Properties

Label 704.2.m.g.449.1
Level $704$
Weight $2$
Character 704.449
Analytic conductor $5.621$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [704,2,Mod(257,704)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("704.257"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(704, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 0, 2])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 704 = 2^{6} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 704.m (of order \(5\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,3,0,-3,0,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.62146830230\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 88)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 449.1
Root \(-0.309017 - 0.951057i\) of defining polynomial
Character \(\chi\) \(=\) 704.449
Dual form 704.2.m.g.577.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.30902 - 0.951057i) q^{3} +(-0.190983 - 0.587785i) q^{5} +(1.30902 + 0.951057i) q^{7} +(-0.118034 + 0.363271i) q^{9} +(1.23607 - 3.07768i) q^{11} +(1.80902 - 5.56758i) q^{13} +(-0.809017 - 0.587785i) q^{15} +(-0.572949 - 1.76336i) q^{17} +(-3.92705 + 2.85317i) q^{19} +2.61803 q^{21} +4.00000 q^{23} +(3.73607 - 2.71441i) q^{25} +(1.69098 + 5.20431i) q^{27} +(5.92705 + 4.30625i) q^{29} +(-0.336881 + 1.03681i) q^{31} +(-1.30902 - 5.20431i) q^{33} +(0.309017 - 0.951057i) q^{35} +(-7.78115 - 5.65334i) q^{37} +(-2.92705 - 9.00854i) q^{39} +(7.78115 - 5.65334i) q^{41} +1.52786 q^{43} +0.236068 q^{45} +(-8.54508 + 6.20837i) q^{47} +(-1.35410 - 4.16750i) q^{49} +(-2.42705 - 1.76336i) q^{51} +(-0.190983 + 0.587785i) q^{53} +(-2.04508 - 0.138757i) q^{55} +(-2.42705 + 7.46969i) q^{57} +(1.92705 + 1.40008i) q^{59} +(0.572949 + 1.76336i) q^{61} +(-0.500000 + 0.363271i) q^{63} -3.61803 q^{65} -14.4721 q^{67} +(5.23607 - 3.80423i) q^{69} +(1.57295 + 4.84104i) q^{71} +(2.54508 + 1.84911i) q^{73} +(2.30902 - 7.10642i) q^{75} +(4.54508 - 2.85317i) q^{77} +(1.19098 - 3.66547i) q^{79} +(6.23607 + 4.53077i) q^{81} +(2.89919 + 8.92278i) q^{83} +(-0.927051 + 0.673542i) q^{85} +11.8541 q^{87} -4.47214 q^{89} +(7.66312 - 5.56758i) q^{91} +(0.545085 + 1.67760i) q^{93} +(2.42705 + 1.76336i) q^{95} +(-3.80902 + 11.7229i) q^{97} +(0.972136 + 0.812299i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 3 q^{3} - 3 q^{5} + 3 q^{7} + 4 q^{9} - 4 q^{11} + 5 q^{13} - q^{15} - 9 q^{17} - 9 q^{19} + 6 q^{21} + 16 q^{23} + 6 q^{25} + 9 q^{27} + 17 q^{29} - 17 q^{31} - 3 q^{33} - q^{35} - 11 q^{37} - 5 q^{39}+ \cdots - 14 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/704\mathbb{Z}\right)^\times\).

\(n\) \(133\) \(321\) \(639\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{5}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.30902 0.951057i 0.755761 0.549093i −0.141846 0.989889i \(-0.545304\pi\)
0.897607 + 0.440796i \(0.145304\pi\)
\(4\) 0 0
\(5\) −0.190983 0.587785i −0.0854102 0.262866i 0.899226 0.437485i \(-0.144131\pi\)
−0.984636 + 0.174619i \(0.944131\pi\)
\(6\) 0 0
\(7\) 1.30902 + 0.951057i 0.494762 + 0.359466i 0.807013 0.590534i \(-0.201083\pi\)
−0.312251 + 0.950000i \(0.601083\pi\)
\(8\) 0 0
\(9\) −0.118034 + 0.363271i −0.0393447 + 0.121090i
\(10\) 0 0
\(11\) 1.23607 3.07768i 0.372689 0.927957i
\(12\) 0 0
\(13\) 1.80902 5.56758i 0.501731 1.54417i −0.304467 0.952523i \(-0.598478\pi\)
0.806198 0.591646i \(-0.201522\pi\)
\(14\) 0 0
\(15\) −0.809017 0.587785i −0.208887 0.151765i
\(16\) 0 0
\(17\) −0.572949 1.76336i −0.138961 0.427677i 0.857224 0.514943i \(-0.172187\pi\)
−0.996185 + 0.0872663i \(0.972187\pi\)
\(18\) 0 0
\(19\) −3.92705 + 2.85317i −0.900927 + 0.654562i −0.938704 0.344724i \(-0.887972\pi\)
0.0377767 + 0.999286i \(0.487972\pi\)
\(20\) 0 0
\(21\) 2.61803 0.571302
\(22\) 0 0
\(23\) 4.00000 0.834058 0.417029 0.908893i \(-0.363071\pi\)
0.417029 + 0.908893i \(0.363071\pi\)
\(24\) 0 0
\(25\) 3.73607 2.71441i 0.747214 0.542882i
\(26\) 0 0
\(27\) 1.69098 + 5.20431i 0.325430 + 1.00157i
\(28\) 0 0
\(29\) 5.92705 + 4.30625i 1.10063 + 0.799651i 0.981162 0.193187i \(-0.0618825\pi\)
0.119464 + 0.992839i \(0.461882\pi\)
\(30\) 0 0
\(31\) −0.336881 + 1.03681i −0.0605056 + 0.186217i −0.976741 0.214424i \(-0.931213\pi\)
0.916235 + 0.400641i \(0.131213\pi\)
\(32\) 0 0
\(33\) −1.30902 5.20431i −0.227871 0.905954i
\(34\) 0 0
\(35\) 0.309017 0.951057i 0.0522334 0.160758i
\(36\) 0 0
\(37\) −7.78115 5.65334i −1.27921 0.929403i −0.279685 0.960092i \(-0.590230\pi\)
−0.999529 + 0.0306888i \(0.990230\pi\)
\(38\) 0 0
\(39\) −2.92705 9.00854i −0.468703 1.44252i
\(40\) 0 0
\(41\) 7.78115 5.65334i 1.21521 0.882903i 0.219518 0.975608i \(-0.429551\pi\)
0.995694 + 0.0927052i \(0.0295514\pi\)
\(42\) 0 0
\(43\) 1.52786 0.232997 0.116499 0.993191i \(-0.462833\pi\)
0.116499 + 0.993191i \(0.462833\pi\)
\(44\) 0 0
\(45\) 0.236068 0.0351909
\(46\) 0 0
\(47\) −8.54508 + 6.20837i −1.24643 + 0.905583i −0.998009 0.0630690i \(-0.979911\pi\)
−0.248420 + 0.968653i \(0.579911\pi\)
\(48\) 0 0
\(49\) −1.35410 4.16750i −0.193443 0.595357i
\(50\) 0 0
\(51\) −2.42705 1.76336i −0.339855 0.246919i
\(52\) 0 0
\(53\) −0.190983 + 0.587785i −0.0262335 + 0.0807385i −0.963316 0.268369i \(-0.913515\pi\)
0.937083 + 0.349108i \(0.113515\pi\)
\(54\) 0 0
\(55\) −2.04508 0.138757i −0.275759 0.0187100i
\(56\) 0 0
\(57\) −2.42705 + 7.46969i −0.321471 + 0.989385i
\(58\) 0 0
\(59\) 1.92705 + 1.40008i 0.250881 + 0.182275i 0.706117 0.708095i \(-0.250445\pi\)
−0.455236 + 0.890371i \(0.650445\pi\)
\(60\) 0 0
\(61\) 0.572949 + 1.76336i 0.0733586 + 0.225775i 0.981012 0.193945i \(-0.0621284\pi\)
−0.907654 + 0.419720i \(0.862128\pi\)
\(62\) 0 0
\(63\) −0.500000 + 0.363271i −0.0629941 + 0.0457679i
\(64\) 0 0
\(65\) −3.61803 −0.448762
\(66\) 0 0
\(67\) −14.4721 −1.76805 −0.884026 0.467437i \(-0.845177\pi\)
−0.884026 + 0.467437i \(0.845177\pi\)
\(68\) 0 0
\(69\) 5.23607 3.80423i 0.630349 0.457975i
\(70\) 0 0
\(71\) 1.57295 + 4.84104i 0.186675 + 0.574526i 0.999973 0.00732101i \(-0.00233037\pi\)
−0.813298 + 0.581847i \(0.802330\pi\)
\(72\) 0 0
\(73\) 2.54508 + 1.84911i 0.297880 + 0.216422i 0.726678 0.686978i \(-0.241063\pi\)
−0.428799 + 0.903400i \(0.641063\pi\)
\(74\) 0 0
\(75\) 2.30902 7.10642i 0.266622 0.820579i
\(76\) 0 0
\(77\) 4.54508 2.85317i 0.517961 0.325149i
\(78\) 0 0
\(79\) 1.19098 3.66547i 0.133996 0.412397i −0.861436 0.507865i \(-0.830435\pi\)
0.995433 + 0.0954679i \(0.0304347\pi\)
\(80\) 0 0
\(81\) 6.23607 + 4.53077i 0.692896 + 0.503419i
\(82\) 0 0
\(83\) 2.89919 + 8.92278i 0.318227 + 0.979402i 0.974406 + 0.224797i \(0.0721718\pi\)
−0.656179 + 0.754606i \(0.727828\pi\)
\(84\) 0 0
\(85\) −0.927051 + 0.673542i −0.100553 + 0.0730559i
\(86\) 0 0
\(87\) 11.8541 1.27089
\(88\) 0 0
\(89\) −4.47214 −0.474045 −0.237023 0.971504i \(-0.576172\pi\)
−0.237023 + 0.971504i \(0.576172\pi\)
\(90\) 0 0
\(91\) 7.66312 5.56758i 0.803313 0.583641i
\(92\) 0 0
\(93\) 0.545085 + 1.67760i 0.0565227 + 0.173959i
\(94\) 0 0
\(95\) 2.42705 + 1.76336i 0.249010 + 0.180916i
\(96\) 0 0
\(97\) −3.80902 + 11.7229i −0.386747 + 1.19029i 0.548458 + 0.836178i \(0.315215\pi\)
−0.935205 + 0.354107i \(0.884785\pi\)
\(98\) 0 0
\(99\) 0.972136 + 0.812299i 0.0977033 + 0.0816391i
\(100\) 0 0
\(101\) −0.954915 + 2.93893i −0.0950176 + 0.292434i −0.987258 0.159126i \(-0.949132\pi\)
0.892241 + 0.451560i \(0.149132\pi\)
\(102\) 0 0
\(103\) 9.78115 + 7.10642i 0.963766 + 0.700217i 0.954022 0.299736i \(-0.0968985\pi\)
0.00974339 + 0.999953i \(0.496899\pi\)
\(104\) 0 0
\(105\) −0.500000 1.53884i −0.0487950 0.150176i
\(106\) 0 0
\(107\) −3.16312 + 2.29814i −0.305790 + 0.222170i −0.730088 0.683353i \(-0.760521\pi\)
0.424298 + 0.905523i \(0.360521\pi\)
\(108\) 0 0
\(109\) −14.9443 −1.43140 −0.715701 0.698407i \(-0.753893\pi\)
−0.715701 + 0.698407i \(0.753893\pi\)
\(110\) 0 0
\(111\) −15.5623 −1.47711
\(112\) 0 0
\(113\) −7.16312 + 5.20431i −0.673850 + 0.489580i −0.871312 0.490730i \(-0.836730\pi\)
0.197462 + 0.980311i \(0.436730\pi\)
\(114\) 0 0
\(115\) −0.763932 2.35114i −0.0712370 0.219245i
\(116\) 0 0
\(117\) 1.80902 + 1.31433i 0.167244 + 0.121510i
\(118\) 0 0
\(119\) 0.927051 2.85317i 0.0849826 0.261550i
\(120\) 0 0
\(121\) −7.94427 7.60845i −0.722207 0.691677i
\(122\) 0 0
\(123\) 4.80902 14.8006i 0.433614 1.33453i
\(124\) 0 0
\(125\) −4.80902 3.49396i −0.430132 0.312509i
\(126\) 0 0
\(127\) 1.75329 + 5.39607i 0.155579 + 0.478824i 0.998219 0.0596539i \(-0.0189997\pi\)
−0.842640 + 0.538477i \(0.819000\pi\)
\(128\) 0 0
\(129\) 2.00000 1.45309i 0.176090 0.127937i
\(130\) 0 0
\(131\) 8.00000 0.698963 0.349482 0.936943i \(-0.386358\pi\)
0.349482 + 0.936943i \(0.386358\pi\)
\(132\) 0 0
\(133\) −7.85410 −0.681037
\(134\) 0 0
\(135\) 2.73607 1.98787i 0.235483 0.171089i
\(136\) 0 0
\(137\) 5.42705 + 16.7027i 0.463664 + 1.42701i 0.860655 + 0.509189i \(0.170055\pi\)
−0.396990 + 0.917823i \(0.629945\pi\)
\(138\) 0 0
\(139\) 13.1631 + 9.56357i 1.11648 + 0.811171i 0.983672 0.179971i \(-0.0576003\pi\)
0.132809 + 0.991142i \(0.457600\pi\)
\(140\) 0 0
\(141\) −5.28115 + 16.2537i −0.444753 + 1.36881i
\(142\) 0 0
\(143\) −14.8992 12.4495i −1.24593 1.04108i
\(144\) 0 0
\(145\) 1.39919 4.30625i 0.116196 0.357615i
\(146\) 0 0
\(147\) −5.73607 4.16750i −0.473103 0.343729i
\(148\) 0 0
\(149\) 5.51722 + 16.9803i 0.451988 + 1.39108i 0.874635 + 0.484782i \(0.161101\pi\)
−0.422646 + 0.906295i \(0.638899\pi\)
\(150\) 0 0
\(151\) 5.92705 4.30625i 0.482337 0.350438i −0.319893 0.947454i \(-0.603647\pi\)
0.802230 + 0.597016i \(0.203647\pi\)
\(152\) 0 0
\(153\) 0.708204 0.0572549
\(154\) 0 0
\(155\) 0.673762 0.0541179
\(156\) 0 0
\(157\) −0.545085 + 0.396027i −0.0435025 + 0.0316064i −0.609324 0.792921i \(-0.708559\pi\)
0.565822 + 0.824528i \(0.308559\pi\)
\(158\) 0 0
\(159\) 0.309017 + 0.951057i 0.0245066 + 0.0754237i
\(160\) 0 0
\(161\) 5.23607 + 3.80423i 0.412660 + 0.299815i
\(162\) 0 0
\(163\) −2.71885 + 8.36775i −0.212957 + 0.655413i 0.786336 + 0.617799i \(0.211976\pi\)
−0.999292 + 0.0376135i \(0.988024\pi\)
\(164\) 0 0
\(165\) −2.80902 + 1.76336i −0.218682 + 0.137277i
\(166\) 0 0
\(167\) 4.42705 13.6251i 0.342575 1.05434i −0.620293 0.784370i \(-0.712986\pi\)
0.962869 0.269969i \(-0.0870135\pi\)
\(168\) 0 0
\(169\) −17.2082 12.5025i −1.32371 0.961730i
\(170\) 0 0
\(171\) −0.572949 1.76336i −0.0438145 0.134847i
\(172\) 0 0
\(173\) 7.16312 5.20431i 0.544602 0.395676i −0.281189 0.959652i \(-0.590729\pi\)
0.825791 + 0.563976i \(0.190729\pi\)
\(174\) 0 0
\(175\) 7.47214 0.564840
\(176\) 0 0
\(177\) 3.85410 0.289692
\(178\) 0 0
\(179\) −19.6353 + 14.2658i −1.46761 + 1.06628i −0.486309 + 0.873787i \(0.661657\pi\)
−0.981298 + 0.192493i \(0.938343\pi\)
\(180\) 0 0
\(181\) 2.86475 + 8.81678i 0.212935 + 0.655346i 0.999294 + 0.0375761i \(0.0119637\pi\)
−0.786359 + 0.617770i \(0.788036\pi\)
\(182\) 0 0
\(183\) 2.42705 + 1.76336i 0.179413 + 0.130351i
\(184\) 0 0
\(185\) −1.83688 + 5.65334i −0.135050 + 0.415642i
\(186\) 0 0
\(187\) −6.13525 0.416272i −0.448654 0.0304408i
\(188\) 0 0
\(189\) −2.73607 + 8.42075i −0.199020 + 0.612520i
\(190\) 0 0
\(191\) 12.2533 + 8.90254i 0.886617 + 0.644165i 0.934994 0.354664i \(-0.115405\pi\)
−0.0483768 + 0.998829i \(0.515405\pi\)
\(192\) 0 0
\(193\) −2.28115 7.02067i −0.164201 0.505359i 0.834776 0.550590i \(-0.185597\pi\)
−0.998977 + 0.0452318i \(0.985597\pi\)
\(194\) 0 0
\(195\) −4.73607 + 3.44095i −0.339157 + 0.246412i
\(196\) 0 0
\(197\) −0.472136 −0.0336383 −0.0168191 0.999859i \(-0.505354\pi\)
−0.0168191 + 0.999859i \(0.505354\pi\)
\(198\) 0 0
\(199\) −20.3607 −1.44333 −0.721665 0.692242i \(-0.756623\pi\)
−0.721665 + 0.692242i \(0.756623\pi\)
\(200\) 0 0
\(201\) −18.9443 + 13.7638i −1.33623 + 0.970825i
\(202\) 0 0
\(203\) 3.66312 + 11.2739i 0.257101 + 0.791274i
\(204\) 0 0
\(205\) −4.80902 3.49396i −0.335876 0.244028i
\(206\) 0 0
\(207\) −0.472136 + 1.45309i −0.0328157 + 0.100996i
\(208\) 0 0
\(209\) 3.92705 + 15.6129i 0.271640 + 1.07997i
\(210\) 0 0
\(211\) 4.04508 12.4495i 0.278475 0.857058i −0.709804 0.704399i \(-0.751216\pi\)
0.988279 0.152659i \(-0.0487836\pi\)
\(212\) 0 0
\(213\) 6.66312 + 4.84104i 0.456549 + 0.331703i
\(214\) 0 0
\(215\) −0.291796 0.898056i −0.0199003 0.0612469i
\(216\) 0 0
\(217\) −1.42705 + 1.03681i −0.0968745 + 0.0703835i
\(218\) 0 0
\(219\) 5.09017 0.343962
\(220\) 0 0
\(221\) −10.8541 −0.730126
\(222\) 0 0
\(223\) −7.78115 + 5.65334i −0.521065 + 0.378576i −0.817005 0.576631i \(-0.804367\pi\)
0.295940 + 0.955206i \(0.404367\pi\)
\(224\) 0 0
\(225\) 0.545085 + 1.67760i 0.0363390 + 0.111840i
\(226\) 0 0
\(227\) −5.78115 4.20025i −0.383709 0.278781i 0.379164 0.925330i \(-0.376212\pi\)
−0.762873 + 0.646549i \(0.776212\pi\)
\(228\) 0 0
\(229\) 5.04508 15.5272i 0.333389 1.02606i −0.634122 0.773233i \(-0.718638\pi\)
0.967510 0.252831i \(-0.0813618\pi\)
\(230\) 0 0
\(231\) 3.23607 8.05748i 0.212918 0.530143i
\(232\) 0 0
\(233\) 4.95492 15.2497i 0.324607 0.999038i −0.647010 0.762481i \(-0.723981\pi\)
0.971618 0.236557i \(-0.0760191\pi\)
\(234\) 0 0
\(235\) 5.28115 + 3.83698i 0.344504 + 0.250297i
\(236\) 0 0
\(237\) −1.92705 5.93085i −0.125175 0.385250i
\(238\) 0 0
\(239\) −19.0172 + 13.8168i −1.23012 + 0.893736i −0.996899 0.0786876i \(-0.974927\pi\)
−0.233222 + 0.972423i \(0.574927\pi\)
\(240\) 0 0
\(241\) 1.05573 0.0680054 0.0340027 0.999422i \(-0.489175\pi\)
0.0340027 + 0.999422i \(0.489175\pi\)
\(242\) 0 0
\(243\) −3.94427 −0.253025
\(244\) 0 0
\(245\) −2.19098 + 1.59184i −0.139977 + 0.101699i
\(246\) 0 0
\(247\) 8.78115 + 27.0256i 0.558731 + 1.71960i
\(248\) 0 0
\(249\) 12.2812 + 8.92278i 0.778286 + 0.565458i
\(250\) 0 0
\(251\) 3.28115 10.0984i 0.207105 0.637402i −0.792516 0.609851i \(-0.791229\pi\)
0.999620 0.0275509i \(-0.00877084\pi\)
\(252\) 0 0
\(253\) 4.94427 12.3107i 0.310844 0.773969i
\(254\) 0 0
\(255\) −0.572949 + 1.76336i −0.0358795 + 0.110426i
\(256\) 0 0
\(257\) 2.07295 + 1.50609i 0.129307 + 0.0939470i 0.650559 0.759456i \(-0.274535\pi\)
−0.521252 + 0.853403i \(0.674535\pi\)
\(258\) 0 0
\(259\) −4.80902 14.8006i −0.298818 0.919667i
\(260\) 0 0
\(261\) −2.26393 + 1.64484i −0.140134 + 0.101813i
\(262\) 0 0
\(263\) −7.41641 −0.457315 −0.228658 0.973507i \(-0.573434\pi\)
−0.228658 + 0.973507i \(0.573434\pi\)
\(264\) 0 0
\(265\) 0.381966 0.0234640
\(266\) 0 0
\(267\) −5.85410 + 4.25325i −0.358265 + 0.260295i
\(268\) 0 0
\(269\) 0.281153 + 0.865300i 0.0171422 + 0.0527583i 0.959262 0.282519i \(-0.0911700\pi\)
−0.942120 + 0.335277i \(0.891170\pi\)
\(270\) 0 0
\(271\) −21.3435 15.5069i −1.29652 0.941979i −0.296608 0.954999i \(-0.595855\pi\)
−0.999915 + 0.0130205i \(0.995855\pi\)
\(272\) 0 0
\(273\) 4.73607 14.5761i 0.286640 0.882187i
\(274\) 0 0
\(275\) −3.73607 14.8536i −0.225293 0.895708i
\(276\) 0 0
\(277\) 1.04508 3.21644i 0.0627931 0.193257i −0.914738 0.404046i \(-0.867603\pi\)
0.977532 + 0.210789i \(0.0676034\pi\)
\(278\) 0 0
\(279\) −0.336881 0.244758i −0.0201685 0.0146533i
\(280\) 0 0
\(281\) 4.19098 + 12.8985i 0.250013 + 0.769461i 0.994771 + 0.102127i \(0.0325648\pi\)
−0.744758 + 0.667334i \(0.767435\pi\)
\(282\) 0 0
\(283\) −11.1631 + 8.11048i −0.663579 + 0.482118i −0.867870 0.496792i \(-0.834511\pi\)
0.204291 + 0.978910i \(0.434511\pi\)
\(284\) 0 0
\(285\) 4.85410 0.287532
\(286\) 0 0
\(287\) 15.5623 0.918614
\(288\) 0 0
\(289\) 10.9721 7.97172i 0.645420 0.468925i
\(290\) 0 0
\(291\) 6.16312 + 18.9681i 0.361288 + 1.11193i
\(292\) 0 0
\(293\) −8.54508 6.20837i −0.499209 0.362697i 0.309506 0.950898i \(-0.399836\pi\)
−0.808715 + 0.588201i \(0.799836\pi\)
\(294\) 0 0
\(295\) 0.454915 1.40008i 0.0264862 0.0815161i
\(296\) 0 0
\(297\) 18.1074 + 1.22857i 1.05070 + 0.0712889i
\(298\) 0 0
\(299\) 7.23607 22.2703i 0.418473 1.28793i
\(300\) 0 0
\(301\) 2.00000 + 1.45309i 0.115278 + 0.0837544i
\(302\) 0 0
\(303\) 1.54508 + 4.75528i 0.0887628 + 0.273184i
\(304\) 0 0
\(305\) 0.927051 0.673542i 0.0530828 0.0385669i
\(306\) 0 0
\(307\) 33.8885 1.93412 0.967061 0.254546i \(-0.0819260\pi\)
0.967061 + 0.254546i \(0.0819260\pi\)
\(308\) 0 0
\(309\) 19.5623 1.11286
\(310\) 0 0
\(311\) 26.1074 18.9681i 1.48041 1.07558i 0.502991 0.864291i \(-0.332233\pi\)
0.977423 0.211293i \(-0.0677673\pi\)
\(312\) 0 0
\(313\) −8.57295 26.3848i −0.484572 1.49136i −0.832600 0.553874i \(-0.813149\pi\)
0.348028 0.937484i \(-0.386851\pi\)
\(314\) 0 0
\(315\) 0.309017 + 0.224514i 0.0174111 + 0.0126499i
\(316\) 0 0
\(317\) 0.100813 0.310271i 0.00566223 0.0174265i −0.948185 0.317717i \(-0.897084\pi\)
0.953848 + 0.300291i \(0.0970837\pi\)
\(318\) 0 0
\(319\) 20.5795 12.9188i 1.15223 0.723312i
\(320\) 0 0
\(321\) −1.95492 + 6.01661i −0.109113 + 0.335814i
\(322\) 0 0
\(323\) 7.28115 + 5.29007i 0.405134 + 0.294347i
\(324\) 0 0
\(325\) −8.35410 25.7113i −0.463402 1.42621i
\(326\) 0 0
\(327\) −19.5623 + 14.2128i −1.08180 + 0.785972i
\(328\) 0 0
\(329\) −17.0902 −0.942212
\(330\) 0 0
\(331\) −8.94427 −0.491622 −0.245811 0.969318i \(-0.579054\pi\)
−0.245811 + 0.969318i \(0.579054\pi\)
\(332\) 0 0
\(333\) 2.97214 2.15938i 0.162872 0.118333i
\(334\) 0 0
\(335\) 2.76393 + 8.50651i 0.151010 + 0.464760i
\(336\) 0 0
\(337\) −21.3435 15.5069i −1.16265 0.844716i −0.172541 0.985002i \(-0.555198\pi\)
−0.990111 + 0.140286i \(0.955198\pi\)
\(338\) 0 0
\(339\) −4.42705 + 13.6251i −0.240444 + 0.740012i
\(340\) 0 0
\(341\) 2.77458 + 2.31838i 0.150252 + 0.125548i
\(342\) 0 0
\(343\) 5.69098 17.5150i 0.307284 0.945724i
\(344\) 0 0
\(345\) −3.23607 2.35114i −0.174224 0.126581i
\(346\) 0 0
\(347\) −2.62868 8.09024i −0.141115 0.434307i 0.855376 0.518007i \(-0.173326\pi\)
−0.996491 + 0.0837007i \(0.973326\pi\)
\(348\) 0 0
\(349\) 16.3992 11.9147i 0.877828 0.637780i −0.0548477 0.998495i \(-0.517467\pi\)
0.932676 + 0.360715i \(0.117467\pi\)
\(350\) 0 0
\(351\) 32.0344 1.70987
\(352\) 0 0
\(353\) 1.41641 0.0753878 0.0376939 0.999289i \(-0.487999\pi\)
0.0376939 + 0.999289i \(0.487999\pi\)
\(354\) 0 0
\(355\) 2.54508 1.84911i 0.135079 0.0981407i
\(356\) 0 0
\(357\) −1.50000 4.61653i −0.0793884 0.244332i
\(358\) 0 0
\(359\) 12.5451 + 9.11454i 0.662104 + 0.481047i 0.867373 0.497659i \(-0.165807\pi\)
−0.205269 + 0.978706i \(0.565807\pi\)
\(360\) 0 0
\(361\) 1.40983 4.33901i 0.0742016 0.228369i
\(362\) 0 0
\(363\) −17.6353 2.40414i −0.925611 0.126185i
\(364\) 0 0
\(365\) 0.600813 1.84911i 0.0314480 0.0967870i
\(366\) 0 0
\(367\) −22.1074 16.0620i −1.15400 0.838427i −0.164989 0.986295i \(-0.552759\pi\)
−0.989007 + 0.147868i \(0.952759\pi\)
\(368\) 0 0
\(369\) 1.13525 + 3.49396i 0.0590990 + 0.181888i
\(370\) 0 0
\(371\) −0.809017 + 0.587785i −0.0420021 + 0.0305163i
\(372\) 0 0
\(373\) 5.41641 0.280451 0.140225 0.990120i \(-0.455217\pi\)
0.140225 + 0.990120i \(0.455217\pi\)
\(374\) 0 0
\(375\) −9.61803 −0.496673
\(376\) 0 0
\(377\) 34.6976 25.2093i 1.78702 1.29834i
\(378\) 0 0
\(379\) 5.95492 + 18.3273i 0.305883 + 0.941412i 0.979346 + 0.202191i \(0.0648062\pi\)
−0.673463 + 0.739221i \(0.735194\pi\)
\(380\) 0 0
\(381\) 7.42705 + 5.39607i 0.380499 + 0.276449i
\(382\) 0 0
\(383\) 0.607391 1.86936i 0.0310362 0.0955197i −0.934338 0.356387i \(-0.884008\pi\)
0.965375 + 0.260867i \(0.0840085\pi\)
\(384\) 0 0
\(385\) −2.54508 2.12663i −0.129710 0.108383i
\(386\) 0 0
\(387\) −0.180340 + 0.555029i −0.00916719 + 0.0282137i
\(388\) 0 0
\(389\) 21.6353 + 15.7189i 1.09695 + 0.796982i 0.980560 0.196222i \(-0.0628673\pi\)
0.116391 + 0.993203i \(0.462867\pi\)
\(390\) 0 0
\(391\) −2.29180 7.05342i −0.115901 0.356707i
\(392\) 0 0
\(393\) 10.4721 7.60845i 0.528249 0.383796i
\(394\) 0 0
\(395\) −2.38197 −0.119850
\(396\) 0 0
\(397\) 2.58359 0.129667 0.0648334 0.997896i \(-0.479348\pi\)
0.0648334 + 0.997896i \(0.479348\pi\)
\(398\) 0 0
\(399\) −10.2812 + 7.46969i −0.514701 + 0.373952i
\(400\) 0 0
\(401\) 2.19098 + 6.74315i 0.109412 + 0.336737i 0.990741 0.135768i \(-0.0433500\pi\)
−0.881328 + 0.472505i \(0.843350\pi\)
\(402\) 0 0
\(403\) 5.16312 + 3.75123i 0.257193 + 0.186862i
\(404\) 0 0
\(405\) 1.47214 4.53077i 0.0731510 0.225136i
\(406\) 0 0
\(407\) −27.0172 + 16.9600i −1.33919 + 0.840677i
\(408\) 0 0
\(409\) 0.482779 1.48584i 0.0238719 0.0734701i −0.938411 0.345521i \(-0.887702\pi\)
0.962283 + 0.272051i \(0.0877021\pi\)
\(410\) 0 0
\(411\) 22.9894 + 16.7027i 1.13398 + 0.823886i
\(412\) 0 0
\(413\) 1.19098 + 3.66547i 0.0586044 + 0.180366i
\(414\) 0 0
\(415\) 4.69098 3.40820i 0.230271 0.167302i
\(416\) 0 0
\(417\) 26.3262 1.28920
\(418\) 0 0
\(419\) 3.05573 0.149282 0.0746410 0.997210i \(-0.476219\pi\)
0.0746410 + 0.997210i \(0.476219\pi\)
\(420\) 0 0
\(421\) −6.54508 + 4.75528i −0.318988 + 0.231758i −0.735743 0.677260i \(-0.763167\pi\)
0.416756 + 0.909019i \(0.363167\pi\)
\(422\) 0 0
\(423\) −1.24671 3.83698i −0.0606172 0.186560i
\(424\) 0 0
\(425\) −6.92705 5.03280i −0.336011 0.244127i
\(426\) 0 0
\(427\) −0.927051 + 2.85317i −0.0448631 + 0.138075i
\(428\) 0 0
\(429\) −31.3435 2.12663i −1.51328 0.102675i
\(430\) 0 0
\(431\) 10.2467 31.5361i 0.493567 1.51904i −0.325612 0.945504i \(-0.605570\pi\)
0.819179 0.573539i \(-0.194430\pi\)
\(432\) 0 0
\(433\) 1.78115 + 1.29408i 0.0855967 + 0.0621897i 0.629761 0.776789i \(-0.283153\pi\)
−0.544164 + 0.838979i \(0.683153\pi\)
\(434\) 0 0
\(435\) −2.26393 6.96767i −0.108547 0.334074i
\(436\) 0 0
\(437\) −15.7082 + 11.4127i −0.751425 + 0.545942i
\(438\) 0 0
\(439\) 0.944272 0.0450676 0.0225338 0.999746i \(-0.492827\pi\)
0.0225338 + 0.999746i \(0.492827\pi\)
\(440\) 0 0
\(441\) 1.67376 0.0797030
\(442\) 0 0
\(443\) −4.69098 + 3.40820i −0.222875 + 0.161928i −0.693620 0.720341i \(-0.743985\pi\)
0.470745 + 0.882269i \(0.343985\pi\)
\(444\) 0 0
\(445\) 0.854102 + 2.62866i 0.0404883 + 0.124610i
\(446\) 0 0
\(447\) 23.3713 + 16.9803i 1.10543 + 0.803139i
\(448\) 0 0
\(449\) 12.1910 37.5200i 0.575328 1.77068i −0.0597315 0.998214i \(-0.519024\pi\)
0.635060 0.772463i \(-0.280976\pi\)
\(450\) 0 0
\(451\) −7.78115 30.9358i −0.366400 1.45671i
\(452\) 0 0
\(453\) 3.66312 11.2739i 0.172108 0.529695i
\(454\) 0 0
\(455\) −4.73607 3.44095i −0.222030 0.161314i
\(456\) 0 0
\(457\) 2.95492 + 9.09429i 0.138225 + 0.425413i 0.996078 0.0884827i \(-0.0282018\pi\)
−0.857853 + 0.513896i \(0.828202\pi\)
\(458\) 0 0
\(459\) 8.20820 5.96361i 0.383126 0.278357i
\(460\) 0 0
\(461\) 30.3607 1.41404 0.707019 0.707195i \(-0.250040\pi\)
0.707019 + 0.707195i \(0.250040\pi\)
\(462\) 0 0
\(463\) −15.4164 −0.716461 −0.358231 0.933633i \(-0.616620\pi\)
−0.358231 + 0.933633i \(0.616620\pi\)
\(464\) 0 0
\(465\) 0.881966 0.640786i 0.0409002 0.0297157i
\(466\) 0 0
\(467\) −0.989357 3.04493i −0.0457820 0.140902i 0.925553 0.378619i \(-0.123601\pi\)
−0.971335 + 0.237717i \(0.923601\pi\)
\(468\) 0 0
\(469\) −18.9443 13.7638i −0.874765 0.635554i
\(470\) 0 0
\(471\) −0.336881 + 1.03681i −0.0155227 + 0.0477738i
\(472\) 0 0
\(473\) 1.88854 4.70228i 0.0868353 0.216211i
\(474\) 0 0
\(475\) −6.92705 + 21.3193i −0.317835 + 0.978195i
\(476\) 0 0
\(477\) −0.190983 0.138757i −0.00874451 0.00635326i
\(478\) 0 0
\(479\) 7.10081 + 21.8541i 0.324444 + 0.998537i 0.971691 + 0.236256i \(0.0759205\pi\)
−0.647246 + 0.762281i \(0.724079\pi\)
\(480\) 0 0
\(481\) −45.5517 + 33.0952i −2.07698 + 1.50901i
\(482\) 0 0
\(483\) 10.4721 0.476499
\(484\) 0 0
\(485\) 7.61803 0.345917
\(486\) 0 0
\(487\) −26.7254 + 19.4172i −1.21104 + 0.879875i −0.995325 0.0965800i \(-0.969210\pi\)
−0.215719 + 0.976455i \(0.569210\pi\)
\(488\) 0 0
\(489\) 4.39919 + 13.5393i 0.198938 + 0.612269i
\(490\) 0 0
\(491\) −15.7812 11.4657i −0.712193 0.517439i 0.171687 0.985152i \(-0.445078\pi\)
−0.883881 + 0.467713i \(0.845078\pi\)
\(492\) 0 0
\(493\) 4.19756 12.9188i 0.189049 0.581832i
\(494\) 0 0
\(495\) 0.291796 0.726543i 0.0131153 0.0326557i
\(496\) 0 0
\(497\) −2.54508 + 7.83297i −0.114163 + 0.351357i
\(498\) 0 0
\(499\) 9.63525 + 7.00042i 0.431333 + 0.313382i 0.782182 0.623050i \(-0.214107\pi\)
−0.350849 + 0.936432i \(0.614107\pi\)
\(500\) 0 0
\(501\) −7.16312 22.0458i −0.320025 0.984934i
\(502\) 0 0
\(503\) −6.54508 + 4.75528i −0.291831 + 0.212028i −0.724061 0.689736i \(-0.757727\pi\)
0.432230 + 0.901763i \(0.357727\pi\)
\(504\) 0 0
\(505\) 1.90983 0.0849863
\(506\) 0 0
\(507\) −34.4164 −1.52849
\(508\) 0 0
\(509\) −15.7812 + 11.4657i −0.699487 + 0.508207i −0.879765 0.475408i \(-0.842300\pi\)
0.180278 + 0.983616i \(0.442300\pi\)
\(510\) 0 0
\(511\) 1.57295 + 4.84104i 0.0695832 + 0.214155i
\(512\) 0 0
\(513\) −21.4894 15.6129i −0.948778 0.689328i
\(514\) 0 0
\(515\) 2.30902 7.10642i 0.101747 0.313146i
\(516\) 0 0
\(517\) 8.54508 + 33.9730i 0.375812 + 1.49413i
\(518\) 0 0
\(519\) 4.42705 13.6251i 0.194326 0.598074i
\(520\) 0 0
\(521\) 20.2533 + 14.7149i 0.887313 + 0.644670i 0.935176 0.354183i \(-0.115241\pi\)
−0.0478633 + 0.998854i \(0.515241\pi\)
\(522\) 0 0
\(523\) −3.86475 11.8945i −0.168994 0.520109i 0.830315 0.557295i \(-0.188161\pi\)
−0.999308 + 0.0371860i \(0.988161\pi\)
\(524\) 0 0
\(525\) 9.78115 7.10642i 0.426885 0.310150i
\(526\) 0 0
\(527\) 2.02129 0.0880486
\(528\) 0 0
\(529\) −7.00000 −0.304348
\(530\) 0 0
\(531\) −0.736068 + 0.534785i −0.0319426 + 0.0232077i
\(532\) 0 0
\(533\) −17.3992 53.5492i −0.753642 2.31947i
\(534\) 0 0
\(535\) 1.95492 + 1.42033i 0.0845183 + 0.0614062i
\(536\) 0 0
\(537\) −12.1353 + 37.3485i −0.523675 + 1.61171i
\(538\) 0 0
\(539\) −14.5000 0.983813i −0.624559 0.0423758i
\(540\) 0 0
\(541\) −0.843459 + 2.59590i −0.0362631 + 0.111606i −0.967550 0.252681i \(-0.918688\pi\)
0.931286 + 0.364288i \(0.118688\pi\)
\(542\) 0 0
\(543\) 12.1353 + 8.81678i 0.520774 + 0.378364i
\(544\) 0 0
\(545\) 2.85410 + 8.78402i 0.122256 + 0.376266i
\(546\) 0 0
\(547\) 8.25329 5.99637i 0.352885 0.256386i −0.397193 0.917735i \(-0.630016\pi\)
0.750078 + 0.661349i \(0.230016\pi\)
\(548\) 0 0
\(549\) −0.708204 −0.0302254
\(550\) 0 0
\(551\) −35.5623 −1.51501
\(552\) 0 0
\(553\) 5.04508 3.66547i 0.214539 0.155872i
\(554\) 0 0
\(555\) 2.97214 + 9.14729i 0.126160 + 0.388281i
\(556\) 0 0
\(557\) 26.5795 + 19.3112i 1.12621 + 0.818240i 0.985139 0.171759i \(-0.0549452\pi\)
0.141072 + 0.989999i \(0.454945\pi\)
\(558\) 0 0
\(559\) 2.76393 8.50651i 0.116902 0.359787i
\(560\) 0 0
\(561\) −8.42705 + 5.29007i −0.355790 + 0.223347i
\(562\) 0 0
\(563\) 4.80902 14.8006i 0.202676 0.623772i −0.797125 0.603814i \(-0.793647\pi\)
0.999801 0.0199579i \(-0.00635321\pi\)
\(564\) 0 0
\(565\) 4.42705 + 3.21644i 0.186247 + 0.135317i
\(566\) 0 0
\(567\) 3.85410 + 11.8617i 0.161857 + 0.498145i
\(568\) 0 0
\(569\) −20.8713 + 15.1639i −0.874971 + 0.635704i −0.931916 0.362673i \(-0.881864\pi\)
0.0569449 + 0.998377i \(0.481864\pi\)
\(570\) 0 0
\(571\) −30.8328 −1.29031 −0.645157 0.764050i \(-0.723208\pi\)
−0.645157 + 0.764050i \(0.723208\pi\)
\(572\) 0 0
\(573\) 24.5066 1.02378
\(574\) 0 0
\(575\) 14.9443 10.8576i 0.623219 0.452795i
\(576\) 0 0
\(577\) −5.98936 18.4333i −0.249340 0.767390i −0.994892 0.100943i \(-0.967814\pi\)
0.745552 0.666447i \(-0.232186\pi\)
\(578\) 0 0
\(579\) −9.66312 7.02067i −0.401586 0.291769i
\(580\) 0 0
\(581\) −4.69098 + 14.4374i −0.194615 + 0.598963i
\(582\) 0 0
\(583\) 1.57295 + 1.31433i 0.0651449 + 0.0544339i
\(584\) 0 0
\(585\) 0.427051 1.31433i 0.0176564 0.0543408i
\(586\) 0 0
\(587\) −0.0729490 0.0530006i −0.00301093 0.00218757i 0.586279 0.810109i \(-0.300592\pi\)
−0.589290 + 0.807922i \(0.700592\pi\)
\(588\) 0 0
\(589\) −1.63525 5.03280i −0.0673795 0.207373i
\(590\) 0 0
\(591\) −0.618034 + 0.449028i −0.0254225 + 0.0184705i
\(592\) 0 0
\(593\) 0.472136 0.0193883 0.00969415 0.999953i \(-0.496914\pi\)
0.00969415 + 0.999953i \(0.496914\pi\)
\(594\) 0 0
\(595\) −1.85410 −0.0760108
\(596\) 0 0
\(597\) −26.6525 + 19.3642i −1.09081 + 0.792522i
\(598\) 0 0
\(599\) 7.75329 + 23.8622i 0.316791 + 0.974982i 0.975011 + 0.222156i \(0.0713096\pi\)
−0.658220 + 0.752825i \(0.728690\pi\)
\(600\) 0 0
\(601\) 25.1976 + 18.3071i 1.02783 + 0.746762i 0.967873 0.251439i \(-0.0809037\pi\)
0.0599567 + 0.998201i \(0.480904\pi\)
\(602\) 0 0
\(603\) 1.70820 5.25731i 0.0695634 0.214094i
\(604\) 0 0
\(605\) −2.95492 + 6.12261i −0.120134 + 0.248920i
\(606\) 0 0
\(607\) 9.07953 27.9439i 0.368527 1.13421i −0.579216 0.815174i \(-0.696641\pi\)
0.947743 0.319035i \(-0.103359\pi\)
\(608\) 0 0
\(609\) 15.5172 + 11.2739i 0.628790 + 0.456842i
\(610\) 0 0
\(611\) 19.1074 + 58.8065i 0.773002 + 2.37906i
\(612\) 0 0
\(613\) −33.9615 + 24.6745i −1.37169 + 0.996592i −0.374089 + 0.927393i \(0.622045\pi\)
−0.997603 + 0.0691996i \(0.977955\pi\)
\(614\) 0 0
\(615\) −9.61803 −0.387837
\(616\) 0 0
\(617\) −25.4164 −1.02323 −0.511613 0.859216i \(-0.670952\pi\)
−0.511613 + 0.859216i \(0.670952\pi\)
\(618\) 0 0
\(619\) 5.78115 4.20025i 0.232364 0.168822i −0.465510 0.885042i \(-0.654129\pi\)
0.697875 + 0.716220i \(0.254129\pi\)
\(620\) 0 0
\(621\) 6.76393 + 20.8172i 0.271427 + 0.835367i
\(622\) 0 0
\(623\) −5.85410 4.25325i −0.234540 0.170403i
\(624\) 0 0
\(625\) 6.00000 18.4661i 0.240000 0.738644i
\(626\) 0 0
\(627\) 19.9894 + 16.7027i 0.798298 + 0.667043i
\(628\) 0 0
\(629\) −5.51064 + 16.9600i −0.219724 + 0.676240i
\(630\) 0 0
\(631\) 9.78115 + 7.10642i 0.389382 + 0.282902i 0.765202 0.643790i \(-0.222639\pi\)
−0.375820 + 0.926692i \(0.622639\pi\)
\(632\) 0 0
\(633\) −6.54508 20.1437i −0.260144 0.800640i
\(634\) 0 0
\(635\) 2.83688 2.06111i 0.112578 0.0817928i
\(636\) 0 0
\(637\) −25.6525 −1.01639
\(638\) 0 0
\(639\) −1.94427 −0.0769142
\(640\) 0 0
\(641\) −10.8713 + 7.89848i −0.429391 + 0.311971i −0.781406 0.624024i \(-0.785497\pi\)
0.352014 + 0.935995i \(0.385497\pi\)
\(642\) 0 0
\(643\) −8.22542 25.3153i −0.324379 0.998336i −0.971720 0.236136i \(-0.924119\pi\)
0.647341 0.762201i \(-0.275881\pi\)
\(644\) 0 0
\(645\) −1.23607 0.898056i −0.0486701 0.0353609i
\(646\) 0 0
\(647\) 3.84346 11.8290i 0.151102 0.465044i −0.846643 0.532161i \(-0.821380\pi\)
0.997745 + 0.0671170i \(0.0213801\pi\)
\(648\) 0 0
\(649\) 6.69098 4.20025i 0.262644 0.164874i
\(650\) 0 0
\(651\) −0.881966 + 2.71441i −0.0345670 + 0.106386i
\(652\) 0 0
\(653\) −31.4894 22.8784i −1.23227 0.895299i −0.235215 0.971943i \(-0.575580\pi\)
−0.997059 + 0.0766440i \(0.975580\pi\)
\(654\) 0 0
\(655\) −1.52786 4.70228i −0.0596986 0.183733i
\(656\) 0 0
\(657\) −0.972136 + 0.706298i −0.0379266 + 0.0275553i
\(658\) 0 0
\(659\) 32.0000 1.24654 0.623272 0.782006i \(-0.285803\pi\)
0.623272 + 0.782006i \(0.285803\pi\)
\(660\) 0 0
\(661\) −6.94427 −0.270101 −0.135050 0.990839i \(-0.543120\pi\)
−0.135050 + 0.990839i \(0.543120\pi\)
\(662\) 0 0
\(663\) −14.2082 + 10.3229i −0.551801 + 0.400907i
\(664\) 0 0
\(665\) 1.50000 + 4.61653i 0.0581675 + 0.179021i
\(666\) 0 0
\(667\) 23.7082 + 17.2250i 0.917985 + 0.666955i
\(668\) 0 0
\(669\) −4.80902 + 14.8006i −0.185927 + 0.572226i
\(670\) 0 0
\(671\) 6.13525 + 0.416272i 0.236849 + 0.0160700i
\(672\) 0 0
\(673\) −2.39261 + 7.36369i −0.0922283 + 0.283850i −0.986521 0.163632i \(-0.947679\pi\)
0.894293 + 0.447482i \(0.147679\pi\)
\(674\) 0 0
\(675\) 20.4443 + 14.8536i 0.786900 + 0.571717i
\(676\) 0 0
\(677\) 6.28115 + 19.3314i 0.241404 + 0.742966i 0.996207 + 0.0870143i \(0.0277326\pi\)
−0.754803 + 0.655952i \(0.772267\pi\)
\(678\) 0 0
\(679\) −16.1353 + 11.7229i −0.619214 + 0.449885i
\(680\) 0 0
\(681\) −11.5623 −0.443069
\(682\) 0 0
\(683\) −0.944272 −0.0361316 −0.0180658 0.999837i \(-0.505751\pi\)
−0.0180658 + 0.999837i \(0.505751\pi\)
\(684\) 0 0
\(685\) 8.78115 6.37988i 0.335511 0.243763i
\(686\) 0 0
\(687\) −8.16312 25.1235i −0.311442 0.958521i
\(688\) 0 0
\(689\) 2.92705 + 2.12663i 0.111512 + 0.0810180i
\(690\) 0 0
\(691\) 7.28115 22.4091i 0.276988 0.852482i −0.711698 0.702485i \(-0.752074\pi\)
0.988687 0.149997i \(-0.0479263\pi\)
\(692\) 0 0
\(693\) 0.500000 + 1.98787i 0.0189934 + 0.0755129i
\(694\) 0 0
\(695\) 3.10739 9.56357i 0.117870 0.362767i
\(696\) 0 0
\(697\) −14.4271 10.4819i −0.546464 0.397029i
\(698\) 0 0
\(699\) −8.01722 24.6745i −0.303239 0.933274i
\(700\) 0 0
\(701\) −12.7254 + 9.24556i −0.480633 + 0.349200i −0.801571 0.597900i \(-0.796002\pi\)
0.320938 + 0.947100i \(0.396002\pi\)
\(702\) 0 0
\(703\) 46.6869 1.76083
\(704\) 0 0
\(705\) 10.5623 0.397799
\(706\) 0 0
\(707\) −4.04508 + 2.93893i −0.152131 + 0.110530i
\(708\) 0 0
\(709\) 6.10081 + 18.7764i 0.229121 + 0.705161i 0.997847 + 0.0655835i \(0.0208909\pi\)
−0.768726 + 0.639578i \(0.779109\pi\)
\(710\) 0 0
\(711\) 1.19098 + 0.865300i 0.0446654 + 0.0324513i
\(712\) 0 0
\(713\) −1.34752 + 4.14725i −0.0504652 + 0.155316i
\(714\) 0 0
\(715\) −4.47214 + 11.1352i −0.167248 + 0.416432i
\(716\) 0 0
\(717\) −11.7533 + 36.1729i −0.438935 + 1.35090i
\(718\) 0 0
\(719\) 0.0729490 + 0.0530006i 0.00272054 + 0.00197659i 0.589145 0.808028i \(-0.299465\pi\)
−0.586424 + 0.810004i \(0.699465\pi\)
\(720\) 0 0
\(721\) 6.04508 + 18.6049i 0.225131 + 0.692881i
\(722\) 0 0
\(723\) 1.38197 1.00406i 0.0513959 0.0373413i
\(724\) 0 0
\(725\) 33.8328 1.25652
\(726\) 0 0
\(727\) 28.9443 1.07348 0.536742 0.843747i \(-0.319655\pi\)
0.536742 + 0.843747i \(0.319655\pi\)
\(728\) 0 0
\(729\) −23.8713 + 17.3435i −0.884123 + 0.642353i
\(730\) 0 0
\(731\) −0.875388 2.69417i −0.0323774 0.0996474i
\(732\) 0 0
\(733\) −10.5451 7.66145i −0.389492 0.282982i 0.375756 0.926719i \(-0.377383\pi\)
−0.765247 + 0.643737i \(0.777383\pi\)
\(734\) 0 0
\(735\) −1.35410 + 4.16750i −0.0499468 + 0.153720i
\(736\) 0 0
\(737\) −17.8885 + 44.5407i −0.658933 + 1.64068i
\(738\) 0 0
\(739\) 2.51722 7.74721i 0.0925975 0.284986i −0.894023 0.448022i \(-0.852129\pi\)
0.986620 + 0.163036i \(0.0521287\pi\)
\(740\) 0 0
\(741\) 37.1976 + 27.0256i 1.36649 + 0.992811i
\(742\) 0 0
\(743\) −14.4271 44.4019i −0.529277 1.62895i −0.755700 0.654918i \(-0.772703\pi\)
0.226422 0.974029i \(-0.427297\pi\)
\(744\) 0 0
\(745\) 8.92705 6.48588i 0.327062 0.237624i
\(746\) 0 0
\(747\) −3.58359 −0.131117
\(748\) 0 0
\(749\) −6.32624 −0.231156
\(750\) 0 0
\(751\) 2.69098 1.95511i 0.0981954 0.0713431i −0.537604 0.843197i \(-0.680671\pi\)
0.635800 + 0.771854i \(0.280671\pi\)
\(752\) 0 0
\(753\) −5.30902 16.3395i −0.193471 0.595444i
\(754\) 0 0
\(755\) −3.66312 2.66141i −0.133315 0.0968587i
\(756\) 0 0
\(757\) 8.39261 25.8298i 0.305035 0.938800i −0.674630 0.738156i \(-0.735697\pi\)
0.979664 0.200644i \(-0.0643033\pi\)
\(758\) 0 0
\(759\) −5.23607 20.8172i −0.190057 0.755618i
\(760\) 0 0
\(761\) 2.01064 6.18812i 0.0728858 0.224319i −0.907977 0.419020i \(-0.862374\pi\)
0.980863 + 0.194701i \(0.0623736\pi\)
\(762\) 0 0
\(763\) −19.5623 14.2128i −0.708203 0.514540i
\(764\) 0 0
\(765\) −0.135255 0.416272i −0.00489015 0.0150503i
\(766\) 0 0
\(767\) 11.2812 8.19624i 0.407339 0.295949i
\(768\) 0 0
\(769\) 36.2492 1.30718 0.653590 0.756849i \(-0.273262\pi\)
0.653590 + 0.756849i \(0.273262\pi\)
\(770\) 0 0
\(771\) 4.14590 0.149311
\(772\) 0 0
\(773\) 32.8713 23.8824i 1.18230 0.858991i 0.189870 0.981809i \(-0.439193\pi\)
0.992429 + 0.122818i \(0.0391933\pi\)
\(774\) 0 0
\(775\) 1.55573 + 4.78804i 0.0558834 + 0.171991i
\(776\) 0 0
\(777\) −20.3713 14.8006i −0.730817 0.530970i
\(778\) 0 0
\(779\) −14.4271 + 44.4019i −0.516903 + 1.59086i
\(780\) 0 0
\(781\) 16.8435 + 1.14281i 0.602706 + 0.0408931i
\(782\) 0 0
\(783\) −12.3885 + 38.1280i −0.442730 + 1.36258i
\(784\) 0 0
\(785\) 0.336881 + 0.244758i 0.0120238 + 0.00873580i
\(786\) 0 0
\(787\) −7.28115 22.4091i −0.259545 0.798798i −0.992900 0.118952i \(-0.962047\pi\)
0.733355 0.679846i \(-0.237953\pi\)
\(788\) 0 0
\(789\) −9.70820 + 7.05342i −0.345621 + 0.251109i
\(790\) 0 0
\(791\) −14.3262 −0.509382
\(792\) 0 0
\(793\) 10.8541 0.385440
\(794\) 0 0
\(795\) 0.500000 0.363271i 0.0177332 0.0128839i
\(796\) 0 0
\(797\) −3.53851 10.8904i −0.125340 0.385758i 0.868623 0.495474i \(-0.165006\pi\)
−0.993963 + 0.109716i \(0.965006\pi\)
\(798\) 0 0
\(799\) 15.8435 + 11.5109i 0.560501 + 0.407228i
\(800\) 0 0
\(801\) 0.527864 1.62460i 0.0186512 0.0574024i
\(802\) 0 0
\(803\) 8.83688 5.54734i 0.311847 0.195761i
\(804\) 0 0
\(805\) 1.23607 3.80423i 0.0435657 0.134081i
\(806\) 0 0
\(807\) 1.19098 + 0.865300i 0.0419246 + 0.0304600i
\(808\) 0 0
\(809\) −0.461493 1.42033i −0.0162252 0.0499361i 0.942616 0.333879i \(-0.108358\pi\)
−0.958841 + 0.283942i \(0.908358\pi\)
\(810\) 0 0
\(811\) −34.5795 + 25.1235i −1.21425 + 0.882205i −0.995610 0.0936000i \(-0.970163\pi\)
−0.218642 + 0.975805i \(0.570163\pi\)
\(812\) 0 0
\(813\) −42.6869 −1.49710
\(814\) 0 0
\(815\) 5.43769 0.190474
\(816\) 0 0
\(817\) −6.00000 + 4.35926i −0.209913 + 0.152511i
\(818\) 0 0
\(819\) 1.11803 + 3.44095i 0.0390673 + 0.120237i
\(820\) 0 0
\(821\) −37.6697 27.3686i −1.31468 0.955172i −0.999982 0.00598061i \(-0.998096\pi\)
−0.314699 0.949191i \(-0.601904\pi\)
\(822\) 0 0
\(823\) −4.22542 + 13.0045i −0.147289 + 0.453309i −0.997298 0.0734587i \(-0.976596\pi\)
0.850009 + 0.526768i \(0.176596\pi\)
\(824\) 0 0
\(825\) −19.0172 15.8904i −0.662095 0.553234i
\(826\) 0 0
\(827\) 4.22542 13.0045i 0.146932 0.452211i −0.850322 0.526263i \(-0.823593\pi\)
0.997254 + 0.0740512i \(0.0235928\pi\)
\(828\) 0 0
\(829\) −13.7812 10.0126i −0.478639 0.347752i 0.322159 0.946685i \(-0.395591\pi\)
−0.800799 + 0.598934i \(0.795591\pi\)
\(830\) 0 0
\(831\) −1.69098 5.20431i −0.0586596 0.180536i
\(832\) 0 0
\(833\) −6.57295 + 4.77553i −0.227739 + 0.165462i
\(834\) 0 0
\(835\) −8.85410 −0.306409
\(836\) 0 0
\(837\) −5.96556 −0.206200
\(838\) 0 0
\(839\) 15.3435 11.1477i 0.529715 0.384860i −0.290536 0.956864i \(-0.593834\pi\)
0.820251 + 0.572004i \(0.193834\pi\)
\(840\) 0 0
\(841\) 7.62461 + 23.4661i 0.262918 + 0.809177i
\(842\) 0 0
\(843\) 17.7533 + 12.8985i 0.611456 + 0.444249i
\(844\) 0 0
\(845\) −4.06231 + 12.5025i −0.139748 + 0.430099i
\(846\) 0 0
\(847\) −3.16312 17.5150i −0.108686 0.601824i
\(848\) 0 0
\(849\) −6.89919 + 21.2335i −0.236779 + 0.728732i
\(850\) 0 0
\(851\) −31.1246 22.6134i −1.06694 0.775176i
\(852\) 0 0
\(853\) 10.1697 + 31.2991i 0.348204 + 1.07166i 0.959846 + 0.280527i \(0.0905091\pi\)
−0.611642 + 0.791134i \(0.709491\pi\)
\(854\) 0 0
\(855\) −0.927051 + 0.673542i −0.0317045 + 0.0230346i
\(856\) 0 0
\(857\) −26.3607 −0.900464 −0.450232 0.892912i \(-0.648659\pi\)
−0.450232 + 0.892912i \(0.648659\pi\)
\(858\) 0 0
\(859\) 13.8885 0.473871 0.236935 0.971525i \(-0.423857\pi\)
0.236935 + 0.971525i \(0.423857\pi\)
\(860\) 0 0
\(861\) 20.3713 14.8006i 0.694253 0.504404i
\(862\) 0 0
\(863\) 3.86475 + 11.8945i 0.131557 + 0.404892i 0.995039 0.0994888i \(-0.0317207\pi\)
−0.863481 + 0.504381i \(0.831721\pi\)
\(864\) 0 0
\(865\) −4.42705 3.21644i −0.150524 0.109362i
\(866\) 0 0
\(867\) 6.78115 20.8702i 0.230300 0.708791i
\(868\) 0 0
\(869\) −9.80902 8.19624i −0.332748 0.278038i
\(870\) 0 0
\(871\) −26.1803 + 80.5748i −0.887087 + 2.73017i
\(872\) 0 0
\(873\) −3.80902 2.76741i −0.128916 0.0936627i
\(874\) 0 0
\(875\) −2.97214 9.14729i −0.100477 0.309235i
\(876\) 0 0
\(877\) 15.3435 11.1477i 0.518112 0.376430i −0.297780 0.954634i \(-0.596246\pi\)
0.815892 + 0.578204i \(0.196246\pi\)
\(878\) 0 0
\(879\) −17.0902 −0.576437
\(880\) 0 0
\(881\) 31.5279 1.06220 0.531100 0.847309i \(-0.321779\pi\)
0.531100 + 0.847309i \(0.321779\pi\)
\(882\) 0 0
\(883\) −10.3992 + 7.55545i −0.349961 + 0.254261i −0.748852 0.662737i \(-0.769395\pi\)
0.398892 + 0.916998i \(0.369395\pi\)
\(884\) 0 0
\(885\) −0.736068 2.26538i −0.0247427 0.0761501i
\(886\) 0 0
\(887\) −40.1074 29.1397i −1.34667 0.978416i −0.999170 0.0407379i \(-0.987029\pi\)
−0.347505 0.937678i \(-0.612971\pi\)
\(888\) 0 0
\(889\) −2.83688 + 8.73102i −0.0951459 + 0.292829i
\(890\) 0 0
\(891\) 21.6525 13.5923i 0.725385 0.455359i
\(892\) 0 0
\(893\) 15.8435 48.7612i 0.530181 1.63173i
\(894\) 0 0
\(895\) 12.1353 + 8.81678i 0.405637 + 0.294712i
\(896\) 0 0
\(897\) −11.7082 36.0341i −0.390926 1.20315i
\(898\) 0 0
\(899\) −6.46149 + 4.69455i −0.215503 + 0.156572i
\(900\) 0 0
\(901\) 1.14590 0.0381754
\(902\) 0 0
\(903\) 4.00000 0.133112
\(904\) 0 0
\(905\) 4.63525 3.36771i 0.154081 0.111946i
\(906\) 0 0
\(907\) 8.42705 + 25.9358i 0.279816 + 0.861184i 0.987905 + 0.155061i \(0.0495574\pi\)
−0.708089 + 0.706123i \(0.750443\pi\)
\(908\) 0 0
\(909\) −0.954915 0.693786i −0.0316725 0.0230114i
\(910\) 0 0
\(911\) −14.5172 + 44.6794i −0.480977 + 1.48029i 0.356747 + 0.934201i \(0.383886\pi\)
−0.837724 + 0.546094i \(0.816114\pi\)
\(912\) 0 0
\(913\) 31.0451 + 2.10638i 1.02744 + 0.0697111i
\(914\) 0 0
\(915\) 0.572949 1.76336i 0.0189411 0.0582947i
\(916\) 0 0
\(917\) 10.4721 + 7.60845i 0.345820 + 0.251253i
\(918\) 0 0
\(919\) 5.75329 + 17.7068i 0.189783 + 0.584094i 0.999998 0.00204006i \(-0.000649373\pi\)
−0.810214 + 0.586134i \(0.800649\pi\)
\(920\) 0 0
\(921\) 44.3607 32.2299i 1.46173 1.06201i
\(922\) 0 0
\(923\) 29.7984 0.980825
\(924\) 0 0
\(925\) −44.4164 −1.46040
\(926\) 0 0
\(927\) −3.73607 + 2.71441i −0.122709 + 0.0891530i
\(928\) 0 0
\(929\) −4.46149 13.7311i −0.146377 0.450502i 0.850809 0.525476i \(-0.176113\pi\)
−0.997185 + 0.0749741i \(0.976113\pi\)
\(930\) 0 0
\(931\) 17.2082 + 12.5025i 0.563976 + 0.409753i
\(932\) 0 0
\(933\) 16.1353 49.6592i 0.528245 1.62577i
\(934\) 0 0
\(935\) 0.927051 + 3.68571i 0.0303178 + 0.120536i
\(936\) 0 0
\(937\) 0.482779 1.48584i 0.0157717 0.0485403i −0.942861 0.333187i \(-0.891876\pi\)
0.958633 + 0.284646i \(0.0918761\pi\)
\(938\) 0 0
\(939\) −36.3156 26.3848i −1.18511 0.861036i
\(940\) 0 0
\(941\) 9.04508 + 27.8379i 0.294861 + 0.907490i 0.983268 + 0.182165i \(0.0583105\pi\)
−0.688407 + 0.725325i \(0.741690\pi\)
\(942\) 0 0
\(943\) 31.1246 22.6134i 1.01356 0.736392i
\(944\) 0 0
\(945\) 5.47214 0.178009
\(946\) 0 0
\(947\) 18.8328 0.611984 0.305992 0.952034i \(-0.401012\pi\)
0.305992 + 0.952034i \(0.401012\pi\)
\(948\) 0 0
\(949\) 14.8992 10.8249i 0.483648 0.351391i
\(950\) 0 0
\(951\) −0.163119 0.502029i −0.00528949 0.0162794i
\(952\) 0 0
\(953\) 24.2533 + 17.6210i 0.785641 + 0.570802i 0.906667 0.421848i \(-0.138618\pi\)
−0.121026 + 0.992649i \(0.538618\pi\)
\(954\) 0 0
\(955\) 2.89261 8.90254i 0.0936026 0.288079i
\(956\) 0 0
\(957\) 14.6525 36.4832i 0.473647 1.17933i
\(958\) 0 0
\(959\) −8.78115 + 27.0256i −0.283558 + 0.872702i
\(960\) 0 0
\(961\) 24.1180 + 17.5228i 0.778001 + 0.565251i
\(962\) 0 0
\(963\) −0.461493 1.42033i −0.0148714 0.0457695i
\(964\) 0 0
\(965\) −3.69098 + 2.68166i −0.118817 + 0.0863256i
\(966\) 0 0
\(967\) −33.3050 −1.07102 −0.535508 0.844530i \(-0.679880\pi\)
−0.535508 + 0.844530i \(0.679880\pi\)
\(968\) 0 0
\(969\) 14.5623 0.467809
\(970\) 0 0
\(971\) 9.01722 6.55139i 0.289376 0.210244i −0.433620 0.901096i \(-0.642764\pi\)
0.722997 + 0.690851i \(0.242764\pi\)
\(972\) 0 0
\(973\) 8.13525 + 25.0377i 0.260804 + 0.802673i
\(974\) 0 0
\(975\) −35.3885 25.7113i −1.13334 0.823420i
\(976\) 0 0
\(977\) −2.68441 + 8.26175i −0.0858817 + 0.264317i −0.984770 0.173861i \(-0.944376\pi\)
0.898889 + 0.438177i \(0.144376\pi\)
\(978\) 0 0
\(979\) −5.52786 + 13.7638i −0.176671 + 0.439894i
\(980\) 0 0
\(981\) 1.76393 5.42882i 0.0563180 0.173329i
\(982\) 0 0
\(983\) 6.54508 + 4.75528i 0.208756 + 0.151670i 0.687251 0.726420i \(-0.258817\pi\)
−0.478495 + 0.878090i \(0.658817\pi\)
\(984\) 0 0
\(985\) 0.0901699 + 0.277515i 0.00287305 + 0.00884235i
\(986\) 0 0
\(987\) −22.3713 + 16.2537i −0.712087 + 0.517362i
\(988\) 0 0
\(989\) 6.11146 0.194333
\(990\) 0 0
\(991\) −27.0557 −0.859454 −0.429727 0.902959i \(-0.641390\pi\)
−0.429727 + 0.902959i \(0.641390\pi\)
\(992\) 0 0
\(993\) −11.7082 + 8.50651i −0.371549 + 0.269946i
\(994\) 0 0
\(995\) 3.88854 + 11.9677i 0.123275 + 0.379402i
\(996\) 0 0
\(997\) 23.1631 + 16.8290i 0.733583 + 0.532979i 0.890695 0.454601i \(-0.150218\pi\)
−0.157112 + 0.987581i \(0.550218\pi\)
\(998\) 0 0
\(999\) 16.2639 50.0552i 0.514568 1.58368i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 704.2.m.g.449.1 4
4.3 odd 2 704.2.m.b.449.1 4
8.3 odd 2 88.2.i.a.9.1 4
8.5 even 2 176.2.m.a.97.1 4
11.4 even 5 7744.2.a.cb.1.1 2
11.5 even 5 inner 704.2.m.g.577.1 4
11.7 odd 10 7744.2.a.cc.1.1 2
24.11 even 2 792.2.r.b.361.1 4
44.7 even 10 7744.2.a.cq.1.2 2
44.15 odd 10 7744.2.a.cr.1.2 2
44.27 odd 10 704.2.m.b.577.1 4
88.3 odd 10 968.2.i.d.81.1 4
88.5 even 10 176.2.m.a.49.1 4
88.19 even 10 968.2.i.c.81.1 4
88.27 odd 10 88.2.i.a.49.1 yes 4
88.29 odd 10 1936.2.a.u.1.2 2
88.35 even 10 968.2.i.c.729.1 4
88.37 even 10 1936.2.a.t.1.2 2
88.43 even 2 968.2.i.k.9.1 4
88.51 even 10 968.2.a.h.1.1 2
88.59 odd 10 968.2.a.i.1.1 2
88.75 odd 10 968.2.i.d.729.1 4
88.83 even 10 968.2.i.k.753.1 4
264.59 even 10 8712.2.a.bp.1.1 2
264.203 even 10 792.2.r.b.577.1 4
264.227 odd 10 8712.2.a.bm.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
88.2.i.a.9.1 4 8.3 odd 2
88.2.i.a.49.1 yes 4 88.27 odd 10
176.2.m.a.49.1 4 88.5 even 10
176.2.m.a.97.1 4 8.5 even 2
704.2.m.b.449.1 4 4.3 odd 2
704.2.m.b.577.1 4 44.27 odd 10
704.2.m.g.449.1 4 1.1 even 1 trivial
704.2.m.g.577.1 4 11.5 even 5 inner
792.2.r.b.361.1 4 24.11 even 2
792.2.r.b.577.1 4 264.203 even 10
968.2.a.h.1.1 2 88.51 even 10
968.2.a.i.1.1 2 88.59 odd 10
968.2.i.c.81.1 4 88.19 even 10
968.2.i.c.729.1 4 88.35 even 10
968.2.i.d.81.1 4 88.3 odd 10
968.2.i.d.729.1 4 88.75 odd 10
968.2.i.k.9.1 4 88.43 even 2
968.2.i.k.753.1 4 88.83 even 10
1936.2.a.t.1.2 2 88.37 even 10
1936.2.a.u.1.2 2 88.29 odd 10
7744.2.a.cb.1.1 2 11.4 even 5
7744.2.a.cc.1.1 2 11.7 odd 10
7744.2.a.cq.1.2 2 44.7 even 10
7744.2.a.cr.1.2 2 44.15 odd 10
8712.2.a.bm.1.1 2 264.227 odd 10
8712.2.a.bp.1.1 2 264.59 even 10