Defining parameters
Level: | \( N \) | \(=\) | \( 72 = 2^{3} \cdot 3^{2} \) |
Weight: | \( k \) | \(=\) | \( 22 \) |
Character orbit: | \([\chi]\) | \(=\) | 72.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 8 \) | ||
Sturm bound: | \(264\) | ||
Trace bound: | \(5\) | ||
Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{22}(\Gamma_0(72))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 260 | 26 | 234 |
Cusp forms | 244 | 26 | 218 |
Eisenstein series | 16 | 0 | 16 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(3\) | Fricke | Dim |
---|---|---|---|
\(+\) | \(+\) | \(+\) | \(5\) |
\(+\) | \(-\) | \(-\) | \(8\) |
\(-\) | \(+\) | \(-\) | \(5\) |
\(-\) | \(-\) | \(+\) | \(8\) |
Plus space | \(+\) | \(13\) | |
Minus space | \(-\) | \(13\) |
Trace form
Decomposition of \(S_{22}^{\mathrm{new}}(\Gamma_0(72))\) into newform subspaces
Decomposition of \(S_{22}^{\mathrm{old}}(\Gamma_0(72))\) into lower level spaces
\( S_{22}^{\mathrm{old}}(\Gamma_0(72)) \simeq \) \(S_{22}^{\mathrm{new}}(\Gamma_0(1))\)\(^{\oplus 12}\)\(\oplus\)\(S_{22}^{\mathrm{new}}(\Gamma_0(2))\)\(^{\oplus 9}\)\(\oplus\)\(S_{22}^{\mathrm{new}}(\Gamma_0(3))\)\(^{\oplus 8}\)\(\oplus\)\(S_{22}^{\mathrm{new}}(\Gamma_0(4))\)\(^{\oplus 6}\)\(\oplus\)\(S_{22}^{\mathrm{new}}(\Gamma_0(6))\)\(^{\oplus 6}\)\(\oplus\)\(S_{22}^{\mathrm{new}}(\Gamma_0(8))\)\(^{\oplus 3}\)\(\oplus\)\(S_{22}^{\mathrm{new}}(\Gamma_0(9))\)\(^{\oplus 4}\)\(\oplus\)\(S_{22}^{\mathrm{new}}(\Gamma_0(12))\)\(^{\oplus 4}\)\(\oplus\)\(S_{22}^{\mathrm{new}}(\Gamma_0(18))\)\(^{\oplus 3}\)\(\oplus\)\(S_{22}^{\mathrm{new}}(\Gamma_0(24))\)\(^{\oplus 2}\)\(\oplus\)\(S_{22}^{\mathrm{new}}(\Gamma_0(36))\)\(^{\oplus 2}\)