Properties

Label 72.22.a
Level $72$
Weight $22$
Character orbit 72.a
Rep. character $\chi_{72}(1,\cdot)$
Character field $\Q$
Dimension $26$
Newform subspaces $8$
Sturm bound $264$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 72 = 2^{3} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 22 \)
Character orbit: \([\chi]\) \(=\) 72.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 8 \)
Sturm bound: \(264\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{22}(\Gamma_0(72))\).

Total New Old
Modular forms 260 26 234
Cusp forms 244 26 218
Eisenstein series 16 0 16

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(3\)FrickeDim
\(+\)\(+\)\(+\)\(5\)
\(+\)\(-\)\(-\)\(8\)
\(-\)\(+\)\(-\)\(5\)
\(-\)\(-\)\(+\)\(8\)
Plus space\(+\)\(13\)
Minus space\(-\)\(13\)

Trace form

\( 26 q - 2472384 q^{5} - 740760072 q^{7} - 121085061120 q^{11} - 565825160812 q^{13} + 12205699937184 q^{17} + 8993580821776 q^{19} - 239408951299584 q^{23} + 24\!\cdots\!74 q^{25} - 276620185757184 q^{29}+ \cdots + 13\!\cdots\!60 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{22}^{\mathrm{new}}(\Gamma_0(72))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 3
72.22.a.a 72.a 1.a $2$ $201.224$ \(\Q(\sqrt{537541}) \) None 24.22.a.a \(0\) \(0\) \(-21948620\) \(-659451408\) $+$ $-$ $\mathrm{SU}(2)$ \(q+(-10974310-5\beta )q^{5}+(-329725704+\cdots)q^{7}+\cdots\)
72.22.a.b 72.a 1.a $2$ $201.224$ \(\Q(\sqrt{358549}) \) None 8.22.a.a \(0\) \(0\) \(-2108140\) \(444771792\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(-1054070-20\beta )q^{5}+(222385896+\cdots)q^{7}+\cdots\)
72.22.a.c 72.a 1.a $3$ $201.224$ \(\mathbb{Q}[x]/(x^{3} - \cdots)\) None 24.22.a.d \(0\) \(0\) \(-5280498\) \(852542376\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(-1760166+\beta _{1})q^{5}+(284180792+\cdots)q^{7}+\cdots\)
72.22.a.d 72.a 1.a $3$ $201.224$ \(\mathbb{Q}[x]/(x^{3} - \cdots)\) None 24.22.a.c \(0\) \(0\) \(-2080026\) \(-1205282064\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(-693342-\beta _{1})q^{5}+(-401760688+\cdots)q^{7}+\cdots\)
72.22.a.e 72.a 1.a $3$ $201.224$ \(\mathbb{Q}[x]/(x^{3} - \cdots)\) None 24.22.a.b \(0\) \(0\) \(4833126\) \(271431024\) $+$ $-$ $\mathrm{SU}(2)$ \(q+(1611042+\beta _{1})q^{5}+(90477008+\cdots)q^{7}+\cdots\)
72.22.a.f 72.a 1.a $3$ $201.224$ \(\mathbb{Q}[x]/(x^{3} - \cdots)\) None 8.22.a.b \(0\) \(0\) \(24111774\) \(295988280\) $+$ $-$ $\mathrm{SU}(2)$ \(q+(8037258-\beta _{2})q^{5}+(98662760+\cdots)q^{7}+\cdots\)
72.22.a.g 72.a 1.a $5$ $201.224$ \(\mathbb{Q}[x]/(x^{5} - \cdots)\) None 72.22.a.g \(0\) \(0\) \(-10324496\) \(-370380036\) $+$ $+$ $\mathrm{SU}(2)$ \(q+(-2064899+\beta _{1})q^{5}+(-74076006+\cdots)q^{7}+\cdots\)
72.22.a.h 72.a 1.a $5$ $201.224$ \(\mathbb{Q}[x]/(x^{5} - \cdots)\) None 72.22.a.g \(0\) \(0\) \(10324496\) \(-370380036\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(2064899-\beta _{1})q^{5}+(-74076006+\cdots)q^{7}+\cdots\)

Decomposition of \(S_{22}^{\mathrm{old}}(\Gamma_0(72))\) into lower level spaces

\( S_{22}^{\mathrm{old}}(\Gamma_0(72)) \simeq \) \(S_{22}^{\mathrm{new}}(\Gamma_0(1))\)\(^{\oplus 12}\)\(\oplus\)\(S_{22}^{\mathrm{new}}(\Gamma_0(2))\)\(^{\oplus 9}\)\(\oplus\)\(S_{22}^{\mathrm{new}}(\Gamma_0(3))\)\(^{\oplus 8}\)\(\oplus\)\(S_{22}^{\mathrm{new}}(\Gamma_0(4))\)\(^{\oplus 6}\)\(\oplus\)\(S_{22}^{\mathrm{new}}(\Gamma_0(6))\)\(^{\oplus 6}\)\(\oplus\)\(S_{22}^{\mathrm{new}}(\Gamma_0(8))\)\(^{\oplus 3}\)\(\oplus\)\(S_{22}^{\mathrm{new}}(\Gamma_0(9))\)\(^{\oplus 4}\)\(\oplus\)\(S_{22}^{\mathrm{new}}(\Gamma_0(12))\)\(^{\oplus 4}\)\(\oplus\)\(S_{22}^{\mathrm{new}}(\Gamma_0(18))\)\(^{\oplus 3}\)\(\oplus\)\(S_{22}^{\mathrm{new}}(\Gamma_0(24))\)\(^{\oplus 2}\)\(\oplus\)\(S_{22}^{\mathrm{new}}(\Gamma_0(36))\)\(^{\oplus 2}\)