[N,k,chi] = [72,22,Mod(1,72)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(72, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0]))
N = Newforms(chi, 22, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("72.1");
S:= CuspForms(chi, 22);
N := Newforms(S);
Newform invariants
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Refresh table
\( p \)
Sign
\(2\)
\(-1\)
\(3\)
\(-1\)
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5}^{3} + 5280498T_{5}^{2} - 1040411335225620T_{5} - 13488669456493277401000 \)
T5^3 + 5280498*T5^2 - 1040411335225620*T5 - 13488669456493277401000
acting on \(S_{22}^{\mathrm{new}}(\Gamma_0(72))\).
$p$
$F_p(T)$
$2$
\( T^{3} \)
T^3
$3$
\( T^{3} \)
T^3
$5$
\( T^{3} + 5280498 T^{2} + \cdots - 13\!\cdots\!00 \)
T^3 + 5280498*T^2 - 1040411335225620*T - 13488669456493277401000
$7$
\( T^{3} - 852542376 T^{2} + \cdots + 29\!\cdots\!00 \)
T^3 - 852542376*T^2 - 1070815771805371200*T + 296653625245189883522880000
$11$
\( T^{3} + 62490757668 T^{2} + \cdots + 18\!\cdots\!60 \)
T^3 + 62490757668*T^2 - 3767187751033965121104*T + 18575565616501043493033677792960
$13$
\( T^{3} - 203765207802 T^{2} + \cdots - 64\!\cdots\!24 \)
T^3 - 203765207802*T^2 - 367381693096367164050420*T - 64845450745595782081437405101509624
$17$
\( T^{3} + 695827819926 T^{2} + \cdots - 13\!\cdots\!12 \)
T^3 + 695827819926*T^2 - 50014787656276347055984308*T - 139595746342514101373771644874376848312
$19$
\( T^{3} - 4955504123196 T^{2} + \cdots - 18\!\cdots\!64 \)
T^3 - 4955504123196*T^2 - 1454863431767819647478100816*T - 18453768992188098157846530753272916832064
$23$
\( T^{3} + 150867407938152 T^{2} + \cdots + 60\!\cdots\!52 \)
T^3 + 150867407938152*T^2 + 5562410822822275576674883776*T + 60427973121097847416948496166166273367552
$29$
\( T^{3} + \cdots - 20\!\cdots\!76 \)
T^3 + 3242224905226746*T^2 - 676975502541484119020713863156*T - 2037443549530479399258211618676111638881261576
$31$
\( T^{3} - 652508601550896 T^{2} + \cdots - 88\!\cdots\!20 \)
T^3 - 652508601550896*T^2 - 47871671755555953585857192115456*T - 88357207200106791128129160796576779325373419520
$37$
\( T^{3} + \cdots - 10\!\cdots\!76 \)
T^3 + 20693271836916222*T^2 - 801173829038631741579060693650772*T - 1098843436913555928594339708536729475194447079576
$41$
\( T^{3} + \cdots + 91\!\cdots\!60 \)
T^3 - 47608600312552002*T^2 - 14609178019945002422191391530713684*T + 914943290004860629493436931432652453295187072953960
$43$
\( T^{3} + \cdots - 11\!\cdots\!04 \)
T^3 + 277110211230415548*T^2 + 14575158956105150397212557099067568*T - 115102271182826812810233774307085588640784993319104
$47$
\( T^{3} + \cdots + 45\!\cdots\!00 \)
T^3 - 535942507326221328*T^2 - 146236844012766487219074575225836800*T + 45722443856397199741027977364751506518687823618560000
$53$
\( T^{3} + \cdots + 78\!\cdots\!20 \)
T^3 + 2849297892348987426*T^2 + 2628062158986330359698508387504573484*T + 788315636671313350869078360781779350981186453999703320
$59$
\( T^{3} + \cdots - 25\!\cdots\!60 \)
T^3 + 881046377434726548*T^2 - 25785967864633859400247868929389050064*T - 25188459597631211352159219498976703021475139762931344960
$61$
\( T^{3} + \cdots + 12\!\cdots\!96 \)
T^3 - 10620890455615553322*T^2 + 5056222273626641096360631599400871500*T + 129650217544486015229668360574016773366967703012419156296
$67$
\( T^{3} + \cdots + 46\!\cdots\!16 \)
T^3 - 14840080728867715116*T^2 - 167731716170673240441389845025783648976*T + 466871629259266652535435350828306494115290599651828846016
$71$
\( T^{3} + \cdots + 43\!\cdots\!20 \)
T^3 + 14608944838311941496*T^2 - 1680169993875479200369060508681107496256*T + 4336339602129051841779188532197921457048550265546476894720
$73$
\( T^{3} + \cdots + 27\!\cdots\!00 \)
T^3 - 13575086263949291454*T^2 - 1388375330075691897142911168457119054420*T + 27713165786016150345340662024572587761160499542645505288600
$79$
\( T^{3} + \cdots - 33\!\cdots\!64 \)
T^3 - 278096577517755548160*T^2 + 21415845700684158478080814917384300085248*T - 336416436254115851074491966237703274804218179859611872395264
$83$
\( T^{3} + \cdots + 54\!\cdots\!88 \)
T^3 + 585716918283456830460*T^2 + 105087570466867068687455042212352063965872*T + 5434161683588337424758338718323143233888280231840167483489088
$89$
\( T^{3} + \cdots - 14\!\cdots\!88 \)
T^3 + 477818701792662526830*T^2 - 26647069101945541971818158973379734309268*T - 14051302720989265870588860507210288707250844695886582795510488
$97$
\( T^{3} + \cdots + 12\!\cdots\!08 \)
T^3 - 722411740013721590502*T^2 - 128661676322154830327434372539142787442804*T + 122523966480725272052737758072569490578345566574227720106687608
show more
show less