Defining parameters
Level: | \( N \) | = | \( 72 = 2^{3} \cdot 3^{2} \) |
Weight: | \( k \) | = | \( 22 \) |
Nonzero newspaces: | \( 6 \) | ||
Sturm bound: | \(6336\) | ||
Trace bound: | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{22}(\Gamma_1(72))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 3072 | 1358 | 1714 |
Cusp forms | 2976 | 1340 | 1636 |
Eisenstein series | 96 | 18 | 78 |
Trace form
Decomposition of \(S_{22}^{\mathrm{new}}(\Gamma_1(72))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Label | \(\chi\) | Newforms | Dimension | \(\chi\) degree |
---|---|---|---|---|
72.22.a | \(\chi_{72}(1, \cdot)\) | 72.22.a.a | 2 | 1 |
72.22.a.b | 2 | |||
72.22.a.c | 3 | |||
72.22.a.d | 3 | |||
72.22.a.e | 3 | |||
72.22.a.f | 3 | |||
72.22.a.g | 5 | |||
72.22.a.h | 5 | |||
72.22.c | \(\chi_{72}(71, \cdot)\) | None | 0 | 1 |
72.22.d | \(\chi_{72}(37, \cdot)\) | n/a | 104 | 1 |
72.22.f | \(\chi_{72}(35, \cdot)\) | 72.22.f.a | 84 | 1 |
72.22.i | \(\chi_{72}(25, \cdot)\) | n/a | 126 | 2 |
72.22.l | \(\chi_{72}(11, \cdot)\) | n/a | 500 | 2 |
72.22.n | \(\chi_{72}(13, \cdot)\) | n/a | 500 | 2 |
72.22.o | \(\chi_{72}(23, \cdot)\) | None | 0 | 2 |
"n/a" means that newforms for that character have not been added to the database yet
Decomposition of \(S_{22}^{\mathrm{old}}(\Gamma_1(72))\) into lower level spaces
\( S_{22}^{\mathrm{old}}(\Gamma_1(72)) \cong \) \(S_{22}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 12}\)\(\oplus\)\(S_{22}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 9}\)\(\oplus\)\(S_{22}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 8}\)\(\oplus\)\(S_{22}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 6}\)\(\oplus\)\(S_{22}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 6}\)\(\oplus\)\(S_{22}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 3}\)\(\oplus\)\(S_{22}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 4}\)\(\oplus\)\(S_{22}^{\mathrm{new}}(\Gamma_1(12))\)\(^{\oplus 4}\)\(\oplus\)\(S_{22}^{\mathrm{new}}(\Gamma_1(18))\)\(^{\oplus 3}\)\(\oplus\)\(S_{22}^{\mathrm{new}}(\Gamma_1(24))\)\(^{\oplus 2}\)\(\oplus\)\(S_{22}^{\mathrm{new}}(\Gamma_1(36))\)\(^{\oplus 2}\)\(\oplus\)\(S_{22}^{\mathrm{new}}(\Gamma_1(72))\)\(^{\oplus 1}\)