Properties

Label 88.2.i.a.9.1
Level $88$
Weight $2$
Character 88.9
Analytic conductor $0.703$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [88,2,Mod(9,88)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("88.9"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(88, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 0, 6])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 88 = 2^{3} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 88.i (of order \(5\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.702683537787\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 9.1
Root \(-0.309017 + 0.951057i\) of defining polynomial
Character \(\chi\) \(=\) 88.9
Dual form 88.2.i.a.49.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.30902 - 0.951057i) q^{3} +(0.190983 + 0.587785i) q^{5} +(-1.30902 - 0.951057i) q^{7} +(-0.118034 + 0.363271i) q^{9} +(1.23607 - 3.07768i) q^{11} +(-1.80902 + 5.56758i) q^{13} +(0.809017 + 0.587785i) q^{15} +(-0.572949 - 1.76336i) q^{17} +(-3.92705 + 2.85317i) q^{19} -2.61803 q^{21} -4.00000 q^{23} +(3.73607 - 2.71441i) q^{25} +(1.69098 + 5.20431i) q^{27} +(-5.92705 - 4.30625i) q^{29} +(0.336881 - 1.03681i) q^{31} +(-1.30902 - 5.20431i) q^{33} +(0.309017 - 0.951057i) q^{35} +(7.78115 + 5.65334i) q^{37} +(2.92705 + 9.00854i) q^{39} +(7.78115 - 5.65334i) q^{41} +1.52786 q^{43} -0.236068 q^{45} +(8.54508 - 6.20837i) q^{47} +(-1.35410 - 4.16750i) q^{49} +(-2.42705 - 1.76336i) q^{51} +(0.190983 - 0.587785i) q^{53} +(2.04508 + 0.138757i) q^{55} +(-2.42705 + 7.46969i) q^{57} +(1.92705 + 1.40008i) q^{59} +(-0.572949 - 1.76336i) q^{61} +(0.500000 - 0.363271i) q^{63} -3.61803 q^{65} -14.4721 q^{67} +(-5.23607 + 3.80423i) q^{69} +(-1.57295 - 4.84104i) q^{71} +(2.54508 + 1.84911i) q^{73} +(2.30902 - 7.10642i) q^{75} +(-4.54508 + 2.85317i) q^{77} +(-1.19098 + 3.66547i) q^{79} +(6.23607 + 4.53077i) q^{81} +(2.89919 + 8.92278i) q^{83} +(0.927051 - 0.673542i) q^{85} -11.8541 q^{87} -4.47214 q^{89} +(7.66312 - 5.56758i) q^{91} +(-0.545085 - 1.67760i) q^{93} +(-2.42705 - 1.76336i) q^{95} +(-3.80902 + 11.7229i) q^{97} +(0.972136 + 0.812299i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 3 q^{3} + 3 q^{5} - 3 q^{7} + 4 q^{9} - 4 q^{11} - 5 q^{13} + q^{15} - 9 q^{17} - 9 q^{19} - 6 q^{21} - 16 q^{23} + 6 q^{25} + 9 q^{27} - 17 q^{29} + 17 q^{31} - 3 q^{33} - q^{35} + 11 q^{37} + 5 q^{39}+ \cdots - 14 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/88\mathbb{Z}\right)^\times\).

\(n\) \(23\) \(45\) \(57\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{3}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.30902 0.951057i 0.755761 0.549093i −0.141846 0.989889i \(-0.545304\pi\)
0.897607 + 0.440796i \(0.145304\pi\)
\(4\) 0 0
\(5\) 0.190983 + 0.587785i 0.0854102 + 0.262866i 0.984636 0.174619i \(-0.0558694\pi\)
−0.899226 + 0.437485i \(0.855869\pi\)
\(6\) 0 0
\(7\) −1.30902 0.951057i −0.494762 0.359466i 0.312251 0.950000i \(-0.398917\pi\)
−0.807013 + 0.590534i \(0.798917\pi\)
\(8\) 0 0
\(9\) −0.118034 + 0.363271i −0.0393447 + 0.121090i
\(10\) 0 0
\(11\) 1.23607 3.07768i 0.372689 0.927957i
\(12\) 0 0
\(13\) −1.80902 + 5.56758i −0.501731 + 1.54417i 0.304467 + 0.952523i \(0.401522\pi\)
−0.806198 + 0.591646i \(0.798478\pi\)
\(14\) 0 0
\(15\) 0.809017 + 0.587785i 0.208887 + 0.151765i
\(16\) 0 0
\(17\) −0.572949 1.76336i −0.138961 0.427677i 0.857224 0.514943i \(-0.172187\pi\)
−0.996185 + 0.0872663i \(0.972187\pi\)
\(18\) 0 0
\(19\) −3.92705 + 2.85317i −0.900927 + 0.654562i −0.938704 0.344724i \(-0.887972\pi\)
0.0377767 + 0.999286i \(0.487972\pi\)
\(20\) 0 0
\(21\) −2.61803 −0.571302
\(22\) 0 0
\(23\) −4.00000 −0.834058 −0.417029 0.908893i \(-0.636929\pi\)
−0.417029 + 0.908893i \(0.636929\pi\)
\(24\) 0 0
\(25\) 3.73607 2.71441i 0.747214 0.542882i
\(26\) 0 0
\(27\) 1.69098 + 5.20431i 0.325430 + 1.00157i
\(28\) 0 0
\(29\) −5.92705 4.30625i −1.10063 0.799651i −0.119464 0.992839i \(-0.538118\pi\)
−0.981162 + 0.193187i \(0.938118\pi\)
\(30\) 0 0
\(31\) 0.336881 1.03681i 0.0605056 0.186217i −0.916235 0.400641i \(-0.868787\pi\)
0.976741 + 0.214424i \(0.0687874\pi\)
\(32\) 0 0
\(33\) −1.30902 5.20431i −0.227871 0.905954i
\(34\) 0 0
\(35\) 0.309017 0.951057i 0.0522334 0.160758i
\(36\) 0 0
\(37\) 7.78115 + 5.65334i 1.27921 + 0.929403i 0.999529 0.0306888i \(-0.00977008\pi\)
0.279685 + 0.960092i \(0.409770\pi\)
\(38\) 0 0
\(39\) 2.92705 + 9.00854i 0.468703 + 1.44252i
\(40\) 0 0
\(41\) 7.78115 5.65334i 1.21521 0.882903i 0.219518 0.975608i \(-0.429551\pi\)
0.995694 + 0.0927052i \(0.0295514\pi\)
\(42\) 0 0
\(43\) 1.52786 0.232997 0.116499 0.993191i \(-0.462833\pi\)
0.116499 + 0.993191i \(0.462833\pi\)
\(44\) 0 0
\(45\) −0.236068 −0.0351909
\(46\) 0 0
\(47\) 8.54508 6.20837i 1.24643 0.905583i 0.248420 0.968653i \(-0.420089\pi\)
0.998009 + 0.0630690i \(0.0200888\pi\)
\(48\) 0 0
\(49\) −1.35410 4.16750i −0.193443 0.595357i
\(50\) 0 0
\(51\) −2.42705 1.76336i −0.339855 0.246919i
\(52\) 0 0
\(53\) 0.190983 0.587785i 0.0262335 0.0807385i −0.937083 0.349108i \(-0.886485\pi\)
0.963316 + 0.268369i \(0.0864847\pi\)
\(54\) 0 0
\(55\) 2.04508 + 0.138757i 0.275759 + 0.0187100i
\(56\) 0 0
\(57\) −2.42705 + 7.46969i −0.321471 + 0.989385i
\(58\) 0 0
\(59\) 1.92705 + 1.40008i 0.250881 + 0.182275i 0.706117 0.708095i \(-0.250445\pi\)
−0.455236 + 0.890371i \(0.650445\pi\)
\(60\) 0 0
\(61\) −0.572949 1.76336i −0.0733586 0.225775i 0.907654 0.419720i \(-0.137872\pi\)
−0.981012 + 0.193945i \(0.937872\pi\)
\(62\) 0 0
\(63\) 0.500000 0.363271i 0.0629941 0.0457679i
\(64\) 0 0
\(65\) −3.61803 −0.448762
\(66\) 0 0
\(67\) −14.4721 −1.76805 −0.884026 0.467437i \(-0.845177\pi\)
−0.884026 + 0.467437i \(0.845177\pi\)
\(68\) 0 0
\(69\) −5.23607 + 3.80423i −0.630349 + 0.457975i
\(70\) 0 0
\(71\) −1.57295 4.84104i −0.186675 0.574526i 0.813298 0.581847i \(-0.197670\pi\)
−0.999973 + 0.00732101i \(0.997670\pi\)
\(72\) 0 0
\(73\) 2.54508 + 1.84911i 0.297880 + 0.216422i 0.726678 0.686978i \(-0.241063\pi\)
−0.428799 + 0.903400i \(0.641063\pi\)
\(74\) 0 0
\(75\) 2.30902 7.10642i 0.266622 0.820579i
\(76\) 0 0
\(77\) −4.54508 + 2.85317i −0.517961 + 0.325149i
\(78\) 0 0
\(79\) −1.19098 + 3.66547i −0.133996 + 0.412397i −0.995433 0.0954679i \(-0.969565\pi\)
0.861436 + 0.507865i \(0.169565\pi\)
\(80\) 0 0
\(81\) 6.23607 + 4.53077i 0.692896 + 0.503419i
\(82\) 0 0
\(83\) 2.89919 + 8.92278i 0.318227 + 0.979402i 0.974406 + 0.224797i \(0.0721718\pi\)
−0.656179 + 0.754606i \(0.727828\pi\)
\(84\) 0 0
\(85\) 0.927051 0.673542i 0.100553 0.0730559i
\(86\) 0 0
\(87\) −11.8541 −1.27089
\(88\) 0 0
\(89\) −4.47214 −0.474045 −0.237023 0.971504i \(-0.576172\pi\)
−0.237023 + 0.971504i \(0.576172\pi\)
\(90\) 0 0
\(91\) 7.66312 5.56758i 0.803313 0.583641i
\(92\) 0 0
\(93\) −0.545085 1.67760i −0.0565227 0.173959i
\(94\) 0 0
\(95\) −2.42705 1.76336i −0.249010 0.180916i
\(96\) 0 0
\(97\) −3.80902 + 11.7229i −0.386747 + 1.19029i 0.548458 + 0.836178i \(0.315215\pi\)
−0.935205 + 0.354107i \(0.884785\pi\)
\(98\) 0 0
\(99\) 0.972136 + 0.812299i 0.0977033 + 0.0816391i
\(100\) 0 0
\(101\) 0.954915 2.93893i 0.0950176 0.292434i −0.892241 0.451560i \(-0.850868\pi\)
0.987258 + 0.159126i \(0.0508676\pi\)
\(102\) 0 0
\(103\) −9.78115 7.10642i −0.963766 0.700217i −0.00974339 0.999953i \(-0.503101\pi\)
−0.954022 + 0.299736i \(0.903101\pi\)
\(104\) 0 0
\(105\) −0.500000 1.53884i −0.0487950 0.150176i
\(106\) 0 0
\(107\) −3.16312 + 2.29814i −0.305790 + 0.222170i −0.730088 0.683353i \(-0.760521\pi\)
0.424298 + 0.905523i \(0.360521\pi\)
\(108\) 0 0
\(109\) 14.9443 1.43140 0.715701 0.698407i \(-0.246107\pi\)
0.715701 + 0.698407i \(0.246107\pi\)
\(110\) 0 0
\(111\) 15.5623 1.47711
\(112\) 0 0
\(113\) −7.16312 + 5.20431i −0.673850 + 0.489580i −0.871312 0.490730i \(-0.836730\pi\)
0.197462 + 0.980311i \(0.436730\pi\)
\(114\) 0 0
\(115\) −0.763932 2.35114i −0.0712370 0.219245i
\(116\) 0 0
\(117\) −1.80902 1.31433i −0.167244 0.121510i
\(118\) 0 0
\(119\) −0.927051 + 2.85317i −0.0849826 + 0.261550i
\(120\) 0 0
\(121\) −7.94427 7.60845i −0.722207 0.691677i
\(122\) 0 0
\(123\) 4.80902 14.8006i 0.433614 1.33453i
\(124\) 0 0
\(125\) 4.80902 + 3.49396i 0.430132 + 0.312509i
\(126\) 0 0
\(127\) −1.75329 5.39607i −0.155579 0.478824i 0.842640 0.538477i \(-0.181000\pi\)
−0.998219 + 0.0596539i \(0.981000\pi\)
\(128\) 0 0
\(129\) 2.00000 1.45309i 0.176090 0.127937i
\(130\) 0 0
\(131\) 8.00000 0.698963 0.349482 0.936943i \(-0.386358\pi\)
0.349482 + 0.936943i \(0.386358\pi\)
\(132\) 0 0
\(133\) 7.85410 0.681037
\(134\) 0 0
\(135\) −2.73607 + 1.98787i −0.235483 + 0.171089i
\(136\) 0 0
\(137\) 5.42705 + 16.7027i 0.463664 + 1.42701i 0.860655 + 0.509189i \(0.170055\pi\)
−0.396990 + 0.917823i \(0.629945\pi\)
\(138\) 0 0
\(139\) 13.1631 + 9.56357i 1.11648 + 0.811171i 0.983672 0.179971i \(-0.0576003\pi\)
0.132809 + 0.991142i \(0.457600\pi\)
\(140\) 0 0
\(141\) 5.28115 16.2537i 0.444753 1.36881i
\(142\) 0 0
\(143\) 14.8992 + 12.4495i 1.24593 + 1.04108i
\(144\) 0 0
\(145\) 1.39919 4.30625i 0.116196 0.357615i
\(146\) 0 0
\(147\) −5.73607 4.16750i −0.473103 0.343729i
\(148\) 0 0
\(149\) −5.51722 16.9803i −0.451988 1.39108i −0.874635 0.484782i \(-0.838899\pi\)
0.422646 0.906295i \(-0.361101\pi\)
\(150\) 0 0
\(151\) −5.92705 + 4.30625i −0.482337 + 0.350438i −0.802230 0.597016i \(-0.796353\pi\)
0.319893 + 0.947454i \(0.396353\pi\)
\(152\) 0 0
\(153\) 0.708204 0.0572549
\(154\) 0 0
\(155\) 0.673762 0.0541179
\(156\) 0 0
\(157\) 0.545085 0.396027i 0.0435025 0.0316064i −0.565822 0.824528i \(-0.691441\pi\)
0.609324 + 0.792921i \(0.291441\pi\)
\(158\) 0 0
\(159\) −0.309017 0.951057i −0.0245066 0.0754237i
\(160\) 0 0
\(161\) 5.23607 + 3.80423i 0.412660 + 0.299815i
\(162\) 0 0
\(163\) −2.71885 + 8.36775i −0.212957 + 0.655413i 0.786336 + 0.617799i \(0.211976\pi\)
−0.999292 + 0.0376135i \(0.988024\pi\)
\(164\) 0 0
\(165\) 2.80902 1.76336i 0.218682 0.137277i
\(166\) 0 0
\(167\) −4.42705 + 13.6251i −0.342575 + 1.05434i 0.620293 + 0.784370i \(0.287014\pi\)
−0.962869 + 0.269969i \(0.912986\pi\)
\(168\) 0 0
\(169\) −17.2082 12.5025i −1.32371 0.961730i
\(170\) 0 0
\(171\) −0.572949 1.76336i −0.0438145 0.134847i
\(172\) 0 0
\(173\) −7.16312 + 5.20431i −0.544602 + 0.395676i −0.825791 0.563976i \(-0.809271\pi\)
0.281189 + 0.959652i \(0.409271\pi\)
\(174\) 0 0
\(175\) −7.47214 −0.564840
\(176\) 0 0
\(177\) 3.85410 0.289692
\(178\) 0 0
\(179\) −19.6353 + 14.2658i −1.46761 + 1.06628i −0.486309 + 0.873787i \(0.661657\pi\)
−0.981298 + 0.192493i \(0.938343\pi\)
\(180\) 0 0
\(181\) −2.86475 8.81678i −0.212935 0.655346i −0.999294 0.0375761i \(-0.988036\pi\)
0.786359 0.617770i \(-0.211964\pi\)
\(182\) 0 0
\(183\) −2.42705 1.76336i −0.179413 0.130351i
\(184\) 0 0
\(185\) −1.83688 + 5.65334i −0.135050 + 0.415642i
\(186\) 0 0
\(187\) −6.13525 0.416272i −0.448654 0.0304408i
\(188\) 0 0
\(189\) 2.73607 8.42075i 0.199020 0.612520i
\(190\) 0 0
\(191\) −12.2533 8.90254i −0.886617 0.644165i 0.0483768 0.998829i \(-0.484595\pi\)
−0.934994 + 0.354664i \(0.884595\pi\)
\(192\) 0 0
\(193\) −2.28115 7.02067i −0.164201 0.505359i 0.834776 0.550590i \(-0.185597\pi\)
−0.998977 + 0.0452318i \(0.985597\pi\)
\(194\) 0 0
\(195\) −4.73607 + 3.44095i −0.339157 + 0.246412i
\(196\) 0 0
\(197\) 0.472136 0.0336383 0.0168191 0.999859i \(-0.494646\pi\)
0.0168191 + 0.999859i \(0.494646\pi\)
\(198\) 0 0
\(199\) 20.3607 1.44333 0.721665 0.692242i \(-0.243377\pi\)
0.721665 + 0.692242i \(0.243377\pi\)
\(200\) 0 0
\(201\) −18.9443 + 13.7638i −1.33623 + 0.970825i
\(202\) 0 0
\(203\) 3.66312 + 11.2739i 0.257101 + 0.791274i
\(204\) 0 0
\(205\) 4.80902 + 3.49396i 0.335876 + 0.244028i
\(206\) 0 0
\(207\) 0.472136 1.45309i 0.0328157 0.100996i
\(208\) 0 0
\(209\) 3.92705 + 15.6129i 0.271640 + 1.07997i
\(210\) 0 0
\(211\) 4.04508 12.4495i 0.278475 0.857058i −0.709804 0.704399i \(-0.751216\pi\)
0.988279 0.152659i \(-0.0487836\pi\)
\(212\) 0 0
\(213\) −6.66312 4.84104i −0.456549 0.331703i
\(214\) 0 0
\(215\) 0.291796 + 0.898056i 0.0199003 + 0.0612469i
\(216\) 0 0
\(217\) −1.42705 + 1.03681i −0.0968745 + 0.0703835i
\(218\) 0 0
\(219\) 5.09017 0.343962
\(220\) 0 0
\(221\) 10.8541 0.730126
\(222\) 0 0
\(223\) 7.78115 5.65334i 0.521065 0.378576i −0.295940 0.955206i \(-0.595633\pi\)
0.817005 + 0.576631i \(0.195633\pi\)
\(224\) 0 0
\(225\) 0.545085 + 1.67760i 0.0363390 + 0.111840i
\(226\) 0 0
\(227\) −5.78115 4.20025i −0.383709 0.278781i 0.379164 0.925330i \(-0.376212\pi\)
−0.762873 + 0.646549i \(0.776212\pi\)
\(228\) 0 0
\(229\) −5.04508 + 15.5272i −0.333389 + 1.02606i 0.634122 + 0.773233i \(0.281362\pi\)
−0.967510 + 0.252831i \(0.918638\pi\)
\(230\) 0 0
\(231\) −3.23607 + 8.05748i −0.212918 + 0.530143i
\(232\) 0 0
\(233\) 4.95492 15.2497i 0.324607 0.999038i −0.647010 0.762481i \(-0.723981\pi\)
0.971618 0.236557i \(-0.0760191\pi\)
\(234\) 0 0
\(235\) 5.28115 + 3.83698i 0.344504 + 0.250297i
\(236\) 0 0
\(237\) 1.92705 + 5.93085i 0.125175 + 0.385250i
\(238\) 0 0
\(239\) 19.0172 13.8168i 1.23012 0.893736i 0.233222 0.972423i \(-0.425073\pi\)
0.996899 + 0.0786876i \(0.0250730\pi\)
\(240\) 0 0
\(241\) 1.05573 0.0680054 0.0340027 0.999422i \(-0.489175\pi\)
0.0340027 + 0.999422i \(0.489175\pi\)
\(242\) 0 0
\(243\) −3.94427 −0.253025
\(244\) 0 0
\(245\) 2.19098 1.59184i 0.139977 0.101699i
\(246\) 0 0
\(247\) −8.78115 27.0256i −0.558731 1.71960i
\(248\) 0 0
\(249\) 12.2812 + 8.92278i 0.778286 + 0.565458i
\(250\) 0 0
\(251\) 3.28115 10.0984i 0.207105 0.637402i −0.792516 0.609851i \(-0.791229\pi\)
0.999620 0.0275509i \(-0.00877084\pi\)
\(252\) 0 0
\(253\) −4.94427 + 12.3107i −0.310844 + 0.773969i
\(254\) 0 0
\(255\) 0.572949 1.76336i 0.0358795 0.110426i
\(256\) 0 0
\(257\) 2.07295 + 1.50609i 0.129307 + 0.0939470i 0.650559 0.759456i \(-0.274535\pi\)
−0.521252 + 0.853403i \(0.674535\pi\)
\(258\) 0 0
\(259\) −4.80902 14.8006i −0.298818 0.919667i
\(260\) 0 0
\(261\) 2.26393 1.64484i 0.140134 0.101813i
\(262\) 0 0
\(263\) 7.41641 0.457315 0.228658 0.973507i \(-0.426566\pi\)
0.228658 + 0.973507i \(0.426566\pi\)
\(264\) 0 0
\(265\) 0.381966 0.0234640
\(266\) 0 0
\(267\) −5.85410 + 4.25325i −0.358265 + 0.260295i
\(268\) 0 0
\(269\) −0.281153 0.865300i −0.0171422 0.0527583i 0.942120 0.335277i \(-0.108830\pi\)
−0.959262 + 0.282519i \(0.908830\pi\)
\(270\) 0 0
\(271\) 21.3435 + 15.5069i 1.29652 + 0.941979i 0.999915 0.0130205i \(-0.00414467\pi\)
0.296608 + 0.954999i \(0.404145\pi\)
\(272\) 0 0
\(273\) 4.73607 14.5761i 0.286640 0.882187i
\(274\) 0 0
\(275\) −3.73607 14.8536i −0.225293 0.895708i
\(276\) 0 0
\(277\) −1.04508 + 3.21644i −0.0627931 + 0.193257i −0.977532 0.210789i \(-0.932397\pi\)
0.914738 + 0.404046i \(0.132397\pi\)
\(278\) 0 0
\(279\) 0.336881 + 0.244758i 0.0201685 + 0.0146533i
\(280\) 0 0
\(281\) 4.19098 + 12.8985i 0.250013 + 0.769461i 0.994771 + 0.102127i \(0.0325648\pi\)
−0.744758 + 0.667334i \(0.767435\pi\)
\(282\) 0 0
\(283\) −11.1631 + 8.11048i −0.663579 + 0.482118i −0.867870 0.496792i \(-0.834511\pi\)
0.204291 + 0.978910i \(0.434511\pi\)
\(284\) 0 0
\(285\) −4.85410 −0.287532
\(286\) 0 0
\(287\) −15.5623 −0.918614
\(288\) 0 0
\(289\) 10.9721 7.97172i 0.645420 0.468925i
\(290\) 0 0
\(291\) 6.16312 + 18.9681i 0.361288 + 1.11193i
\(292\) 0 0
\(293\) 8.54508 + 6.20837i 0.499209 + 0.362697i 0.808715 0.588201i \(-0.200164\pi\)
−0.309506 + 0.950898i \(0.600164\pi\)
\(294\) 0 0
\(295\) −0.454915 + 1.40008i −0.0264862 + 0.0815161i
\(296\) 0 0
\(297\) 18.1074 + 1.22857i 1.05070 + 0.0712889i
\(298\) 0 0
\(299\) 7.23607 22.2703i 0.418473 1.28793i
\(300\) 0 0
\(301\) −2.00000 1.45309i −0.115278 0.0837544i
\(302\) 0 0
\(303\) −1.54508 4.75528i −0.0887628 0.273184i
\(304\) 0 0
\(305\) 0.927051 0.673542i 0.0530828 0.0385669i
\(306\) 0 0
\(307\) 33.8885 1.93412 0.967061 0.254546i \(-0.0819260\pi\)
0.967061 + 0.254546i \(0.0819260\pi\)
\(308\) 0 0
\(309\) −19.5623 −1.11286
\(310\) 0 0
\(311\) −26.1074 + 18.9681i −1.48041 + 1.07558i −0.502991 + 0.864291i \(0.667767\pi\)
−0.977423 + 0.211293i \(0.932233\pi\)
\(312\) 0 0
\(313\) −8.57295 26.3848i −0.484572 1.49136i −0.832600 0.553874i \(-0.813149\pi\)
0.348028 0.937484i \(-0.386851\pi\)
\(314\) 0 0
\(315\) 0.309017 + 0.224514i 0.0174111 + 0.0126499i
\(316\) 0 0
\(317\) −0.100813 + 0.310271i −0.00566223 + 0.0174265i −0.953848 0.300291i \(-0.902916\pi\)
0.948185 + 0.317717i \(0.102916\pi\)
\(318\) 0 0
\(319\) −20.5795 + 12.9188i −1.15223 + 0.723312i
\(320\) 0 0
\(321\) −1.95492 + 6.01661i −0.109113 + 0.335814i
\(322\) 0 0
\(323\) 7.28115 + 5.29007i 0.405134 + 0.294347i
\(324\) 0 0
\(325\) 8.35410 + 25.7113i 0.463402 + 1.42621i
\(326\) 0 0
\(327\) 19.5623 14.2128i 1.08180 0.785972i
\(328\) 0 0
\(329\) −17.0902 −0.942212
\(330\) 0 0
\(331\) −8.94427 −0.491622 −0.245811 0.969318i \(-0.579054\pi\)
−0.245811 + 0.969318i \(0.579054\pi\)
\(332\) 0 0
\(333\) −2.97214 + 2.15938i −0.162872 + 0.118333i
\(334\) 0 0
\(335\) −2.76393 8.50651i −0.151010 0.464760i
\(336\) 0 0
\(337\) −21.3435 15.5069i −1.16265 0.844716i −0.172541 0.985002i \(-0.555198\pi\)
−0.990111 + 0.140286i \(0.955198\pi\)
\(338\) 0 0
\(339\) −4.42705 + 13.6251i −0.240444 + 0.740012i
\(340\) 0 0
\(341\) −2.77458 2.31838i −0.150252 0.125548i
\(342\) 0 0
\(343\) −5.69098 + 17.5150i −0.307284 + 0.945724i
\(344\) 0 0
\(345\) −3.23607 2.35114i −0.174224 0.126581i
\(346\) 0 0
\(347\) −2.62868 8.09024i −0.141115 0.434307i 0.855376 0.518007i \(-0.173326\pi\)
−0.996491 + 0.0837007i \(0.973326\pi\)
\(348\) 0 0
\(349\) −16.3992 + 11.9147i −0.877828 + 0.637780i −0.932676 0.360715i \(-0.882533\pi\)
0.0548477 + 0.998495i \(0.482533\pi\)
\(350\) 0 0
\(351\) −32.0344 −1.70987
\(352\) 0 0
\(353\) 1.41641 0.0753878 0.0376939 0.999289i \(-0.487999\pi\)
0.0376939 + 0.999289i \(0.487999\pi\)
\(354\) 0 0
\(355\) 2.54508 1.84911i 0.135079 0.0981407i
\(356\) 0 0
\(357\) 1.50000 + 4.61653i 0.0793884 + 0.244332i
\(358\) 0 0
\(359\) −12.5451 9.11454i −0.662104 0.481047i 0.205269 0.978706i \(-0.434193\pi\)
−0.867373 + 0.497659i \(0.834193\pi\)
\(360\) 0 0
\(361\) 1.40983 4.33901i 0.0742016 0.228369i
\(362\) 0 0
\(363\) −17.6353 2.40414i −0.925611 0.126185i
\(364\) 0 0
\(365\) −0.600813 + 1.84911i −0.0314480 + 0.0967870i
\(366\) 0 0
\(367\) 22.1074 + 16.0620i 1.15400 + 0.838427i 0.989007 0.147868i \(-0.0472410\pi\)
0.164989 + 0.986295i \(0.447241\pi\)
\(368\) 0 0
\(369\) 1.13525 + 3.49396i 0.0590990 + 0.181888i
\(370\) 0 0
\(371\) −0.809017 + 0.587785i −0.0420021 + 0.0305163i
\(372\) 0 0
\(373\) −5.41641 −0.280451 −0.140225 0.990120i \(-0.544783\pi\)
−0.140225 + 0.990120i \(0.544783\pi\)
\(374\) 0 0
\(375\) 9.61803 0.496673
\(376\) 0 0
\(377\) 34.6976 25.2093i 1.78702 1.29834i
\(378\) 0 0
\(379\) 5.95492 + 18.3273i 0.305883 + 0.941412i 0.979346 + 0.202191i \(0.0648062\pi\)
−0.673463 + 0.739221i \(0.735194\pi\)
\(380\) 0 0
\(381\) −7.42705 5.39607i −0.380499 0.276449i
\(382\) 0 0
\(383\) −0.607391 + 1.86936i −0.0310362 + 0.0955197i −0.965375 0.260867i \(-0.915992\pi\)
0.934338 + 0.356387i \(0.115992\pi\)
\(384\) 0 0
\(385\) −2.54508 2.12663i −0.129710 0.108383i
\(386\) 0 0
\(387\) −0.180340 + 0.555029i −0.00916719 + 0.0282137i
\(388\) 0 0
\(389\) −21.6353 15.7189i −1.09695 0.796982i −0.116391 0.993203i \(-0.537133\pi\)
−0.980560 + 0.196222i \(0.937133\pi\)
\(390\) 0 0
\(391\) 2.29180 + 7.05342i 0.115901 + 0.356707i
\(392\) 0 0
\(393\) 10.4721 7.60845i 0.528249 0.383796i
\(394\) 0 0
\(395\) −2.38197 −0.119850
\(396\) 0 0
\(397\) −2.58359 −0.129667 −0.0648334 0.997896i \(-0.520652\pi\)
−0.0648334 + 0.997896i \(0.520652\pi\)
\(398\) 0 0
\(399\) 10.2812 7.46969i 0.514701 0.373952i
\(400\) 0 0
\(401\) 2.19098 + 6.74315i 0.109412 + 0.336737i 0.990741 0.135768i \(-0.0433500\pi\)
−0.881328 + 0.472505i \(0.843350\pi\)
\(402\) 0 0
\(403\) 5.16312 + 3.75123i 0.257193 + 0.186862i
\(404\) 0 0
\(405\) −1.47214 + 4.53077i −0.0731510 + 0.225136i
\(406\) 0 0
\(407\) 27.0172 16.9600i 1.33919 0.840677i
\(408\) 0 0
\(409\) 0.482779 1.48584i 0.0238719 0.0734701i −0.938411 0.345521i \(-0.887702\pi\)
0.962283 + 0.272051i \(0.0877021\pi\)
\(410\) 0 0
\(411\) 22.9894 + 16.7027i 1.13398 + 0.823886i
\(412\) 0 0
\(413\) −1.19098 3.66547i −0.0586044 0.180366i
\(414\) 0 0
\(415\) −4.69098 + 3.40820i −0.230271 + 0.167302i
\(416\) 0 0
\(417\) 26.3262 1.28920
\(418\) 0 0
\(419\) 3.05573 0.149282 0.0746410 0.997210i \(-0.476219\pi\)
0.0746410 + 0.997210i \(0.476219\pi\)
\(420\) 0 0
\(421\) 6.54508 4.75528i 0.318988 0.231758i −0.416756 0.909019i \(-0.636833\pi\)
0.735743 + 0.677260i \(0.236833\pi\)
\(422\) 0 0
\(423\) 1.24671 + 3.83698i 0.0606172 + 0.186560i
\(424\) 0 0
\(425\) −6.92705 5.03280i −0.336011 0.244127i
\(426\) 0 0
\(427\) −0.927051 + 2.85317i −0.0448631 + 0.138075i
\(428\) 0 0
\(429\) 31.3435 + 2.12663i 1.51328 + 0.102675i
\(430\) 0 0
\(431\) −10.2467 + 31.5361i −0.493567 + 1.51904i 0.325612 + 0.945504i \(0.394430\pi\)
−0.819179 + 0.573539i \(0.805570\pi\)
\(432\) 0 0
\(433\) 1.78115 + 1.29408i 0.0855967 + 0.0621897i 0.629761 0.776789i \(-0.283153\pi\)
−0.544164 + 0.838979i \(0.683153\pi\)
\(434\) 0 0
\(435\) −2.26393 6.96767i −0.108547 0.334074i
\(436\) 0 0
\(437\) 15.7082 11.4127i 0.751425 0.545942i
\(438\) 0 0
\(439\) −0.944272 −0.0450676 −0.0225338 0.999746i \(-0.507173\pi\)
−0.0225338 + 0.999746i \(0.507173\pi\)
\(440\) 0 0
\(441\) 1.67376 0.0797030
\(442\) 0 0
\(443\) −4.69098 + 3.40820i −0.222875 + 0.161928i −0.693620 0.720341i \(-0.743985\pi\)
0.470745 + 0.882269i \(0.343985\pi\)
\(444\) 0 0
\(445\) −0.854102 2.62866i −0.0404883 0.124610i
\(446\) 0 0
\(447\) −23.3713 16.9803i −1.10543 0.803139i
\(448\) 0 0
\(449\) 12.1910 37.5200i 0.575328 1.77068i −0.0597315 0.998214i \(-0.519024\pi\)
0.635060 0.772463i \(-0.280976\pi\)
\(450\) 0 0
\(451\) −7.78115 30.9358i −0.366400 1.45671i
\(452\) 0 0
\(453\) −3.66312 + 11.2739i −0.172108 + 0.529695i
\(454\) 0 0
\(455\) 4.73607 + 3.44095i 0.222030 + 0.161314i
\(456\) 0 0
\(457\) 2.95492 + 9.09429i 0.138225 + 0.425413i 0.996078 0.0884827i \(-0.0282018\pi\)
−0.857853 + 0.513896i \(0.828202\pi\)
\(458\) 0 0
\(459\) 8.20820 5.96361i 0.383126 0.278357i
\(460\) 0 0
\(461\) −30.3607 −1.41404 −0.707019 0.707195i \(-0.749960\pi\)
−0.707019 + 0.707195i \(0.749960\pi\)
\(462\) 0 0
\(463\) 15.4164 0.716461 0.358231 0.933633i \(-0.383380\pi\)
0.358231 + 0.933633i \(0.383380\pi\)
\(464\) 0 0
\(465\) 0.881966 0.640786i 0.0409002 0.0297157i
\(466\) 0 0
\(467\) −0.989357 3.04493i −0.0457820 0.140902i 0.925553 0.378619i \(-0.123601\pi\)
−0.971335 + 0.237717i \(0.923601\pi\)
\(468\) 0 0
\(469\) 18.9443 + 13.7638i 0.874765 + 0.635554i
\(470\) 0 0
\(471\) 0.336881 1.03681i 0.0155227 0.0477738i
\(472\) 0 0
\(473\) 1.88854 4.70228i 0.0868353 0.216211i
\(474\) 0 0
\(475\) −6.92705 + 21.3193i −0.317835 + 0.978195i
\(476\) 0 0
\(477\) 0.190983 + 0.138757i 0.00874451 + 0.00635326i
\(478\) 0 0
\(479\) −7.10081 21.8541i −0.324444 0.998537i −0.971691 0.236256i \(-0.924079\pi\)
0.647246 0.762281i \(-0.275921\pi\)
\(480\) 0 0
\(481\) −45.5517 + 33.0952i −2.07698 + 1.50901i
\(482\) 0 0
\(483\) 10.4721 0.476499
\(484\) 0 0
\(485\) −7.61803 −0.345917
\(486\) 0 0
\(487\) 26.7254 19.4172i 1.21104 0.879875i 0.215719 0.976455i \(-0.430790\pi\)
0.995325 + 0.0965800i \(0.0307904\pi\)
\(488\) 0 0
\(489\) 4.39919 + 13.5393i 0.198938 + 0.612269i
\(490\) 0 0
\(491\) −15.7812 11.4657i −0.712193 0.517439i 0.171687 0.985152i \(-0.445078\pi\)
−0.883881 + 0.467713i \(0.845078\pi\)
\(492\) 0 0
\(493\) −4.19756 + 12.9188i −0.189049 + 0.581832i
\(494\) 0 0
\(495\) −0.291796 + 0.726543i −0.0131153 + 0.0326557i
\(496\) 0 0
\(497\) −2.54508 + 7.83297i −0.114163 + 0.351357i
\(498\) 0 0
\(499\) 9.63525 + 7.00042i 0.431333 + 0.313382i 0.782182 0.623050i \(-0.214107\pi\)
−0.350849 + 0.936432i \(0.614107\pi\)
\(500\) 0 0
\(501\) 7.16312 + 22.0458i 0.320025 + 0.984934i
\(502\) 0 0
\(503\) 6.54508 4.75528i 0.291831 0.212028i −0.432230 0.901763i \(-0.642273\pi\)
0.724061 + 0.689736i \(0.242273\pi\)
\(504\) 0 0
\(505\) 1.90983 0.0849863
\(506\) 0 0
\(507\) −34.4164 −1.52849
\(508\) 0 0
\(509\) 15.7812 11.4657i 0.699487 0.508207i −0.180278 0.983616i \(-0.557700\pi\)
0.879765 + 0.475408i \(0.157700\pi\)
\(510\) 0 0
\(511\) −1.57295 4.84104i −0.0695832 0.214155i
\(512\) 0 0
\(513\) −21.4894 15.6129i −0.948778 0.689328i
\(514\) 0 0
\(515\) 2.30902 7.10642i 0.101747 0.313146i
\(516\) 0 0
\(517\) −8.54508 33.9730i −0.375812 1.49413i
\(518\) 0 0
\(519\) −4.42705 + 13.6251i −0.194326 + 0.598074i
\(520\) 0 0
\(521\) 20.2533 + 14.7149i 0.887313 + 0.644670i 0.935176 0.354183i \(-0.115241\pi\)
−0.0478633 + 0.998854i \(0.515241\pi\)
\(522\) 0 0
\(523\) −3.86475 11.8945i −0.168994 0.520109i 0.830315 0.557295i \(-0.188161\pi\)
−0.999308 + 0.0371860i \(0.988161\pi\)
\(524\) 0 0
\(525\) −9.78115 + 7.10642i −0.426885 + 0.310150i
\(526\) 0 0
\(527\) −2.02129 −0.0880486
\(528\) 0 0
\(529\) −7.00000 −0.304348
\(530\) 0 0
\(531\) −0.736068 + 0.534785i −0.0319426 + 0.0232077i
\(532\) 0 0
\(533\) 17.3992 + 53.5492i 0.753642 + 2.31947i
\(534\) 0 0
\(535\) −1.95492 1.42033i −0.0845183 0.0614062i
\(536\) 0 0
\(537\) −12.1353 + 37.3485i −0.523675 + 1.61171i
\(538\) 0 0
\(539\) −14.5000 0.983813i −0.624559 0.0423758i
\(540\) 0 0
\(541\) 0.843459 2.59590i 0.0362631 0.111606i −0.931286 0.364288i \(-0.881312\pi\)
0.967550 + 0.252681i \(0.0813124\pi\)
\(542\) 0 0
\(543\) −12.1353 8.81678i −0.520774 0.378364i
\(544\) 0 0
\(545\) 2.85410 + 8.78402i 0.122256 + 0.376266i
\(546\) 0 0
\(547\) 8.25329 5.99637i 0.352885 0.256386i −0.397193 0.917735i \(-0.630016\pi\)
0.750078 + 0.661349i \(0.230016\pi\)
\(548\) 0 0
\(549\) 0.708204 0.0302254
\(550\) 0 0
\(551\) 35.5623 1.51501
\(552\) 0 0
\(553\) 5.04508 3.66547i 0.214539 0.155872i
\(554\) 0 0
\(555\) 2.97214 + 9.14729i 0.126160 + 0.388281i
\(556\) 0 0
\(557\) −26.5795 19.3112i −1.12621 0.818240i −0.141072 0.989999i \(-0.545055\pi\)
−0.985139 + 0.171759i \(0.945055\pi\)
\(558\) 0 0
\(559\) −2.76393 + 8.50651i −0.116902 + 0.359787i
\(560\) 0 0
\(561\) −8.42705 + 5.29007i −0.355790 + 0.223347i
\(562\) 0 0
\(563\) 4.80902 14.8006i 0.202676 0.623772i −0.797125 0.603814i \(-0.793647\pi\)
0.999801 0.0199579i \(-0.00635321\pi\)
\(564\) 0 0
\(565\) −4.42705 3.21644i −0.186247 0.135317i
\(566\) 0 0
\(567\) −3.85410 11.8617i −0.161857 0.498145i
\(568\) 0 0
\(569\) −20.8713 + 15.1639i −0.874971 + 0.635704i −0.931916 0.362673i \(-0.881864\pi\)
0.0569449 + 0.998377i \(0.481864\pi\)
\(570\) 0 0
\(571\) −30.8328 −1.29031 −0.645157 0.764050i \(-0.723208\pi\)
−0.645157 + 0.764050i \(0.723208\pi\)
\(572\) 0 0
\(573\) −24.5066 −1.02378
\(574\) 0 0
\(575\) −14.9443 + 10.8576i −0.623219 + 0.452795i
\(576\) 0 0
\(577\) −5.98936 18.4333i −0.249340 0.767390i −0.994892 0.100943i \(-0.967814\pi\)
0.745552 0.666447i \(-0.232186\pi\)
\(578\) 0 0
\(579\) −9.66312 7.02067i −0.401586 0.291769i
\(580\) 0 0
\(581\) 4.69098 14.4374i 0.194615 0.598963i
\(582\) 0 0
\(583\) −1.57295 1.31433i −0.0651449 0.0544339i
\(584\) 0 0
\(585\) 0.427051 1.31433i 0.0176564 0.0543408i
\(586\) 0 0
\(587\) −0.0729490 0.0530006i −0.00301093 0.00218757i 0.586279 0.810109i \(-0.300592\pi\)
−0.589290 + 0.807922i \(0.700592\pi\)
\(588\) 0 0
\(589\) 1.63525 + 5.03280i 0.0673795 + 0.207373i
\(590\) 0 0
\(591\) 0.618034 0.449028i 0.0254225 0.0184705i
\(592\) 0 0
\(593\) 0.472136 0.0193883 0.00969415 0.999953i \(-0.496914\pi\)
0.00969415 + 0.999953i \(0.496914\pi\)
\(594\) 0 0
\(595\) −1.85410 −0.0760108
\(596\) 0 0
\(597\) 26.6525 19.3642i 1.09081 0.792522i
\(598\) 0 0
\(599\) −7.75329 23.8622i −0.316791 0.974982i −0.975011 0.222156i \(-0.928690\pi\)
0.658220 0.752825i \(-0.271310\pi\)
\(600\) 0 0
\(601\) 25.1976 + 18.3071i 1.02783 + 0.746762i 0.967873 0.251439i \(-0.0809037\pi\)
0.0599567 + 0.998201i \(0.480904\pi\)
\(602\) 0 0
\(603\) 1.70820 5.25731i 0.0695634 0.214094i
\(604\) 0 0
\(605\) 2.95492 6.12261i 0.120134 0.248920i
\(606\) 0 0
\(607\) −9.07953 + 27.9439i −0.368527 + 1.13421i 0.579216 + 0.815174i \(0.303359\pi\)
−0.947743 + 0.319035i \(0.896641\pi\)
\(608\) 0 0
\(609\) 15.5172 + 11.2739i 0.628790 + 0.456842i
\(610\) 0 0
\(611\) 19.1074 + 58.8065i 0.773002 + 2.37906i
\(612\) 0 0
\(613\) 33.9615 24.6745i 1.37169 0.996592i 0.374089 0.927393i \(-0.377955\pi\)
0.997603 0.0691996i \(-0.0220445\pi\)
\(614\) 0 0
\(615\) 9.61803 0.387837
\(616\) 0 0
\(617\) −25.4164 −1.02323 −0.511613 0.859216i \(-0.670952\pi\)
−0.511613 + 0.859216i \(0.670952\pi\)
\(618\) 0 0
\(619\) 5.78115 4.20025i 0.232364 0.168822i −0.465510 0.885042i \(-0.654129\pi\)
0.697875 + 0.716220i \(0.254129\pi\)
\(620\) 0 0
\(621\) −6.76393 20.8172i −0.271427 0.835367i
\(622\) 0 0
\(623\) 5.85410 + 4.25325i 0.234540 + 0.170403i
\(624\) 0 0
\(625\) 6.00000 18.4661i 0.240000 0.738644i
\(626\) 0 0
\(627\) 19.9894 + 16.7027i 0.798298 + 0.667043i
\(628\) 0 0
\(629\) 5.51064 16.9600i 0.219724 0.676240i
\(630\) 0 0
\(631\) −9.78115 7.10642i −0.389382 0.282902i 0.375820 0.926692i \(-0.377361\pi\)
−0.765202 + 0.643790i \(0.777361\pi\)
\(632\) 0 0
\(633\) −6.54508 20.1437i −0.260144 0.800640i
\(634\) 0 0
\(635\) 2.83688 2.06111i 0.112578 0.0817928i
\(636\) 0 0
\(637\) 25.6525 1.01639
\(638\) 0 0
\(639\) 1.94427 0.0769142
\(640\) 0 0
\(641\) −10.8713 + 7.89848i −0.429391 + 0.311971i −0.781406 0.624024i \(-0.785497\pi\)
0.352014 + 0.935995i \(0.385497\pi\)
\(642\) 0 0
\(643\) −8.22542 25.3153i −0.324379 0.998336i −0.971720 0.236136i \(-0.924119\pi\)
0.647341 0.762201i \(-0.275881\pi\)
\(644\) 0 0
\(645\) 1.23607 + 0.898056i 0.0486701 + 0.0353609i
\(646\) 0 0
\(647\) −3.84346 + 11.8290i −0.151102 + 0.465044i −0.997745 0.0671170i \(-0.978620\pi\)
0.846643 + 0.532161i \(0.178620\pi\)
\(648\) 0 0
\(649\) 6.69098 4.20025i 0.262644 0.164874i
\(650\) 0 0
\(651\) −0.881966 + 2.71441i −0.0345670 + 0.106386i
\(652\) 0 0
\(653\) 31.4894 + 22.8784i 1.23227 + 0.895299i 0.997059 0.0766440i \(-0.0244205\pi\)
0.235215 + 0.971943i \(0.424420\pi\)
\(654\) 0 0
\(655\) 1.52786 + 4.70228i 0.0596986 + 0.183733i
\(656\) 0 0
\(657\) −0.972136 + 0.706298i −0.0379266 + 0.0275553i
\(658\) 0 0
\(659\) 32.0000 1.24654 0.623272 0.782006i \(-0.285803\pi\)
0.623272 + 0.782006i \(0.285803\pi\)
\(660\) 0 0
\(661\) 6.94427 0.270101 0.135050 0.990839i \(-0.456880\pi\)
0.135050 + 0.990839i \(0.456880\pi\)
\(662\) 0 0
\(663\) 14.2082 10.3229i 0.551801 0.400907i
\(664\) 0 0
\(665\) 1.50000 + 4.61653i 0.0581675 + 0.179021i
\(666\) 0 0
\(667\) 23.7082 + 17.2250i 0.917985 + 0.666955i
\(668\) 0 0
\(669\) 4.80902 14.8006i 0.185927 0.572226i
\(670\) 0 0
\(671\) −6.13525 0.416272i −0.236849 0.0160700i
\(672\) 0 0
\(673\) −2.39261 + 7.36369i −0.0922283 + 0.283850i −0.986521 0.163632i \(-0.947679\pi\)
0.894293 + 0.447482i \(0.147679\pi\)
\(674\) 0 0
\(675\) 20.4443 + 14.8536i 0.786900 + 0.571717i
\(676\) 0 0
\(677\) −6.28115 19.3314i −0.241404 0.742966i −0.996207 0.0870143i \(-0.972267\pi\)
0.754803 0.655952i \(-0.227733\pi\)
\(678\) 0 0
\(679\) 16.1353 11.7229i 0.619214 0.449885i
\(680\) 0 0
\(681\) −11.5623 −0.443069
\(682\) 0 0
\(683\) −0.944272 −0.0361316 −0.0180658 0.999837i \(-0.505751\pi\)
−0.0180658 + 0.999837i \(0.505751\pi\)
\(684\) 0 0
\(685\) −8.78115 + 6.37988i −0.335511 + 0.243763i
\(686\) 0 0
\(687\) 8.16312 + 25.1235i 0.311442 + 0.958521i
\(688\) 0 0
\(689\) 2.92705 + 2.12663i 0.111512 + 0.0810180i
\(690\) 0 0
\(691\) 7.28115 22.4091i 0.276988 0.852482i −0.711698 0.702485i \(-0.752074\pi\)
0.988687 0.149997i \(-0.0479263\pi\)
\(692\) 0 0
\(693\) −0.500000 1.98787i −0.0189934 0.0755129i
\(694\) 0 0
\(695\) −3.10739 + 9.56357i −0.117870 + 0.362767i
\(696\) 0 0
\(697\) −14.4271 10.4819i −0.546464 0.397029i
\(698\) 0 0
\(699\) −8.01722 24.6745i −0.303239 0.933274i
\(700\) 0 0
\(701\) 12.7254 9.24556i 0.480633 0.349200i −0.320938 0.947100i \(-0.603998\pi\)
0.801571 + 0.597900i \(0.203998\pi\)
\(702\) 0 0
\(703\) −46.6869 −1.76083
\(704\) 0 0
\(705\) 10.5623 0.397799
\(706\) 0 0
\(707\) −4.04508 + 2.93893i −0.152131 + 0.110530i
\(708\) 0 0
\(709\) −6.10081 18.7764i −0.229121 0.705161i −0.997847 0.0655835i \(-0.979109\pi\)
0.768726 0.639578i \(-0.220891\pi\)
\(710\) 0 0
\(711\) −1.19098 0.865300i −0.0446654 0.0324513i
\(712\) 0 0
\(713\) −1.34752 + 4.14725i −0.0504652 + 0.155316i
\(714\) 0 0
\(715\) −4.47214 + 11.1352i −0.167248 + 0.416432i
\(716\) 0 0
\(717\) 11.7533 36.1729i 0.438935 1.35090i
\(718\) 0 0
\(719\) −0.0729490 0.0530006i −0.00272054 0.00197659i 0.586424 0.810004i \(-0.300535\pi\)
−0.589145 + 0.808028i \(0.700535\pi\)
\(720\) 0 0
\(721\) 6.04508 + 18.6049i 0.225131 + 0.692881i
\(722\) 0 0
\(723\) 1.38197 1.00406i 0.0513959 0.0373413i
\(724\) 0 0
\(725\) −33.8328 −1.25652
\(726\) 0 0
\(727\) −28.9443 −1.07348 −0.536742 0.843747i \(-0.680345\pi\)
−0.536742 + 0.843747i \(0.680345\pi\)
\(728\) 0 0
\(729\) −23.8713 + 17.3435i −0.884123 + 0.642353i
\(730\) 0 0
\(731\) −0.875388 2.69417i −0.0323774 0.0996474i
\(732\) 0 0
\(733\) 10.5451 + 7.66145i 0.389492 + 0.282982i 0.765247 0.643737i \(-0.222617\pi\)
−0.375756 + 0.926719i \(0.622617\pi\)
\(734\) 0 0
\(735\) 1.35410 4.16750i 0.0499468 0.153720i
\(736\) 0 0
\(737\) −17.8885 + 44.5407i −0.658933 + 1.64068i
\(738\) 0 0
\(739\) 2.51722 7.74721i 0.0925975 0.284986i −0.894023 0.448022i \(-0.852129\pi\)
0.986620 + 0.163036i \(0.0521287\pi\)
\(740\) 0 0
\(741\) −37.1976 27.0256i −1.36649 0.992811i
\(742\) 0 0
\(743\) 14.4271 + 44.4019i 0.529277 + 1.62895i 0.755700 + 0.654918i \(0.227297\pi\)
−0.226422 + 0.974029i \(0.572703\pi\)
\(744\) 0 0
\(745\) 8.92705 6.48588i 0.327062 0.237624i
\(746\) 0 0
\(747\) −3.58359 −0.131117
\(748\) 0 0
\(749\) 6.32624 0.231156
\(750\) 0 0
\(751\) −2.69098 + 1.95511i −0.0981954 + 0.0713431i −0.635800 0.771854i \(-0.719329\pi\)
0.537604 + 0.843197i \(0.319329\pi\)
\(752\) 0 0
\(753\) −5.30902 16.3395i −0.193471 0.595444i
\(754\) 0 0
\(755\) −3.66312 2.66141i −0.133315 0.0968587i
\(756\) 0 0
\(757\) −8.39261 + 25.8298i −0.305035 + 0.938800i 0.674630 + 0.738156i \(0.264303\pi\)
−0.979664 + 0.200644i \(0.935697\pi\)
\(758\) 0 0
\(759\) 5.23607 + 20.8172i 0.190057 + 0.755618i
\(760\) 0 0
\(761\) 2.01064 6.18812i 0.0728858 0.224319i −0.907977 0.419020i \(-0.862374\pi\)
0.980863 + 0.194701i \(0.0623736\pi\)
\(762\) 0 0
\(763\) −19.5623 14.2128i −0.708203 0.514540i
\(764\) 0 0
\(765\) 0.135255 + 0.416272i 0.00489015 + 0.0150503i
\(766\) 0 0
\(767\) −11.2812 + 8.19624i −0.407339 + 0.295949i
\(768\) 0 0
\(769\) 36.2492 1.30718 0.653590 0.756849i \(-0.273262\pi\)
0.653590 + 0.756849i \(0.273262\pi\)
\(770\) 0 0
\(771\) 4.14590 0.149311
\(772\) 0 0
\(773\) −32.8713 + 23.8824i −1.18230 + 0.858991i −0.992429 0.122818i \(-0.960807\pi\)
−0.189870 + 0.981809i \(0.560807\pi\)
\(774\) 0 0
\(775\) −1.55573 4.78804i −0.0558834 0.171991i
\(776\) 0 0
\(777\) −20.3713 14.8006i −0.730817 0.530970i
\(778\) 0 0
\(779\) −14.4271 + 44.4019i −0.516903 + 1.59086i
\(780\) 0 0
\(781\) −16.8435 1.14281i −0.602706 0.0408931i
\(782\) 0 0
\(783\) 12.3885 38.1280i 0.442730 1.36258i
\(784\) 0 0
\(785\) 0.336881 + 0.244758i 0.0120238 + 0.00873580i
\(786\) 0 0
\(787\) −7.28115 22.4091i −0.259545 0.798798i −0.992900 0.118952i \(-0.962047\pi\)
0.733355 0.679846i \(-0.237953\pi\)
\(788\) 0 0
\(789\) 9.70820 7.05342i 0.345621 0.251109i
\(790\) 0 0
\(791\) 14.3262 0.509382
\(792\) 0 0
\(793\) 10.8541 0.385440
\(794\) 0 0
\(795\) 0.500000 0.363271i 0.0177332 0.0128839i
\(796\) 0 0
\(797\) 3.53851 + 10.8904i 0.125340 + 0.385758i 0.993963 0.109716i \(-0.0349943\pi\)
−0.868623 + 0.495474i \(0.834994\pi\)
\(798\) 0 0
\(799\) −15.8435 11.5109i −0.560501 0.407228i
\(800\) 0 0
\(801\) 0.527864 1.62460i 0.0186512 0.0574024i
\(802\) 0 0
\(803\) 8.83688 5.54734i 0.311847 0.195761i
\(804\) 0 0
\(805\) −1.23607 + 3.80423i −0.0435657 + 0.134081i
\(806\) 0 0
\(807\) −1.19098 0.865300i −0.0419246 0.0304600i
\(808\) 0 0
\(809\) −0.461493 1.42033i −0.0162252 0.0499361i 0.942616 0.333879i \(-0.108358\pi\)
−0.958841 + 0.283942i \(0.908358\pi\)
\(810\) 0 0
\(811\) −34.5795 + 25.1235i −1.21425 + 0.882205i −0.995610 0.0936000i \(-0.970163\pi\)
−0.218642 + 0.975805i \(0.570163\pi\)
\(812\) 0 0
\(813\) 42.6869 1.49710
\(814\) 0 0
\(815\) −5.43769 −0.190474
\(816\) 0 0
\(817\) −6.00000 + 4.35926i −0.209913 + 0.152511i
\(818\) 0 0
\(819\) 1.11803 + 3.44095i 0.0390673 + 0.120237i
\(820\) 0 0
\(821\) 37.6697 + 27.3686i 1.31468 + 0.955172i 0.999982 + 0.00598061i \(0.00190370\pi\)
0.314699 + 0.949191i \(0.398096\pi\)
\(822\) 0 0
\(823\) 4.22542 13.0045i 0.147289 0.453309i −0.850009 0.526768i \(-0.823404\pi\)
0.997298 + 0.0734587i \(0.0234037\pi\)
\(824\) 0 0
\(825\) −19.0172 15.8904i −0.662095 0.553234i
\(826\) 0 0
\(827\) 4.22542 13.0045i 0.146932 0.452211i −0.850322 0.526263i \(-0.823593\pi\)
0.997254 + 0.0740512i \(0.0235928\pi\)
\(828\) 0 0
\(829\) 13.7812 + 10.0126i 0.478639 + 0.347752i 0.800799 0.598934i \(-0.204409\pi\)
−0.322159 + 0.946685i \(0.604409\pi\)
\(830\) 0 0
\(831\) 1.69098 + 5.20431i 0.0586596 + 0.180536i
\(832\) 0 0
\(833\) −6.57295 + 4.77553i −0.227739 + 0.165462i
\(834\) 0 0
\(835\) −8.85410 −0.306409
\(836\) 0 0
\(837\) 5.96556 0.206200
\(838\) 0 0
\(839\) −15.3435 + 11.1477i −0.529715 + 0.384860i −0.820251 0.572004i \(-0.806166\pi\)
0.290536 + 0.956864i \(0.406166\pi\)
\(840\) 0 0
\(841\) 7.62461 + 23.4661i 0.262918 + 0.809177i
\(842\) 0 0
\(843\) 17.7533 + 12.8985i 0.611456 + 0.444249i
\(844\) 0 0
\(845\) 4.06231 12.5025i 0.139748 0.430099i
\(846\) 0 0
\(847\) 3.16312 + 17.5150i 0.108686 + 0.601824i
\(848\) 0 0
\(849\) −6.89919 + 21.2335i −0.236779 + 0.728732i
\(850\) 0 0
\(851\) −31.1246 22.6134i −1.06694 0.775176i
\(852\) 0 0
\(853\) −10.1697 31.2991i −0.348204 1.07166i −0.959846 0.280527i \(-0.909491\pi\)
0.611642 0.791134i \(-0.290509\pi\)
\(854\) 0 0
\(855\) 0.927051 0.673542i 0.0317045 0.0230346i
\(856\) 0 0
\(857\) −26.3607 −0.900464 −0.450232 0.892912i \(-0.648659\pi\)
−0.450232 + 0.892912i \(0.648659\pi\)
\(858\) 0 0
\(859\) 13.8885 0.473871 0.236935 0.971525i \(-0.423857\pi\)
0.236935 + 0.971525i \(0.423857\pi\)
\(860\) 0 0
\(861\) −20.3713 + 14.8006i −0.694253 + 0.504404i
\(862\) 0 0
\(863\) −3.86475 11.8945i −0.131557 0.404892i 0.863481 0.504381i \(-0.168279\pi\)
−0.995039 + 0.0994888i \(0.968279\pi\)
\(864\) 0 0
\(865\) −4.42705 3.21644i −0.150524 0.109362i
\(866\) 0 0
\(867\) 6.78115 20.8702i 0.230300 0.708791i
\(868\) 0 0
\(869\) 9.80902 + 8.19624i 0.332748 + 0.278038i
\(870\) 0 0
\(871\) 26.1803 80.5748i 0.887087 2.73017i
\(872\) 0 0
\(873\) −3.80902 2.76741i −0.128916 0.0936627i
\(874\) 0 0
\(875\) −2.97214 9.14729i −0.100477 0.309235i
\(876\) 0 0
\(877\) −15.3435 + 11.1477i −0.518112 + 0.376430i −0.815892 0.578204i \(-0.803754\pi\)
0.297780 + 0.954634i \(0.403754\pi\)
\(878\) 0 0
\(879\) 17.0902 0.576437
\(880\) 0 0
\(881\) 31.5279 1.06220 0.531100 0.847309i \(-0.321779\pi\)
0.531100 + 0.847309i \(0.321779\pi\)
\(882\) 0 0
\(883\) −10.3992 + 7.55545i −0.349961 + 0.254261i −0.748852 0.662737i \(-0.769395\pi\)
0.398892 + 0.916998i \(0.369395\pi\)
\(884\) 0 0
\(885\) 0.736068 + 2.26538i 0.0247427 + 0.0761501i
\(886\) 0 0
\(887\) 40.1074 + 29.1397i 1.34667 + 0.978416i 0.999170 + 0.0407379i \(0.0129709\pi\)
0.347505 + 0.937678i \(0.387029\pi\)
\(888\) 0 0
\(889\) −2.83688 + 8.73102i −0.0951459 + 0.292829i
\(890\) 0 0
\(891\) 21.6525 13.5923i 0.725385 0.455359i
\(892\) 0 0
\(893\) −15.8435 + 48.7612i −0.530181 + 1.63173i
\(894\) 0 0
\(895\) −12.1353 8.81678i −0.405637 0.294712i
\(896\) 0 0
\(897\) −11.7082 36.0341i −0.390926 1.20315i
\(898\) 0 0
\(899\) −6.46149 + 4.69455i −0.215503 + 0.156572i
\(900\) 0 0
\(901\) −1.14590 −0.0381754
\(902\) 0 0
\(903\) −4.00000 −0.133112
\(904\) 0 0
\(905\) 4.63525 3.36771i 0.154081 0.111946i
\(906\) 0 0
\(907\) 8.42705 + 25.9358i 0.279816 + 0.861184i 0.987905 + 0.155061i \(0.0495574\pi\)
−0.708089 + 0.706123i \(0.750443\pi\)
\(908\) 0 0
\(909\) 0.954915 + 0.693786i 0.0316725 + 0.0230114i
\(910\) 0 0
\(911\) 14.5172 44.6794i 0.480977 1.48029i −0.356747 0.934201i \(-0.616114\pi\)
0.837724 0.546094i \(-0.183886\pi\)
\(912\) 0 0
\(913\) 31.0451 + 2.10638i 1.02744 + 0.0697111i
\(914\) 0 0
\(915\) 0.572949 1.76336i 0.0189411 0.0582947i
\(916\) 0 0
\(917\) −10.4721 7.60845i −0.345820 0.251253i
\(918\) 0 0
\(919\) −5.75329 17.7068i −0.189783 0.584094i 0.810214 0.586134i \(-0.199351\pi\)
−0.999998 + 0.00204006i \(0.999351\pi\)
\(920\) 0 0
\(921\) 44.3607 32.2299i 1.46173 1.06201i
\(922\) 0 0
\(923\) 29.7984 0.980825
\(924\) 0 0
\(925\) 44.4164 1.46040
\(926\) 0 0
\(927\) 3.73607 2.71441i 0.122709 0.0891530i
\(928\) 0 0
\(929\) −4.46149 13.7311i −0.146377 0.450502i 0.850809 0.525476i \(-0.176113\pi\)
−0.997185 + 0.0749741i \(0.976113\pi\)
\(930\) 0 0
\(931\) 17.2082 + 12.5025i 0.563976 + 0.409753i
\(932\) 0 0
\(933\) −16.1353 + 49.6592i −0.528245 + 1.62577i
\(934\) 0 0
\(935\) −0.927051 3.68571i −0.0303178 0.120536i
\(936\) 0 0
\(937\) 0.482779 1.48584i 0.0157717 0.0485403i −0.942861 0.333187i \(-0.891876\pi\)
0.958633 + 0.284646i \(0.0918761\pi\)
\(938\) 0 0
\(939\) −36.3156 26.3848i −1.18511 0.861036i
\(940\) 0 0
\(941\) −9.04508 27.8379i −0.294861 0.907490i −0.983268 0.182165i \(-0.941690\pi\)
0.688407 0.725325i \(-0.258310\pi\)
\(942\) 0 0
\(943\) −31.1246 + 22.6134i −1.01356 + 0.736392i
\(944\) 0 0
\(945\) 5.47214 0.178009
\(946\) 0 0
\(947\) 18.8328 0.611984 0.305992 0.952034i \(-0.401012\pi\)
0.305992 + 0.952034i \(0.401012\pi\)
\(948\) 0 0
\(949\) −14.8992 + 10.8249i −0.483648 + 0.351391i
\(950\) 0 0
\(951\) 0.163119 + 0.502029i 0.00528949 + 0.0162794i
\(952\) 0 0
\(953\) 24.2533 + 17.6210i 0.785641 + 0.570802i 0.906667 0.421848i \(-0.138618\pi\)
−0.121026 + 0.992649i \(0.538618\pi\)
\(954\) 0 0
\(955\) 2.89261 8.90254i 0.0936026 0.288079i
\(956\) 0 0
\(957\) −14.6525 + 36.4832i −0.473647 + 1.17933i
\(958\) 0 0
\(959\) 8.78115 27.0256i 0.283558 0.872702i
\(960\) 0 0
\(961\) 24.1180 + 17.5228i 0.778001 + 0.565251i
\(962\) 0 0
\(963\) −0.461493 1.42033i −0.0148714 0.0457695i
\(964\) 0 0
\(965\) 3.69098 2.68166i 0.118817 0.0863256i
\(966\) 0 0
\(967\) 33.3050 1.07102 0.535508 0.844530i \(-0.320120\pi\)
0.535508 + 0.844530i \(0.320120\pi\)
\(968\) 0 0
\(969\) 14.5623 0.467809
\(970\) 0 0
\(971\) 9.01722 6.55139i 0.289376 0.210244i −0.433620 0.901096i \(-0.642764\pi\)
0.722997 + 0.690851i \(0.242764\pi\)
\(972\) 0 0
\(973\) −8.13525 25.0377i −0.260804 0.802673i
\(974\) 0 0
\(975\) 35.3885 + 25.7113i 1.13334 + 0.823420i
\(976\) 0 0
\(977\) −2.68441 + 8.26175i −0.0858817 + 0.264317i −0.984770 0.173861i \(-0.944376\pi\)
0.898889 + 0.438177i \(0.144376\pi\)
\(978\) 0 0
\(979\) −5.52786 + 13.7638i −0.176671 + 0.439894i
\(980\) 0 0
\(981\) −1.76393 + 5.42882i −0.0563180 + 0.173329i
\(982\) 0 0
\(983\) −6.54508 4.75528i −0.208756 0.151670i 0.478495 0.878090i \(-0.341183\pi\)
−0.687251 + 0.726420i \(0.741183\pi\)
\(984\) 0 0
\(985\) 0.0901699 + 0.277515i 0.00287305 + 0.00884235i
\(986\) 0 0
\(987\) −22.3713 + 16.2537i −0.712087 + 0.517362i
\(988\) 0 0
\(989\) −6.11146 −0.194333
\(990\) 0 0
\(991\) 27.0557 0.859454 0.429727 0.902959i \(-0.358610\pi\)
0.429727 + 0.902959i \(0.358610\pi\)
\(992\) 0 0
\(993\) −11.7082 + 8.50651i −0.371549 + 0.269946i
\(994\) 0 0
\(995\) 3.88854 + 11.9677i 0.123275 + 0.379402i
\(996\) 0 0
\(997\) −23.1631 16.8290i −0.733583 0.532979i 0.157112 0.987581i \(-0.449782\pi\)
−0.890695 + 0.454601i \(0.849782\pi\)
\(998\) 0 0
\(999\) −16.2639 + 50.0552i −0.514568 + 1.58368i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 88.2.i.a.9.1 4
3.2 odd 2 792.2.r.b.361.1 4
4.3 odd 2 176.2.m.a.97.1 4
8.3 odd 2 704.2.m.g.449.1 4
8.5 even 2 704.2.m.b.449.1 4
11.2 odd 10 968.2.i.c.729.1 4
11.3 even 5 968.2.i.d.81.1 4
11.4 even 5 968.2.a.i.1.1 2
11.5 even 5 inner 88.2.i.a.49.1 yes 4
11.6 odd 10 968.2.i.k.753.1 4
11.7 odd 10 968.2.a.h.1.1 2
11.8 odd 10 968.2.i.c.81.1 4
11.9 even 5 968.2.i.d.729.1 4
11.10 odd 2 968.2.i.k.9.1 4
33.5 odd 10 792.2.r.b.577.1 4
33.26 odd 10 8712.2.a.bp.1.1 2
33.29 even 10 8712.2.a.bm.1.1 2
44.7 even 10 1936.2.a.u.1.2 2
44.15 odd 10 1936.2.a.t.1.2 2
44.27 odd 10 176.2.m.a.49.1 4
88.5 even 10 704.2.m.b.577.1 4
88.27 odd 10 704.2.m.g.577.1 4
88.29 odd 10 7744.2.a.cq.1.2 2
88.37 even 10 7744.2.a.cr.1.2 2
88.51 even 10 7744.2.a.cc.1.1 2
88.59 odd 10 7744.2.a.cb.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
88.2.i.a.9.1 4 1.1 even 1 trivial
88.2.i.a.49.1 yes 4 11.5 even 5 inner
176.2.m.a.49.1 4 44.27 odd 10
176.2.m.a.97.1 4 4.3 odd 2
704.2.m.b.449.1 4 8.5 even 2
704.2.m.b.577.1 4 88.5 even 10
704.2.m.g.449.1 4 8.3 odd 2
704.2.m.g.577.1 4 88.27 odd 10
792.2.r.b.361.1 4 3.2 odd 2
792.2.r.b.577.1 4 33.5 odd 10
968.2.a.h.1.1 2 11.7 odd 10
968.2.a.i.1.1 2 11.4 even 5
968.2.i.c.81.1 4 11.8 odd 10
968.2.i.c.729.1 4 11.2 odd 10
968.2.i.d.81.1 4 11.3 even 5
968.2.i.d.729.1 4 11.9 even 5
968.2.i.k.9.1 4 11.10 odd 2
968.2.i.k.753.1 4 11.6 odd 10
1936.2.a.t.1.2 2 44.15 odd 10
1936.2.a.u.1.2 2 44.7 even 10
7744.2.a.cb.1.1 2 88.59 odd 10
7744.2.a.cc.1.1 2 88.51 even 10
7744.2.a.cq.1.2 2 88.29 odd 10
7744.2.a.cr.1.2 2 88.37 even 10
8712.2.a.bm.1.1 2 33.29 even 10
8712.2.a.bp.1.1 2 33.26 odd 10