Properties

Label 704.2.m.g.577.1
Level $704$
Weight $2$
Character 704.577
Analytic conductor $5.621$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [704,2,Mod(257,704)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("704.257"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(704, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 0, 2])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 704 = 2^{6} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 704.m (of order \(5\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,3,0,-3,0,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.62146830230\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 88)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 577.1
Root \(-0.309017 + 0.951057i\) of defining polynomial
Character \(\chi\) \(=\) 704.577
Dual form 704.2.m.g.449.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.30902 + 0.951057i) q^{3} +(-0.190983 + 0.587785i) q^{5} +(1.30902 - 0.951057i) q^{7} +(-0.118034 - 0.363271i) q^{9} +(1.23607 + 3.07768i) q^{11} +(1.80902 + 5.56758i) q^{13} +(-0.809017 + 0.587785i) q^{15} +(-0.572949 + 1.76336i) q^{17} +(-3.92705 - 2.85317i) q^{19} +2.61803 q^{21} +4.00000 q^{23} +(3.73607 + 2.71441i) q^{25} +(1.69098 - 5.20431i) q^{27} +(5.92705 - 4.30625i) q^{29} +(-0.336881 - 1.03681i) q^{31} +(-1.30902 + 5.20431i) q^{33} +(0.309017 + 0.951057i) q^{35} +(-7.78115 + 5.65334i) q^{37} +(-2.92705 + 9.00854i) q^{39} +(7.78115 + 5.65334i) q^{41} +1.52786 q^{43} +0.236068 q^{45} +(-8.54508 - 6.20837i) q^{47} +(-1.35410 + 4.16750i) q^{49} +(-2.42705 + 1.76336i) q^{51} +(-0.190983 - 0.587785i) q^{53} +(-2.04508 + 0.138757i) q^{55} +(-2.42705 - 7.46969i) q^{57} +(1.92705 - 1.40008i) q^{59} +(0.572949 - 1.76336i) q^{61} +(-0.500000 - 0.363271i) q^{63} -3.61803 q^{65} -14.4721 q^{67} +(5.23607 + 3.80423i) q^{69} +(1.57295 - 4.84104i) q^{71} +(2.54508 - 1.84911i) q^{73} +(2.30902 + 7.10642i) q^{75} +(4.54508 + 2.85317i) q^{77} +(1.19098 + 3.66547i) q^{79} +(6.23607 - 4.53077i) q^{81} +(2.89919 - 8.92278i) q^{83} +(-0.927051 - 0.673542i) q^{85} +11.8541 q^{87} -4.47214 q^{89} +(7.66312 + 5.56758i) q^{91} +(0.545085 - 1.67760i) q^{93} +(2.42705 - 1.76336i) q^{95} +(-3.80902 - 11.7229i) q^{97} +(0.972136 - 0.812299i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 3 q^{3} - 3 q^{5} + 3 q^{7} + 4 q^{9} - 4 q^{11} + 5 q^{13} - q^{15} - 9 q^{17} - 9 q^{19} + 6 q^{21} + 16 q^{23} + 6 q^{25} + 9 q^{27} + 17 q^{29} - 17 q^{31} - 3 q^{33} - q^{35} - 11 q^{37} - 5 q^{39}+ \cdots - 14 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/704\mathbb{Z}\right)^\times\).

\(n\) \(133\) \(321\) \(639\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{5}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.30902 + 0.951057i 0.755761 + 0.549093i 0.897607 0.440796i \(-0.145304\pi\)
−0.141846 + 0.989889i \(0.545304\pi\)
\(4\) 0 0
\(5\) −0.190983 + 0.587785i −0.0854102 + 0.262866i −0.984636 0.174619i \(-0.944131\pi\)
0.899226 + 0.437485i \(0.144131\pi\)
\(6\) 0 0
\(7\) 1.30902 0.951057i 0.494762 0.359466i −0.312251 0.950000i \(-0.601083\pi\)
0.807013 + 0.590534i \(0.201083\pi\)
\(8\) 0 0
\(9\) −0.118034 0.363271i −0.0393447 0.121090i
\(10\) 0 0
\(11\) 1.23607 + 3.07768i 0.372689 + 0.927957i
\(12\) 0 0
\(13\) 1.80902 + 5.56758i 0.501731 + 1.54417i 0.806198 + 0.591646i \(0.201522\pi\)
−0.304467 + 0.952523i \(0.598478\pi\)
\(14\) 0 0
\(15\) −0.809017 + 0.587785i −0.208887 + 0.151765i
\(16\) 0 0
\(17\) −0.572949 + 1.76336i −0.138961 + 0.427677i −0.996185 0.0872663i \(-0.972187\pi\)
0.857224 + 0.514943i \(0.172187\pi\)
\(18\) 0 0
\(19\) −3.92705 2.85317i −0.900927 0.654562i 0.0377767 0.999286i \(-0.487972\pi\)
−0.938704 + 0.344724i \(0.887972\pi\)
\(20\) 0 0
\(21\) 2.61803 0.571302
\(22\) 0 0
\(23\) 4.00000 0.834058 0.417029 0.908893i \(-0.363071\pi\)
0.417029 + 0.908893i \(0.363071\pi\)
\(24\) 0 0
\(25\) 3.73607 + 2.71441i 0.747214 + 0.542882i
\(26\) 0 0
\(27\) 1.69098 5.20431i 0.325430 1.00157i
\(28\) 0 0
\(29\) 5.92705 4.30625i 1.10063 0.799651i 0.119464 0.992839i \(-0.461882\pi\)
0.981162 + 0.193187i \(0.0618825\pi\)
\(30\) 0 0
\(31\) −0.336881 1.03681i −0.0605056 0.186217i 0.916235 0.400641i \(-0.131213\pi\)
−0.976741 + 0.214424i \(0.931213\pi\)
\(32\) 0 0
\(33\) −1.30902 + 5.20431i −0.227871 + 0.905954i
\(34\) 0 0
\(35\) 0.309017 + 0.951057i 0.0522334 + 0.160758i
\(36\) 0 0
\(37\) −7.78115 + 5.65334i −1.27921 + 0.929403i −0.999529 0.0306888i \(-0.990230\pi\)
−0.279685 + 0.960092i \(0.590230\pi\)
\(38\) 0 0
\(39\) −2.92705 + 9.00854i −0.468703 + 1.44252i
\(40\) 0 0
\(41\) 7.78115 + 5.65334i 1.21521 + 0.882903i 0.995694 0.0927052i \(-0.0295514\pi\)
0.219518 + 0.975608i \(0.429551\pi\)
\(42\) 0 0
\(43\) 1.52786 0.232997 0.116499 0.993191i \(-0.462833\pi\)
0.116499 + 0.993191i \(0.462833\pi\)
\(44\) 0 0
\(45\) 0.236068 0.0351909
\(46\) 0 0
\(47\) −8.54508 6.20837i −1.24643 0.905583i −0.248420 0.968653i \(-0.579911\pi\)
−0.998009 + 0.0630690i \(0.979911\pi\)
\(48\) 0 0
\(49\) −1.35410 + 4.16750i −0.193443 + 0.595357i
\(50\) 0 0
\(51\) −2.42705 + 1.76336i −0.339855 + 0.246919i
\(52\) 0 0
\(53\) −0.190983 0.587785i −0.0262335 0.0807385i 0.937083 0.349108i \(-0.113515\pi\)
−0.963316 + 0.268369i \(0.913515\pi\)
\(54\) 0 0
\(55\) −2.04508 + 0.138757i −0.275759 + 0.0187100i
\(56\) 0 0
\(57\) −2.42705 7.46969i −0.321471 0.989385i
\(58\) 0 0
\(59\) 1.92705 1.40008i 0.250881 0.182275i −0.455236 0.890371i \(-0.650445\pi\)
0.706117 + 0.708095i \(0.250445\pi\)
\(60\) 0 0
\(61\) 0.572949 1.76336i 0.0733586 0.225775i −0.907654 0.419720i \(-0.862128\pi\)
0.981012 + 0.193945i \(0.0621284\pi\)
\(62\) 0 0
\(63\) −0.500000 0.363271i −0.0629941 0.0457679i
\(64\) 0 0
\(65\) −3.61803 −0.448762
\(66\) 0 0
\(67\) −14.4721 −1.76805 −0.884026 0.467437i \(-0.845177\pi\)
−0.884026 + 0.467437i \(0.845177\pi\)
\(68\) 0 0
\(69\) 5.23607 + 3.80423i 0.630349 + 0.457975i
\(70\) 0 0
\(71\) 1.57295 4.84104i 0.186675 0.574526i −0.813298 0.581847i \(-0.802330\pi\)
0.999973 + 0.00732101i \(0.00233037\pi\)
\(72\) 0 0
\(73\) 2.54508 1.84911i 0.297880 0.216422i −0.428799 0.903400i \(-0.641063\pi\)
0.726678 + 0.686978i \(0.241063\pi\)
\(74\) 0 0
\(75\) 2.30902 + 7.10642i 0.266622 + 0.820579i
\(76\) 0 0
\(77\) 4.54508 + 2.85317i 0.517961 + 0.325149i
\(78\) 0 0
\(79\) 1.19098 + 3.66547i 0.133996 + 0.412397i 0.995433 0.0954679i \(-0.0304347\pi\)
−0.861436 + 0.507865i \(0.830435\pi\)
\(80\) 0 0
\(81\) 6.23607 4.53077i 0.692896 0.503419i
\(82\) 0 0
\(83\) 2.89919 8.92278i 0.318227 0.979402i −0.656179 0.754606i \(-0.727828\pi\)
0.974406 0.224797i \(-0.0721718\pi\)
\(84\) 0 0
\(85\) −0.927051 0.673542i −0.100553 0.0730559i
\(86\) 0 0
\(87\) 11.8541 1.27089
\(88\) 0 0
\(89\) −4.47214 −0.474045 −0.237023 0.971504i \(-0.576172\pi\)
−0.237023 + 0.971504i \(0.576172\pi\)
\(90\) 0 0
\(91\) 7.66312 + 5.56758i 0.803313 + 0.583641i
\(92\) 0 0
\(93\) 0.545085 1.67760i 0.0565227 0.173959i
\(94\) 0 0
\(95\) 2.42705 1.76336i 0.249010 0.180916i
\(96\) 0 0
\(97\) −3.80902 11.7229i −0.386747 1.19029i −0.935205 0.354107i \(-0.884785\pi\)
0.548458 0.836178i \(-0.315215\pi\)
\(98\) 0 0
\(99\) 0.972136 0.812299i 0.0977033 0.0816391i
\(100\) 0 0
\(101\) −0.954915 2.93893i −0.0950176 0.292434i 0.892241 0.451560i \(-0.149132\pi\)
−0.987258 + 0.159126i \(0.949132\pi\)
\(102\) 0 0
\(103\) 9.78115 7.10642i 0.963766 0.700217i 0.00974339 0.999953i \(-0.496899\pi\)
0.954022 + 0.299736i \(0.0968985\pi\)
\(104\) 0 0
\(105\) −0.500000 + 1.53884i −0.0487950 + 0.150176i
\(106\) 0 0
\(107\) −3.16312 2.29814i −0.305790 0.222170i 0.424298 0.905523i \(-0.360521\pi\)
−0.730088 + 0.683353i \(0.760521\pi\)
\(108\) 0 0
\(109\) −14.9443 −1.43140 −0.715701 0.698407i \(-0.753893\pi\)
−0.715701 + 0.698407i \(0.753893\pi\)
\(110\) 0 0
\(111\) −15.5623 −1.47711
\(112\) 0 0
\(113\) −7.16312 5.20431i −0.673850 0.489580i 0.197462 0.980311i \(-0.436730\pi\)
−0.871312 + 0.490730i \(0.836730\pi\)
\(114\) 0 0
\(115\) −0.763932 + 2.35114i −0.0712370 + 0.219245i
\(116\) 0 0
\(117\) 1.80902 1.31433i 0.167244 0.121510i
\(118\) 0 0
\(119\) 0.927051 + 2.85317i 0.0849826 + 0.261550i
\(120\) 0 0
\(121\) −7.94427 + 7.60845i −0.722207 + 0.691677i
\(122\) 0 0
\(123\) 4.80902 + 14.8006i 0.433614 + 1.33453i
\(124\) 0 0
\(125\) −4.80902 + 3.49396i −0.430132 + 0.312509i
\(126\) 0 0
\(127\) 1.75329 5.39607i 0.155579 0.478824i −0.842640 0.538477i \(-0.819000\pi\)
0.998219 + 0.0596539i \(0.0189997\pi\)
\(128\) 0 0
\(129\) 2.00000 + 1.45309i 0.176090 + 0.127937i
\(130\) 0 0
\(131\) 8.00000 0.698963 0.349482 0.936943i \(-0.386358\pi\)
0.349482 + 0.936943i \(0.386358\pi\)
\(132\) 0 0
\(133\) −7.85410 −0.681037
\(134\) 0 0
\(135\) 2.73607 + 1.98787i 0.235483 + 0.171089i
\(136\) 0 0
\(137\) 5.42705 16.7027i 0.463664 1.42701i −0.396990 0.917823i \(-0.629945\pi\)
0.860655 0.509189i \(-0.170055\pi\)
\(138\) 0 0
\(139\) 13.1631 9.56357i 1.11648 0.811171i 0.132809 0.991142i \(-0.457600\pi\)
0.983672 + 0.179971i \(0.0576003\pi\)
\(140\) 0 0
\(141\) −5.28115 16.2537i −0.444753 1.36881i
\(142\) 0 0
\(143\) −14.8992 + 12.4495i −1.24593 + 1.04108i
\(144\) 0 0
\(145\) 1.39919 + 4.30625i 0.116196 + 0.357615i
\(146\) 0 0
\(147\) −5.73607 + 4.16750i −0.473103 + 0.343729i
\(148\) 0 0
\(149\) 5.51722 16.9803i 0.451988 1.39108i −0.422646 0.906295i \(-0.638899\pi\)
0.874635 0.484782i \(-0.161101\pi\)
\(150\) 0 0
\(151\) 5.92705 + 4.30625i 0.482337 + 0.350438i 0.802230 0.597016i \(-0.203647\pi\)
−0.319893 + 0.947454i \(0.603647\pi\)
\(152\) 0 0
\(153\) 0.708204 0.0572549
\(154\) 0 0
\(155\) 0.673762 0.0541179
\(156\) 0 0
\(157\) −0.545085 0.396027i −0.0435025 0.0316064i 0.565822 0.824528i \(-0.308559\pi\)
−0.609324 + 0.792921i \(0.708559\pi\)
\(158\) 0 0
\(159\) 0.309017 0.951057i 0.0245066 0.0754237i
\(160\) 0 0
\(161\) 5.23607 3.80423i 0.412660 0.299815i
\(162\) 0 0
\(163\) −2.71885 8.36775i −0.212957 0.655413i −0.999292 0.0376135i \(-0.988024\pi\)
0.786336 0.617799i \(-0.211976\pi\)
\(164\) 0 0
\(165\) −2.80902 1.76336i −0.218682 0.137277i
\(166\) 0 0
\(167\) 4.42705 + 13.6251i 0.342575 + 1.05434i 0.962869 + 0.269969i \(0.0870135\pi\)
−0.620293 + 0.784370i \(0.712986\pi\)
\(168\) 0 0
\(169\) −17.2082 + 12.5025i −1.32371 + 0.961730i
\(170\) 0 0
\(171\) −0.572949 + 1.76336i −0.0438145 + 0.134847i
\(172\) 0 0
\(173\) 7.16312 + 5.20431i 0.544602 + 0.395676i 0.825791 0.563976i \(-0.190729\pi\)
−0.281189 + 0.959652i \(0.590729\pi\)
\(174\) 0 0
\(175\) 7.47214 0.564840
\(176\) 0 0
\(177\) 3.85410 0.289692
\(178\) 0 0
\(179\) −19.6353 14.2658i −1.46761 1.06628i −0.981298 0.192493i \(-0.938343\pi\)
−0.486309 0.873787i \(-0.661657\pi\)
\(180\) 0 0
\(181\) 2.86475 8.81678i 0.212935 0.655346i −0.786359 0.617770i \(-0.788036\pi\)
0.999294 0.0375761i \(-0.0119637\pi\)
\(182\) 0 0
\(183\) 2.42705 1.76336i 0.179413 0.130351i
\(184\) 0 0
\(185\) −1.83688 5.65334i −0.135050 0.415642i
\(186\) 0 0
\(187\) −6.13525 + 0.416272i −0.448654 + 0.0304408i
\(188\) 0 0
\(189\) −2.73607 8.42075i −0.199020 0.612520i
\(190\) 0 0
\(191\) 12.2533 8.90254i 0.886617 0.644165i −0.0483768 0.998829i \(-0.515405\pi\)
0.934994 + 0.354664i \(0.115405\pi\)
\(192\) 0 0
\(193\) −2.28115 + 7.02067i −0.164201 + 0.505359i −0.998977 0.0452318i \(-0.985597\pi\)
0.834776 + 0.550590i \(0.185597\pi\)
\(194\) 0 0
\(195\) −4.73607 3.44095i −0.339157 0.246412i
\(196\) 0 0
\(197\) −0.472136 −0.0336383 −0.0168191 0.999859i \(-0.505354\pi\)
−0.0168191 + 0.999859i \(0.505354\pi\)
\(198\) 0 0
\(199\) −20.3607 −1.44333 −0.721665 0.692242i \(-0.756623\pi\)
−0.721665 + 0.692242i \(0.756623\pi\)
\(200\) 0 0
\(201\) −18.9443 13.7638i −1.33623 0.970825i
\(202\) 0 0
\(203\) 3.66312 11.2739i 0.257101 0.791274i
\(204\) 0 0
\(205\) −4.80902 + 3.49396i −0.335876 + 0.244028i
\(206\) 0 0
\(207\) −0.472136 1.45309i −0.0328157 0.100996i
\(208\) 0 0
\(209\) 3.92705 15.6129i 0.271640 1.07997i
\(210\) 0 0
\(211\) 4.04508 + 12.4495i 0.278475 + 0.857058i 0.988279 + 0.152659i \(0.0487836\pi\)
−0.709804 + 0.704399i \(0.751216\pi\)
\(212\) 0 0
\(213\) 6.66312 4.84104i 0.456549 0.331703i
\(214\) 0 0
\(215\) −0.291796 + 0.898056i −0.0199003 + 0.0612469i
\(216\) 0 0
\(217\) −1.42705 1.03681i −0.0968745 0.0703835i
\(218\) 0 0
\(219\) 5.09017 0.343962
\(220\) 0 0
\(221\) −10.8541 −0.730126
\(222\) 0 0
\(223\) −7.78115 5.65334i −0.521065 0.378576i 0.295940 0.955206i \(-0.404367\pi\)
−0.817005 + 0.576631i \(0.804367\pi\)
\(224\) 0 0
\(225\) 0.545085 1.67760i 0.0363390 0.111840i
\(226\) 0 0
\(227\) −5.78115 + 4.20025i −0.383709 + 0.278781i −0.762873 0.646549i \(-0.776212\pi\)
0.379164 + 0.925330i \(0.376212\pi\)
\(228\) 0 0
\(229\) 5.04508 + 15.5272i 0.333389 + 1.02606i 0.967510 + 0.252831i \(0.0813618\pi\)
−0.634122 + 0.773233i \(0.718638\pi\)
\(230\) 0 0
\(231\) 3.23607 + 8.05748i 0.212918 + 0.530143i
\(232\) 0 0
\(233\) 4.95492 + 15.2497i 0.324607 + 0.999038i 0.971618 + 0.236557i \(0.0760191\pi\)
−0.647010 + 0.762481i \(0.723981\pi\)
\(234\) 0 0
\(235\) 5.28115 3.83698i 0.344504 0.250297i
\(236\) 0 0
\(237\) −1.92705 + 5.93085i −0.125175 + 0.385250i
\(238\) 0 0
\(239\) −19.0172 13.8168i −1.23012 0.893736i −0.233222 0.972423i \(-0.574927\pi\)
−0.996899 + 0.0786876i \(0.974927\pi\)
\(240\) 0 0
\(241\) 1.05573 0.0680054 0.0340027 0.999422i \(-0.489175\pi\)
0.0340027 + 0.999422i \(0.489175\pi\)
\(242\) 0 0
\(243\) −3.94427 −0.253025
\(244\) 0 0
\(245\) −2.19098 1.59184i −0.139977 0.101699i
\(246\) 0 0
\(247\) 8.78115 27.0256i 0.558731 1.71960i
\(248\) 0 0
\(249\) 12.2812 8.92278i 0.778286 0.565458i
\(250\) 0 0
\(251\) 3.28115 + 10.0984i 0.207105 + 0.637402i 0.999620 + 0.0275509i \(0.00877084\pi\)
−0.792516 + 0.609851i \(0.791229\pi\)
\(252\) 0 0
\(253\) 4.94427 + 12.3107i 0.310844 + 0.773969i
\(254\) 0 0
\(255\) −0.572949 1.76336i −0.0358795 0.110426i
\(256\) 0 0
\(257\) 2.07295 1.50609i 0.129307 0.0939470i −0.521252 0.853403i \(-0.674535\pi\)
0.650559 + 0.759456i \(0.274535\pi\)
\(258\) 0 0
\(259\) −4.80902 + 14.8006i −0.298818 + 0.919667i
\(260\) 0 0
\(261\) −2.26393 1.64484i −0.140134 0.101813i
\(262\) 0 0
\(263\) −7.41641 −0.457315 −0.228658 0.973507i \(-0.573434\pi\)
−0.228658 + 0.973507i \(0.573434\pi\)
\(264\) 0 0
\(265\) 0.381966 0.0234640
\(266\) 0 0
\(267\) −5.85410 4.25325i −0.358265 0.260295i
\(268\) 0 0
\(269\) 0.281153 0.865300i 0.0171422 0.0527583i −0.942120 0.335277i \(-0.891170\pi\)
0.959262 + 0.282519i \(0.0911700\pi\)
\(270\) 0 0
\(271\) −21.3435 + 15.5069i −1.29652 + 0.941979i −0.999915 0.0130205i \(-0.995855\pi\)
−0.296608 + 0.954999i \(0.595855\pi\)
\(272\) 0 0
\(273\) 4.73607 + 14.5761i 0.286640 + 0.882187i
\(274\) 0 0
\(275\) −3.73607 + 14.8536i −0.225293 + 0.895708i
\(276\) 0 0
\(277\) 1.04508 + 3.21644i 0.0627931 + 0.193257i 0.977532 0.210789i \(-0.0676034\pi\)
−0.914738 + 0.404046i \(0.867603\pi\)
\(278\) 0 0
\(279\) −0.336881 + 0.244758i −0.0201685 + 0.0146533i
\(280\) 0 0
\(281\) 4.19098 12.8985i 0.250013 0.769461i −0.744758 0.667334i \(-0.767435\pi\)
0.994771 0.102127i \(-0.0325648\pi\)
\(282\) 0 0
\(283\) −11.1631 8.11048i −0.663579 0.482118i 0.204291 0.978910i \(-0.434511\pi\)
−0.867870 + 0.496792i \(0.834511\pi\)
\(284\) 0 0
\(285\) 4.85410 0.287532
\(286\) 0 0
\(287\) 15.5623 0.918614
\(288\) 0 0
\(289\) 10.9721 + 7.97172i 0.645420 + 0.468925i
\(290\) 0 0
\(291\) 6.16312 18.9681i 0.361288 1.11193i
\(292\) 0 0
\(293\) −8.54508 + 6.20837i −0.499209 + 0.362697i −0.808715 0.588201i \(-0.799836\pi\)
0.309506 + 0.950898i \(0.399836\pi\)
\(294\) 0 0
\(295\) 0.454915 + 1.40008i 0.0264862 + 0.0815161i
\(296\) 0 0
\(297\) 18.1074 1.22857i 1.05070 0.0712889i
\(298\) 0 0
\(299\) 7.23607 + 22.2703i 0.418473 + 1.28793i
\(300\) 0 0
\(301\) 2.00000 1.45309i 0.115278 0.0837544i
\(302\) 0 0
\(303\) 1.54508 4.75528i 0.0887628 0.273184i
\(304\) 0 0
\(305\) 0.927051 + 0.673542i 0.0530828 + 0.0385669i
\(306\) 0 0
\(307\) 33.8885 1.93412 0.967061 0.254546i \(-0.0819260\pi\)
0.967061 + 0.254546i \(0.0819260\pi\)
\(308\) 0 0
\(309\) 19.5623 1.11286
\(310\) 0 0
\(311\) 26.1074 + 18.9681i 1.48041 + 1.07558i 0.977423 + 0.211293i \(0.0677673\pi\)
0.502991 + 0.864291i \(0.332233\pi\)
\(312\) 0 0
\(313\) −8.57295 + 26.3848i −0.484572 + 1.49136i 0.348028 + 0.937484i \(0.386851\pi\)
−0.832600 + 0.553874i \(0.813149\pi\)
\(314\) 0 0
\(315\) 0.309017 0.224514i 0.0174111 0.0126499i
\(316\) 0 0
\(317\) 0.100813 + 0.310271i 0.00566223 + 0.0174265i 0.953848 0.300291i \(-0.0970837\pi\)
−0.948185 + 0.317717i \(0.897084\pi\)
\(318\) 0 0
\(319\) 20.5795 + 12.9188i 1.15223 + 0.723312i
\(320\) 0 0
\(321\) −1.95492 6.01661i −0.109113 0.335814i
\(322\) 0 0
\(323\) 7.28115 5.29007i 0.405134 0.294347i
\(324\) 0 0
\(325\) −8.35410 + 25.7113i −0.463402 + 1.42621i
\(326\) 0 0
\(327\) −19.5623 14.2128i −1.08180 0.785972i
\(328\) 0 0
\(329\) −17.0902 −0.942212
\(330\) 0 0
\(331\) −8.94427 −0.491622 −0.245811 0.969318i \(-0.579054\pi\)
−0.245811 + 0.969318i \(0.579054\pi\)
\(332\) 0 0
\(333\) 2.97214 + 2.15938i 0.162872 + 0.118333i
\(334\) 0 0
\(335\) 2.76393 8.50651i 0.151010 0.464760i
\(336\) 0 0
\(337\) −21.3435 + 15.5069i −1.16265 + 0.844716i −0.990111 0.140286i \(-0.955198\pi\)
−0.172541 + 0.985002i \(0.555198\pi\)
\(338\) 0 0
\(339\) −4.42705 13.6251i −0.240444 0.740012i
\(340\) 0 0
\(341\) 2.77458 2.31838i 0.150252 0.125548i
\(342\) 0 0
\(343\) 5.69098 + 17.5150i 0.307284 + 0.945724i
\(344\) 0 0
\(345\) −3.23607 + 2.35114i −0.174224 + 0.126581i
\(346\) 0 0
\(347\) −2.62868 + 8.09024i −0.141115 + 0.434307i −0.996491 0.0837007i \(-0.973326\pi\)
0.855376 + 0.518007i \(0.173326\pi\)
\(348\) 0 0
\(349\) 16.3992 + 11.9147i 0.877828 + 0.637780i 0.932676 0.360715i \(-0.117467\pi\)
−0.0548477 + 0.998495i \(0.517467\pi\)
\(350\) 0 0
\(351\) 32.0344 1.70987
\(352\) 0 0
\(353\) 1.41641 0.0753878 0.0376939 0.999289i \(-0.487999\pi\)
0.0376939 + 0.999289i \(0.487999\pi\)
\(354\) 0 0
\(355\) 2.54508 + 1.84911i 0.135079 + 0.0981407i
\(356\) 0 0
\(357\) −1.50000 + 4.61653i −0.0793884 + 0.244332i
\(358\) 0 0
\(359\) 12.5451 9.11454i 0.662104 0.481047i −0.205269 0.978706i \(-0.565807\pi\)
0.867373 + 0.497659i \(0.165807\pi\)
\(360\) 0 0
\(361\) 1.40983 + 4.33901i 0.0742016 + 0.228369i
\(362\) 0 0
\(363\) −17.6353 + 2.40414i −0.925611 + 0.126185i
\(364\) 0 0
\(365\) 0.600813 + 1.84911i 0.0314480 + 0.0967870i
\(366\) 0 0
\(367\) −22.1074 + 16.0620i −1.15400 + 0.838427i −0.989007 0.147868i \(-0.952759\pi\)
−0.164989 + 0.986295i \(0.552759\pi\)
\(368\) 0 0
\(369\) 1.13525 3.49396i 0.0590990 0.181888i
\(370\) 0 0
\(371\) −0.809017 0.587785i −0.0420021 0.0305163i
\(372\) 0 0
\(373\) 5.41641 0.280451 0.140225 0.990120i \(-0.455217\pi\)
0.140225 + 0.990120i \(0.455217\pi\)
\(374\) 0 0
\(375\) −9.61803 −0.496673
\(376\) 0 0
\(377\) 34.6976 + 25.2093i 1.78702 + 1.29834i
\(378\) 0 0
\(379\) 5.95492 18.3273i 0.305883 0.941412i −0.673463 0.739221i \(-0.735194\pi\)
0.979346 0.202191i \(-0.0648062\pi\)
\(380\) 0 0
\(381\) 7.42705 5.39607i 0.380499 0.276449i
\(382\) 0 0
\(383\) 0.607391 + 1.86936i 0.0310362 + 0.0955197i 0.965375 0.260867i \(-0.0840085\pi\)
−0.934338 + 0.356387i \(0.884008\pi\)
\(384\) 0 0
\(385\) −2.54508 + 2.12663i −0.129710 + 0.108383i
\(386\) 0 0
\(387\) −0.180340 0.555029i −0.00916719 0.0282137i
\(388\) 0 0
\(389\) 21.6353 15.7189i 1.09695 0.796982i 0.116391 0.993203i \(-0.462867\pi\)
0.980560 + 0.196222i \(0.0628673\pi\)
\(390\) 0 0
\(391\) −2.29180 + 7.05342i −0.115901 + 0.356707i
\(392\) 0 0
\(393\) 10.4721 + 7.60845i 0.528249 + 0.383796i
\(394\) 0 0
\(395\) −2.38197 −0.119850
\(396\) 0 0
\(397\) 2.58359 0.129667 0.0648334 0.997896i \(-0.479348\pi\)
0.0648334 + 0.997896i \(0.479348\pi\)
\(398\) 0 0
\(399\) −10.2812 7.46969i −0.514701 0.373952i
\(400\) 0 0
\(401\) 2.19098 6.74315i 0.109412 0.336737i −0.881328 0.472505i \(-0.843350\pi\)
0.990741 + 0.135768i \(0.0433500\pi\)
\(402\) 0 0
\(403\) 5.16312 3.75123i 0.257193 0.186862i
\(404\) 0 0
\(405\) 1.47214 + 4.53077i 0.0731510 + 0.225136i
\(406\) 0 0
\(407\) −27.0172 16.9600i −1.33919 0.840677i
\(408\) 0 0
\(409\) 0.482779 + 1.48584i 0.0238719 + 0.0734701i 0.962283 0.272051i \(-0.0877021\pi\)
−0.938411 + 0.345521i \(0.887702\pi\)
\(410\) 0 0
\(411\) 22.9894 16.7027i 1.13398 0.823886i
\(412\) 0 0
\(413\) 1.19098 3.66547i 0.0586044 0.180366i
\(414\) 0 0
\(415\) 4.69098 + 3.40820i 0.230271 + 0.167302i
\(416\) 0 0
\(417\) 26.3262 1.28920
\(418\) 0 0
\(419\) 3.05573 0.149282 0.0746410 0.997210i \(-0.476219\pi\)
0.0746410 + 0.997210i \(0.476219\pi\)
\(420\) 0 0
\(421\) −6.54508 4.75528i −0.318988 0.231758i 0.416756 0.909019i \(-0.363167\pi\)
−0.735743 + 0.677260i \(0.763167\pi\)
\(422\) 0 0
\(423\) −1.24671 + 3.83698i −0.0606172 + 0.186560i
\(424\) 0 0
\(425\) −6.92705 + 5.03280i −0.336011 + 0.244127i
\(426\) 0 0
\(427\) −0.927051 2.85317i −0.0448631 0.138075i
\(428\) 0 0
\(429\) −31.3435 + 2.12663i −1.51328 + 0.102675i
\(430\) 0 0
\(431\) 10.2467 + 31.5361i 0.493567 + 1.51904i 0.819179 + 0.573539i \(0.194430\pi\)
−0.325612 + 0.945504i \(0.605570\pi\)
\(432\) 0 0
\(433\) 1.78115 1.29408i 0.0855967 0.0621897i −0.544164 0.838979i \(-0.683153\pi\)
0.629761 + 0.776789i \(0.283153\pi\)
\(434\) 0 0
\(435\) −2.26393 + 6.96767i −0.108547 + 0.334074i
\(436\) 0 0
\(437\) −15.7082 11.4127i −0.751425 0.545942i
\(438\) 0 0
\(439\) 0.944272 0.0450676 0.0225338 0.999746i \(-0.492827\pi\)
0.0225338 + 0.999746i \(0.492827\pi\)
\(440\) 0 0
\(441\) 1.67376 0.0797030
\(442\) 0 0
\(443\) −4.69098 3.40820i −0.222875 0.161928i 0.470745 0.882269i \(-0.343985\pi\)
−0.693620 + 0.720341i \(0.743985\pi\)
\(444\) 0 0
\(445\) 0.854102 2.62866i 0.0404883 0.124610i
\(446\) 0 0
\(447\) 23.3713 16.9803i 1.10543 0.803139i
\(448\) 0 0
\(449\) 12.1910 + 37.5200i 0.575328 + 1.77068i 0.635060 + 0.772463i \(0.280976\pi\)
−0.0597315 + 0.998214i \(0.519024\pi\)
\(450\) 0 0
\(451\) −7.78115 + 30.9358i −0.366400 + 1.45671i
\(452\) 0 0
\(453\) 3.66312 + 11.2739i 0.172108 + 0.529695i
\(454\) 0 0
\(455\) −4.73607 + 3.44095i −0.222030 + 0.161314i
\(456\) 0 0
\(457\) 2.95492 9.09429i 0.138225 0.425413i −0.857853 0.513896i \(-0.828202\pi\)
0.996078 + 0.0884827i \(0.0282018\pi\)
\(458\) 0 0
\(459\) 8.20820 + 5.96361i 0.383126 + 0.278357i
\(460\) 0 0
\(461\) 30.3607 1.41404 0.707019 0.707195i \(-0.250040\pi\)
0.707019 + 0.707195i \(0.250040\pi\)
\(462\) 0 0
\(463\) −15.4164 −0.716461 −0.358231 0.933633i \(-0.616620\pi\)
−0.358231 + 0.933633i \(0.616620\pi\)
\(464\) 0 0
\(465\) 0.881966 + 0.640786i 0.0409002 + 0.0297157i
\(466\) 0 0
\(467\) −0.989357 + 3.04493i −0.0457820 + 0.140902i −0.971335 0.237717i \(-0.923601\pi\)
0.925553 + 0.378619i \(0.123601\pi\)
\(468\) 0 0
\(469\) −18.9443 + 13.7638i −0.874765 + 0.635554i
\(470\) 0 0
\(471\) −0.336881 1.03681i −0.0155227 0.0477738i
\(472\) 0 0
\(473\) 1.88854 + 4.70228i 0.0868353 + 0.216211i
\(474\) 0 0
\(475\) −6.92705 21.3193i −0.317835 0.978195i
\(476\) 0 0
\(477\) −0.190983 + 0.138757i −0.00874451 + 0.00635326i
\(478\) 0 0
\(479\) 7.10081 21.8541i 0.324444 0.998537i −0.647246 0.762281i \(-0.724079\pi\)
0.971691 0.236256i \(-0.0759205\pi\)
\(480\) 0 0
\(481\) −45.5517 33.0952i −2.07698 1.50901i
\(482\) 0 0
\(483\) 10.4721 0.476499
\(484\) 0 0
\(485\) 7.61803 0.345917
\(486\) 0 0
\(487\) −26.7254 19.4172i −1.21104 0.879875i −0.215719 0.976455i \(-0.569210\pi\)
−0.995325 + 0.0965800i \(0.969210\pi\)
\(488\) 0 0
\(489\) 4.39919 13.5393i 0.198938 0.612269i
\(490\) 0 0
\(491\) −15.7812 + 11.4657i −0.712193 + 0.517439i −0.883881 0.467713i \(-0.845078\pi\)
0.171687 + 0.985152i \(0.445078\pi\)
\(492\) 0 0
\(493\) 4.19756 + 12.9188i 0.189049 + 0.581832i
\(494\) 0 0
\(495\) 0.291796 + 0.726543i 0.0131153 + 0.0326557i
\(496\) 0 0
\(497\) −2.54508 7.83297i −0.114163 0.351357i
\(498\) 0 0
\(499\) 9.63525 7.00042i 0.431333 0.313382i −0.350849 0.936432i \(-0.614107\pi\)
0.782182 + 0.623050i \(0.214107\pi\)
\(500\) 0 0
\(501\) −7.16312 + 22.0458i −0.320025 + 0.984934i
\(502\) 0 0
\(503\) −6.54508 4.75528i −0.291831 0.212028i 0.432230 0.901763i \(-0.357727\pi\)
−0.724061 + 0.689736i \(0.757727\pi\)
\(504\) 0 0
\(505\) 1.90983 0.0849863
\(506\) 0 0
\(507\) −34.4164 −1.52849
\(508\) 0 0
\(509\) −15.7812 11.4657i −0.699487 0.508207i 0.180278 0.983616i \(-0.442300\pi\)
−0.879765 + 0.475408i \(0.842300\pi\)
\(510\) 0 0
\(511\) 1.57295 4.84104i 0.0695832 0.214155i
\(512\) 0 0
\(513\) −21.4894 + 15.6129i −0.948778 + 0.689328i
\(514\) 0 0
\(515\) 2.30902 + 7.10642i 0.101747 + 0.313146i
\(516\) 0 0
\(517\) 8.54508 33.9730i 0.375812 1.49413i
\(518\) 0 0
\(519\) 4.42705 + 13.6251i 0.194326 + 0.598074i
\(520\) 0 0
\(521\) 20.2533 14.7149i 0.887313 0.644670i −0.0478633 0.998854i \(-0.515241\pi\)
0.935176 + 0.354183i \(0.115241\pi\)
\(522\) 0 0
\(523\) −3.86475 + 11.8945i −0.168994 + 0.520109i −0.999308 0.0371860i \(-0.988161\pi\)
0.830315 + 0.557295i \(0.188161\pi\)
\(524\) 0 0
\(525\) 9.78115 + 7.10642i 0.426885 + 0.310150i
\(526\) 0 0
\(527\) 2.02129 0.0880486
\(528\) 0 0
\(529\) −7.00000 −0.304348
\(530\) 0 0
\(531\) −0.736068 0.534785i −0.0319426 0.0232077i
\(532\) 0 0
\(533\) −17.3992 + 53.5492i −0.753642 + 2.31947i
\(534\) 0 0
\(535\) 1.95492 1.42033i 0.0845183 0.0614062i
\(536\) 0 0
\(537\) −12.1353 37.3485i −0.523675 1.61171i
\(538\) 0 0
\(539\) −14.5000 + 0.983813i −0.624559 + 0.0423758i
\(540\) 0 0
\(541\) −0.843459 2.59590i −0.0362631 0.111606i 0.931286 0.364288i \(-0.118688\pi\)
−0.967550 + 0.252681i \(0.918688\pi\)
\(542\) 0 0
\(543\) 12.1353 8.81678i 0.520774 0.378364i
\(544\) 0 0
\(545\) 2.85410 8.78402i 0.122256 0.376266i
\(546\) 0 0
\(547\) 8.25329 + 5.99637i 0.352885 + 0.256386i 0.750078 0.661349i \(-0.230016\pi\)
−0.397193 + 0.917735i \(0.630016\pi\)
\(548\) 0 0
\(549\) −0.708204 −0.0302254
\(550\) 0 0
\(551\) −35.5623 −1.51501
\(552\) 0 0
\(553\) 5.04508 + 3.66547i 0.214539 + 0.155872i
\(554\) 0 0
\(555\) 2.97214 9.14729i 0.126160 0.388281i
\(556\) 0 0
\(557\) 26.5795 19.3112i 1.12621 0.818240i 0.141072 0.989999i \(-0.454945\pi\)
0.985139 + 0.171759i \(0.0549452\pi\)
\(558\) 0 0
\(559\) 2.76393 + 8.50651i 0.116902 + 0.359787i
\(560\) 0 0
\(561\) −8.42705 5.29007i −0.355790 0.223347i
\(562\) 0 0
\(563\) 4.80902 + 14.8006i 0.202676 + 0.623772i 0.999801 + 0.0199579i \(0.00635321\pi\)
−0.797125 + 0.603814i \(0.793647\pi\)
\(564\) 0 0
\(565\) 4.42705 3.21644i 0.186247 0.135317i
\(566\) 0 0
\(567\) 3.85410 11.8617i 0.161857 0.498145i
\(568\) 0 0
\(569\) −20.8713 15.1639i −0.874971 0.635704i 0.0569449 0.998377i \(-0.481864\pi\)
−0.931916 + 0.362673i \(0.881864\pi\)
\(570\) 0 0
\(571\) −30.8328 −1.29031 −0.645157 0.764050i \(-0.723208\pi\)
−0.645157 + 0.764050i \(0.723208\pi\)
\(572\) 0 0
\(573\) 24.5066 1.02378
\(574\) 0 0
\(575\) 14.9443 + 10.8576i 0.623219 + 0.452795i
\(576\) 0 0
\(577\) −5.98936 + 18.4333i −0.249340 + 0.767390i 0.745552 + 0.666447i \(0.232186\pi\)
−0.994892 + 0.100943i \(0.967814\pi\)
\(578\) 0 0
\(579\) −9.66312 + 7.02067i −0.401586 + 0.291769i
\(580\) 0 0
\(581\) −4.69098 14.4374i −0.194615 0.598963i
\(582\) 0 0
\(583\) 1.57295 1.31433i 0.0651449 0.0544339i
\(584\) 0 0
\(585\) 0.427051 + 1.31433i 0.0176564 + 0.0543408i
\(586\) 0 0
\(587\) −0.0729490 + 0.0530006i −0.00301093 + 0.00218757i −0.589290 0.807922i \(-0.700592\pi\)
0.586279 + 0.810109i \(0.300592\pi\)
\(588\) 0 0
\(589\) −1.63525 + 5.03280i −0.0673795 + 0.207373i
\(590\) 0 0
\(591\) −0.618034 0.449028i −0.0254225 0.0184705i
\(592\) 0 0
\(593\) 0.472136 0.0193883 0.00969415 0.999953i \(-0.496914\pi\)
0.00969415 + 0.999953i \(0.496914\pi\)
\(594\) 0 0
\(595\) −1.85410 −0.0760108
\(596\) 0 0
\(597\) −26.6525 19.3642i −1.09081 0.792522i
\(598\) 0 0
\(599\) 7.75329 23.8622i 0.316791 0.974982i −0.658220 0.752825i \(-0.728690\pi\)
0.975011 0.222156i \(-0.0713096\pi\)
\(600\) 0 0
\(601\) 25.1976 18.3071i 1.02783 0.746762i 0.0599567 0.998201i \(-0.480904\pi\)
0.967873 + 0.251439i \(0.0809037\pi\)
\(602\) 0 0
\(603\) 1.70820 + 5.25731i 0.0695634 + 0.214094i
\(604\) 0 0
\(605\) −2.95492 6.12261i −0.120134 0.248920i
\(606\) 0 0
\(607\) 9.07953 + 27.9439i 0.368527 + 1.13421i 0.947743 + 0.319035i \(0.103359\pi\)
−0.579216 + 0.815174i \(0.696641\pi\)
\(608\) 0 0
\(609\) 15.5172 11.2739i 0.628790 0.456842i
\(610\) 0 0
\(611\) 19.1074 58.8065i 0.773002 2.37906i
\(612\) 0 0
\(613\) −33.9615 24.6745i −1.37169 0.996592i −0.997603 0.0691996i \(-0.977955\pi\)
−0.374089 0.927393i \(-0.622045\pi\)
\(614\) 0 0
\(615\) −9.61803 −0.387837
\(616\) 0 0
\(617\) −25.4164 −1.02323 −0.511613 0.859216i \(-0.670952\pi\)
−0.511613 + 0.859216i \(0.670952\pi\)
\(618\) 0 0
\(619\) 5.78115 + 4.20025i 0.232364 + 0.168822i 0.697875 0.716220i \(-0.254129\pi\)
−0.465510 + 0.885042i \(0.654129\pi\)
\(620\) 0 0
\(621\) 6.76393 20.8172i 0.271427 0.835367i
\(622\) 0 0
\(623\) −5.85410 + 4.25325i −0.234540 + 0.170403i
\(624\) 0 0
\(625\) 6.00000 + 18.4661i 0.240000 + 0.738644i
\(626\) 0 0
\(627\) 19.9894 16.7027i 0.798298 0.667043i
\(628\) 0 0
\(629\) −5.51064 16.9600i −0.219724 0.676240i
\(630\) 0 0
\(631\) 9.78115 7.10642i 0.389382 0.282902i −0.375820 0.926692i \(-0.622639\pi\)
0.765202 + 0.643790i \(0.222639\pi\)
\(632\) 0 0
\(633\) −6.54508 + 20.1437i −0.260144 + 0.800640i
\(634\) 0 0
\(635\) 2.83688 + 2.06111i 0.112578 + 0.0817928i
\(636\) 0 0
\(637\) −25.6525 −1.01639
\(638\) 0 0
\(639\) −1.94427 −0.0769142
\(640\) 0 0
\(641\) −10.8713 7.89848i −0.429391 0.311971i 0.352014 0.935995i \(-0.385497\pi\)
−0.781406 + 0.624024i \(0.785497\pi\)
\(642\) 0 0
\(643\) −8.22542 + 25.3153i −0.324379 + 0.998336i 0.647341 + 0.762201i \(0.275881\pi\)
−0.971720 + 0.236136i \(0.924119\pi\)
\(644\) 0 0
\(645\) −1.23607 + 0.898056i −0.0486701 + 0.0353609i
\(646\) 0 0
\(647\) 3.84346 + 11.8290i 0.151102 + 0.465044i 0.997745 0.0671170i \(-0.0213801\pi\)
−0.846643 + 0.532161i \(0.821380\pi\)
\(648\) 0 0
\(649\) 6.69098 + 4.20025i 0.262644 + 0.164874i
\(650\) 0 0
\(651\) −0.881966 2.71441i −0.0345670 0.106386i
\(652\) 0 0
\(653\) −31.4894 + 22.8784i −1.23227 + 0.895299i −0.997059 0.0766440i \(-0.975580\pi\)
−0.235215 + 0.971943i \(0.575580\pi\)
\(654\) 0 0
\(655\) −1.52786 + 4.70228i −0.0596986 + 0.183733i
\(656\) 0 0
\(657\) −0.972136 0.706298i −0.0379266 0.0275553i
\(658\) 0 0
\(659\) 32.0000 1.24654 0.623272 0.782006i \(-0.285803\pi\)
0.623272 + 0.782006i \(0.285803\pi\)
\(660\) 0 0
\(661\) −6.94427 −0.270101 −0.135050 0.990839i \(-0.543120\pi\)
−0.135050 + 0.990839i \(0.543120\pi\)
\(662\) 0 0
\(663\) −14.2082 10.3229i −0.551801 0.400907i
\(664\) 0 0
\(665\) 1.50000 4.61653i 0.0581675 0.179021i
\(666\) 0 0
\(667\) 23.7082 17.2250i 0.917985 0.666955i
\(668\) 0 0
\(669\) −4.80902 14.8006i −0.185927 0.572226i
\(670\) 0 0
\(671\) 6.13525 0.416272i 0.236849 0.0160700i
\(672\) 0 0
\(673\) −2.39261 7.36369i −0.0922283 0.283850i 0.894293 0.447482i \(-0.147679\pi\)
−0.986521 + 0.163632i \(0.947679\pi\)
\(674\) 0 0
\(675\) 20.4443 14.8536i 0.786900 0.571717i
\(676\) 0 0
\(677\) 6.28115 19.3314i 0.241404 0.742966i −0.754803 0.655952i \(-0.772267\pi\)
0.996207 0.0870143i \(-0.0277326\pi\)
\(678\) 0 0
\(679\) −16.1353 11.7229i −0.619214 0.449885i
\(680\) 0 0
\(681\) −11.5623 −0.443069
\(682\) 0 0
\(683\) −0.944272 −0.0361316 −0.0180658 0.999837i \(-0.505751\pi\)
−0.0180658 + 0.999837i \(0.505751\pi\)
\(684\) 0 0
\(685\) 8.78115 + 6.37988i 0.335511 + 0.243763i
\(686\) 0 0
\(687\) −8.16312 + 25.1235i −0.311442 + 0.958521i
\(688\) 0 0
\(689\) 2.92705 2.12663i 0.111512 0.0810180i
\(690\) 0 0
\(691\) 7.28115 + 22.4091i 0.276988 + 0.852482i 0.988687 + 0.149997i \(0.0479263\pi\)
−0.711698 + 0.702485i \(0.752074\pi\)
\(692\) 0 0
\(693\) 0.500000 1.98787i 0.0189934 0.0755129i
\(694\) 0 0
\(695\) 3.10739 + 9.56357i 0.117870 + 0.362767i
\(696\) 0 0
\(697\) −14.4271 + 10.4819i −0.546464 + 0.397029i
\(698\) 0 0
\(699\) −8.01722 + 24.6745i −0.303239 + 0.933274i
\(700\) 0 0
\(701\) −12.7254 9.24556i −0.480633 0.349200i 0.320938 0.947100i \(-0.396002\pi\)
−0.801571 + 0.597900i \(0.796002\pi\)
\(702\) 0 0
\(703\) 46.6869 1.76083
\(704\) 0 0
\(705\) 10.5623 0.397799
\(706\) 0 0
\(707\) −4.04508 2.93893i −0.152131 0.110530i
\(708\) 0 0
\(709\) 6.10081 18.7764i 0.229121 0.705161i −0.768726 0.639578i \(-0.779109\pi\)
0.997847 0.0655835i \(-0.0208909\pi\)
\(710\) 0 0
\(711\) 1.19098 0.865300i 0.0446654 0.0324513i
\(712\) 0 0
\(713\) −1.34752 4.14725i −0.0504652 0.155316i
\(714\) 0 0
\(715\) −4.47214 11.1352i −0.167248 0.416432i
\(716\) 0 0
\(717\) −11.7533 36.1729i −0.438935 1.35090i
\(718\) 0 0
\(719\) 0.0729490 0.0530006i 0.00272054 0.00197659i −0.586424 0.810004i \(-0.699465\pi\)
0.589145 + 0.808028i \(0.299465\pi\)
\(720\) 0 0
\(721\) 6.04508 18.6049i 0.225131 0.692881i
\(722\) 0 0
\(723\) 1.38197 + 1.00406i 0.0513959 + 0.0373413i
\(724\) 0 0
\(725\) 33.8328 1.25652
\(726\) 0 0
\(727\) 28.9443 1.07348 0.536742 0.843747i \(-0.319655\pi\)
0.536742 + 0.843747i \(0.319655\pi\)
\(728\) 0 0
\(729\) −23.8713 17.3435i −0.884123 0.642353i
\(730\) 0 0
\(731\) −0.875388 + 2.69417i −0.0323774 + 0.0996474i
\(732\) 0 0
\(733\) −10.5451 + 7.66145i −0.389492 + 0.282982i −0.765247 0.643737i \(-0.777383\pi\)
0.375756 + 0.926719i \(0.377383\pi\)
\(734\) 0 0
\(735\) −1.35410 4.16750i −0.0499468 0.153720i
\(736\) 0 0
\(737\) −17.8885 44.5407i −0.658933 1.64068i
\(738\) 0 0
\(739\) 2.51722 + 7.74721i 0.0925975 + 0.284986i 0.986620 0.163036i \(-0.0521287\pi\)
−0.894023 + 0.448022i \(0.852129\pi\)
\(740\) 0 0
\(741\) 37.1976 27.0256i 1.36649 0.992811i
\(742\) 0 0
\(743\) −14.4271 + 44.4019i −0.529277 + 1.62895i 0.226422 + 0.974029i \(0.427297\pi\)
−0.755700 + 0.654918i \(0.772703\pi\)
\(744\) 0 0
\(745\) 8.92705 + 6.48588i 0.327062 + 0.237624i
\(746\) 0 0
\(747\) −3.58359 −0.131117
\(748\) 0 0
\(749\) −6.32624 −0.231156
\(750\) 0 0
\(751\) 2.69098 + 1.95511i 0.0981954 + 0.0713431i 0.635800 0.771854i \(-0.280671\pi\)
−0.537604 + 0.843197i \(0.680671\pi\)
\(752\) 0 0
\(753\) −5.30902 + 16.3395i −0.193471 + 0.595444i
\(754\) 0 0
\(755\) −3.66312 + 2.66141i −0.133315 + 0.0968587i
\(756\) 0 0
\(757\) 8.39261 + 25.8298i 0.305035 + 0.938800i 0.979664 + 0.200644i \(0.0643033\pi\)
−0.674630 + 0.738156i \(0.735697\pi\)
\(758\) 0 0
\(759\) −5.23607 + 20.8172i −0.190057 + 0.755618i
\(760\) 0 0
\(761\) 2.01064 + 6.18812i 0.0728858 + 0.224319i 0.980863 0.194701i \(-0.0623736\pi\)
−0.907977 + 0.419020i \(0.862374\pi\)
\(762\) 0 0
\(763\) −19.5623 + 14.2128i −0.708203 + 0.514540i
\(764\) 0 0
\(765\) −0.135255 + 0.416272i −0.00489015 + 0.0150503i
\(766\) 0 0
\(767\) 11.2812 + 8.19624i 0.407339 + 0.295949i
\(768\) 0 0
\(769\) 36.2492 1.30718 0.653590 0.756849i \(-0.273262\pi\)
0.653590 + 0.756849i \(0.273262\pi\)
\(770\) 0 0
\(771\) 4.14590 0.149311
\(772\) 0 0
\(773\) 32.8713 + 23.8824i 1.18230 + 0.858991i 0.992429 0.122818i \(-0.0391933\pi\)
0.189870 + 0.981809i \(0.439193\pi\)
\(774\) 0 0
\(775\) 1.55573 4.78804i 0.0558834 0.171991i
\(776\) 0 0
\(777\) −20.3713 + 14.8006i −0.730817 + 0.530970i
\(778\) 0 0
\(779\) −14.4271 44.4019i −0.516903 1.59086i
\(780\) 0 0
\(781\) 16.8435 1.14281i 0.602706 0.0408931i
\(782\) 0 0
\(783\) −12.3885 38.1280i −0.442730 1.36258i
\(784\) 0 0
\(785\) 0.336881 0.244758i 0.0120238 0.00873580i
\(786\) 0 0
\(787\) −7.28115 + 22.4091i −0.259545 + 0.798798i 0.733355 + 0.679846i \(0.237953\pi\)
−0.992900 + 0.118952i \(0.962047\pi\)
\(788\) 0 0
\(789\) −9.70820 7.05342i −0.345621 0.251109i
\(790\) 0 0
\(791\) −14.3262 −0.509382
\(792\) 0 0
\(793\) 10.8541 0.385440
\(794\) 0 0
\(795\) 0.500000 + 0.363271i 0.0177332 + 0.0128839i
\(796\) 0 0
\(797\) −3.53851 + 10.8904i −0.125340 + 0.385758i −0.993963 0.109716i \(-0.965006\pi\)
0.868623 + 0.495474i \(0.165006\pi\)
\(798\) 0 0
\(799\) 15.8435 11.5109i 0.560501 0.407228i
\(800\) 0 0
\(801\) 0.527864 + 1.62460i 0.0186512 + 0.0574024i
\(802\) 0 0
\(803\) 8.83688 + 5.54734i 0.311847 + 0.195761i
\(804\) 0 0
\(805\) 1.23607 + 3.80423i 0.0435657 + 0.134081i
\(806\) 0 0
\(807\) 1.19098 0.865300i 0.0419246 0.0304600i
\(808\) 0 0
\(809\) −0.461493 + 1.42033i −0.0162252 + 0.0499361i −0.958841 0.283942i \(-0.908358\pi\)
0.942616 + 0.333879i \(0.108358\pi\)
\(810\) 0 0
\(811\) −34.5795 25.1235i −1.21425 0.882205i −0.218642 0.975805i \(-0.570163\pi\)
−0.995610 + 0.0936000i \(0.970163\pi\)
\(812\) 0 0
\(813\) −42.6869 −1.49710
\(814\) 0 0
\(815\) 5.43769 0.190474
\(816\) 0 0
\(817\) −6.00000 4.35926i −0.209913 0.152511i
\(818\) 0 0
\(819\) 1.11803 3.44095i 0.0390673 0.120237i
\(820\) 0 0
\(821\) −37.6697 + 27.3686i −1.31468 + 0.955172i −0.314699 + 0.949191i \(0.601904\pi\)
−0.999982 + 0.00598061i \(0.998096\pi\)
\(822\) 0 0
\(823\) −4.22542 13.0045i −0.147289 0.453309i 0.850009 0.526768i \(-0.176596\pi\)
−0.997298 + 0.0734587i \(0.976596\pi\)
\(824\) 0 0
\(825\) −19.0172 + 15.8904i −0.662095 + 0.553234i
\(826\) 0 0
\(827\) 4.22542 + 13.0045i 0.146932 + 0.452211i 0.997254 0.0740512i \(-0.0235928\pi\)
−0.850322 + 0.526263i \(0.823593\pi\)
\(828\) 0 0
\(829\) −13.7812 + 10.0126i −0.478639 + 0.347752i −0.800799 0.598934i \(-0.795591\pi\)
0.322159 + 0.946685i \(0.395591\pi\)
\(830\) 0 0
\(831\) −1.69098 + 5.20431i −0.0586596 + 0.180536i
\(832\) 0 0
\(833\) −6.57295 4.77553i −0.227739 0.165462i
\(834\) 0 0
\(835\) −8.85410 −0.306409
\(836\) 0 0
\(837\) −5.96556 −0.206200
\(838\) 0 0
\(839\) 15.3435 + 11.1477i 0.529715 + 0.384860i 0.820251 0.572004i \(-0.193834\pi\)
−0.290536 + 0.956864i \(0.593834\pi\)
\(840\) 0 0
\(841\) 7.62461 23.4661i 0.262918 0.809177i
\(842\) 0 0
\(843\) 17.7533 12.8985i 0.611456 0.444249i
\(844\) 0 0
\(845\) −4.06231 12.5025i −0.139748 0.430099i
\(846\) 0 0
\(847\) −3.16312 + 17.5150i −0.108686 + 0.601824i
\(848\) 0 0
\(849\) −6.89919 21.2335i −0.236779 0.728732i
\(850\) 0 0
\(851\) −31.1246 + 22.6134i −1.06694 + 0.775176i
\(852\) 0 0
\(853\) 10.1697 31.2991i 0.348204 1.07166i −0.611642 0.791134i \(-0.709491\pi\)
0.959846 0.280527i \(-0.0905091\pi\)
\(854\) 0 0
\(855\) −0.927051 0.673542i −0.0317045 0.0230346i
\(856\) 0 0
\(857\) −26.3607 −0.900464 −0.450232 0.892912i \(-0.648659\pi\)
−0.450232 + 0.892912i \(0.648659\pi\)
\(858\) 0 0
\(859\) 13.8885 0.473871 0.236935 0.971525i \(-0.423857\pi\)
0.236935 + 0.971525i \(0.423857\pi\)
\(860\) 0 0
\(861\) 20.3713 + 14.8006i 0.694253 + 0.504404i
\(862\) 0 0
\(863\) 3.86475 11.8945i 0.131557 0.404892i −0.863481 0.504381i \(-0.831721\pi\)
0.995039 + 0.0994888i \(0.0317207\pi\)
\(864\) 0 0
\(865\) −4.42705 + 3.21644i −0.150524 + 0.109362i
\(866\) 0 0
\(867\) 6.78115 + 20.8702i 0.230300 + 0.708791i
\(868\) 0 0
\(869\) −9.80902 + 8.19624i −0.332748 + 0.278038i
\(870\) 0 0
\(871\) −26.1803 80.5748i −0.887087 2.73017i
\(872\) 0 0
\(873\) −3.80902 + 2.76741i −0.128916 + 0.0936627i
\(874\) 0 0
\(875\) −2.97214 + 9.14729i −0.100477 + 0.309235i
\(876\) 0 0
\(877\) 15.3435 + 11.1477i 0.518112 + 0.376430i 0.815892 0.578204i \(-0.196246\pi\)
−0.297780 + 0.954634i \(0.596246\pi\)
\(878\) 0 0
\(879\) −17.0902 −0.576437
\(880\) 0 0
\(881\) 31.5279 1.06220 0.531100 0.847309i \(-0.321779\pi\)
0.531100 + 0.847309i \(0.321779\pi\)
\(882\) 0 0
\(883\) −10.3992 7.55545i −0.349961 0.254261i 0.398892 0.916998i \(-0.369395\pi\)
−0.748852 + 0.662737i \(0.769395\pi\)
\(884\) 0 0
\(885\) −0.736068 + 2.26538i −0.0247427 + 0.0761501i
\(886\) 0 0
\(887\) −40.1074 + 29.1397i −1.34667 + 0.978416i −0.347505 + 0.937678i \(0.612971\pi\)
−0.999170 + 0.0407379i \(0.987029\pi\)
\(888\) 0 0
\(889\) −2.83688 8.73102i −0.0951459 0.292829i
\(890\) 0 0
\(891\) 21.6525 + 13.5923i 0.725385 + 0.455359i
\(892\) 0 0
\(893\) 15.8435 + 48.7612i 0.530181 + 1.63173i
\(894\) 0 0
\(895\) 12.1353 8.81678i 0.405637 0.294712i
\(896\) 0 0
\(897\) −11.7082 + 36.0341i −0.390926 + 1.20315i
\(898\) 0 0
\(899\) −6.46149 4.69455i −0.215503 0.156572i
\(900\) 0 0
\(901\) 1.14590 0.0381754
\(902\) 0 0
\(903\) 4.00000 0.133112
\(904\) 0 0
\(905\) 4.63525 + 3.36771i 0.154081 + 0.111946i
\(906\) 0 0
\(907\) 8.42705 25.9358i 0.279816 0.861184i −0.708089 0.706123i \(-0.750443\pi\)
0.987905 0.155061i \(-0.0495574\pi\)
\(908\) 0 0
\(909\) −0.954915 + 0.693786i −0.0316725 + 0.0230114i
\(910\) 0 0
\(911\) −14.5172 44.6794i −0.480977 1.48029i −0.837724 0.546094i \(-0.816114\pi\)
0.356747 0.934201i \(-0.383886\pi\)
\(912\) 0 0
\(913\) 31.0451 2.10638i 1.02744 0.0697111i
\(914\) 0 0
\(915\) 0.572949 + 1.76336i 0.0189411 + 0.0582947i
\(916\) 0 0
\(917\) 10.4721 7.60845i 0.345820 0.251253i
\(918\) 0 0
\(919\) 5.75329 17.7068i 0.189783 0.584094i −0.810214 0.586134i \(-0.800649\pi\)
0.999998 + 0.00204006i \(0.000649373\pi\)
\(920\) 0 0
\(921\) 44.3607 + 32.2299i 1.46173 + 1.06201i
\(922\) 0 0
\(923\) 29.7984 0.980825
\(924\) 0 0
\(925\) −44.4164 −1.46040
\(926\) 0 0
\(927\) −3.73607 2.71441i −0.122709 0.0891530i
\(928\) 0 0
\(929\) −4.46149 + 13.7311i −0.146377 + 0.450502i −0.997185 0.0749741i \(-0.976113\pi\)
0.850809 + 0.525476i \(0.176113\pi\)
\(930\) 0 0
\(931\) 17.2082 12.5025i 0.563976 0.409753i
\(932\) 0 0
\(933\) 16.1353 + 49.6592i 0.528245 + 1.62577i
\(934\) 0 0
\(935\) 0.927051 3.68571i 0.0303178 0.120536i
\(936\) 0 0
\(937\) 0.482779 + 1.48584i 0.0157717 + 0.0485403i 0.958633 0.284646i \(-0.0918761\pi\)
−0.942861 + 0.333187i \(0.891876\pi\)
\(938\) 0 0
\(939\) −36.3156 + 26.3848i −1.18511 + 0.861036i
\(940\) 0 0
\(941\) 9.04508 27.8379i 0.294861 0.907490i −0.688407 0.725325i \(-0.741690\pi\)
0.983268 0.182165i \(-0.0583105\pi\)
\(942\) 0 0
\(943\) 31.1246 + 22.6134i 1.01356 + 0.736392i
\(944\) 0 0
\(945\) 5.47214 0.178009
\(946\) 0 0
\(947\) 18.8328 0.611984 0.305992 0.952034i \(-0.401012\pi\)
0.305992 + 0.952034i \(0.401012\pi\)
\(948\) 0 0
\(949\) 14.8992 + 10.8249i 0.483648 + 0.351391i
\(950\) 0 0
\(951\) −0.163119 + 0.502029i −0.00528949 + 0.0162794i
\(952\) 0 0
\(953\) 24.2533 17.6210i 0.785641 0.570802i −0.121026 0.992649i \(-0.538618\pi\)
0.906667 + 0.421848i \(0.138618\pi\)
\(954\) 0 0
\(955\) 2.89261 + 8.90254i 0.0936026 + 0.288079i
\(956\) 0 0
\(957\) 14.6525 + 36.4832i 0.473647 + 1.17933i
\(958\) 0 0
\(959\) −8.78115 27.0256i −0.283558 0.872702i
\(960\) 0 0
\(961\) 24.1180 17.5228i 0.778001 0.565251i
\(962\) 0 0
\(963\) −0.461493 + 1.42033i −0.0148714 + 0.0457695i
\(964\) 0 0
\(965\) −3.69098 2.68166i −0.118817 0.0863256i
\(966\) 0 0
\(967\) −33.3050 −1.07102 −0.535508 0.844530i \(-0.679880\pi\)
−0.535508 + 0.844530i \(0.679880\pi\)
\(968\) 0 0
\(969\) 14.5623 0.467809
\(970\) 0 0
\(971\) 9.01722 + 6.55139i 0.289376 + 0.210244i 0.722997 0.690851i \(-0.242764\pi\)
−0.433620 + 0.901096i \(0.642764\pi\)
\(972\) 0 0
\(973\) 8.13525 25.0377i 0.260804 0.802673i
\(974\) 0 0
\(975\) −35.3885 + 25.7113i −1.13334 + 0.823420i
\(976\) 0 0
\(977\) −2.68441 8.26175i −0.0858817 0.264317i 0.898889 0.438177i \(-0.144376\pi\)
−0.984770 + 0.173861i \(0.944376\pi\)
\(978\) 0 0
\(979\) −5.52786 13.7638i −0.176671 0.439894i
\(980\) 0 0
\(981\) 1.76393 + 5.42882i 0.0563180 + 0.173329i
\(982\) 0 0
\(983\) 6.54508 4.75528i 0.208756 0.151670i −0.478495 0.878090i \(-0.658817\pi\)
0.687251 + 0.726420i \(0.258817\pi\)
\(984\) 0 0
\(985\) 0.0901699 0.277515i 0.00287305 0.00884235i
\(986\) 0 0
\(987\) −22.3713 16.2537i −0.712087 0.517362i
\(988\) 0 0
\(989\) 6.11146 0.194333
\(990\) 0 0
\(991\) −27.0557 −0.859454 −0.429727 0.902959i \(-0.641390\pi\)
−0.429727 + 0.902959i \(0.641390\pi\)
\(992\) 0 0
\(993\) −11.7082 8.50651i −0.371549 0.269946i
\(994\) 0 0
\(995\) 3.88854 11.9677i 0.123275 0.379402i
\(996\) 0 0
\(997\) 23.1631 16.8290i 0.733583 0.532979i −0.157112 0.987581i \(-0.550218\pi\)
0.890695 + 0.454601i \(0.150218\pi\)
\(998\) 0 0
\(999\) 16.2639 + 50.0552i 0.514568 + 1.58368i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 704.2.m.g.577.1 4
4.3 odd 2 704.2.m.b.577.1 4
8.3 odd 2 88.2.i.a.49.1 yes 4
8.5 even 2 176.2.m.a.49.1 4
11.3 even 5 7744.2.a.cb.1.1 2
11.8 odd 10 7744.2.a.cc.1.1 2
11.9 even 5 inner 704.2.m.g.449.1 4
24.11 even 2 792.2.r.b.577.1 4
44.3 odd 10 7744.2.a.cr.1.2 2
44.19 even 10 7744.2.a.cq.1.2 2
44.31 odd 10 704.2.m.b.449.1 4
88.3 odd 10 968.2.a.i.1.1 2
88.19 even 10 968.2.a.h.1.1 2
88.27 odd 10 968.2.i.d.81.1 4
88.35 even 10 968.2.i.k.9.1 4
88.43 even 2 968.2.i.k.753.1 4
88.51 even 10 968.2.i.c.729.1 4
88.53 even 10 176.2.m.a.97.1 4
88.59 odd 10 968.2.i.d.729.1 4
88.69 even 10 1936.2.a.t.1.2 2
88.75 odd 10 88.2.i.a.9.1 4
88.83 even 10 968.2.i.c.81.1 4
88.85 odd 10 1936.2.a.u.1.2 2
264.107 odd 10 8712.2.a.bm.1.1 2
264.179 even 10 8712.2.a.bp.1.1 2
264.251 even 10 792.2.r.b.361.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
88.2.i.a.9.1 4 88.75 odd 10
88.2.i.a.49.1 yes 4 8.3 odd 2
176.2.m.a.49.1 4 8.5 even 2
176.2.m.a.97.1 4 88.53 even 10
704.2.m.b.449.1 4 44.31 odd 10
704.2.m.b.577.1 4 4.3 odd 2
704.2.m.g.449.1 4 11.9 even 5 inner
704.2.m.g.577.1 4 1.1 even 1 trivial
792.2.r.b.361.1 4 264.251 even 10
792.2.r.b.577.1 4 24.11 even 2
968.2.a.h.1.1 2 88.19 even 10
968.2.a.i.1.1 2 88.3 odd 10
968.2.i.c.81.1 4 88.83 even 10
968.2.i.c.729.1 4 88.51 even 10
968.2.i.d.81.1 4 88.27 odd 10
968.2.i.d.729.1 4 88.59 odd 10
968.2.i.k.9.1 4 88.35 even 10
968.2.i.k.753.1 4 88.43 even 2
1936.2.a.t.1.2 2 88.69 even 10
1936.2.a.u.1.2 2 88.85 odd 10
7744.2.a.cb.1.1 2 11.3 even 5
7744.2.a.cc.1.1 2 11.8 odd 10
7744.2.a.cq.1.2 2 44.19 even 10
7744.2.a.cr.1.2 2 44.3 odd 10
8712.2.a.bm.1.1 2 264.107 odd 10
8712.2.a.bp.1.1 2 264.179 even 10