Properties

Label 72.22.a.c.1.3
Level $72$
Weight $22$
Character 72.1
Self dual yes
Analytic conductor $201.224$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [72,22,Mod(1,72)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("72.1"); S:= CuspForms(chi, 22); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(72, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 22, names="a")
 
Level: \( N \) \(=\) \( 72 = 2^{3} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 22 \)
Character orbit: \([\chi]\) \(=\) 72.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,0,0,-5280498] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(201.223687887\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: \(\mathbb{Q}[x]/(x^{3} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 12529199x - 17012391021 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{21}\cdot 3^{4}\cdot 7 \)
Twist minimal: no (minimal twist has level 24)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-2135.93\) of defining polynomial
Character \(\chi\) \(=\) 72.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.51850e7 q^{5} +2.43346e8 q^{7} +5.47083e9 q^{11} -2.75801e11 q^{13} +7.88815e12 q^{17} -1.71614e13 q^{19} -1.02245e14 q^{23} +7.61145e14 q^{25} -3.25807e15 q^{29} -5.25673e15 q^{31} +8.56212e15 q^{35} -1.32886e15 q^{37} -1.25989e17 q^{41} -8.18452e16 q^{43} -3.29399e17 q^{47} -4.99329e17 q^{49} -1.26060e18 q^{53} +1.92491e17 q^{55} -5.01887e18 q^{59} +7.90880e18 q^{61} -9.70403e18 q^{65} -9.13054e18 q^{67} +3.27073e19 q^{71} +2.66934e19 q^{73} +1.33131e18 q^{77} +1.51094e20 q^{79} -2.78125e20 q^{83} +2.77544e20 q^{85} +1.69366e20 q^{89} -6.71149e19 q^{91} -6.03824e20 q^{95} +5.36145e20 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 5280498 q^{5} + 852542376 q^{7} - 62490757668 q^{11} + 203765207802 q^{13} - 695827819926 q^{17} + 4955504123196 q^{19} - 150867407938152 q^{23} + 678194854969869 q^{25} - 32\!\cdots\!46 q^{29} + 652508601550896 q^{31}+ \cdots + 72\!\cdots\!02 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 3.51850e7 1.61128 0.805642 0.592403i \(-0.201821\pi\)
0.805642 + 0.592403i \(0.201821\pi\)
\(6\) 0 0
\(7\) 2.43346e8 0.325608 0.162804 0.986658i \(-0.447946\pi\)
0.162804 + 0.986658i \(0.447946\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 5.47083e9 0.0635961 0.0317980 0.999494i \(-0.489877\pi\)
0.0317980 + 0.999494i \(0.489877\pi\)
\(12\) 0 0
\(13\) −2.75801e11 −0.554868 −0.277434 0.960745i \(-0.589484\pi\)
−0.277434 + 0.960745i \(0.589484\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 7.88815e12 0.948990 0.474495 0.880258i \(-0.342631\pi\)
0.474495 + 0.880258i \(0.342631\pi\)
\(18\) 0 0
\(19\) −1.71614e13 −0.642156 −0.321078 0.947053i \(-0.604045\pi\)
−0.321078 + 0.947053i \(0.604045\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −1.02245e14 −0.514635 −0.257318 0.966327i \(-0.582839\pi\)
−0.257318 + 0.966327i \(0.582839\pi\)
\(24\) 0 0
\(25\) 7.61145e14 1.59624
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −3.25807e15 −1.43807 −0.719037 0.694972i \(-0.755417\pi\)
−0.719037 + 0.694972i \(0.755417\pi\)
\(30\) 0 0
\(31\) −5.25673e15 −1.15191 −0.575954 0.817482i \(-0.695369\pi\)
−0.575954 + 0.817482i \(0.695369\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 8.56212e15 0.524647
\(36\) 0 0
\(37\) −1.32886e15 −0.0454319 −0.0227160 0.999742i \(-0.507231\pi\)
−0.0227160 + 0.999742i \(0.507231\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −1.25989e17 −1.46589 −0.732944 0.680289i \(-0.761854\pi\)
−0.732944 + 0.680289i \(0.761854\pi\)
\(42\) 0 0
\(43\) −8.18452e16 −0.577530 −0.288765 0.957400i \(-0.593245\pi\)
−0.288765 + 0.957400i \(0.593245\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −3.29399e17 −0.913471 −0.456735 0.889603i \(-0.650981\pi\)
−0.456735 + 0.889603i \(0.650981\pi\)
\(48\) 0 0
\(49\) −4.99329e17 −0.893980
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −1.26060e18 −0.990103 −0.495052 0.868864i \(-0.664851\pi\)
−0.495052 + 0.868864i \(0.664851\pi\)
\(54\) 0 0
\(55\) 1.92491e17 0.102471
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −5.01887e18 −1.27838 −0.639190 0.769049i \(-0.720730\pi\)
−0.639190 + 0.769049i \(0.720730\pi\)
\(60\) 0 0
\(61\) 7.90880e18 1.41954 0.709769 0.704434i \(-0.248799\pi\)
0.709769 + 0.704434i \(0.248799\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −9.70403e18 −0.894050
\(66\) 0 0
\(67\) −9.13054e18 −0.611943 −0.305972 0.952041i \(-0.598981\pi\)
−0.305972 + 0.952041i \(0.598981\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 3.27073e19 1.19243 0.596215 0.802825i \(-0.296671\pi\)
0.596215 + 0.802825i \(0.296671\pi\)
\(72\) 0 0
\(73\) 2.66934e19 0.726966 0.363483 0.931601i \(-0.381587\pi\)
0.363483 + 0.931601i \(0.381587\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 1.33131e18 0.0207074
\(78\) 0 0
\(79\) 1.51094e20 1.79541 0.897706 0.440595i \(-0.145232\pi\)
0.897706 + 0.440595i \(0.145232\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −2.78125e20 −1.96752 −0.983761 0.179482i \(-0.942558\pi\)
−0.983761 + 0.179482i \(0.942558\pi\)
\(84\) 0 0
\(85\) 2.77544e20 1.52909
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 1.69366e20 0.575747 0.287873 0.957669i \(-0.407052\pi\)
0.287873 + 0.957669i \(0.407052\pi\)
\(90\) 0 0
\(91\) −6.71149e19 −0.180669
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −6.03824e20 −1.03470
\(96\) 0 0
\(97\) 5.36145e20 0.738209 0.369104 0.929388i \(-0.379664\pi\)
0.369104 + 0.929388i \(0.379664\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −1.66650e21 −1.50117 −0.750587 0.660771i \(-0.770229\pi\)
−0.750587 + 0.660771i \(0.770229\pi\)
\(102\) 0 0
\(103\) −1.73073e21 −1.26893 −0.634465 0.772952i \(-0.718779\pi\)
−0.634465 + 0.772952i \(0.718779\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −1.95507e21 −0.960800 −0.480400 0.877050i \(-0.659508\pi\)
−0.480400 + 0.877050i \(0.659508\pi\)
\(108\) 0 0
\(109\) 2.31264e21 0.935687 0.467844 0.883811i \(-0.345031\pi\)
0.467844 + 0.883811i \(0.345031\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 5.49465e21 1.52271 0.761354 0.648336i \(-0.224535\pi\)
0.761354 + 0.648336i \(0.224535\pi\)
\(114\) 0 0
\(115\) −3.59749e21 −0.829224
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 1.91955e21 0.308998
\(120\) 0 0
\(121\) −7.37032e21 −0.995956
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 1.00033e22 0.960705
\(126\) 0 0
\(127\) 8.26429e21 0.671841 0.335921 0.941890i \(-0.390953\pi\)
0.335921 + 0.941890i \(0.390953\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 1.36696e22 0.802433 0.401216 0.915983i \(-0.368588\pi\)
0.401216 + 0.915983i \(0.368588\pi\)
\(132\) 0 0
\(133\) −4.17616e21 −0.209091
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 4.55734e22 1.67165 0.835826 0.548994i \(-0.184989\pi\)
0.835826 + 0.548994i \(0.184989\pi\)
\(138\) 0 0
\(139\) −1.19577e22 −0.376697 −0.188349 0.982102i \(-0.560314\pi\)
−0.188349 + 0.982102i \(0.560314\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −1.50886e21 −0.0352874
\(144\) 0 0
\(145\) −1.14635e23 −2.31715
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −9.81889e22 −1.49144 −0.745721 0.666258i \(-0.767895\pi\)
−0.745721 + 0.666258i \(0.767895\pi\)
\(150\) 0 0
\(151\) 1.19351e23 1.57605 0.788025 0.615644i \(-0.211104\pi\)
0.788025 + 0.615644i \(0.211104\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −1.84958e23 −1.85605
\(156\) 0 0
\(157\) −7.47687e22 −0.655803 −0.327901 0.944712i \(-0.606341\pi\)
−0.327901 + 0.944712i \(0.606341\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −2.48809e22 −0.167569
\(162\) 0 0
\(163\) 2.03663e23 1.20488 0.602438 0.798166i \(-0.294196\pi\)
0.602438 + 0.798166i \(0.294196\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −1.50641e23 −0.690907 −0.345453 0.938436i \(-0.612275\pi\)
−0.345453 + 0.938436i \(0.612275\pi\)
\(168\) 0 0
\(169\) −1.70999e23 −0.692121
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 2.13849e23 0.677054 0.338527 0.940957i \(-0.390071\pi\)
0.338527 + 0.940957i \(0.390071\pi\)
\(174\) 0 0
\(175\) 1.85221e23 0.519747
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 3.14152e22 0.0695318 0.0347659 0.999395i \(-0.488931\pi\)
0.0347659 + 0.999395i \(0.488931\pi\)
\(180\) 0 0
\(181\) 6.03303e22 0.118826 0.0594128 0.998233i \(-0.481077\pi\)
0.0594128 + 0.998233i \(0.481077\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −4.67559e22 −0.0732038
\(186\) 0 0
\(187\) 4.31547e22 0.0603520
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −1.09055e24 −1.22123 −0.610613 0.791929i \(-0.709077\pi\)
−0.610613 + 0.791929i \(0.709077\pi\)
\(192\) 0 0
\(193\) 3.10755e23 0.311936 0.155968 0.987762i \(-0.450150\pi\)
0.155968 + 0.987762i \(0.450150\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 1.68710e24 1.36535 0.682676 0.730721i \(-0.260816\pi\)
0.682676 + 0.730721i \(0.260816\pi\)
\(198\) 0 0
\(199\) −1.51134e24 −1.10003 −0.550015 0.835155i \(-0.685378\pi\)
−0.550015 + 0.835155i \(0.685378\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −7.92838e23 −0.468248
\(204\) 0 0
\(205\) −4.43291e24 −2.36196
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −9.38872e22 −0.0408386
\(210\) 0 0
\(211\) −4.04443e24 −1.59181 −0.795906 0.605420i \(-0.793005\pi\)
−0.795906 + 0.605420i \(0.793005\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −2.87972e24 −0.930564
\(216\) 0 0
\(217\) −1.27920e24 −0.375070
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −2.17556e24 −0.526564
\(222\) 0 0
\(223\) −3.23296e24 −0.711868 −0.355934 0.934511i \(-0.615837\pi\)
−0.355934 + 0.934511i \(0.615837\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 5.71374e24 1.04388 0.521938 0.852983i \(-0.325209\pi\)
0.521938 + 0.852983i \(0.325209\pi\)
\(228\) 0 0
\(229\) −1.35658e24 −0.226033 −0.113016 0.993593i \(-0.536051\pi\)
−0.113016 + 0.993593i \(0.536051\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −4.19554e24 −0.582842 −0.291421 0.956595i \(-0.594128\pi\)
−0.291421 + 0.956595i \(0.594128\pi\)
\(234\) 0 0
\(235\) −1.15899e25 −1.47186
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 3.83395e24 0.407820 0.203910 0.978990i \(-0.434635\pi\)
0.203910 + 0.978990i \(0.434635\pi\)
\(240\) 0 0
\(241\) 1.11880e24 0.109037 0.0545186 0.998513i \(-0.482638\pi\)
0.0545186 + 0.998513i \(0.482638\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −1.75689e25 −1.44045
\(246\) 0 0
\(247\) 4.73313e24 0.356312
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −2.18420e24 −0.138905 −0.0694527 0.997585i \(-0.522125\pi\)
−0.0694527 + 0.997585i \(0.522125\pi\)
\(252\) 0 0
\(253\) −5.59365e23 −0.0327288
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −8.30434e24 −0.412105 −0.206052 0.978541i \(-0.566062\pi\)
−0.206052 + 0.978541i \(0.566062\pi\)
\(258\) 0 0
\(259\) −3.23373e23 −0.0147930
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −2.63856e25 −1.02762 −0.513809 0.857904i \(-0.671766\pi\)
−0.513809 + 0.857904i \(0.671766\pi\)
\(264\) 0 0
\(265\) −4.43542e25 −1.59534
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −3.85272e25 −1.18405 −0.592023 0.805921i \(-0.701670\pi\)
−0.592023 + 0.805921i \(0.701670\pi\)
\(270\) 0 0
\(271\) −4.43179e25 −1.26009 −0.630046 0.776558i \(-0.716964\pi\)
−0.630046 + 0.776558i \(0.716964\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 4.16410e24 0.101514
\(276\) 0 0
\(277\) 5.73390e24 0.129542 0.0647712 0.997900i \(-0.479368\pi\)
0.0647712 + 0.997900i \(0.479368\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −4.65196e25 −0.904107 −0.452054 0.891991i \(-0.649308\pi\)
−0.452054 + 0.891991i \(0.649308\pi\)
\(282\) 0 0
\(283\) −2.23171e25 −0.402605 −0.201303 0.979529i \(-0.564517\pi\)
−0.201303 + 0.979529i \(0.564517\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −3.06588e25 −0.477305
\(288\) 0 0
\(289\) −6.86904e24 −0.0994189
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −4.10928e25 −0.514820 −0.257410 0.966302i \(-0.582869\pi\)
−0.257410 + 0.966302i \(0.582869\pi\)
\(294\) 0 0
\(295\) −1.76589e26 −2.05983
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 2.81992e25 0.285555
\(300\) 0 0
\(301\) −1.99167e25 −0.188048
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 2.78271e26 2.28728
\(306\) 0 0
\(307\) −7.68334e25 −0.589654 −0.294827 0.955551i \(-0.595262\pi\)
−0.294827 + 0.955551i \(0.595262\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 7.06898e25 0.473557 0.236779 0.971564i \(-0.423908\pi\)
0.236779 + 0.971564i \(0.423908\pi\)
\(312\) 0 0
\(313\) −2.82026e25 −0.176634 −0.0883168 0.996092i \(-0.528149\pi\)
−0.0883168 + 0.996092i \(0.528149\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 2.32837e26 1.27623 0.638115 0.769941i \(-0.279714\pi\)
0.638115 + 0.769941i \(0.279714\pi\)
\(318\) 0 0
\(319\) −1.78244e25 −0.0914559
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −1.35372e26 −0.609399
\(324\) 0 0
\(325\) −2.09924e26 −0.885701
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −8.01579e25 −0.297433
\(330\) 0 0
\(331\) 5.36145e26 1.86676 0.933379 0.358892i \(-0.116845\pi\)
0.933379 + 0.358892i \(0.116845\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −3.21258e26 −0.986014
\(336\) 0 0
\(337\) 5.24070e26 1.51104 0.755519 0.655126i \(-0.227385\pi\)
0.755519 + 0.655126i \(0.227385\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −2.87587e25 −0.0732568
\(342\) 0 0
\(343\) −2.57429e26 −0.616694
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −3.79992e26 −0.805962 −0.402981 0.915208i \(-0.632026\pi\)
−0.402981 + 0.915208i \(0.632026\pi\)
\(348\) 0 0
\(349\) −2.61472e26 −0.522106 −0.261053 0.965324i \(-0.584070\pi\)
−0.261053 + 0.965324i \(0.584070\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −2.68732e26 −0.476086 −0.238043 0.971255i \(-0.576506\pi\)
−0.238043 + 0.971255i \(0.576506\pi\)
\(354\) 0 0
\(355\) 1.15081e27 1.92134
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −4.16873e26 −0.618745 −0.309373 0.950941i \(-0.600119\pi\)
−0.309373 + 0.950941i \(0.600119\pi\)
\(360\) 0 0
\(361\) −4.19695e26 −0.587636
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 9.39207e26 1.17135
\(366\) 0 0
\(367\) 8.62599e26 1.01582 0.507908 0.861411i \(-0.330419\pi\)
0.507908 + 0.861411i \(0.330419\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −3.06762e26 −0.322385
\(372\) 0 0
\(373\) 1.44945e27 1.43966 0.719830 0.694151i \(-0.244220\pi\)
0.719830 + 0.694151i \(0.244220\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 8.98577e26 0.797942
\(378\) 0 0
\(379\) 1.00826e27 0.846952 0.423476 0.905907i \(-0.360810\pi\)
0.423476 + 0.905907i \(0.360810\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 1.55682e26 0.117125 0.0585627 0.998284i \(-0.481348\pi\)
0.0585627 + 0.998284i \(0.481348\pi\)
\(384\) 0 0
\(385\) 4.68419e25 0.0333655
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 2.90693e26 0.185765 0.0928825 0.995677i \(-0.470392\pi\)
0.0928825 + 0.995677i \(0.470392\pi\)
\(390\) 0 0
\(391\) −8.06524e26 −0.488384
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 5.31625e27 2.89292
\(396\) 0 0
\(397\) 1.52566e27 0.787331 0.393665 0.919254i \(-0.371207\pi\)
0.393665 + 0.919254i \(0.371207\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 1.96782e27 0.914048 0.457024 0.889454i \(-0.348915\pi\)
0.457024 + 0.889454i \(0.348915\pi\)
\(402\) 0 0
\(403\) 1.44981e27 0.639157
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −7.26998e24 −0.00288929
\(408\) 0 0
\(409\) 3.91042e27 1.47615 0.738073 0.674721i \(-0.235736\pi\)
0.738073 + 0.674721i \(0.235736\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −1.22132e27 −0.416250
\(414\) 0 0
\(415\) −9.78581e27 −3.17024
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −2.38402e27 −0.698334 −0.349167 0.937060i \(-0.613535\pi\)
−0.349167 + 0.937060i \(0.613535\pi\)
\(420\) 0 0
\(421\) 5.54346e27 1.54461 0.772305 0.635252i \(-0.219104\pi\)
0.772305 + 0.635252i \(0.219104\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 6.00402e27 1.51481
\(426\) 0 0
\(427\) 1.92457e27 0.462213
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −8.83540e27 −1.92404 −0.962022 0.272971i \(-0.911994\pi\)
−0.962022 + 0.272971i \(0.911994\pi\)
\(432\) 0 0
\(433\) −6.01615e27 −1.24794 −0.623972 0.781446i \(-0.714482\pi\)
−0.623972 + 0.781446i \(0.714482\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 1.75467e27 0.330476
\(438\) 0 0
\(439\) −5.36549e27 −0.963234 −0.481617 0.876382i \(-0.659950\pi\)
−0.481617 + 0.876382i \(0.659950\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −2.01374e25 −0.00328673 −0.00164337 0.999999i \(-0.500523\pi\)
−0.00164337 + 0.999999i \(0.500523\pi\)
\(444\) 0 0
\(445\) 5.95914e27 0.927691
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −4.26698e27 −0.604691 −0.302346 0.953198i \(-0.597770\pi\)
−0.302346 + 0.953198i \(0.597770\pi\)
\(450\) 0 0
\(451\) −6.89263e26 −0.0932248
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −2.36144e27 −0.291110
\(456\) 0 0
\(457\) 1.37046e28 1.61341 0.806707 0.590952i \(-0.201248\pi\)
0.806707 + 0.590952i \(0.201248\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −3.95760e26 −0.0425179 −0.0212590 0.999774i \(-0.506767\pi\)
−0.0212590 + 0.999774i \(0.506767\pi\)
\(462\) 0 0
\(463\) 1.64489e28 1.68864 0.844320 0.535839i \(-0.180005\pi\)
0.844320 + 0.535839i \(0.180005\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −4.81167e27 −0.451303 −0.225651 0.974208i \(-0.572451\pi\)
−0.225651 + 0.974208i \(0.572451\pi\)
\(468\) 0 0
\(469\) −2.22188e27 −0.199253
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −4.47761e26 −0.0367286
\(474\) 0 0
\(475\) −1.30623e28 −1.02503
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −8.27968e27 −0.594964 −0.297482 0.954727i \(-0.596147\pi\)
−0.297482 + 0.954727i \(0.596147\pi\)
\(480\) 0 0
\(481\) 3.66500e26 0.0252087
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 1.88642e28 1.18946
\(486\) 0 0
\(487\) −2.94208e28 −1.77664 −0.888321 0.459223i \(-0.848128\pi\)
−0.888321 + 0.459223i \(0.848128\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 5.03749e26 0.0279164 0.0139582 0.999903i \(-0.495557\pi\)
0.0139582 + 0.999903i \(0.495557\pi\)
\(492\) 0 0
\(493\) −2.57001e28 −1.36472
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 7.95920e27 0.388264
\(498\) 0 0
\(499\) 2.85361e28 1.33456 0.667282 0.744805i \(-0.267458\pi\)
0.667282 + 0.744805i \(0.267458\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −3.16677e28 −1.36192 −0.680962 0.732319i \(-0.738438\pi\)
−0.680962 + 0.732319i \(0.738438\pi\)
\(504\) 0 0
\(505\) −5.86358e28 −2.41882
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −5.83426e27 −0.221538 −0.110769 0.993846i \(-0.535331\pi\)
−0.110769 + 0.993846i \(0.535331\pi\)
\(510\) 0 0
\(511\) 6.49574e27 0.236706
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −6.08955e28 −2.04461
\(516\) 0 0
\(517\) −1.80209e27 −0.0580932
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 4.34708e28 1.29241 0.646207 0.763162i \(-0.276354\pi\)
0.646207 + 0.763162i \(0.276354\pi\)
\(522\) 0 0
\(523\) −6.35350e28 −1.81445 −0.907226 0.420644i \(-0.861804\pi\)
−0.907226 + 0.420644i \(0.861804\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −4.14659e28 −1.09315
\(528\) 0 0
\(529\) −2.90175e28 −0.735150
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 3.47477e28 0.813375
\(534\) 0 0
\(535\) −6.87891e28 −1.54812
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −2.73174e27 −0.0568536
\(540\) 0 0
\(541\) 1.40153e28 0.280563 0.140281 0.990112i \(-0.455199\pi\)
0.140281 + 0.990112i \(0.455199\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 8.13703e28 1.50766
\(546\) 0 0
\(547\) −1.55956e28 −0.278058 −0.139029 0.990288i \(-0.544398\pi\)
−0.139029 + 0.990288i \(0.544398\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 5.59131e28 0.923468
\(552\) 0 0
\(553\) 3.67682e28 0.584600
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −5.80978e28 −0.856406 −0.428203 0.903682i \(-0.640853\pi\)
−0.428203 + 0.903682i \(0.640853\pi\)
\(558\) 0 0
\(559\) 2.25729e28 0.320453
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −8.80401e28 −1.15969 −0.579846 0.814726i \(-0.696887\pi\)
−0.579846 + 0.814726i \(0.696887\pi\)
\(564\) 0 0
\(565\) 1.93329e29 2.45352
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 1.11084e29 1.30910 0.654551 0.756018i \(-0.272858\pi\)
0.654551 + 0.756018i \(0.272858\pi\)
\(570\) 0 0
\(571\) −5.41935e28 −0.615557 −0.307778 0.951458i \(-0.599586\pi\)
−0.307778 + 0.951458i \(0.599586\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −7.78232e28 −0.821480
\(576\) 0 0
\(577\) 4.58822e27 0.0466980 0.0233490 0.999727i \(-0.492567\pi\)
0.0233490 + 0.999727i \(0.492567\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −6.76805e28 −0.640641
\(582\) 0 0
\(583\) −6.89653e27 −0.0629667
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −9.93390e28 −0.844150 −0.422075 0.906561i \(-0.638698\pi\)
−0.422075 + 0.906561i \(0.638698\pi\)
\(588\) 0 0
\(589\) 9.02129e28 0.739704
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 6.21696e28 0.474793 0.237396 0.971413i \(-0.423706\pi\)
0.237396 + 0.971413i \(0.423706\pi\)
\(594\) 0 0
\(595\) 6.75393e28 0.497884
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 9.21046e28 0.632849 0.316424 0.948618i \(-0.397518\pi\)
0.316424 + 0.948618i \(0.397518\pi\)
\(600\) 0 0
\(601\) −5.86893e28 −0.389383 −0.194691 0.980865i \(-0.562371\pi\)
−0.194691 + 0.980865i \(0.562371\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −2.59324e29 −1.60477
\(606\) 0 0
\(607\) 1.82607e29 1.09153 0.545766 0.837938i \(-0.316239\pi\)
0.545766 + 0.837938i \(0.316239\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 9.08484e28 0.506856
\(612\) 0 0
\(613\) 1.99434e29 1.07514 0.537570 0.843219i \(-0.319342\pi\)
0.537570 + 0.843219i \(0.319342\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −5.61110e28 −0.282523 −0.141261 0.989972i \(-0.545116\pi\)
−0.141261 + 0.989972i \(0.545116\pi\)
\(618\) 0 0
\(619\) −2.67515e29 −1.30196 −0.650978 0.759096i \(-0.725641\pi\)
−0.650978 + 0.759096i \(0.725641\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 4.12146e28 0.187468
\(624\) 0 0
\(625\) −1.09746e28 −0.0482667
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −1.04823e28 −0.0431144
\(630\) 0 0
\(631\) 2.36523e29 0.940948 0.470474 0.882414i \(-0.344083\pi\)
0.470474 + 0.882414i \(0.344083\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 2.90779e29 1.08253
\(636\) 0 0
\(637\) 1.37715e29 0.496041
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 5.06042e29 1.70678 0.853389 0.521274i \(-0.174543\pi\)
0.853389 + 0.521274i \(0.174543\pi\)
\(642\) 0 0
\(643\) −1.16614e29 −0.380657 −0.190329 0.981720i \(-0.560955\pi\)
−0.190329 + 0.981720i \(0.560955\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 6.16701e29 1.88616 0.943082 0.332561i \(-0.107913\pi\)
0.943082 + 0.332561i \(0.107913\pi\)
\(648\) 0 0
\(649\) −2.74574e28 −0.0813000
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 3.77314e29 1.04741 0.523703 0.851901i \(-0.324550\pi\)
0.523703 + 0.851901i \(0.324550\pi\)
\(654\) 0 0
\(655\) 4.80966e29 1.29295
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −2.99810e29 −0.756048 −0.378024 0.925796i \(-0.623396\pi\)
−0.378024 + 0.925796i \(0.623396\pi\)
\(660\) 0 0
\(661\) −4.87781e29 −1.19154 −0.595771 0.803154i \(-0.703154\pi\)
−0.595771 + 0.803154i \(0.703154\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −1.46938e29 −0.336905
\(666\) 0 0
\(667\) 3.33121e29 0.740084
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 4.32677e28 0.0902771
\(672\) 0 0
\(673\) 9.88058e28 0.199813 0.0999066 0.994997i \(-0.468146\pi\)
0.0999066 + 0.994997i \(0.468146\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 1.03899e29 0.197438 0.0987189 0.995115i \(-0.468526\pi\)
0.0987189 + 0.995115i \(0.468526\pi\)
\(678\) 0 0
\(679\) 1.30469e29 0.240366
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −1.77427e28 −0.0307328 −0.0153664 0.999882i \(-0.504891\pi\)
−0.0153664 + 0.999882i \(0.504891\pi\)
\(684\) 0 0
\(685\) 1.60350e30 2.69351
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 3.47674e29 0.549377
\(690\) 0 0
\(691\) −8.85136e29 −1.35672 −0.678361 0.734729i \(-0.737309\pi\)
−0.678361 + 0.734729i \(0.737309\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −4.20732e29 −0.606966
\(696\) 0 0
\(697\) −9.93817e29 −1.39111
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −1.01323e30 −1.33558 −0.667791 0.744349i \(-0.732760\pi\)
−0.667791 + 0.744349i \(0.732760\pi\)
\(702\) 0 0
\(703\) 2.28051e28 0.0291744
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −4.05536e29 −0.488794
\(708\) 0 0
\(709\) −3.34197e27 −0.00391036 −0.00195518 0.999998i \(-0.500622\pi\)
−0.00195518 + 0.999998i \(0.500622\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 5.37474e29 0.592813
\(714\) 0 0
\(715\) −5.30891e28 −0.0568581
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −5.99416e29 −0.605445 −0.302723 0.953079i \(-0.597896\pi\)
−0.302723 + 0.953079i \(0.597896\pi\)
\(720\) 0 0
\(721\) −4.21165e29 −0.413173
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −2.47986e30 −2.29551
\(726\) 0 0
\(727\) 1.65266e30 1.48618 0.743092 0.669189i \(-0.233358\pi\)
0.743092 + 0.669189i \(0.233358\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −6.45607e29 −0.548070
\(732\) 0 0
\(733\) −4.23430e29 −0.349293 −0.174646 0.984631i \(-0.555878\pi\)
−0.174646 + 0.984631i \(0.555878\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −4.99517e28 −0.0389172
\(738\) 0 0
\(739\) 2.50879e30 1.89975 0.949877 0.312624i \(-0.101208\pi\)
0.949877 + 0.312624i \(0.101208\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −1.01564e30 −0.726706 −0.363353 0.931652i \(-0.618368\pi\)
−0.363353 + 0.931652i \(0.618368\pi\)
\(744\) 0 0
\(745\) −3.45477e30 −2.40314
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −4.75759e29 −0.312844
\(750\) 0 0
\(751\) −2.34721e30 −1.50083 −0.750417 0.660964i \(-0.770148\pi\)
−0.750417 + 0.660964i \(0.770148\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 4.19938e30 2.53946
\(756\) 0 0
\(757\) 3.29629e29 0.193874 0.0969369 0.995291i \(-0.469095\pi\)
0.0969369 + 0.995291i \(0.469095\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 2.22786e30 1.23979 0.619896 0.784684i \(-0.287175\pi\)
0.619896 + 0.784684i \(0.287175\pi\)
\(762\) 0 0
\(763\) 5.62773e29 0.304667
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 1.38421e30 0.709333
\(768\) 0 0
\(769\) −2.41780e30 −1.20557 −0.602786 0.797903i \(-0.705943\pi\)
−0.602786 + 0.797903i \(0.705943\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −1.22170e30 −0.576871 −0.288435 0.957499i \(-0.593135\pi\)
−0.288435 + 0.957499i \(0.593135\pi\)
\(774\) 0 0
\(775\) −4.00113e30 −1.83872
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 2.16214e30 0.941329
\(780\) 0 0
\(781\) 1.78936e29 0.0758338
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −2.63073e30 −1.05668
\(786\) 0 0
\(787\) −3.41643e29 −0.133609 −0.0668047 0.997766i \(-0.521280\pi\)
−0.0668047 + 0.997766i \(0.521280\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 1.33710e30 0.495806
\(792\) 0 0
\(793\) −2.18125e30 −0.787657
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −5.47484e30 −1.87525 −0.937625 0.347648i \(-0.886980\pi\)
−0.937625 + 0.347648i \(0.886980\pi\)
\(798\) 0 0
\(799\) −2.59835e30 −0.866874
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 1.46035e29 0.0462322
\(804\) 0 0
\(805\) −8.75434e29 −0.270002
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −5.91242e30 −1.73103 −0.865517 0.500880i \(-0.833010\pi\)
−0.865517 + 0.500880i \(0.833010\pi\)
\(810\) 0 0
\(811\) 2.38545e30 0.680537 0.340269 0.940328i \(-0.389482\pi\)
0.340269 + 0.940328i \(0.389482\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 7.16588e30 1.94140
\(816\) 0 0
\(817\) 1.40458e30 0.370864
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 5.05222e30 1.26730 0.633650 0.773620i \(-0.281556\pi\)
0.633650 + 0.773620i \(0.281556\pi\)
\(822\) 0 0
\(823\) 8.68241e29 0.212296 0.106148 0.994350i \(-0.466148\pi\)
0.106148 + 0.994350i \(0.466148\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −3.90101e30 −0.906503 −0.453251 0.891383i \(-0.649736\pi\)
−0.453251 + 0.891383i \(0.649736\pi\)
\(828\) 0 0
\(829\) −5.27365e30 −1.19478 −0.597391 0.801950i \(-0.703796\pi\)
−0.597391 + 0.801950i \(0.703796\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −3.93878e30 −0.848377
\(834\) 0 0
\(835\) −5.30029e30 −1.11325
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −8.94809e30 −1.78743 −0.893716 0.448632i \(-0.851911\pi\)
−0.893716 + 0.448632i \(0.851911\pi\)
\(840\) 0 0
\(841\) 5.48217e30 1.06806
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −6.01658e30 −1.11520
\(846\) 0 0
\(847\) −1.79354e30 −0.324291
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 1.35869e29 0.0233809
\(852\) 0 0
\(853\) 5.79287e30 0.972588 0.486294 0.873795i \(-0.338348\pi\)
0.486294 + 0.873795i \(0.338348\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 1.06465e31 1.70181 0.850903 0.525323i \(-0.176056\pi\)
0.850903 + 0.525323i \(0.176056\pi\)
\(858\) 0 0
\(859\) 1.06376e31 1.65927 0.829633 0.558309i \(-0.188549\pi\)
0.829633 + 0.558309i \(0.188549\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 7.39788e30 1.09899 0.549495 0.835497i \(-0.314820\pi\)
0.549495 + 0.835497i \(0.314820\pi\)
\(864\) 0 0
\(865\) 7.52427e30 1.09093
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 8.26613e29 0.114181
\(870\) 0 0
\(871\) 2.51821e30 0.339548
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 2.43427e30 0.312813
\(876\) 0 0
\(877\) 1.08447e31 1.36057 0.680284 0.732949i \(-0.261857\pi\)
0.680284 + 0.732949i \(0.261857\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −3.94287e30 −0.471591 −0.235796 0.971803i \(-0.575770\pi\)
−0.235796 + 0.971803i \(0.575770\pi\)
\(882\) 0 0
\(883\) 1.16137e30 0.135638 0.0678191 0.997698i \(-0.478396\pi\)
0.0678191 + 0.997698i \(0.478396\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 7.66393e29 0.0853599 0.0426799 0.999089i \(-0.486410\pi\)
0.0426799 + 0.999089i \(0.486410\pi\)
\(888\) 0 0
\(889\) 2.01108e30 0.218757
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 5.65295e30 0.586590
\(894\) 0 0
\(895\) 1.10534e30 0.112035
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 1.71268e31 1.65653
\(900\) 0 0
\(901\) −9.94380e30 −0.939598
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 2.12272e30 0.191462
\(906\) 0 0
\(907\) 1.52281e31 1.34205 0.671027 0.741432i \(-0.265853\pi\)
0.671027 + 0.741432i \(0.265853\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −2.10597e31 −1.77218 −0.886092 0.463510i \(-0.846590\pi\)
−0.886092 + 0.463510i \(0.846590\pi\)
\(912\) 0 0
\(913\) −1.52157e30 −0.125127
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 3.32645e30 0.261278
\(918\) 0 0
\(919\) 9.82307e29 0.0754109 0.0377055 0.999289i \(-0.487995\pi\)
0.0377055 + 0.999289i \(0.487995\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −9.02070e30 −0.661641
\(924\) 0 0
\(925\) −1.01146e30 −0.0725201
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 1.88415e31 1.29107 0.645535 0.763731i \(-0.276635\pi\)
0.645535 + 0.763731i \(0.276635\pi\)
\(930\) 0 0
\(931\) 8.56919e30 0.574074
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 1.51840e30 0.0972442
\(936\) 0 0
\(937\) −2.47039e31 −1.54703 −0.773516 0.633777i \(-0.781504\pi\)
−0.773516 + 0.633777i \(0.781504\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 1.65576e31 0.991530 0.495765 0.868457i \(-0.334888\pi\)
0.495765 + 0.868457i \(0.334888\pi\)
\(942\) 0 0
\(943\) 1.28817e31 0.754398
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −8.58984e30 −0.481183 −0.240592 0.970626i \(-0.577341\pi\)
−0.240592 + 0.970626i \(0.577341\pi\)
\(948\) 0 0
\(949\) −7.36206e30 −0.403370
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 3.50226e30 0.183600 0.0918000 0.995777i \(-0.470738\pi\)
0.0918000 + 0.995777i \(0.470738\pi\)
\(954\) 0 0
\(955\) −3.83711e31 −1.96774
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 1.10901e31 0.544303
\(960\) 0 0
\(961\) 6.80771e30 0.326893
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 1.09339e31 0.502618
\(966\) 0 0
\(967\) 2.62968e31 1.18284 0.591419 0.806364i \(-0.298568\pi\)
0.591419 + 0.806364i \(0.298568\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 7.10311e30 0.305947 0.152974 0.988230i \(-0.451115\pi\)
0.152974 + 0.988230i \(0.451115\pi\)
\(972\) 0 0
\(973\) −2.90986e30 −0.122656
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −4.54851e30 −0.183644 −0.0918218 0.995775i \(-0.529269\pi\)
−0.0918218 + 0.995775i \(0.529269\pi\)
\(978\) 0 0
\(979\) 9.26574e29 0.0366152
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −8.59763e30 −0.325512 −0.162756 0.986666i \(-0.552038\pi\)
−0.162756 + 0.986666i \(0.552038\pi\)
\(984\) 0 0
\(985\) 5.93604e31 2.19997
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 8.36826e30 0.297217
\(990\) 0 0
\(991\) 3.32226e31 1.15521 0.577604 0.816317i \(-0.303988\pi\)
0.577604 + 0.816317i \(0.303988\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −5.31764e31 −1.77246
\(996\) 0 0
\(997\) −8.79911e30 −0.287170 −0.143585 0.989638i \(-0.545863\pi\)
−0.143585 + 0.989638i \(0.545863\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 72.22.a.c.1.3 3
3.2 odd 2 24.22.a.d.1.1 3
12.11 even 2 48.22.a.j.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
24.22.a.d.1.1 3 3.2 odd 2
48.22.a.j.1.1 3 12.11 even 2
72.22.a.c.1.3 3 1.1 even 1 trivial