Defining parameters
| Level: | \( N \) | \(=\) | \( 704 = 2^{6} \cdot 11 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 704.m (of order \(5\) and degree \(4\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 11 \) |
| Character field: | \(\Q(\zeta_{5})\) | ||
| Newform subspaces: | \( 14 \) | ||
| Sturm bound: | \(192\) | ||
| Trace bound: | \(7\) | ||
| Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(704, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 432 | 104 | 328 |
| Cusp forms | 336 | 88 | 248 |
| Eisenstein series | 96 | 16 | 80 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(704, [\chi])\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(704, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(704, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(22, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(44, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(88, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(176, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(352, [\chi])\)\(^{\oplus 2}\)