394559i 0.876309 0.481750i \(-0.159999\pi\)
−0.481750 + 0.876309i \(0.659999\pi\)
\(132\) 0 0
\(133\) 5.98560i 0.519018i
\(134\) 0 0
\(135\) −2.18964 + 0.453294i −0.188454 + 0.0390133i
\(136\) 0 0
\(137\) −2.55390 2.55390i −0.218194 0.218194i 0.589543 0.807737i \(-0.299308\pi\)
−0.807737 + 0.589543i \(0.799308\pi\)
\(138\) 0 0
\(139\) −2.95289 2.95289i −0.250461 0.250461i 0.570699 0.821159i \(-0.306672\pi\)
−0.821159 + 0.570699i \(0.806672\pi\)
\(140\) 0 0
\(141\) 0.150104 0.150104i 0.0126411 0.0126411i
\(142\) 0 0
\(143\) 4.50803 4.50803i 0.376980 0.376980i
\(144\) 0 0
\(145\) −10.8994 + 16.5903i −0.905147 + 1.37775i
\(146\) 0 0
\(147\) −3.86784 −0.319014
\(148\) 0 0
\(149\) 15.1940 15.1940i 1.24474 1.24474i 0.286728 0.958012i \(-0.407432\pi\)
0.958012 0.286728i \(-0.0925675\pi\)
\(150\) 0 0
\(151\) 2.66712 0.217047 0.108523 0.994094i \(-0.465388\pi\)
0.108523 + 0.994094i \(0.465388\pi\)
\(152\) 0 0
\(153\) −4.52932 + 4.52932i −0.366173 + 0.366173i
\(154\) 0 0
\(155\) −9.50288 + 1.96726i −0.763290 + 0.158014i
\(156\) 0 0
\(157\) 3.79875i 0.303173i 0.988444 + 0.151587i \(0.0484383\pi\)
−0.988444 + 0.151587i \(0.951562\pi\)
\(158\) 0 0
\(159\) 10.6378 0.843633
\(160\) 0 0
\(161\) 10.1745 0.801860
\(162\) 0 0
\(163\) 20.0096i 1.56727i 0.621219 + 0.783637i \(0.286638\pi\)
−0.621219 + 0.783637i \(0.713362\pi\)
\(164\) 0 0
\(165\) −4.30580 + 6.55396i −0.335206 + 0.510225i
\(166\) 0 0
\(167\) 7.50240 7.50240i 0.580553 0.580553i −0.354502 0.935055i \(-0.615350\pi\)
0.935055 + 0.354502i \(0.115350\pi\)
\(168\) 0 0
\(169\) −9.69526 −0.745789
\(170\) 0 0
\(171\) −2.39150 + 2.39150i −0.182883 + 0.182883i
\(172\) 0 0
\(173\) −15.3776 −1.16914 −0.584568 0.811345i \(-0.698736\pi\)
−0.584568 + 0.811345i \(0.698736\pi\)
\(174\) 0 0
\(175\) 3.25866 8.22709i 0.246332 0.621910i
\(176\) 0 0
\(177\) 3.17716 3.17716i 0.238810 0.238810i
\(178\) 0 0
\(179\) 5.67467 5.67467i 0.424145 0.424145i −0.462483 0.886628i \(-0.653041\pi\)
0.886628 + 0.462483i \(0.153041\pi\)
\(180\) 0 0
\(181\) −0.760920 0.760920i −0.0565587 0.0565587i 0.678262 0.734820i \(-0.262734\pi\)
−0.734820 + 0.678262i \(0.762734\pi\)
\(182\) 0 0
\(183\) −4.76865 4.76865i −0.352509 0.352509i
\(184\) 0 0
\(185\) 1.32373 + 6.39431i 0.0973229 + 0.470119i
\(186\) 0 0
\(187\) 22.4636i 1.64270i
\(188\) 0 0
\(189\) 1.25143 + 1.25143i 0.0910282 + 0.0910282i
\(190\) 0 0
\(191\) 15.1246i 1.09437i 0.837010 + 0.547187i \(0.184301\pi\)
−0.837010 + 0.547187i \(0.815699\pi\)
\(192\) 0 0
\(193\) −7.66759 7.66759i −0.551925 0.551925i 0.375071 0.926996i \(-0.377618\pi\)
−0.926996 + 0.375071i \(0.877618\pi\)
\(194\) 0 0
\(195\) −3.98054 + 0.824041i −0.285052 + 0.0590108i
\(196\) 0 0
\(197\) −25.5893 −1.82316 −0.911581 0.411120i \(-0.865138\pi\)
−0.911581 + 0.411120i \(0.865138\pi\)
\(198\) 0 0
\(199\) 13.0408i 0.924440i 0.886765 + 0.462220i \(0.152947\pi\)
−0.886765 + 0.462220i \(0.847053\pi\)
\(200\) 0 0
\(201\) 10.8215i 0.763290i
\(202\) 0 0
\(203\) 15.7110 1.10270
\(204\) 0 0
\(205\) 9.34703 1.93500i 0.652825 0.135146i
\(206\) 0 0
\(207\) 4.06513 + 4.06513i 0.282546 + 0.282546i
\(208\) 0 0
\(209\) 11.8609i 0.820437i
\(210\) 0 0
\(211\) 4.04713 + 4.04713i 0.278616 + 0.278616i 0.832556 0.553940i \(-0.186876\pi\)
−0.553940 + 0.832556i \(0.686876\pi\)
\(212\) 0 0
\(213\) 5.04598i 0.345745i
\(214\) 0 0
\(215\) 4.72182 + 22.8088i 0.322025 + 1.55555i
\(216\) 0 0
\(217\) 5.43112 + 5.43112i 0.368688 + 0.368688i
\(218\) 0 0
\(219\) 2.92958 + 2.92958i 0.197962 + 0.197962i
\(220\) 0 0
\(221\) −8.23382 + 8.23382i −0.553867 + 0.553867i
\(222\) 0 0
\(223\) 6.94039 6.94039i 0.464763 0.464763i −0.435450 0.900213i \(-0.643411\pi\)
0.900213 + 0.435450i \(0.143411\pi\)
\(224\) 0 0
\(225\) 4.58905 1.98510i 0.305937 0.132340i
\(226\) 0 0
\(227\) 3.34643 0.222110 0.111055 0.993814i \(-0.464577\pi\)
0.111055 + 0.993814i \(0.464577\pi\)
\(228\) 0 0
\(229\) −11.9644 + 11.9644i −0.790629 + 0.790629i −0.981596 0.190968i \(-0.938837\pi\)
0.190968 + 0.981596i \(0.438837\pi\)
\(230\) 0 0
\(231\) 6.20661 0.408365
\(232\) 0 0
\(233\) 12.4324 12.4324i 0.814474 0.814474i −0.170827 0.985301i \(-0.554644\pi\)
0.985301 + 0.170827i \(0.0546439\pi\)
\(234\) 0 0
\(235\) −0.260633 + 0.396716i −0.0170018 + 0.0258789i
\(236\) 0 0
\(237\) 4.75216i 0.308686i
\(238\) 0 0
\(239\) −24.7355 −1.60000 −0.800002 0.599997i \(-0.795168\pi\)
−0.800002 + 0.599997i \(0.795168\pi\)
\(240\) 0 0
\(241\) 17.1334 1.10366 0.551829 0.833957i \(-0.313930\pi\)
0.551829 + 0.833957i \(0.313930\pi\)
\(242\) 0 0
\(243\) 1.00000i 0.0641500i
\(244\) 0 0
\(245\) 8.46918 1.75327i 0.541076 0.112012i
\(246\) 0 0
\(247\) −4.34750 + 4.34750i −0.276625 + 0.276625i
\(248\) 0 0
\(249\) 15.3571 0.973219
\(250\) 0 0
\(251\) 21.3875 21.3875i 1.34997 1.34997i 0.464274 0.885692i \(-0.346315\pi\)
0.885692 0.464274i \(-0.153685\pi\)
\(252\) 0 0
\(253\) 20.1615 1.26754
\(254\) 0 0
\(255\) 7.86446 11.9707i 0.492492 0.749633i
\(256\) 0 0
\(257\) −17.3996 + 17.3996i −1.08536 + 1.08536i −0.0893560 + 0.996000i \(0.528481\pi\)
−0.996000 + 0.0893560i \(0.971519\pi\)
\(258\) 0 0
\(259\) 3.65450 3.65450i 0.227080 0.227080i
\(260\) 0 0
\(261\) 6.27721 + 6.27721i 0.388550 + 0.388550i
\(262\) 0 0
\(263\) −8.76818 8.76818i −0.540669 0.540669i 0.383056 0.923725i \(-0.374872\pi\)
−0.923725 + 0.383056i \(0.874872\pi\)
\(264\) 0 0
\(265\) −23.2930 + 4.82206i −1.43088 + 0.296217i
\(266\) 0 0
\(267\) 3.95627i 0.242120i
\(268\) 0 0
\(269\) −14.1435 14.1435i −0.862347 0.862347i 0.129263 0.991610i \(-0.458739\pi\)
−0.991610 + 0.129263i \(0.958739\pi\)
\(270\) 0 0
\(271\) 24.2463i 1.47286i 0.676515 + 0.736429i \(0.263490\pi\)
−0.676515 + 0.736429i \(0.736510\pi\)
\(272\) 0 0
\(273\) 2.27497 + 2.27497i 0.137687 + 0.137687i
\(274\) 0 0
\(275\) 6.45728 16.3026i 0.389389 0.983084i
\(276\) 0 0
\(277\) 0.247833 0.0148909 0.00744543 0.999972i \(-0.497630\pi\)
0.00744543 + 0.999972i \(0.497630\pi\)
\(278\) 0 0
\(279\) 4.33993i 0.259825i
\(280\) 0 0
\(281\) 13.2279i 0.789109i −0.918872 0.394555i \(-0.870899\pi\)
0.918872 0.394555i \(-0.129101\pi\)
\(282\) 0 0
\(283\) 22.2111 1.32031 0.660157 0.751128i \(-0.270490\pi\)
0.660157 + 0.751128i \(0.270490\pi\)
\(284\) 0 0
\(285\) 4.15248 6.32059i 0.245972 0.374399i
\(286\) 0 0
\(287\) −5.34205 5.34205i −0.315331 0.315331i
\(288\) 0 0
\(289\) 24.0294i 1.41349i
\(290\) 0 0
\(291\) 2.46797 + 2.46797i 0.144675 + 0.144675i
\(292\) 0 0
\(293\) 2.93570i 0.171505i 0.996316 + 0.0857526i \(0.0273295\pi\)
−0.996316 + 0.0857526i \(0.972671\pi\)
\(294\) 0 0
\(295\) −5.51666 + 8.39704i −0.321192 + 0.488894i
\(296\) 0 0
\(297\) 2.47980 + 2.47980i 0.143893 + 0.143893i
\(298\) 0 0
\(299\) 7.38999 + 7.38999i 0.427374 + 0.427374i
\(300\) 0 0
\(301\) 13.0358 13.0358i 0.751368 0.751368i
\(302\) 0 0
\(303\) −9.40099 + 9.40099i −0.540073 + 0.540073i
\(304\) 0 0
\(305\) 12.6032 + 8.28003i 0.721659 + 0.474113i
\(306\) 0 0
\(307\) −20.2428 −1.15532 −0.577659 0.816278i \(-0.696034\pi\)
−0.577659 + 0.816278i \(0.696034\pi\)
\(308\) 0 0
\(309\) 3.79353 3.79353i 0.215806 0.215806i
\(310\) 0 0
\(311\) 14.0432 0.796315 0.398157 0.917317i \(-0.369650\pi\)
0.398157 + 0.917317i \(0.369650\pi\)
\(312\) 0 0
\(313\) 10.3861 10.3861i 0.587058 0.587058i −0.349775 0.936834i \(-0.613742\pi\)
0.936834 + 0.349775i \(0.113742\pi\)
\(314\) 0 0
\(315\) −3.30745 2.17292i −0.186354 0.122430i
\(316\) 0 0
\(317\) 11.6769i 0.655839i −0.944706 0.327920i \(-0.893653\pi\)
0.944706 0.327920i \(-0.106347\pi\)
\(318\) 0 0
\(319\) 31.1325 1.74309
\(320\) 0 0
\(321\) −12.1814 −0.679899
\(322\) 0 0
\(323\) 21.6637i 1.20540i
\(324\) 0 0
\(325\) 8.34241 3.60871i 0.462754 0.200175i
\(326\) 0 0
\(327\) −4.04384 + 4.04384i −0.223625 + 0.223625i
\(328\) 0 0
\(329\) 0.375690 0.0207125
\(330\) 0 0
\(331\) 12.0411 12.0411i 0.661841 0.661841i −0.293973 0.955814i \(-0.594978\pi\)
0.955814 + 0.293973i \(0.0949775\pi\)
\(332\) 0 0
\(333\) 2.92026 0.160029
\(334\) 0 0
\(335\) 4.90532 + 23.6952i 0.268006 + 1.29461i
\(336\) 0 0
\(337\) −0.558895 + 0.558895i −0.0304449 + 0.0304449i −0.722165 0.691720i \(-0.756853\pi\)
0.691720 + 0.722165i \(0.256853\pi\)
\(338\) 0 0
\(339\) −12.4221 + 12.4221i −0.674673 + 0.674673i
\(340\) 0 0
\(341\) 10.7622 + 10.7622i 0.582804 + 0.582804i
\(342\) 0 0
\(343\) −13.6004 13.6004i −0.734350 0.734350i
\(344\) 0 0
\(345\) −10.7439 7.05848i −0.578431 0.380016i
\(346\) 0 0
\(347\) 0.0770157i 0.00413442i 0.999998 + 0.00206721i \(0.000658013\pi\)
−0.999998 + 0.00206721i \(0.999342\pi\)
\(348\) 0 0
\(349\) 15.0145 + 15.0145i 0.803708 + 0.803708i 0.983673 0.179965i \(-0.0575984\pi\)
−0.179965 + 0.983673i \(0.557598\pi\)
\(350\) 0 0
\(351\) 1.81790i 0.0970321i
\(352\) 0 0
\(353\) −23.6193 23.6193i −1.25713 1.25713i −0.952459 0.304668i \(-0.901454\pi\)
−0.304668 0.952459i \(-0.598546\pi\)
\(354\) 0 0
\(355\) −2.28731 11.0489i −0.121398 0.586413i
\(356\) 0 0
\(357\) −11.3362 −0.599978
\(358\) 0 0
\(359\) 9.21900i 0.486560i −0.969956 0.243280i \(-0.921777\pi\)
0.969956 0.243280i \(-0.0782234\pi\)
\(360\) 0 0
\(361\) 7.56142i 0.397970i
\(362\) 0 0
\(363\) 1.29886 0.0681725
\(364\) 0 0
\(365\) −7.74268 5.08676i −0.405270 0.266253i
\(366\) 0 0
\(367\) −3.46414 3.46414i −0.180827 0.180827i 0.610889 0.791716i \(-0.290812\pi\)
−0.791716 + 0.610889i \(0.790812\pi\)
\(368\) 0 0
\(369\) 4.26875i 0.222222i
\(370\) 0 0
\(371\) 13.3125 + 13.3125i 0.691150 + 0.691150i
\(372\) 0 0
\(373\) 19.1403i 0.991049i 0.868594 + 0.495524i \(0.165024\pi\)
−0.868594 + 0.495524i \(0.834976\pi\)
\(374\) 0 0
\(375\) −9.14853 + 6.42685i −0.472428 + 0.331881i
\(376\) 0 0
\(377\) 11.4113 + 11.4113i 0.587713 + 0.587713i
\(378\) 0 0
\(379\) −19.8802 19.8802i −1.02118 1.02118i −0.999771 0.0214054i \(-0.993186\pi\)
−0.0214054 0.999771i \(-0.506814\pi\)
\(380\) 0 0
\(381\) 7.35799 7.35799i 0.376961 0.376961i
\(382\) 0 0
\(383\) −8.84171 + 8.84171i −0.451790 + 0.451790i −0.895948 0.444158i \(-0.853503\pi\)
0.444158 + 0.895948i \(0.353503\pi\)
\(384\) 0 0
\(385\) −13.5902 + 2.81342i −0.692623 + 0.143385i
\(386\) 0 0
\(387\) 10.4167 0.529510
\(388\) 0 0
\(389\) 1.06003 1.06003i 0.0537454 0.0537454i −0.679723 0.733469i \(-0.737900\pi\)
0.733469 + 0.679723i \(0.237900\pi\)
\(390\) 0 0
\(391\) −36.8245 −1.86230
\(392\) 0 0
\(393\) −4.51593 + 4.51593i −0.227799 + 0.227799i
\(394\) 0 0
\(395\) −2.15413 10.4055i −0.108386 0.523559i
\(396\) 0 0
\(397\) 4.35137i 0.218389i −0.994020 0.109194i \(-0.965173\pi\)
0.994020 0.109194i \(-0.0348271\pi\)
\(398\) 0 0
\(399\) −5.98560 −0.299655
\(400\) 0 0
\(401\) −21.1334 −1.05535 −0.527676 0.849445i \(-0.676937\pi\)
−0.527676 + 0.849445i \(0.676937\pi\)
\(402\) 0 0
\(403\) 7.88954i 0.393006i
\(404\) 0 0
\(405\) −0.453294 2.18964i −0.0225244 0.108804i
\(406\) 0 0
\(407\) 7.24167 7.24167i 0.358956 0.358956i
\(408\) 0 0
\(409\) −0.142915 −0.00706670 −0.00353335 0.999994i \(-0.501125\pi\)
−0.00353335 + 0.999994i \(0.501125\pi\)
\(410\) 0 0
\(411\) 2.55390 2.55390i 0.125975 0.125975i
\(412\) 0 0
\(413\) 7.95200 0.391292
\(414\) 0 0
\(415\) −33.6266 + 6.96130i −1.65067 + 0.341717i
\(416\) 0 0
\(417\) 2.95289 2.95289i 0.144604 0.144604i
\(418\) 0 0
\(419\) 3.14176 3.14176i 0.153485 0.153485i −0.626187 0.779673i \(-0.715386\pi\)
0.779673 + 0.626187i \(0.215386\pi\)
\(420\) 0 0
\(421\) 25.8144 + 25.8144i 1.25812 + 1.25812i 0.951992 + 0.306124i \(0.0990322\pi\)
0.306124 + 0.951992i \(0.400968\pi\)
\(422\) 0 0
\(423\) 0.150104 + 0.150104i 0.00729832 + 0.00729832i
\(424\) 0 0
\(425\) −11.7941 + 29.7764i −0.572098 + 1.44437i
\(426\) 0 0
\(427\) 11.9353i 0.577588i
\(428\) 0 0
\(429\) 4.50803 + 4.50803i 0.217650 + 0.217650i
\(430\) 0 0
\(431\) 6.52096i 0.314104i 0.987590 + 0.157052i \(0.0501990\pi\)
−0.987590 + 0.157052i \(0.949801\pi\)
\(432\) 0 0
\(433\) −25.1367 25.1367i −1.20799 1.20799i −0.971677 0.236314i \(-0.924061\pi\)
−0.236314 0.971677i \(-0.575939\pi\)
\(434\) 0 0
\(435\) −16.5903 10.8994i −0.795442 0.522587i
\(436\) 0 0
\(437\) −19.4436 −0.930112
\(438\) 0 0
\(439\) 39.1063i 1.86644i −0.359305 0.933220i \(-0.616986\pi\)
0.359305 0.933220i \(-0.383014\pi\)
\(440\) 0 0
\(441\) 3.86784i 0.184183i
\(442\) 0 0
\(443\) 20.4880 0.973414 0.486707 0.873565i \(-0.338198\pi\)
0.486707 + 0.873565i \(0.338198\pi\)
\(444\) 0 0
\(445\) −1.79335 8.66281i −0.0850131 0.410656i
\(446\) 0 0
\(447\) 15.1940 + 15.1940i 0.718651 + 0.718651i
\(448\) 0 0
\(449\) 4.34217i 0.204920i 0.994737 + 0.102460i \(0.0326713\pi\)
−0.994737 + 0.102460i \(0.967329\pi\)
\(450\) 0 0
\(451\) −10.5857 10.5857i −0.498460 0.498460i
\(452\) 0 0
\(453\) 2.66712i 0.125312i
\(454\) 0 0
\(455\) −6.01260 3.95014i −0.281875 0.185185i
\(456\) 0 0
\(457\) 14.7916 + 14.7916i 0.691921 + 0.691921i 0.962654 0.270733i \(-0.0872661\pi\)
−0.270733 + 0.962654i \(0.587266\pi\)
\(458\) 0 0
\(459\) −4.52932 4.52932i −0.211410 0.211410i
\(460\) 0 0
\(461\) −15.0255 + 15.0255i −0.699809 + 0.699809i −0.964369 0.264561i \(-0.914773\pi\)
0.264561 + 0.964369i \(0.414773\pi\)
\(462\) 0 0
\(463\) −6.10691 + 6.10691i −0.283812 + 0.283812i −0.834627 0.550815i \(-0.814317\pi\)
0.550815 + 0.834627i \(0.314317\pi\)
\(464\) 0 0
\(465\) −1.96726 9.50288i −0.0912296 0.440686i
\(466\) 0 0
\(467\) −23.9704 −1.10922 −0.554610 0.832111i \(-0.687132\pi\)
−0.554610 + 0.832111i \(0.687132\pi\)
\(468\) 0 0
\(469\) 13.5424 13.5424i 0.625328 0.625328i
\(470\) 0 0
\(471\) −3.79875 −0.175037
\(472\) 0 0
\(473\) 25.8313 25.8313i 1.18773 1.18773i
\(474\) 0 0
\(475\) −6.22735 + 15.7221i −0.285730 + 0.721380i
\(476\) 0 0
\(477\) 10.6378i 0.487072i
\(478\) 0 0
\(479\) −36.1197 −1.65035 −0.825176 0.564876i \(-0.808924\pi\)
−0.825176 + 0.564876i \(0.808924\pi\)
\(480\) 0 0
\(481\) 5.30872 0.242057
\(482\) 0 0
\(483\) 10.1745i 0.462954i
\(484\) 0 0
\(485\) −6.52269 4.28526i −0.296180 0.194583i
\(486\) 0 0
\(487\) 25.3967 25.3967i 1.15083 1.15083i 0.164447 0.986386i \(-0.447416\pi\)
0.986386 0.164447i \(-0.0525839\pi\)
\(488\) 0 0
\(489\) −20.0096 −0.904866
\(490\) 0 0
\(491\) −6.18543 + 6.18543i −0.279145 + 0.279145i −0.832768 0.553623i \(-0.813245\pi\)
0.553623 + 0.832768i \(0.313245\pi\)
\(492\) 0 0
\(493\) −56.8629 −2.56098
\(494\) 0 0
\(495\) −6.55396 4.30580i −0.294579 0.193531i
\(496\) 0 0
\(497\) −6.31469 + 6.31469i −0.283253 + 0.283253i
\(498\) 0 0
\(499\) 25.3089 25.3089i 1.13298 1.13298i 0.143306 0.989678i \(-0.454227\pi\)
0.989678 0.143306i \(-0.0457732\pi\)
\(500\) 0 0
\(501\) 7.50240 + 7.50240i 0.335183 + 0.335183i
\(502\) 0 0
\(503\) −1.94744 1.94744i −0.0868322 0.0868322i 0.662357 0.749189i \(-0.269556\pi\)
−0.749189 + 0.662357i \(0.769556\pi\)
\(504\) 0 0
\(505\) 16.3234 24.8462i 0.726381 1.10564i
\(506\) 0 0
\(507\) 9.69526i 0.430581i
\(508\) 0 0
\(509\) 17.9336 + 17.9336i 0.794891 + 0.794891i 0.982285 0.187394i \(-0.0600042\pi\)
−0.187394 + 0.982285i \(0.560004\pi\)
\(510\) 0 0
\(511\) 7.33232i 0.324363i
\(512\) 0 0
\(513\) −2.39150 2.39150i −0.105587 0.105587i
\(514\) 0 0
\(515\) −6.58688 + 10.0261i −0.290253 + 0.441801i
\(516\) 0 0
\(517\) 0.744459 0.0327413
\(518\) 0 0
\(519\) 15.3776i 0.675001i
\(520\) 0 0
\(521\) 11.3666i 0.497981i −0.968506 0.248990i \(-0.919901\pi\)
0.968506 0.248990i \(-0.0800988\pi\)
\(522\) 0 0
\(523\) −19.1692 −0.838209 −0.419104 0.907938i \(-0.637656\pi\)
−0.419104 + 0.907938i \(0.637656\pi\)
\(524\) 0 0
\(525\) 8.22709 + 3.25866i 0.359060 + 0.142220i
\(526\) 0 0
\(527\) −19.6569 19.6569i −0.856268 0.856268i
\(528\) 0 0
\(529\) 10.0506i 0.436983i
\(530\) 0 0
\(531\) 3.17716 + 3.17716i 0.137877 + 0.137877i
\(532\) 0 0
\(533\) 7.76015i 0.336129i
\(534\) 0 0
\(535\) 26.6729 5.52176i 1.15317 0.238726i
\(536\) 0 0
\(537\) 5.67467 + 5.67467i 0.244880 + 0.244880i
\(538\) 0 0
\(539\) −9.59149 9.59149i −0.413135 0.413135i
\(540\) 0 0
\(541\) −4.06490 + 4.06490i −0.174764 + 0.174764i −0.789069 0.614305i \(-0.789436\pi\)
0.614305 + 0.789069i \(0.289436\pi\)
\(542\) 0 0
\(543\) 0.760920 0.760920i 0.0326542 0.0326542i
\(544\) 0 0
\(545\) 7.02150 10.6876i 0.300768 0.457806i
\(546\) 0 0
\(547\) 28.7783 1.23047 0.615235 0.788344i \(-0.289061\pi\)
0.615235 + 0.788344i \(0.289061\pi\)
\(548\) 0 0
\(549\) 4.76865 4.76865i 0.203521 0.203521i
\(550\) 0 0
\(551\) −30.0239 −1.27906
\(552\) 0 0
\(553\) −5.94700 + 5.94700i −0.252892 + 0.252892i
\(554\) 0 0
\(555\) −6.39431 + 1.32373i −0.271423 + 0.0561894i
\(556\) 0 0
\(557\) 8.96058i 0.379672i −0.981816 0.189836i \(-0.939204\pi\)
0.981816 0.189836i \(-0.0607956\pi\)
\(558\) 0 0
\(559\) 18.9364 0.800926
\(560\) 0 0
\(561\) −22.4636 −0.948415
\(562\) 0 0
\(563\) 9.62086i 0.405471i −0.979234 0.202736i \(-0.935017\pi\)
0.979234 0.202736i \(-0.0649832\pi\)
\(564\) 0 0
\(565\) 21.5690 32.8307i 0.907414 1.38120i
\(566\) 0 0
\(567\) −1.25143 + 1.25143i −0.0525552 + 0.0525552i
\(568\) 0 0
\(569\) −26.7360 −1.12083 −0.560415 0.828212i \(-0.689358\pi\)
−0.560415 + 0.828212i \(0.689358\pi\)
\(570\) 0 0
\(571\) 28.0517 28.0517i 1.17393 1.17393i 0.192661 0.981265i \(-0.438288\pi\)
0.981265 0.192661i \(-0.0617117\pi\)
\(572\) 0 0
\(573\) −15.1246 −0.631837
\(574\) 0 0
\(575\) 26.7248 + 10.5854i 1.11450 + 0.441441i
\(576\) 0 0
\(577\) 17.8580 17.8580i 0.743437 0.743437i −0.229801 0.973238i \(-0.573808\pi\)
0.973238 + 0.229801i \(0.0738075\pi\)
\(578\) 0 0
\(579\) 7.66759 7.66759i 0.318654 0.318654i
\(580\) 0 0
\(581\) 19.2184 + 19.2184i 0.797314 + 0.797314i
\(582\) 0 0
\(583\) 26.3797 + 26.3797i 1.09254 + 1.09254i
\(584\) 0 0
\(585\) −0.824041 3.98054i −0.0340699 0.164575i
\(586\) 0 0
\(587\) 1.40264i 0.0578931i −0.999581 0.0289465i \(-0.990785\pi\)
0.999581 0.0289465i \(-0.00921525\pi\)
\(588\) 0 0
\(589\) −10.3790 10.3790i −0.427657 0.427657i
\(590\) 0 0
\(591\) 25.5893i 1.05260i
\(592\) 0 0
\(593\) 5.81813 + 5.81813i 0.238922 + 0.238922i 0.816404 0.577482i \(-0.195965\pi\)
−0.577482 + 0.816404i \(0.695965\pi\)
\(594\) 0 0
\(595\) 24.8223 5.13865i 1.01762 0.210664i
\(596\) 0 0
\(597\) −13.0408 −0.533726
\(598\) 0 0
\(599\) 13.1194i 0.536045i 0.963413 + 0.268023i \(0.0863702\pi\)
−0.963413 + 0.268023i \(0.913630\pi\)
\(600\) 0 0
\(601\) 29.0758i 1.18603i −0.805193 0.593013i \(-0.797938\pi\)
0.805193 0.593013i \(-0.202062\pi\)
\(602\) 0 0
\(603\) 10.8215 0.440686
\(604\) 0 0
\(605\) −2.84404 + 0.588766i −0.115627 + 0.0239367i
\(606\) 0 0
\(607\) 8.32107 + 8.32107i 0.337742 + 0.337742i 0.855517 0.517775i \(-0.173240\pi\)
−0.517775 + 0.855517i \(0.673240\pi\)
\(608\) 0 0
\(609\) 15.7110i 0.636642i
\(610\) 0 0
\(611\) 0.272874 + 0.272874i 0.0110393 + 0.0110393i
\(612\) 0 0
\(613\) 17.2991i 0.698705i 0.936991 + 0.349353i \(0.113599\pi\)
−0.936991 + 0.349353i \(0.886401\pi\)
\(614\) 0 0
\(615\) 1.93500 + 9.34703i 0.0780267 + 0.376909i
\(616\) 0 0
\(617\) −15.9755 15.9755i −0.643149 0.643149i 0.308179 0.951328i \(-0.400280\pi\)
−0.951328 + 0.308179i \(0.900280\pi\)
\(618\) 0 0
\(619\) −7.13212 7.13212i −0.286664 0.286664i 0.549096 0.835760i \(-0.314972\pi\)
−0.835760 + 0.549096i \(0.814972\pi\)
\(620\) 0 0
\(621\) −4.06513 + 4.06513i −0.163128 + 0.163128i
\(622\) 0 0
\(623\) −4.95100 + 4.95100i −0.198358 + 0.198358i
\(624\) 0 0
\(625\) 17.1187 18.2195i 0.684750 0.728778i
\(626\) 0 0
\(627\) −11.8609 −0.473680
\(628\) 0 0
\(629\) −13.2268 + 13.2268i −0.527386 + 0.527386i
\(630\) 0 0
\(631\) −20.4868 −0.815565 −0.407782 0.913079i \(-0.633698\pi\)
−0.407782 + 0.913079i \(0.633698\pi\)
\(632\) 0 0
\(633\) −4.04713 + 4.04713i −0.160859 + 0.160859i
\(634\) 0 0
\(635\) −12.7760 + 19.4467i −0.507001 + 0.771718i
\(636\) 0 0
\(637\) 7.03133i 0.278592i
\(638\) 0 0
\(639\) −5.04598 −0.199616
\(640\) 0 0
\(641\) 0.884584 0.0349390 0.0174695 0.999847i \(-0.494439\pi\)
0.0174695 + 0.999847i \(0.494439\pi\)
\(642\) 0 0
\(643\) 5.29313i 0.208741i 0.994539 + 0.104370i \(0.0332827\pi\)
−0.994539 + 0.104370i \(0.966717\pi\)
\(644\) 0 0
\(645\) −22.8088 + 4.72182i −0.898095 + 0.185921i
\(646\) 0 0
\(647\) −9.15703 + 9.15703i −0.360000 + 0.360000i −0.863813 0.503813i \(-0.831930\pi\)
0.503813 + 0.863813i \(0.331930\pi\)
\(648\) 0 0
\(649\) 15.7575 0.618536
\(650\) 0 0
\(651\) −5.43112 + 5.43112i −0.212862 + 0.212862i
\(652\) 0 0
\(653\) 7.81012 0.305634 0.152817 0.988255i \(-0.451166\pi\)
0.152817 + 0.988255i \(0.451166\pi\)
\(654\) 0 0
\(655\) 7.84122 11.9353i 0.306382 0.466351i
\(656\) 0 0
\(657\) −2.92958 + 2.92958i −0.114294 + 0.114294i
\(658\) 0 0
\(659\) −4.73630 + 4.73630i −0.184500 + 0.184500i −0.793313 0.608813i \(-0.791646\pi\)
0.608813 + 0.793313i \(0.291646\pi\)
\(660\) 0 0
\(661\) −19.8678 19.8678i −0.772766 0.772766i 0.205823 0.978589i \(-0.434013\pi\)
−0.978589 + 0.205823i \(0.934013\pi\)
\(662\) 0 0
\(663\) −8.23382 8.23382i −0.319775 0.319775i
\(664\) 0 0
\(665\) 13.1063 2.71324i 0.508241 0.105215i
\(666\) 0 0
\(667\) 51.0354i 1.97610i
\(668\) 0 0
\(669\) 6.94039 + 6.94039i 0.268331 + 0.268331i
\(670\) 0 0
\(671\) 23.6506i 0.913023i
\(672\) 0 0
\(673\) −15.4993 15.4993i −0.597455 0.597455i 0.342180 0.939635i \(-0.388835\pi\)
−0.939635 + 0.342180i \(0.888835\pi\)
\(674\) 0 0
\(675\) 1.98510 + 4.58905i 0.0764066 + 0.176633i
\(676\) 0 0
\(677\) −4.91631 −0.188949 −0.0944745 0.995527i \(-0.530117\pi\)
−0.0944745 + 0.995527i \(0.530117\pi\)
\(678\) 0 0
\(679\) 6.17699i 0.237051i
\(680\) 0 0
\(681\) 3.34643i 0.128236i
\(682\) 0 0
\(683\) 38.8999 1.48846 0.744231 0.667922i \(-0.232816\pi\)
0.744231 + 0.667922i \(0.232816\pi\)
\(684\) 0 0
\(685\) −4.43446 + 6.74979i −0.169432 + 0.257896i
\(686\) 0 0
\(687\) −11.9644 11.9644i −0.456470 0.456470i
\(688\) 0 0
\(689\) 19.3384i 0.736735i
\(690\) 0 0
\(691\) −10.5822 10.5822i −0.402567 0.402567i 0.476570 0.879137i \(-0.341880\pi\)
−0.879137 + 0.476570i \(0.841880\pi\)
\(692\) 0 0
\(693\) 6.20661i 0.235770i
\(694\) 0 0
\(695\) −5.12724 + 7.80429i −0.194487 + 0.296034i
\(696\) 0 0
\(697\) 19.3345 + 19.3345i 0.732347 + 0.732347i
\(698\) 0 0
\(699\) 12.4324 + 12.4324i 0.470237 + 0.470237i
\(700\) 0 0
\(701\) 30.4758 30.4758i 1.15106 1.15106i 0.164715 0.986341i \(-0.447329\pi\)
0.986341 0.164715i \(-0.0526706\pi\)
\(702\) 0 0
\(703\) −6.98380 + 6.98380i −0.263399 + 0.263399i
\(704\) 0 0
\(705\) −0.396716 0.260633i −0.0149412 0.00981601i
\(706\) 0 0
\(707\) −23.5294 −0.884913
\(708\) 0 0
\(709\) −14.5515 + 14.5515i −0.546493 + 0.546493i −0.925425 0.378932i \(-0.876291\pi\)
0.378932 + 0.925425i \(0.376291\pi\)
\(710\) 0 0
\(711\) −4.75216 −0.178220
\(712\) 0 0
\(713\) −17.6424 + 17.6424i −0.660713 + 0.660713i
\(714\) 0 0
\(715\) −11.9144 7.82749i −0.445574 0.292732i
\(716\) 0 0
\(717\) 24.7355i 0.923763i
\(718\) 0 0
\(719\) 31.9412 1.19120 0.595602 0.803279i \(-0.296913\pi\)
0.595602 + 0.803279i \(0.296913\pi\)
\(720\) 0 0
\(721\) 9.49468 0.353600
\(722\) 0 0
\(723\) 17.1334i 0.637197i
\(724\) 0 0
\(725\) 41.2673 + 16.3455i 1.53263 + 0.607058i
\(726\) 0 0
\(727\) 32.0532 32.0532i 1.18879 1.18879i 0.211384 0.977403i \(-0.432203\pi\)
0.977403 0.211384i \(-0.0677970\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) −47.1804 + 47.1804i −1.74503 + 1.74503i
\(732\) 0 0
\(733\) 24.7535 0.914293 0.457146 0.889391i \(-0.348872\pi\)
0.457146 + 0.889391i \(0.348872\pi\)
\(734\) 0 0
\(735\) 1.75327 + 8.46918i 0.0646703 + 0.312390i
\(736\) 0 0
\(737\) 26.8352 26.8352i 0.988488 0.988488i
\(738\) 0 0
\(739\) −17.6246 + 17.6246i −0.648333 + 0.648333i −0.952590 0.304257i \(-0.901592\pi\)
0.304257 + 0.952590i \(0.401592\pi\)
\(740\) 0 0
\(741\) −4.34750 4.34750i −0.159710 0.159710i
\(742\) 0 0
\(743\) 4.45488 + 4.45488i 0.163434 + 0.163434i 0.784086 0.620652i \(-0.213132\pi\)
−0.620652 + 0.784086i \(0.713132\pi\)
\(744\) 0 0
\(745\) −40.1567 26.3820i −1.47123 0.966563i
\(746\) 0 0
\(747\) 15.3571i 0.561889i
\(748\) 0 0
\(749\) −15.2442 15.2442i −0.557010 0.557010i
\(750\) 0 0
\(751\) 14.9291i 0.544770i 0.962188 + 0.272385i \(0.0878124\pi\)
−0.962188 + 0.272385i \(0.912188\pi\)
\(752\) 0 0
\(753\) 21.3875 + 21.3875i 0.779403 + 0.779403i
\(754\) 0 0
\(755\) −1.20899 5.84002i −0.0439995 0.212540i
\(756\) 0 0
\(757\) 43.9059 1.59579 0.797894 0.602798i \(-0.205947\pi\)
0.797894 + 0.602798i \(0.205947\pi\)
\(758\) 0 0
\(759\) 20.1615i 0.731815i
\(760\) 0 0
\(761\) 2.39481i 0.0868119i −0.999058 0.0434059i \(-0.986179\pi\)
0.999058 0.0434059i \(-0.0138209\pi\)
\(762\) 0 0
\(763\) −10.1212 −0.366411
\(764\) 0 0
\(765\) 11.9707 + 7.86446i 0.432801 + 0.284340i
\(766\) 0 0
\(767\) 5.77575 + 5.77575i 0.208550 + 0.208550i
\(768\) 0 0
\(769\) 12.9527i 0.467085i −0.972347 0.233542i \(-0.924968\pi\)
0.972347 0.233542i \(-0.0750318\pi\)
\(770\) 0 0
\(771\) −17.3996 17.3996i −0.626630 0.626630i
\(772\) 0 0
\(773\) 16.1575i 0.581143i −0.956853 0.290572i \(-0.906155\pi\)
0.956853 0.290572i \(-0.0938455\pi\)
\(774\) 0 0
\(775\) 8.61520 + 19.9161i 0.309467 + 0.715409i
\(776\) 0 0
\(777\) 3.65450 + 3.65450i 0.131104 + 0.131104i
\(778\) 0 0
\(779\) 10.2087 + 10.2087i 0.365766 + 0.365766i
\(780\) 0 0
\(781\) −12.5130 + 12.5130i −0.447752 + 0.447752i
\(782\) 0 0
\(783\) −6.27721 + 6.27721i −0.224329 + 0.224329i
\(784\) 0 0
\(785\) 8.31790 1.72195i 0.296878 0.0614590i
\(786\) 0 0
\(787\) 36.6090 1.30497 0.652485 0.757802i \(-0.273727\pi\)
0.652485 + 0.757802i \(0.273727\pi\)
\(788\) 0 0
\(789\) 8.76818 8.76818i 0.312155 0.312155i
\(790\) 0 0
\(791\) −31.0907 −1.10546
\(792\) 0 0
\(793\) 8.66891 8.66891i 0.307842 0.307842i
\(794\) 0 0
\(795\) −4.82206 23.2930i −0.171021 0.826117i
\(796\) 0 0
\(797\) 3.96964i 0.140612i −0.997525 0.0703060i \(-0.977602\pi\)
0.997525 0.0703060i \(-0.0223976\pi\)
\(798\) 0 0
\(799\) −1.35974 −0.0481041
\(800\) 0 0
\(801\) −3.95627 −0.139788
\(802\) 0 0
\(803\) 14.5295i 0.512737i
\(804\) 0 0
\(805\) −4.61202 22.2784i −0.162552 0.785211i
\(806\) 0 0
\(807\) 14.1435 14.1435i 0.497876 0.497876i
\(808\) 0 0
\(809\) −54.3213 −1.90984 −0.954918 0.296868i \(-0.904058\pi\)
−0.954918 + 0.296868i \(0.904058\pi\)
\(810\) 0 0
\(811\) 15.8944 15.8944i 0.558127 0.558127i −0.370647 0.928774i \(-0.620864\pi\)
0.928774 + 0.370647i \(0.120864\pi\)
\(812\) 0 0
\(813\) −24.2463 −0.850355
\(814\) 0 0
\(815\) 43.8139 9.07024i 1.53473 0.317717i
\(816\) 0 0
\(817\) −24.9115 + 24.9115i −0.871544 + 0.871544i
\(818\) 0 0
\(819\) −2.27497 + 2.27497i −0.0794939 + 0.0794939i
\(820\) 0 0
\(821\) −25.7579 25.7579i −0.898956 0.898956i 0.0963881 0.995344i \(-0.469271\pi\)
−0.995344 + 0.0963881i \(0.969271\pi\)
\(822\) 0 0
\(823\) 9.20810 + 9.20810i 0.320974 + 0.320974i 0.849141 0.528167i \(-0.177120\pi\)
−0.528167 + 0.849141i \(0.677120\pi\)
\(824\) 0 0
\(825\) 16.3026 + 6.45728i 0.567584 + 0.224814i
\(826\) 0 0
\(827\) 40.4359i 1.40609i −0.711143 0.703047i \(-0.751822\pi\)
0.711143 0.703047i \(-0.248178\pi\)
\(828\) 0 0
\(829\) 18.6969 + 18.6969i 0.649370 + 0.649370i 0.952841 0.303471i \(-0.0981454\pi\)
−0.303471 + 0.952841i \(0.598145\pi\)
\(830\) 0 0
\(831\) 0.247833i 0.00859724i
\(832\) 0 0
\(833\) 17.5187 + 17.5187i 0.606986 + 0.606986i
\(834\) 0 0
\(835\) −19.8284 13.0268i −0.686189 0.450810i
\(836\) 0 0
\(837\) −4.33993 −0.150010
\(838\) 0 0
\(839\) 7.89003i 0.272394i 0.990682 + 0.136197i \(0.0434880\pi\)
−0.990682 + 0.136197i \(0.956512\pi\)
\(840\) 0 0
\(841\) 49.8068i 1.71748i
\(842\) 0 0
\(843\) 13.2279 0.455593
\(844\) 0 0
\(845\) 4.39480 + 21.2291i 0.151186 + 0.730304i
\(846\) 0 0
\(847\) 1.62543 + 1.62543i 0.0558506 + 0.0558506i
\(848\) 0 0
\(849\) 22.2111i 0.762283i
\(850\) 0 0
\(851\) 11.8712 + 11.8712i 0.406941 + 0.406941i
\(852\) 0 0
\(853\) 6.59967i 0.225968i 0.993597 + 0.112984i \(0.0360409\pi\)
−0.993597 + 0.112984i \(0.963959\pi\)
\(854\) 0 0
\(855\) 6.32059 + 4.15248i 0.216159 + 0.142012i
\(856\) 0 0
\(857\) 31.8196 + 31.8196i 1.08694 + 1.08694i 0.995842 + 0.0910940i \(0.0290364\pi\)
0.0910940 + 0.995842i \(0.470964\pi\)
\(858\) 0 0
\(859\) 12.6182 + 12.6182i 0.430527 + 0.430527i 0.888808 0.458280i \(-0.151534\pi\)
−0.458280 + 0.888808i \(0.651534\pi\)
\(860\) 0 0
\(861\) 5.34205 5.34205i 0.182056 0.182056i
\(862\) 0 0
\(863\) 6.97660 6.97660i 0.237486 0.237486i −0.578322 0.815808i \(-0.696292\pi\)
0.815808 + 0.578322i \(0.196292\pi\)
\(864\) 0 0
\(865\) 6.97056 + 33.6714i 0.237006 + 1.14486i
\(866\) 0 0
\(867\) 24.0294 0.816081
\(868\) 0 0
\(869\) −11.7844 + 11.7844i −0.399760 + 0.399760i
\(870\) 0 0
\(871\) 19.6724 0.666573
\(872\) 0 0
\(873\) −2.46797 + 2.46797i −0.0835282 + 0.0835282i
\(874\) 0 0
\(875\) −19.4915 3.40600i −0.658933 0.115144i
\(876\) 0 0
\(877\) 22.3460i 0.754572i −0.926097 0.377286i \(-0.876857\pi\)
0.926097 0.377286i \(-0.123143\pi\)
\(878\) 0 0
\(879\) −2.93570 −0.0990185
\(880\) 0 0
\(881\) −18.6246 −0.627478 −0.313739 0.949509i \(-0.601582\pi\)
−0.313739 + 0.949509i \(0.601582\pi\)
\(882\) 0 0
\(883\) 8.08610i 0.272119i 0.990701 + 0.136060i \(0.0434438\pi\)
−0.990701 + 0.136060i \(0.956556\pi\)
\(884\) 0 0
\(885\) −8.39704 5.51666i −0.282263 0.185440i
\(886\) 0 0
\(887\) −10.9628 + 10.9628i −0.368095 + 0.368095i −0.866782 0.498687i \(-0.833816\pi\)
0.498687 + 0.866782i \(0.333816\pi\)
\(888\) 0 0
\(889\) 18.4160 0.617654
\(890\) 0 0
\(891\) −2.47980 + 2.47980i −0.0830766 + 0.0830766i
\(892\) 0 0
\(893\) −0.717950 −0.0240253
\(894\) 0 0
\(895\) −14.9978 9.85320i −0.501321 0.329356i
\(896\) 0 0
\(897\) −7.38999 + 7.38999i −0.246745 + 0.246745i
\(898\) 0 0
\(899\) −27.2426 + 27.2426i −0.908593 + 0.908593i
\(900\) 0 0
\(901\) −48.1820 48.1820i −1.60518 1.60518i
\(902\) 0 0
\(903\) 13.0358 + 13.0358i 0.433803 + 0.433803i
\(904\) 0 0
\(905\) −1.32122 + 2.01106i −0.0439189 + 0.0668499i
\(906\) 0 0
\(907\) 8.71157i 0.289263i −0.989486 0.144631i \(-0.953800\pi\)
0.989486 0.144631i \(-0.0461997\pi\)
\(908\) 0 0
\(909\) −9.40099 9.40099i −0.311811 0.311811i
\(910\) 0 0
\(911\) 2.71760i 0.0900381i 0.998986 + 0.0450190i \(0.0143348\pi\)
−0.998986 + 0.0450190i \(0.985665\pi\)
\(912\) 0 0
\(913\) 38.0827 + 38.0827i 1.26035 + 1.26035i
\(914\) 0 0
\(915\) −8.28003 + 12.6032i −0.273729 + 0.416650i
\(916\) 0 0
\(917\) −11.3027 −0.373250
\(918\) 0 0
\(919\) 26.3244i 0.868361i 0.900826 + 0.434181i \(0.142962\pi\)
−0.900826 + 0.434181i \(0.857038\pi\)
\(920\) 0 0
\(921\) 20.2428i 0.667023i
\(922\) 0 0
\(923\) −9.17306 −0.301935
\(924\) 0 0
\(925\) 13.4012 5.79701i 0.440629 0.190604i
\(926\) 0 0
\(927\) 3.79353 + 3.79353i 0.124596 + 0.124596i
\(928\) 0 0
\(929\) 17.2416i 0.565677i −0.959168 0.282839i \(-0.908724\pi\)
0.959168 0.282839i \(-0.0912761\pi\)
\(930\) 0 0
\(931\) 9.24996 + 9.24996i 0.303155 + 0.303155i
\(932\) 0 0
\(933\) 14.0432i 0.459753i
\(934\) 0 0
\(935\) 49.1873 10.1826i 1.60860 0.333008i
\(936\) 0 0
\(937\) −6.71407 6.71407i −0.219339 0.219339i 0.588881 0.808220i \(-0.299569\pi\)
−0.808220 + 0.588881i \(0.799569\pi\)
\(938\) 0 0
\(939\) 10.3861 + 10.3861i 0.338938 + 0.338938i
\(940\) 0 0
\(941\) 10.9220 10.9220i 0.356048 0.356048i −0.506306 0.862354i \(-0.668989\pi\)
0.862354 + 0.506306i \(0.168989\pi\)
\(942\) 0 0
\(943\) 17.3530 17.3530i 0.565093 0.565093i
\(944\) 0 0
\(945\) 2.17292 3.30745i 0.0706850 0.107591i
\(946\) 0 0
\(947\) −8.31220 −0.270110 −0.135055 0.990838i \(-0.543121\pi\)
−0.135055 + 0.990838i \(0.543121\pi\)
\(948\) 0 0
\(949\) −5.32566 + 5.32566i −0.172878 + 0.172878i
\(950\) 0 0
\(951\) 11.6769 0.378649
\(952\) 0 0
\(953\) 25.5971 25.5971i 0.829170 0.829170i −0.158232 0.987402i \(-0.550579\pi\)
0.987402 + 0.158232i \(0.0505794\pi\)
\(954\) 0 0
\(955\) 33.1173 6.85587i 1.07165 0.221851i
\(956\) 0 0
\(957\) 31.1325i 1.00637i
\(958\) 0 0
\(959\) 6.39206 0.206410
\(960\) 0 0
\(961\) 12.1650 0.392420
\(962\) 0 0
\(963\) 12.1814i 0.392540i
\(964\) 0 0
\(965\) −13.3136 + 20.2649i −0.428580 + 0.652351i
\(966\) 0 0
\(967\) −31.3819 + 31.3819i −1.00918 + 1.00918i −0.00921754 + 0.999958i \(0.502934\pi\)
−0.999958 + 0.00921754i \(0.997066\pi\)
\(968\) 0 0
\(969\) 21.6637 0.695940
\(970\) 0 0
\(971\) −5.68257 + 5.68257i −0.182362 + 0.182362i −0.792384 0.610022i \(-0.791161\pi\)
0.610022 + 0.792384i \(0.291161\pi\)
\(972\) 0 0
\(973\) 7.39067 0.236934
\(974\) 0 0
\(975\) 3.60871 + 8.34241i 0.115571 + 0.267171i
\(976\) 0 0
\(977\) 15.4116 15.4116i 0.493062 0.493062i −0.416208 0.909270i \(-0.636641\pi\)
0.909270 + 0.416208i \(0.136641\pi\)
\(978\) 0 0
\(979\) −9.81078 + 9.81078i −0.313554 + 0.313554i
\(980\) 0 0
\(981\) −4.04384 4.04384i −0.129110 0.129110i
\(982\) 0 0
\(983\) −10.5760 10.5760i −0.337323 0.337323i 0.518036 0.855359i \(-0.326663\pi\)
−0.855359 + 0.518036i \(0.826663\pi\)
\(984\) 0 0
\(985\) 11.5995 + 56.0314i 0.369590 + 1.78531i
\(986\) 0 0
\(987\) 0.375690i 0.0119584i
\(988\) 0 0
\(989\) 42.3452 + 42.3452i 1.34650 + 1.34650i
\(990\) 0 0
\(991\) 29.6786i 0.942771i −0.881927 0.471385i \(-0.843754\pi\)
0.881927 0.471385i \(-0.156246\pi\)
\(992\) 0 0
\(993\) 12.0411 + 12.0411i 0.382114 + 0.382114i
\(994\) 0 0
\(995\) 28.5547 5.91133i 0.905246 0.187402i
\(996\) 0 0
\(997\) −9.96003 −0.315437 −0.157719 0.987484i \(-0.550414\pi\)
−0.157719 + 0.987484i \(0.550414\pi\)
\(998\) 0 0
\(999\) 2.92026i 0.0923928i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 960.2.bc.f.463.4 20
4.3 odd 2 240.2.bc.f.43.5 yes 20
5.2 odd 4 960.2.y.f.847.1 20
8.3 odd 2 1920.2.bc.k.1183.7 20
8.5 even 2 1920.2.bc.l.1183.7 20
12.11 even 2 720.2.bd.h.523.6 20
16.3 odd 4 960.2.y.f.943.1 20
16.5 even 4 1920.2.y.l.223.10 20
16.11 odd 4 1920.2.y.k.223.10 20
16.13 even 4 240.2.y.f.163.1 20
20.7 even 4 240.2.y.f.187.1 yes 20
40.27 even 4 1920.2.y.l.1567.10 20
40.37 odd 4 1920.2.y.k.1567.10 20
48.29 odd 4 720.2.z.h.163.10 20
60.47 odd 4 720.2.z.h.667.10 20
80.27 even 4 1920.2.bc.l.607.7 20
80.37 odd 4 1920.2.bc.k.607.7 20
80.67 even 4 inner 960.2.bc.f.367.4 20
80.77 odd 4 240.2.bc.f.67.5 yes 20
240.77 even 4 720.2.bd.h.307.6 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
240.2.y.f.163.1 20 16.13 even 4
240.2.y.f.187.1 yes 20 20.7 even 4
240.2.bc.f.43.5 yes 20 4.3 odd 2
240.2.bc.f.67.5 yes 20 80.77 odd 4
720.2.z.h.163.10 20 48.29 odd 4
720.2.z.h.667.10 20 60.47 odd 4
720.2.bd.h.307.6 20 240.77 even 4
720.2.bd.h.523.6 20 12.11 even 2
960.2.y.f.847.1 20 5.2 odd 4
960.2.y.f.943.1 20 16.3 odd 4
960.2.bc.f.367.4 20 80.67 even 4 inner
960.2.bc.f.463.4 20 1.1 even 1 trivial
1920.2.y.k.223.10 20 16.11 odd 4
1920.2.y.k.1567.10 20 40.37 odd 4
1920.2.y.l.223.10 20 16.5 even 4
1920.2.y.l.1567.10 20 40.27 even 4
1920.2.bc.k.607.7 20 80.37 odd 4
1920.2.bc.k.1183.7 20 8.3 odd 2
1920.2.bc.l.607.7 20 80.27 even 4
1920.2.bc.l.1183.7 20 8.5 even 2