Properties

Label 700.2.be.e.543.8
Level $700$
Weight $2$
Character 700.543
Analytic conductor $5.590$
Analytic rank $0$
Dimension $72$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [700,2,Mod(107,700)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("700.107"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(700, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([6, 3, 4])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 700 = 2^{2} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 700.be (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [72,-2,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.58952814149\)
Analytic rank: \(0\)
Dimension: \(72\)
Relative dimension: \(18\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 140)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 543.8
Character \(\chi\) \(=\) 700.543
Dual form 700.2.be.e.107.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.429119 - 1.34754i) q^{2} +(0.727420 + 2.71477i) q^{3} +(-1.63171 + 1.15651i) q^{4} +(3.34610 - 2.14518i) q^{6} +(0.496852 + 2.59868i) q^{7} +(2.25864 + 1.70252i) q^{8} +(-4.24276 + 2.44956i) q^{9} +(2.75736 + 1.59196i) q^{11} +(-4.32659 - 3.58846i) q^{12} +(-2.41925 - 2.41925i) q^{13} +(3.28861 - 1.78467i) q^{14} +(1.32498 - 3.77418i) q^{16} +(0.600458 + 2.24094i) q^{17} +(5.12151 + 4.66612i) q^{18} +(1.39787 + 2.42118i) q^{19} +(-6.69340 + 3.23917i) q^{21} +(0.961994 - 4.39878i) q^{22} +(-5.19830 - 1.39288i) q^{23} +(-2.97897 + 7.37012i) q^{24} +(-2.22189 + 4.29818i) q^{26} +(-3.77420 - 3.77420i) q^{27} +(-3.81611 - 3.66569i) q^{28} +1.72334i q^{29} +(-3.01685 - 1.74178i) q^{31} +(-5.65442 - 0.165897i) q^{32} +(-2.31605 + 8.64362i) q^{33} +(2.76208 - 1.77077i) q^{34} +(4.09004 - 8.90375i) q^{36} +(-2.32734 - 0.623610i) q^{37} +(2.66278 - 2.92265i) q^{38} +(4.80790 - 8.32752i) q^{39} +2.72503 q^{41} +(7.23716 + 7.62961i) q^{42} +(3.96477 - 3.96477i) q^{43} +(-6.34034 + 0.591276i) q^{44} +(0.353728 + 7.60261i) q^{46} +(-1.63570 + 6.10452i) q^{47} +(11.2098 + 0.851615i) q^{48} +(-6.50628 + 2.58232i) q^{49} +(-5.64685 + 3.26021i) q^{51} +(6.74541 + 1.14965i) q^{52} +(-12.6093 + 3.37866i) q^{53} +(-3.46629 + 6.70545i) q^{54} +(-3.30209 + 6.71537i) q^{56} +(-5.55610 + 5.55610i) q^{57} +(2.32227 - 0.739519i) q^{58} +(0.951402 - 1.64788i) q^{59} +(5.83980 + 10.1148i) q^{61} +(-1.05253 + 4.81275i) q^{62} +(-8.47363 - 9.80850i) q^{63} +(2.20286 + 7.69073i) q^{64} +(12.6415 - 0.588172i) q^{66} +(5.67039 - 1.51938i) q^{67} +(-3.57144 - 2.96214i) q^{68} -15.1254i q^{69} -0.562181i q^{71} +(-13.7532 - 1.69071i) q^{72} +(3.23402 - 0.866554i) q^{73} +(0.158369 + 3.40378i) q^{74} +(-5.08103 - 2.33403i) q^{76} +(-2.76700 + 7.95646i) q^{77} +(-13.2848 - 2.90533i) q^{78} +(4.13532 + 7.16259i) q^{79} +(0.151981 - 0.263239i) q^{81} +(-1.16936 - 3.67208i) q^{82} +(4.38250 - 4.38250i) q^{83} +(7.17559 - 13.0264i) q^{84} +(-7.04404 - 3.64132i) q^{86} +(-4.67848 + 1.25360i) q^{87} +(3.51752 + 8.29011i) q^{88} +(2.51180 - 1.45019i) q^{89} +(5.08485 - 7.48887i) q^{91} +(10.0930 - 3.73908i) q^{92} +(2.53401 - 9.45706i) q^{93} +(8.92798 - 0.415394i) q^{94} +(-3.66277 - 15.4711i) q^{96} +(10.9216 - 10.9216i) q^{97} +(6.27174 + 7.65933i) q^{98} -15.5984 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 72 q - 2 q^{2} - 16 q^{6} + 4 q^{8} - 10 q^{12} - 28 q^{16} - 4 q^{17} + 20 q^{18} + 4 q^{21} + 16 q^{22} - 4 q^{26} - 42 q^{28} + 38 q^{32} + 64 q^{33} + 16 q^{36} + 4 q^{37} - 12 q^{38} - 40 q^{41} - 78 q^{42}+ \cdots + 90 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/700\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(351\) \(477\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.429119 1.34754i −0.303433 0.952853i
\(3\) 0.727420 + 2.71477i 0.419976 + 1.56737i 0.774655 + 0.632384i \(0.217924\pi\)
−0.354678 + 0.934988i \(0.615410\pi\)
\(4\) −1.63171 + 1.15651i −0.815857 + 0.578253i
\(5\) 0 0
\(6\) 3.34610 2.14518i 1.36604 0.875768i
\(7\) 0.496852 + 2.59868i 0.187792 + 0.982209i
\(8\) 2.25864 + 1.70252i 0.798548 + 0.601931i
\(9\) −4.24276 + 2.44956i −1.41425 + 0.816519i
\(10\) 0 0
\(11\) 2.75736 + 1.59196i 0.831375 + 0.479994i 0.854323 0.519742i \(-0.173972\pi\)
−0.0229484 + 0.999737i \(0.507305\pi\)
\(12\) −4.32659 3.58846i −1.24898 1.03590i
\(13\) −2.41925 2.41925i −0.670980 0.670980i 0.286962 0.957942i \(-0.407355\pi\)
−0.957942 + 0.286962i \(0.907355\pi\)
\(14\) 3.28861 1.78467i 0.878918 0.476973i
\(15\) 0 0
\(16\) 1.32498 3.77418i 0.331246 0.943544i
\(17\) 0.600458 + 2.24094i 0.145632 + 0.543508i 0.999726 + 0.0233890i \(0.00744564\pi\)
−0.854094 + 0.520119i \(0.825888\pi\)
\(18\) 5.12151 + 4.66612i 1.20715 + 1.09982i
\(19\) 1.39787 + 2.42118i 0.320693 + 0.555456i 0.980631 0.195863i \(-0.0627510\pi\)
−0.659938 + 0.751320i \(0.729418\pi\)
\(20\) 0 0
\(21\) −6.69340 + 3.23917i −1.46062 + 0.706845i
\(22\) 0.961994 4.39878i 0.205098 0.937824i
\(23\) −5.19830 1.39288i −1.08392 0.290435i −0.327719 0.944775i \(-0.606280\pi\)
−0.756201 + 0.654340i \(0.772947\pi\)
\(24\) −2.97897 + 7.37012i −0.608079 + 1.50442i
\(25\) 0 0
\(26\) −2.22189 + 4.29818i −0.435748 + 0.842942i
\(27\) −3.77420 3.77420i −0.726345 0.726345i
\(28\) −3.81611 3.66569i −0.721177 0.692751i
\(29\) 1.72334i 0.320017i 0.987116 + 0.160009i \(0.0511522\pi\)
−0.987116 + 0.160009i \(0.948848\pi\)
\(30\) 0 0
\(31\) −3.01685 1.74178i −0.541843 0.312833i 0.203983 0.978974i \(-0.434611\pi\)
−0.745825 + 0.666141i \(0.767945\pi\)
\(32\) −5.65442 0.165897i −0.999570 0.0293267i
\(33\) −2.31605 + 8.64362i −0.403173 + 1.50466i
\(34\) 2.76208 1.77077i 0.473693 0.303684i
\(35\) 0 0
\(36\) 4.09004 8.90375i 0.681673 1.48396i
\(37\) −2.32734 0.623610i −0.382613 0.102521i 0.0623856 0.998052i \(-0.480129\pi\)
−0.444999 + 0.895531i \(0.646796\pi\)
\(38\) 2.66278 2.92265i 0.431959 0.474117i
\(39\) 4.80790 8.32752i 0.769880 1.33347i
\(40\) 0 0
\(41\) 2.72503 0.425578 0.212789 0.977098i \(-0.431745\pi\)
0.212789 + 0.977098i \(0.431745\pi\)
\(42\) 7.23716 + 7.62961i 1.11672 + 1.17728i
\(43\) 3.96477 3.96477i 0.604622 0.604622i −0.336914 0.941536i \(-0.609383\pi\)
0.941536 + 0.336914i \(0.109383\pi\)
\(44\) −6.34034 + 0.591276i −0.955842 + 0.0891383i
\(45\) 0 0
\(46\) 0.353728 + 7.60261i 0.0521544 + 1.12094i
\(47\) −1.63570 + 6.10452i −0.238591 + 0.890435i 0.737905 + 0.674904i \(0.235815\pi\)
−0.976497 + 0.215531i \(0.930852\pi\)
\(48\) 11.2098 + 0.851615i 1.61800 + 0.122920i
\(49\) −6.50628 + 2.58232i −0.929468 + 0.368903i
\(50\) 0 0
\(51\) −5.64685 + 3.26021i −0.790717 + 0.456521i
\(52\) 6.74541 + 1.14965i 0.935420 + 0.159427i
\(53\) −12.6093 + 3.37866i −1.73202 + 0.464094i −0.980648 0.195780i \(-0.937276\pi\)
−0.751376 + 0.659874i \(0.770610\pi\)
\(54\) −3.46629 + 6.70545i −0.471703 + 0.912496i
\(55\) 0 0
\(56\) −3.30209 + 6.71537i −0.441261 + 0.897379i
\(57\) −5.55610 + 5.55610i −0.735924 + 0.735924i
\(58\) 2.32227 0.739519i 0.304929 0.0971036i
\(59\) 0.951402 1.64788i 0.123862 0.214535i −0.797426 0.603417i \(-0.793805\pi\)
0.921288 + 0.388882i \(0.127139\pi\)
\(60\) 0 0
\(61\) 5.83980 + 10.1148i 0.747709 + 1.29507i 0.948918 + 0.315522i \(0.102180\pi\)
−0.201209 + 0.979548i \(0.564487\pi\)
\(62\) −1.05253 + 4.81275i −0.133671 + 0.611220i
\(63\) −8.47363 9.80850i −1.06758 1.23575i
\(64\) 2.20286 + 7.69073i 0.275358 + 0.961342i
\(65\) 0 0
\(66\) 12.6415 0.588172i 1.55606 0.0723990i
\(67\) 5.67039 1.51938i 0.692748 0.185621i 0.104768 0.994497i \(-0.466590\pi\)
0.587980 + 0.808875i \(0.299923\pi\)
\(68\) −3.57144 2.96214i −0.433100 0.359212i
\(69\) 15.1254i 1.82088i
\(70\) 0 0
\(71\) 0.562181i 0.0667186i −0.999443 0.0333593i \(-0.989379\pi\)
0.999443 0.0333593i \(-0.0106206\pi\)
\(72\) −13.7532 1.69071i −1.62084 0.199253i
\(73\) 3.23402 0.866554i 0.378514 0.101423i −0.0645454 0.997915i \(-0.520560\pi\)
0.443059 + 0.896492i \(0.353893\pi\)
\(74\) 0.158369 + 3.40378i 0.0184100 + 0.395682i
\(75\) 0 0
\(76\) −5.08103 2.33403i −0.582834 0.267731i
\(77\) −2.76700 + 7.95646i −0.315329 + 0.906723i
\(78\) −13.2848 2.90533i −1.50421 0.328963i
\(79\) 4.13532 + 7.16259i 0.465260 + 0.805855i 0.999213 0.0396596i \(-0.0126274\pi\)
−0.533953 + 0.845514i \(0.679294\pi\)
\(80\) 0 0
\(81\) 0.151981 0.263239i 0.0168868 0.0292487i
\(82\) −1.16936 3.67208i −0.129134 0.405513i
\(83\) 4.38250 4.38250i 0.481042 0.481042i −0.424423 0.905464i \(-0.639523\pi\)
0.905464 + 0.424423i \(0.139523\pi\)
\(84\) 7.17559 13.0264i 0.782921 1.42129i
\(85\) 0 0
\(86\) −7.04404 3.64132i −0.759578 0.392654i
\(87\) −4.67848 + 1.25360i −0.501586 + 0.134400i
\(88\) 3.51752 + 8.29011i 0.374969 + 0.883729i
\(89\) 2.51180 1.45019i 0.266250 0.153720i −0.360932 0.932592i \(-0.617541\pi\)
0.627182 + 0.778872i \(0.284208\pi\)
\(90\) 0 0
\(91\) 5.08485 7.48887i 0.533037 0.785047i
\(92\) 10.0930 3.73908i 1.05227 0.389826i
\(93\) 2.53401 9.45706i 0.262765 0.980652i
\(94\) 8.92798 0.415394i 0.920850 0.0428446i
\(95\) 0 0
\(96\) −3.66277 15.4711i −0.373830 1.57902i
\(97\) 10.9216 10.9216i 1.10892 1.10892i 0.115629 0.993292i \(-0.463111\pi\)
0.993292 0.115629i \(-0.0368885\pi\)
\(98\) 6.27174 + 7.65933i 0.633541 + 0.773709i
\(99\) −15.5984 −1.56770
\(100\) 0 0
\(101\) 5.73271 9.92934i 0.570426 0.988007i −0.426096 0.904678i \(-0.640111\pi\)
0.996522 0.0833288i \(-0.0265552\pi\)
\(102\) 6.81642 + 6.21032i 0.674926 + 0.614914i
\(103\) 12.6556 + 3.39107i 1.24700 + 0.334132i 0.821176 0.570676i \(-0.193319\pi\)
0.425821 + 0.904807i \(0.359985\pi\)
\(104\) −1.34539 9.58302i −0.131926 0.939693i
\(105\) 0 0
\(106\) 9.96376 + 15.5417i 0.967766 + 1.50954i
\(107\) 0.106381 0.397018i 0.0102842 0.0383812i −0.960593 0.277959i \(-0.910342\pi\)
0.970877 + 0.239577i \(0.0770089\pi\)
\(108\) 10.5233 + 1.79353i 1.01260 + 0.172582i
\(109\) −6.32499 3.65173i −0.605824 0.349773i 0.165505 0.986209i \(-0.447074\pi\)
−0.771329 + 0.636436i \(0.780408\pi\)
\(110\) 0 0
\(111\) 6.77183i 0.642753i
\(112\) 10.4662 + 1.56800i 0.988963 + 0.148162i
\(113\) 11.6304 + 11.6304i 1.09410 + 1.09410i 0.995086 + 0.0990127i \(0.0315684\pi\)
0.0990127 + 0.995086i \(0.468432\pi\)
\(114\) 9.87128 + 5.10283i 0.924530 + 0.477924i
\(115\) 0 0
\(116\) −1.99306 2.81201i −0.185051 0.261088i
\(117\) 16.1904 + 4.33820i 1.49680 + 0.401067i
\(118\) −2.62884 0.574915i −0.242004 0.0529252i
\(119\) −5.52515 + 2.67381i −0.506489 + 0.245108i
\(120\) 0 0
\(121\) −0.431317 0.747063i −0.0392106 0.0679148i
\(122\) 11.1241 12.2098i 1.00713 1.10542i
\(123\) 1.98224 + 7.39783i 0.178733 + 0.667040i
\(124\) 6.93702 0.646921i 0.622963 0.0580952i
\(125\) 0 0
\(126\) −9.58112 + 15.6275i −0.853554 + 1.39221i
\(127\) 1.32146 + 1.32146i 0.117261 + 0.117261i 0.763302 0.646042i \(-0.223577\pi\)
−0.646042 + 0.763302i \(0.723577\pi\)
\(128\) 9.41826 6.26868i 0.832465 0.554078i
\(129\) 13.6475 + 7.87939i 1.20159 + 0.693741i
\(130\) 0 0
\(131\) −3.52422 + 2.03471i −0.307912 + 0.177773i −0.645992 0.763344i \(-0.723556\pi\)
0.338080 + 0.941118i \(0.390223\pi\)
\(132\) −6.21727 16.7824i −0.541144 1.46072i
\(133\) −5.59733 + 4.83558i −0.485350 + 0.419298i
\(134\) −4.48068 6.98907i −0.387072 0.603764i
\(135\) 0 0
\(136\) −2.45903 + 6.08376i −0.210860 + 0.521678i
\(137\) −4.17132 15.5676i −0.356380 1.33003i −0.878739 0.477303i \(-0.841615\pi\)
0.522359 0.852726i \(-0.325052\pi\)
\(138\) −20.3820 + 6.49058i −1.73503 + 0.552515i
\(139\) 17.0814 1.44882 0.724411 0.689369i \(-0.242112\pi\)
0.724411 + 0.689369i \(0.242112\pi\)
\(140\) 0 0
\(141\) −17.7622 −1.49585
\(142\) −0.757560 + 0.241242i −0.0635730 + 0.0202446i
\(143\) −2.81939 10.5221i −0.235769 0.879902i
\(144\) 3.62347 + 19.2585i 0.301956 + 1.60488i
\(145\) 0 0
\(146\) −2.55549 3.98611i −0.211494 0.329893i
\(147\) −11.7432 15.7846i −0.968562 1.30189i
\(148\) 4.51877 1.67403i 0.371441 0.137605i
\(149\) −7.75810 + 4.47914i −0.635569 + 0.366946i −0.782905 0.622141i \(-0.786263\pi\)
0.147337 + 0.989086i \(0.452930\pi\)
\(150\) 0 0
\(151\) 5.83274 + 3.36754i 0.474662 + 0.274046i 0.718189 0.695848i \(-0.244971\pi\)
−0.243527 + 0.969894i \(0.578305\pi\)
\(152\) −0.964826 + 7.84845i −0.0782577 + 0.636593i
\(153\) −8.03690 8.03690i −0.649745 0.649745i
\(154\) 11.9090 + 0.314371i 0.959655 + 0.0253327i
\(155\) 0 0
\(156\) 1.78572 + 19.1485i 0.142972 + 1.53311i
\(157\) 2.94647 + 10.9964i 0.235154 + 0.877606i 0.978080 + 0.208232i \(0.0667708\pi\)
−0.742926 + 0.669374i \(0.766563\pi\)
\(158\) 7.87732 8.64611i 0.626686 0.687847i
\(159\) −18.3446 31.7737i −1.45482 2.51982i
\(160\) 0 0
\(161\) 1.03686 14.2008i 0.0817163 1.11918i
\(162\) −0.419942 0.0918394i −0.0329937 0.00721558i
\(163\) 0.00273302 0.000732309i 0.000214066 5.73589e-5i 0.258926 0.965897i \(-0.416631\pi\)
−0.258712 + 0.965954i \(0.583298\pi\)
\(164\) −4.44647 + 3.15152i −0.347211 + 0.246092i
\(165\) 0 0
\(166\) −7.78619 4.02497i −0.604326 0.312398i
\(167\) 2.32482 + 2.32482i 0.179900 + 0.179900i 0.791312 0.611412i \(-0.209398\pi\)
−0.611412 + 0.791312i \(0.709398\pi\)
\(168\) −20.6327 4.07952i −1.59185 0.314742i
\(169\) 1.29445i 0.0995729i
\(170\) 0 0
\(171\) −11.8616 6.84831i −0.907081 0.523703i
\(172\) −1.88409 + 11.0547i −0.143661 + 0.842910i
\(173\) 4.15945 15.5233i 0.316237 1.18021i −0.606596 0.795010i \(-0.707465\pi\)
0.922833 0.385201i \(-0.125868\pi\)
\(174\) 3.69689 + 5.76649i 0.280261 + 0.437157i
\(175\) 0 0
\(176\) 9.66180 8.29743i 0.728286 0.625443i
\(177\) 5.16567 + 1.38414i 0.388276 + 0.104038i
\(178\) −3.03204 2.76244i −0.227261 0.207054i
\(179\) −9.08714 + 15.7394i −0.679205 + 1.17642i 0.296016 + 0.955183i \(0.404342\pi\)
−0.975221 + 0.221235i \(0.928991\pi\)
\(180\) 0 0
\(181\) −4.28458 −0.318471 −0.159235 0.987241i \(-0.550903\pi\)
−0.159235 + 0.987241i \(0.550903\pi\)
\(182\) −12.2735 3.63841i −0.909775 0.269697i
\(183\) −23.2114 + 23.2114i −1.71584 + 1.71584i
\(184\) −9.36965 11.9962i −0.690740 0.884371i
\(185\) 0 0
\(186\) −13.8311 + 0.643525i −1.01415 + 0.0471855i
\(187\) −1.91181 + 7.13498i −0.139806 + 0.521761i
\(188\) −4.39092 11.8525i −0.320241 0.864434i
\(189\) 7.93272 11.6832i 0.577020 0.849824i
\(190\) 0 0
\(191\) 10.0103 5.77946i 0.724321 0.418187i −0.0920200 0.995757i \(-0.529332\pi\)
0.816341 + 0.577570i \(0.195999\pi\)
\(192\) −19.2762 + 11.5747i −1.39114 + 0.835329i
\(193\) 4.46599 1.19666i 0.321469 0.0861374i −0.0944758 0.995527i \(-0.530118\pi\)
0.415945 + 0.909390i \(0.363451\pi\)
\(194\) −19.4040 10.0306i −1.39312 0.720156i
\(195\) 0 0
\(196\) 7.62992 11.7382i 0.544994 0.838440i
\(197\) −6.77330 + 6.77330i −0.482578 + 0.482578i −0.905954 0.423376i \(-0.860845\pi\)
0.423376 + 0.905954i \(0.360845\pi\)
\(198\) 6.69356 + 21.0194i 0.475691 + 1.49379i
\(199\) −0.869824 + 1.50658i −0.0616602 + 0.106799i −0.895208 0.445649i \(-0.852973\pi\)
0.833547 + 0.552448i \(0.186306\pi\)
\(200\) 0 0
\(201\) 8.24951 + 14.2886i 0.581876 + 1.00784i
\(202\) −15.8402 3.46418i −1.11451 0.243739i
\(203\) −4.47842 + 0.856247i −0.314324 + 0.0600968i
\(204\) 5.44359 11.8504i 0.381128 0.829691i
\(205\) 0 0
\(206\) −0.861178 18.5091i −0.0600011 1.28959i
\(207\) 25.4670 6.82387i 1.77008 0.474292i
\(208\) −12.3362 + 5.92521i −0.855358 + 0.410840i
\(209\) 8.90141i 0.615723i
\(210\) 0 0
\(211\) 23.7584i 1.63560i 0.575506 + 0.817798i \(0.304805\pi\)
−0.575506 + 0.817798i \(0.695195\pi\)
\(212\) 16.6674 20.0958i 1.14472 1.38018i
\(213\) 1.52619 0.408942i 0.104573 0.0280202i
\(214\) −0.580647 + 0.0270159i −0.0396922 + 0.00184677i
\(215\) 0 0
\(216\) −2.09890 14.9502i −0.142812 1.01723i
\(217\) 3.02740 8.70524i 0.205513 0.590950i
\(218\) −2.20668 + 10.0902i −0.149455 + 0.683393i
\(219\) 4.70499 + 8.14928i 0.317934 + 0.550677i
\(220\) 0 0
\(221\) 3.96874 6.87406i 0.266966 0.462399i
\(222\) −9.12529 + 2.90592i −0.612449 + 0.195032i
\(223\) 13.2313 13.2313i 0.886031 0.886031i −0.108108 0.994139i \(-0.534479\pi\)
0.994139 + 0.108108i \(0.0344793\pi\)
\(224\) −2.37830 14.7765i −0.158907 0.987294i
\(225\) 0 0
\(226\) 10.6816 20.6633i 0.710530 1.37450i
\(227\) −20.0810 + 5.38070i −1.33283 + 0.357130i −0.853768 0.520654i \(-0.825688\pi\)
−0.479058 + 0.877783i \(0.659022\pi\)
\(228\) 2.64030 15.4916i 0.174858 1.02596i
\(229\) 15.4800 8.93740i 1.02295 0.590600i 0.107992 0.994152i \(-0.465558\pi\)
0.914957 + 0.403552i \(0.132224\pi\)
\(230\) 0 0
\(231\) −23.6127 1.72408i −1.55360 0.113436i
\(232\) −2.93403 + 3.89241i −0.192628 + 0.255549i
\(233\) 0.0913229 0.340822i 0.00598276 0.0223280i −0.962870 0.269966i \(-0.912988\pi\)
0.968853 + 0.247638i \(0.0796543\pi\)
\(234\) −1.10171 23.6787i −0.0720208 1.54793i
\(235\) 0 0
\(236\) 0.353364 + 3.78917i 0.0230020 + 0.246654i
\(237\) −16.4367 + 16.4367i −1.06768 + 1.06768i
\(238\) 5.97401 + 6.29796i 0.387237 + 0.408236i
\(239\) 24.1080 1.55941 0.779707 0.626145i \(-0.215368\pi\)
0.779707 + 0.626145i \(0.215368\pi\)
\(240\) 0 0
\(241\) −2.17712 + 3.77087i −0.140240 + 0.242903i −0.927587 0.373607i \(-0.878121\pi\)
0.787347 + 0.616510i \(0.211454\pi\)
\(242\) −0.821609 + 0.901794i −0.0528150 + 0.0579695i
\(243\) −14.6418 3.92325i −0.939270 0.251677i
\(244\) −21.2267 9.75074i −1.35890 0.624227i
\(245\) 0 0
\(246\) 9.11823 5.84569i 0.581357 0.372708i
\(247\) 2.47564 9.23923i 0.157521 0.587878i
\(248\) −3.84856 9.07029i −0.244384 0.575964i
\(249\) 15.0854 + 8.70955i 0.955998 + 0.551945i
\(250\) 0 0
\(251\) 13.3373i 0.841841i 0.907098 + 0.420920i \(0.138293\pi\)
−0.907098 + 0.420920i \(0.861707\pi\)
\(252\) 25.1701 + 6.20485i 1.58557 + 0.390869i
\(253\) −12.1162 12.1162i −0.761736 0.761736i
\(254\) 1.21365 2.34778i 0.0761514 0.147313i
\(255\) 0 0
\(256\) −12.4888 10.0015i −0.780552 0.625091i
\(257\) 9.71554 + 2.60327i 0.606039 + 0.162388i 0.548773 0.835971i \(-0.315095\pi\)
0.0572656 + 0.998359i \(0.481762\pi\)
\(258\) 4.76137 21.7717i 0.296430 1.35545i
\(259\) 0.464217 6.35786i 0.0288450 0.395058i
\(260\) 0 0
\(261\) −4.22143 7.31173i −0.261300 0.452585i
\(262\) 4.25415 + 3.87589i 0.262822 + 0.239453i
\(263\) 2.78295 + 10.3861i 0.171604 + 0.640435i 0.997105 + 0.0760347i \(0.0242260\pi\)
−0.825501 + 0.564401i \(0.809107\pi\)
\(264\) −19.9470 + 15.5797i −1.22765 + 0.958862i
\(265\) 0 0
\(266\) 8.91804 + 5.46758i 0.546800 + 0.335239i
\(267\) 5.76406 + 5.76406i 0.352755 + 0.352755i
\(268\) −7.49529 + 9.03703i −0.457848 + 0.552024i
\(269\) −8.18828 4.72750i −0.499248 0.288241i 0.229155 0.973390i \(-0.426404\pi\)
−0.728403 + 0.685149i \(0.759737\pi\)
\(270\) 0 0
\(271\) 12.4949 7.21392i 0.759010 0.438214i −0.0699304 0.997552i \(-0.522278\pi\)
0.828940 + 0.559337i \(0.188944\pi\)
\(272\) 9.25330 + 0.702976i 0.561064 + 0.0426242i
\(273\) 24.0294 + 8.35664i 1.45432 + 0.505767i
\(274\) −19.1879 + 12.3013i −1.15918 + 0.743152i
\(275\) 0 0
\(276\) 17.4926 + 24.6803i 1.05293 + 1.48558i
\(277\) −8.56419 31.9620i −0.514572 1.92041i −0.362259 0.932078i \(-0.617994\pi\)
−0.152314 0.988332i \(-0.548672\pi\)
\(278\) −7.32993 23.0178i −0.439620 1.38051i
\(279\) 17.0664 1.02174
\(280\) 0 0
\(281\) −10.1670 −0.606514 −0.303257 0.952909i \(-0.598074\pi\)
−0.303257 + 0.952909i \(0.598074\pi\)
\(282\) 7.62209 + 23.9352i 0.453889 + 1.42532i
\(283\) 7.16893 + 26.7548i 0.426148 + 1.59041i 0.761402 + 0.648280i \(0.224511\pi\)
−0.335254 + 0.942128i \(0.608822\pi\)
\(284\) 0.650166 + 0.917319i 0.0385803 + 0.0544329i
\(285\) 0 0
\(286\) −12.9691 + 8.31446i −0.766877 + 0.491644i
\(287\) 1.35394 + 7.08148i 0.0799204 + 0.418007i
\(288\) 24.3967 13.1470i 1.43759 0.774692i
\(289\) 10.0612 5.80882i 0.591834 0.341695i
\(290\) 0 0
\(291\) 37.5943 + 21.7051i 2.20381 + 1.27237i
\(292\) −4.27483 + 5.15414i −0.250165 + 0.301623i
\(293\) 3.07964 + 3.07964i 0.179914 + 0.179914i 0.791318 0.611404i \(-0.209395\pi\)
−0.611404 + 0.791318i \(0.709395\pi\)
\(294\) −16.2311 + 22.5979i −0.946619 + 1.31793i
\(295\) 0 0
\(296\) −4.19491 5.37085i −0.243824 0.312174i
\(297\) −4.39844 16.4152i −0.255223 0.952506i
\(298\) 9.36496 + 8.53225i 0.542498 + 0.494260i
\(299\) 9.20626 + 15.9457i 0.532412 + 0.922164i
\(300\) 0 0
\(301\) 12.2731 + 8.33327i 0.707408 + 0.480322i
\(302\) 2.03494 9.30491i 0.117098 0.535437i
\(303\) 31.1260 + 8.34018i 1.78814 + 0.479131i
\(304\) 10.9901 2.06778i 0.630326 0.118595i
\(305\) 0 0
\(306\) −7.38124 + 14.2788i −0.421958 + 0.816265i
\(307\) 13.3345 + 13.3345i 0.761042 + 0.761042i 0.976511 0.215469i \(-0.0691280\pi\)
−0.215469 + 0.976511i \(0.569128\pi\)
\(308\) −4.68675 16.1827i −0.267052 0.922096i
\(309\) 36.8239i 2.09484i
\(310\) 0 0
\(311\) 1.35454 + 0.782046i 0.0768091 + 0.0443457i 0.537913 0.843001i \(-0.319213\pi\)
−0.461104 + 0.887346i \(0.652546\pi\)
\(312\) 25.0370 10.6233i 1.41744 0.601426i
\(313\) −3.15193 + 11.7632i −0.178157 + 0.664893i 0.817835 + 0.575453i \(0.195174\pi\)
−0.995992 + 0.0894395i \(0.971492\pi\)
\(314\) 13.5536 8.68922i 0.764876 0.490361i
\(315\) 0 0
\(316\) −15.0313 6.90478i −0.845574 0.388424i
\(317\) −26.4565 7.08901i −1.48595 0.398158i −0.577581 0.816334i \(-0.696003\pi\)
−0.908366 + 0.418175i \(0.862670\pi\)
\(318\) −34.9443 + 38.3547i −1.95958 + 2.15082i
\(319\) −2.74350 + 4.75188i −0.153606 + 0.266054i
\(320\) 0 0
\(321\) 1.15520 0.0644768
\(322\) −19.5810 + 4.69660i −1.09121 + 0.261731i
\(323\) −4.58635 + 4.58635i −0.255191 + 0.255191i
\(324\) 0.0564478 + 0.605297i 0.00313599 + 0.0336276i
\(325\) 0 0
\(326\) −0.000185973 0.00399709i −1.03001e−5 0.000221378i
\(327\) 5.31269 19.8272i 0.293792 1.09645i
\(328\) 6.15485 + 4.63941i 0.339845 + 0.256169i
\(329\) −16.6764 1.21762i −0.919399 0.0671296i
\(330\) 0 0
\(331\) −3.38809 + 1.95612i −0.186226 + 0.107518i −0.590215 0.807246i \(-0.700957\pi\)
0.403988 + 0.914764i \(0.367624\pi\)
\(332\) −2.08260 + 12.2194i −0.114297 + 0.670625i
\(333\) 11.4019 3.05513i 0.624821 0.167420i
\(334\) 2.13515 4.13040i 0.116830 0.226005i
\(335\) 0 0
\(336\) 3.35656 + 29.5539i 0.183115 + 1.61230i
\(337\) −12.6447 + 12.6447i −0.688801 + 0.688801i −0.961967 0.273166i \(-0.911929\pi\)
0.273166 + 0.961967i \(0.411929\pi\)
\(338\) −1.74432 + 0.555471i −0.0948783 + 0.0302137i
\(339\) −23.1137 + 40.0341i −1.25537 + 2.17436i
\(340\) 0 0
\(341\) −5.54569 9.60542i −0.300316 0.520163i
\(342\) −4.13831 + 18.9227i −0.223774 + 1.02322i
\(343\) −9.94328 15.6247i −0.536886 0.843655i
\(344\) 15.7051 2.20488i 0.846761 0.118879i
\(345\) 0 0
\(346\) −22.7031 + 1.05631i −1.22052 + 0.0567876i
\(347\) 5.79511 1.55280i 0.311098 0.0833585i −0.0998921 0.994998i \(-0.531850\pi\)
0.410990 + 0.911640i \(0.365183\pi\)
\(348\) 6.18416 7.45621i 0.331506 0.399695i
\(349\) 15.1860i 0.812888i 0.913676 + 0.406444i \(0.133231\pi\)
−0.913676 + 0.406444i \(0.866769\pi\)
\(350\) 0 0
\(351\) 18.2615i 0.974725i
\(352\) −15.3272 9.45906i −0.816941 0.504169i
\(353\) 33.2384 8.90620i 1.76910 0.474029i 0.780573 0.625065i \(-0.214927\pi\)
0.988528 + 0.151035i \(0.0482607\pi\)
\(354\) −0.351508 7.55490i −0.0186825 0.401538i
\(355\) 0 0
\(356\) −2.42139 + 5.27121i −0.128333 + 0.279373i
\(357\) −11.2779 13.0545i −0.596889 0.690918i
\(358\) 25.1089 + 5.49120i 1.32705 + 0.290219i
\(359\) −4.20241 7.27878i −0.221795 0.384159i 0.733558 0.679626i \(-0.237858\pi\)
−0.955353 + 0.295467i \(0.904525\pi\)
\(360\) 0 0
\(361\) 5.59193 9.68551i 0.294312 0.509764i
\(362\) 1.83859 + 5.77364i 0.0966344 + 0.303456i
\(363\) 1.71435 1.71435i 0.0899803 0.0899803i
\(364\) 0.363904 + 18.1004i 0.0190737 + 0.948717i
\(365\) 0 0
\(366\) 41.2387 + 21.3178i 2.15558 + 1.11430i
\(367\) 29.7056 7.95960i 1.55062 0.415488i 0.620941 0.783857i \(-0.286751\pi\)
0.929679 + 0.368369i \(0.120084\pi\)
\(368\) −12.1446 + 17.7737i −0.633083 + 0.926521i
\(369\) −11.5616 + 6.67511i −0.601875 + 0.347493i
\(370\) 0 0
\(371\) −15.0450 31.0889i −0.781099 1.61406i
\(372\) 6.80237 + 18.3618i 0.352687 + 0.952017i
\(373\) −3.89204 + 14.5253i −0.201522 + 0.752091i 0.788959 + 0.614446i \(0.210620\pi\)
−0.990482 + 0.137646i \(0.956046\pi\)
\(374\) 10.4350 0.485514i 0.539583 0.0251053i
\(375\) 0 0
\(376\) −14.0875 + 11.0031i −0.726507 + 0.567440i
\(377\) 4.16920 4.16920i 0.214725 0.214725i
\(378\) −19.1476 5.67617i −0.984844 0.291951i
\(379\) 1.92262 0.0987586 0.0493793 0.998780i \(-0.484276\pi\)
0.0493793 + 0.998780i \(0.484276\pi\)
\(380\) 0 0
\(381\) −2.62620 + 4.54871i −0.134544 + 0.233038i
\(382\) −12.0836 11.0092i −0.618253 0.563280i
\(383\) 15.4407 + 4.13733i 0.788984 + 0.211408i 0.630742 0.775993i \(-0.282751\pi\)
0.158242 + 0.987400i \(0.449417\pi\)
\(384\) 23.8691 + 21.0084i 1.21806 + 1.07208i
\(385\) 0 0
\(386\) −3.52898 5.50459i −0.179621 0.280176i
\(387\) −7.10963 + 26.5335i −0.361403 + 1.34877i
\(388\) −5.19004 + 30.4519i −0.263484 + 1.54596i
\(389\) −9.81327 5.66569i −0.497552 0.287262i 0.230150 0.973155i \(-0.426078\pi\)
−0.727702 + 0.685893i \(0.759412\pi\)
\(390\) 0 0
\(391\) 12.4854i 0.631415i
\(392\) −19.0917 5.24454i −0.964279 0.264889i
\(393\) −8.08735 8.08735i −0.407953 0.407953i
\(394\) 12.0338 + 6.22073i 0.606255 + 0.313396i
\(395\) 0 0
\(396\) 25.4521 18.0396i 1.27902 0.906526i
\(397\) 11.2650 + 3.01844i 0.565372 + 0.151491i 0.530173 0.847889i \(-0.322127\pi\)
0.0351987 + 0.999380i \(0.488794\pi\)
\(398\) 2.40343 + 0.525620i 0.120473 + 0.0263469i
\(399\) −17.1991 11.6780i −0.861031 0.584630i
\(400\) 0 0
\(401\) 13.8361 + 23.9649i 0.690943 + 1.19675i 0.971529 + 0.236919i \(0.0761376\pi\)
−0.280587 + 0.959829i \(0.590529\pi\)
\(402\) 15.7144 17.2480i 0.783761 0.860253i
\(403\) 3.08472 + 11.5123i 0.153661 + 0.573470i
\(404\) 2.12921 + 22.8318i 0.105932 + 1.13592i
\(405\) 0 0
\(406\) 3.07560 + 5.66741i 0.152639 + 0.281269i
\(407\) −5.42456 5.42456i −0.268885 0.268885i
\(408\) −18.3047 2.25024i −0.906220 0.111403i
\(409\) −11.9780 6.91550i −0.592274 0.341950i 0.173722 0.984795i \(-0.444421\pi\)
−0.765996 + 0.642845i \(0.777754\pi\)
\(410\) 0 0
\(411\) 39.2281 22.6483i 1.93498 1.11716i
\(412\) −24.5722 + 9.10307i −1.21058 + 0.448476i
\(413\) 4.75501 + 1.65364i 0.233979 + 0.0813702i
\(414\) −20.1238 31.3895i −0.989031 1.54271i
\(415\) 0 0
\(416\) 13.2781 + 14.0808i 0.651013 + 0.690369i
\(417\) 12.4253 + 46.3719i 0.608471 + 2.27084i
\(418\) 11.9950 3.81976i 0.586694 0.186830i
\(419\) −20.6976 −1.01114 −0.505572 0.862784i \(-0.668719\pi\)
−0.505572 + 0.862784i \(0.668719\pi\)
\(420\) 0 0
\(421\) 26.7517 1.30380 0.651898 0.758306i \(-0.273973\pi\)
0.651898 + 0.758306i \(0.273973\pi\)
\(422\) 32.0153 10.1952i 1.55848 0.496293i
\(423\) −8.01348 29.9067i −0.389629 1.45411i
\(424\) −34.2321 13.8364i −1.66246 0.671957i
\(425\) 0 0
\(426\) −1.20598 1.88112i −0.0584300 0.0911404i
\(427\) −23.3837 + 20.2013i −1.13162 + 0.977611i
\(428\) 0.285571 + 0.770850i 0.0138036 + 0.0372605i
\(429\) 26.5142 15.3080i 1.28012 0.739076i
\(430\) 0 0
\(431\) −34.9346 20.1695i −1.68274 0.971531i −0.959827 0.280594i \(-0.909469\pi\)
−0.722914 0.690937i \(-0.757198\pi\)
\(432\) −19.2452 + 9.24374i −0.925937 + 0.444740i
\(433\) −16.5835 16.5835i −0.796954 0.796954i 0.185660 0.982614i \(-0.440558\pi\)
−0.982614 + 0.185660i \(0.940558\pi\)
\(434\) −13.0298 0.343956i −0.625448 0.0165104i
\(435\) 0 0
\(436\) 14.5438 1.35630i 0.696523 0.0649552i
\(437\) −3.89412 14.5331i −0.186281 0.695210i
\(438\) 8.96246 9.83716i 0.428243 0.470038i
\(439\) −2.87067 4.97215i −0.137010 0.237308i 0.789354 0.613939i \(-0.210416\pi\)
−0.926363 + 0.376631i \(0.877082\pi\)
\(440\) 0 0
\(441\) 21.2790 26.8936i 1.01329 1.28065i
\(442\) −10.9661 2.39824i −0.521604 0.114073i
\(443\) −0.826713 0.221517i −0.0392783 0.0105246i 0.239126 0.970988i \(-0.423139\pi\)
−0.278405 + 0.960464i \(0.589806\pi\)
\(444\) 7.83166 + 11.0497i 0.371674 + 0.524395i
\(445\) 0 0
\(446\) −23.5074 12.1518i −1.11311 0.575407i
\(447\) −17.8032 17.8032i −0.842064 0.842064i
\(448\) −18.8913 + 9.54570i −0.892528 + 0.450992i
\(449\) 4.66158i 0.219993i −0.993932 0.109997i \(-0.964916\pi\)
0.993932 0.109997i \(-0.0350840\pi\)
\(450\) 0 0
\(451\) 7.51388 + 4.33814i 0.353815 + 0.204275i
\(452\) −32.4282 5.52687i −1.52529 0.259962i
\(453\) −4.89923 + 18.2842i −0.230186 + 0.859065i
\(454\) 15.8678 + 24.7510i 0.744715 + 1.16162i
\(455\) 0 0
\(456\) −22.0086 + 3.08984i −1.03065 + 0.144695i
\(457\) 30.7250 + 8.23274i 1.43726 + 0.385111i 0.891572 0.452880i \(-0.149603\pi\)
0.545684 + 0.837991i \(0.316270\pi\)
\(458\) −18.6863 17.0247i −0.873151 0.795513i
\(459\) 6.19150 10.7240i 0.288995 0.500553i
\(460\) 0 0
\(461\) −23.4445 −1.09192 −0.545959 0.837812i \(-0.683835\pi\)
−0.545959 + 0.837812i \(0.683835\pi\)
\(462\) 7.80940 + 32.5589i 0.363326 + 1.51478i
\(463\) 1.84160 1.84160i 0.0855866 0.0855866i −0.663017 0.748604i \(-0.730724\pi\)
0.748604 + 0.663017i \(0.230724\pi\)
\(464\) 6.50421 + 2.28341i 0.301950 + 0.106004i
\(465\) 0 0
\(466\) −0.498458 + 0.0231919i −0.0230906 + 0.00107434i
\(467\) 2.14751 8.01462i 0.0993749 0.370872i −0.898271 0.439441i \(-0.855177\pi\)
0.997646 + 0.0685687i \(0.0218432\pi\)
\(468\) −31.4352 + 11.6456i −1.45309 + 0.538317i
\(469\) 6.76572 + 13.9806i 0.312412 + 0.645565i
\(470\) 0 0
\(471\) −27.7093 + 15.9980i −1.27678 + 0.737147i
\(472\) 4.95441 2.10217i 0.228045 0.0967603i
\(473\) 17.2441 4.62053i 0.792883 0.212452i
\(474\) 29.2023 + 15.0957i 1.34131 + 0.693371i
\(475\) 0 0
\(476\) 5.92318 10.7528i 0.271488 0.492852i
\(477\) 45.2221 45.2221i 2.07058 2.07058i
\(478\) −10.3452 32.4864i −0.473177 1.48589i
\(479\) 6.99926 12.1231i 0.319805 0.553918i −0.660643 0.750701i \(-0.729716\pi\)
0.980447 + 0.196783i \(0.0630494\pi\)
\(480\) 0 0
\(481\) 4.12176 + 7.13910i 0.187936 + 0.325515i
\(482\) 6.01563 + 1.31559i 0.274005 + 0.0599236i
\(483\) 39.3060 7.51507i 1.78849 0.341948i
\(484\) 1.56777 + 0.720172i 0.0712622 + 0.0327351i
\(485\) 0 0
\(486\) 0.996328 + 21.4139i 0.0451943 + 0.971353i
\(487\) −25.6423 + 6.87083i −1.16196 + 0.311347i −0.787750 0.615995i \(-0.788754\pi\)
−0.374214 + 0.927342i \(0.622087\pi\)
\(488\) −4.03070 + 32.7881i −0.182461 + 1.48425i
\(489\) 0.00795220i 0.000359611i
\(490\) 0 0
\(491\) 35.5868i 1.60601i −0.595973 0.803004i \(-0.703234\pi\)
0.595973 0.803004i \(-0.296766\pi\)
\(492\) −11.7901 9.77867i −0.531538 0.440856i
\(493\) −3.86191 + 1.03480i −0.173932 + 0.0466049i
\(494\) −13.5126 + 0.628702i −0.607959 + 0.0282866i
\(495\) 0 0
\(496\) −10.5711 + 9.07830i −0.474655 + 0.407628i
\(497\) 1.46093 0.279321i 0.0655316 0.0125293i
\(498\) 5.26303 24.0656i 0.235842 1.07840i
\(499\) −4.94115 8.55833i −0.221196 0.383123i 0.733975 0.679176i \(-0.237663\pi\)
−0.955172 + 0.296053i \(0.904330\pi\)
\(500\) 0 0
\(501\) −4.62022 + 8.00245i −0.206416 + 0.357523i
\(502\) 17.9725 5.72327i 0.802151 0.255442i
\(503\) −16.5308 + 16.5308i −0.737071 + 0.737071i −0.972010 0.234939i \(-0.924511\pi\)
0.234939 + 0.972010i \(0.424511\pi\)
\(504\) −2.43970 36.5803i −0.108673 1.62942i
\(505\) 0 0
\(506\) −11.1277 + 21.5262i −0.494687 + 0.956958i
\(507\) 3.51413 0.941607i 0.156068 0.0418182i
\(508\) −3.68452 0.627968i −0.163474 0.0278616i
\(509\) 0.789343 0.455727i 0.0349870 0.0201998i −0.482404 0.875949i \(-0.660236\pi\)
0.517391 + 0.855749i \(0.326903\pi\)
\(510\) 0 0
\(511\) 3.85873 + 7.97365i 0.170700 + 0.352733i
\(512\) −8.11815 + 21.1210i −0.358775 + 0.933424i
\(513\) 3.86218 14.4138i 0.170519 0.636386i
\(514\) −0.661113 14.2092i −0.0291604 0.626739i
\(515\) 0 0
\(516\) −31.3814 + 2.92651i −1.38149 + 0.128833i
\(517\) −14.2284 + 14.2284i −0.625763 + 0.625763i
\(518\) −8.76666 + 2.10273i −0.385185 + 0.0923885i
\(519\) 45.1677 1.98264
\(520\) 0 0
\(521\) 3.24107 5.61370i 0.141994 0.245941i −0.786254 0.617904i \(-0.787982\pi\)
0.928247 + 0.371963i \(0.121315\pi\)
\(522\) −8.04134 + 8.82613i −0.351960 + 0.386309i
\(523\) −4.55591 1.22075i −0.199216 0.0533798i 0.157831 0.987466i \(-0.449550\pi\)
−0.357047 + 0.934086i \(0.616217\pi\)
\(524\) 3.39736 7.39585i 0.148415 0.323089i
\(525\) 0 0
\(526\) 12.8015 8.20701i 0.558170 0.357842i
\(527\) 2.09173 7.80645i 0.0911173 0.340054i
\(528\) 29.5538 + 20.1938i 1.28616 + 0.878824i
\(529\) 5.16358 + 2.98119i 0.224503 + 0.129617i
\(530\) 0 0
\(531\) 9.32205i 0.404542i
\(532\) 3.54087 14.3636i 0.153516 0.622743i
\(533\) −6.59253 6.59253i −0.285554 0.285554i
\(534\) 5.29382 10.2408i 0.229086 0.443161i
\(535\) 0 0
\(536\) 15.3941 + 6.22222i 0.664924 + 0.268759i
\(537\) −49.3390 13.2203i −2.12913 0.570500i
\(538\) −2.85675 + 13.0627i −0.123163 + 0.563172i
\(539\) −22.0511 3.23736i −0.949808 0.139443i
\(540\) 0 0
\(541\) −9.43554 16.3428i −0.405666 0.702633i 0.588733 0.808328i \(-0.299627\pi\)
−0.994399 + 0.105694i \(0.966294\pi\)
\(542\) −15.0828 13.7417i −0.647862 0.590256i
\(543\) −3.11669 11.6317i −0.133750 0.499162i
\(544\) −3.02348 12.7708i −0.129631 0.547545i
\(545\) 0 0
\(546\) 0.949434 35.9665i 0.0406320 1.53922i
\(547\) 9.42028 + 9.42028i 0.402782 + 0.402782i 0.879212 0.476430i \(-0.158069\pi\)
−0.476430 + 0.879212i \(0.658069\pi\)
\(548\) 24.8104 + 20.5777i 1.05985 + 0.879035i
\(549\) −49.5537 28.6098i −2.11490 1.22104i
\(550\) 0 0
\(551\) −4.17252 + 2.40901i −0.177756 + 0.102627i
\(552\) 25.7512 34.1627i 1.09605 1.45406i
\(553\) −16.5586 + 14.3051i −0.704145 + 0.608316i
\(554\) −39.3949 + 25.2560i −1.67373 + 1.07303i
\(555\) 0 0
\(556\) −27.8719 + 19.7547i −1.18203 + 0.837786i
\(557\) 9.82230 + 36.6573i 0.416184 + 1.55322i 0.782452 + 0.622711i \(0.213969\pi\)
−0.366268 + 0.930509i \(0.619365\pi\)
\(558\) −7.32349 22.9976i −0.310028 0.973564i
\(559\) −19.1836 −0.811378
\(560\) 0 0
\(561\) −20.7605 −0.876510
\(562\) 4.36286 + 13.7005i 0.184036 + 0.577919i
\(563\) −9.81479 36.6293i −0.413644 1.54374i −0.787536 0.616269i \(-0.788643\pi\)
0.373892 0.927472i \(-0.378023\pi\)
\(564\) 28.9828 20.5421i 1.22040 0.864978i
\(565\) 0 0
\(566\) 32.9768 21.1414i 1.38612 0.888638i
\(567\) 0.759585 + 0.264159i 0.0318996 + 0.0110936i
\(568\) 0.957124 1.26976i 0.0401600 0.0532780i
\(569\) 7.96777 4.60019i 0.334026 0.192850i −0.323601 0.946194i \(-0.604894\pi\)
0.657627 + 0.753344i \(0.271560\pi\)
\(570\) 0 0
\(571\) 14.8692 + 8.58473i 0.622256 + 0.359260i 0.777747 0.628578i \(-0.216363\pi\)
−0.155491 + 0.987837i \(0.549696\pi\)
\(572\) 16.7693 + 13.9084i 0.701160 + 0.581540i
\(573\) 22.9716 + 22.9716i 0.959652 + 0.959652i
\(574\) 8.96156 4.86328i 0.374048 0.202989i
\(575\) 0 0
\(576\) −28.1851 27.2339i −1.17438 1.13474i
\(577\) −7.92529 29.5776i −0.329934 1.23133i −0.909258 0.416233i \(-0.863350\pi\)
0.579324 0.815097i \(-0.303317\pi\)
\(578\) −12.1450 11.0651i −0.505167 0.460249i
\(579\) 6.49731 + 11.2537i 0.270019 + 0.467687i
\(580\) 0 0
\(581\) 13.5662 + 9.21126i 0.562819 + 0.382147i
\(582\) 13.1160 59.9737i 0.543675 2.48599i
\(583\) −40.1471 10.7574i −1.66272 0.445525i
\(584\) 8.77981 + 3.54876i 0.363311 + 0.146849i
\(585\) 0 0
\(586\) 2.82840 5.47146i 0.116840 0.226024i
\(587\) −31.4917 31.4917i −1.29980 1.29980i −0.928520 0.371283i \(-0.878918\pi\)
−0.371283 0.928520i \(-0.621082\pi\)
\(588\) 37.4165 + 12.1749i 1.54303 + 0.502084i
\(589\) 9.73911i 0.401293i
\(590\) 0 0
\(591\) −23.3150 13.4609i −0.959050 0.553708i
\(592\) −5.43731 + 7.95753i −0.223472 + 0.327053i
\(593\) −1.97132 + 7.35708i −0.0809525 + 0.302119i −0.994517 0.104575i \(-0.966652\pi\)
0.913564 + 0.406694i \(0.133318\pi\)
\(594\) −20.2326 + 12.9711i −0.830155 + 0.532212i
\(595\) 0 0
\(596\) 7.47885 16.2810i 0.306346 0.666895i
\(597\) −4.72275 1.26546i −0.193289 0.0517917i
\(598\) 17.5369 19.2484i 0.717136 0.787125i
\(599\) 0.0710719 0.123100i 0.00290392 0.00502974i −0.864570 0.502513i \(-0.832409\pi\)
0.867474 + 0.497483i \(0.165742\pi\)
\(600\) 0 0
\(601\) −13.9872 −0.570550 −0.285275 0.958446i \(-0.592085\pi\)
−0.285275 + 0.958446i \(0.592085\pi\)
\(602\) 5.96279 20.1144i 0.243025 0.819801i
\(603\) −20.3363 + 20.3363i −0.828157 + 0.828157i
\(604\) −13.4119 + 1.25075i −0.545724 + 0.0508923i
\(605\) 0 0
\(606\) −2.11803 45.5223i −0.0860390 1.84922i
\(607\) 8.48876 31.6805i 0.344548 1.28587i −0.548591 0.836091i \(-0.684835\pi\)
0.893139 0.449781i \(-0.148498\pi\)
\(608\) −7.50247 13.9223i −0.304265 0.564622i
\(609\) −5.58221 11.5350i −0.226203 0.467423i
\(610\) 0 0
\(611\) 18.7255 10.8112i 0.757554 0.437374i
\(612\) 22.4087 + 3.81920i 0.905817 + 0.154382i
\(613\) 5.00032 1.33983i 0.201961 0.0541153i −0.156420 0.987691i \(-0.549995\pi\)
0.358381 + 0.933575i \(0.383329\pi\)
\(614\) 12.2467 23.6909i 0.494236 0.956086i
\(615\) 0 0
\(616\) −19.7957 + 13.2599i −0.797590 + 0.534256i
\(617\) −18.4714 + 18.4714i −0.743630 + 0.743630i −0.973275 0.229644i \(-0.926244\pi\)
0.229644 + 0.973275i \(0.426244\pi\)
\(618\) 49.6215 15.8018i 1.99607 0.635642i
\(619\) −4.38197 + 7.58980i −0.176126 + 0.305060i −0.940551 0.339654i \(-0.889690\pi\)
0.764424 + 0.644714i \(0.223023\pi\)
\(620\) 0 0
\(621\) 14.3624 + 24.8764i 0.576343 + 0.998255i
\(622\) 0.472576 2.16089i 0.0189486 0.0866437i
\(623\) 5.01657 + 5.80684i 0.200985 + 0.232646i
\(624\) −25.0592 29.1797i −1.00317 1.16812i
\(625\) 0 0
\(626\) 17.2038 0.800447i 0.687604 0.0319923i
\(627\) −24.1653 + 6.47506i −0.965068 + 0.258589i
\(628\) −17.5252 14.5353i −0.699330 0.580022i
\(629\) 5.58989i 0.222883i
\(630\) 0 0
\(631\) 31.2397i 1.24363i 0.783164 + 0.621816i \(0.213605\pi\)
−0.783164 + 0.621816i \(0.786395\pi\)
\(632\) −2.85425 + 23.2181i −0.113536 + 0.923568i
\(633\) −64.4986 + 17.2823i −2.56359 + 0.686911i
\(634\) 1.80029 + 38.6932i 0.0714985 + 1.53670i
\(635\) 0 0
\(636\) 66.6796 + 30.6300i 2.64402 + 1.21456i
\(637\) 21.9876 + 9.49304i 0.871180 + 0.376128i
\(638\) 7.58062 + 1.65785i 0.300120 + 0.0656348i
\(639\) 1.37709 + 2.38520i 0.0544770 + 0.0943569i
\(640\) 0 0
\(641\) −24.9696 + 43.2485i −0.986238 + 1.70821i −0.349939 + 0.936772i \(0.613798\pi\)
−0.636299 + 0.771443i \(0.719535\pi\)
\(642\) −0.495716 1.55667i −0.0195644 0.0614369i
\(643\) −16.3136 + 16.3136i −0.643345 + 0.643345i −0.951376 0.308031i \(-0.900330\pi\)
0.308031 + 0.951376i \(0.400330\pi\)
\(644\) 14.7314 + 24.3707i 0.580499 + 0.960341i
\(645\) 0 0
\(646\) 8.14837 + 4.21219i 0.320593 + 0.165727i
\(647\) 15.5722 4.17257i 0.612208 0.164041i 0.0606248 0.998161i \(-0.480691\pi\)
0.551583 + 0.834120i \(0.314024\pi\)
\(648\) 0.791438 0.335810i 0.0310906 0.0131919i
\(649\) 5.24671 3.02919i 0.205951 0.118906i
\(650\) 0 0
\(651\) 25.8349 + 1.88633i 1.01255 + 0.0739310i
\(652\) −0.00530642 + 0.00196583i −0.000207816 + 7.69879e-5i
\(653\) −5.86041 + 21.8713i −0.229335 + 0.855891i 0.751286 + 0.659977i \(0.229434\pi\)
−0.980621 + 0.195914i \(0.937233\pi\)
\(654\) −28.9977 + 1.34918i −1.13390 + 0.0527572i
\(655\) 0 0
\(656\) 3.61062 10.2847i 0.140971 0.401552i
\(657\) −11.5985 + 11.5985i −0.452501 + 0.452501i
\(658\) 5.51536 + 22.9946i 0.215011 + 0.896421i
\(659\) 0.119381 0.00465044 0.00232522 0.999997i \(-0.499260\pi\)
0.00232522 + 0.999997i \(0.499260\pi\)
\(660\) 0 0
\(661\) 10.3433 17.9151i 0.402307 0.696816i −0.591697 0.806161i \(-0.701542\pi\)
0.994004 + 0.109344i \(0.0348751\pi\)
\(662\) 4.08983 + 3.72618i 0.158956 + 0.144822i
\(663\) 21.5484 + 5.77388i 0.836871 + 0.224239i
\(664\) 17.3597 2.43718i 0.673689 0.0945810i
\(665\) 0 0
\(666\) −9.00968 14.0535i −0.349118 0.544562i
\(667\) 2.40041 8.95846i 0.0929443 0.346873i
\(668\) −6.48210 1.10477i −0.250800 0.0427449i
\(669\) 45.5445 + 26.2951i 1.76085 + 1.01663i
\(670\) 0 0
\(671\) 37.1869i 1.43559i
\(672\) 38.3847 17.2052i 1.48072 0.663706i
\(673\) −34.9098 34.9098i −1.34568 1.34568i −0.890299 0.455376i \(-0.849505\pi\)
−0.455376 0.890299i \(-0.650495\pi\)
\(674\) 22.4653 + 11.6131i 0.865330 + 0.447321i
\(675\) 0 0
\(676\) 1.49704 + 2.11217i 0.0575784 + 0.0812373i
\(677\) −4.94915 1.32612i −0.190211 0.0509669i 0.162456 0.986716i \(-0.448059\pi\)
−0.352667 + 0.935749i \(0.614725\pi\)
\(678\) 63.8660 + 13.9672i 2.45276 + 0.536408i
\(679\) 33.8082 + 22.9554i 1.29744 + 0.880946i
\(680\) 0 0
\(681\) −29.2147 50.6014i −1.11951 1.93905i
\(682\) −10.5639 + 11.5949i −0.404513 + 0.443992i
\(683\) 10.8385 + 40.4498i 0.414724 + 1.54777i 0.785389 + 0.619003i \(0.212463\pi\)
−0.370665 + 0.928767i \(0.620870\pi\)
\(684\) 27.2749 2.54356i 1.04288 0.0972553i
\(685\) 0 0
\(686\) −16.7880 + 20.1038i −0.640970 + 0.767566i
\(687\) 35.5235 + 35.5235i 1.35530 + 1.35530i
\(688\) −9.71049 20.2170i −0.370209 0.770766i
\(689\) 38.6789 + 22.3313i 1.47355 + 0.850755i
\(690\) 0 0
\(691\) −29.5825 + 17.0795i −1.12537 + 0.649734i −0.942767 0.333452i \(-0.891787\pi\)
−0.182606 + 0.983186i \(0.558453\pi\)
\(692\) 11.1657 + 30.1400i 0.424457 + 1.14575i
\(693\) −7.75009 40.5352i −0.294402 1.53981i
\(694\) −4.57924 7.14280i −0.173826 0.271137i
\(695\) 0 0
\(696\) −12.7013 5.13379i −0.481440 0.194596i
\(697\) 1.63627 + 6.10663i 0.0619780 + 0.231305i
\(698\) 20.4637 6.51659i 0.774562 0.246657i
\(699\) 0.991682 0.0375089
\(700\) 0 0
\(701\) −28.1444 −1.06300 −0.531499 0.847059i \(-0.678371\pi\)
−0.531499 + 0.847059i \(0.678371\pi\)
\(702\) 24.6080 7.83633i 0.928770 0.295763i
\(703\) −1.74345 6.50664i −0.0657554 0.245402i
\(704\) −6.16927 + 24.7130i −0.232513 + 0.931406i
\(705\) 0 0
\(706\) −26.2647 40.9682i −0.988483 1.54186i
\(707\) 28.6515 + 9.96406i 1.07755 + 0.374737i
\(708\) −10.0297 + 3.71562i −0.376938 + 0.139641i
\(709\) −3.23053 + 1.86515i −0.121325 + 0.0700471i −0.559434 0.828875i \(-0.688982\pi\)
0.438109 + 0.898922i \(0.355648\pi\)
\(710\) 0 0
\(711\) −35.0903 20.2594i −1.31599 0.759788i
\(712\) 8.14221 + 1.00094i 0.305142 + 0.0375118i
\(713\) 13.2564 + 13.2564i 0.496456 + 0.496456i
\(714\) −12.7519 + 20.7993i −0.477228 + 0.778395i
\(715\) 0 0
\(716\) −3.37509 36.1915i −0.126133 1.35254i
\(717\) 17.5366 + 65.4475i 0.654917 + 2.44418i
\(718\) −8.00510 + 8.78636i −0.298748 + 0.327904i
\(719\) −14.3205 24.8039i −0.534066 0.925029i −0.999208 0.0397933i \(-0.987330\pi\)
0.465142 0.885236i \(-0.346003\pi\)
\(720\) 0 0
\(721\) −2.52432 + 34.5728i −0.0940106 + 1.28756i
\(722\) −15.4512 3.37911i −0.575034 0.125757i
\(723\) −11.8207 3.16736i −0.439618 0.117795i
\(724\) 6.99122 4.95515i 0.259827 0.184157i
\(725\) 0 0
\(726\) −3.04582 1.57450i −0.113041 0.0584350i
\(727\) 35.3576 + 35.3576i 1.31134 + 1.31134i 0.920429 + 0.390911i \(0.127840\pi\)
0.390911 + 0.920429i \(0.372160\pi\)
\(728\) 24.2348 8.25757i 0.898200 0.306046i
\(729\) 43.5147i 1.61166i
\(730\) 0 0
\(731\) 11.2655 + 6.50414i 0.416669 + 0.240564i
\(732\) 11.0303 64.7186i 0.407690 2.39207i
\(733\) 5.31453 19.8341i 0.196297 0.732589i −0.795631 0.605782i \(-0.792860\pi\)
0.991927 0.126807i \(-0.0404730\pi\)
\(734\) −23.4731 36.6138i −0.866407 1.35144i
\(735\) 0 0
\(736\) 29.1623 + 8.73831i 1.07494 + 0.322098i
\(737\) 18.0541 + 4.83758i 0.665031 + 0.178194i
\(738\) 13.9563 + 12.7153i 0.513738 + 0.468058i
\(739\) 24.2010 41.9174i 0.890249 1.54196i 0.0506730 0.998715i \(-0.483863\pi\)
0.839576 0.543242i \(-0.182803\pi\)
\(740\) 0 0
\(741\) 26.8832 0.987579
\(742\) −35.4374 + 33.6146i −1.30095 + 1.23403i
\(743\) 3.78255 3.78255i 0.138768 0.138768i −0.634310 0.773078i \(-0.718716\pi\)
0.773078 + 0.634310i \(0.218716\pi\)
\(744\) 21.8242 17.0459i 0.800115 0.624931i
\(745\) 0 0
\(746\) 21.2435 0.988403i 0.777781 0.0361880i
\(747\) −7.85869 + 29.3290i −0.287535 + 1.07309i
\(748\) −5.13212 13.8533i −0.187649 0.506526i
\(749\) 1.08458 + 0.0791901i 0.0396296 + 0.00289354i
\(750\) 0 0
\(751\) −15.5554 + 8.98090i −0.567623 + 0.327718i −0.756200 0.654341i \(-0.772946\pi\)
0.188576 + 0.982059i \(0.439613\pi\)
\(752\) 20.8723 + 14.2618i 0.761133 + 0.520075i
\(753\) −36.2076 + 9.70180i −1.31948 + 0.353553i
\(754\) −7.40724 3.82908i −0.269756 0.139447i
\(755\) 0 0
\(756\) 0.567715 + 28.2378i 0.0206476 + 1.02700i
\(757\) 35.0017 35.0017i 1.27216 1.27216i 0.327204 0.944954i \(-0.393894\pi\)
0.944954 0.327204i \(-0.106106\pi\)
\(758\) −0.825034 2.59081i −0.0299666 0.0941024i
\(759\) 24.0790 41.7061i 0.874013 1.51384i
\(760\) 0 0
\(761\) −18.0493 31.2622i −0.654285 1.13325i −0.982073 0.188503i \(-0.939636\pi\)
0.327788 0.944751i \(-0.393697\pi\)
\(762\) 7.25651 + 1.58697i 0.262876 + 0.0574897i
\(763\) 6.34710 18.2510i 0.229781 0.660730i
\(764\) −9.64999 + 21.0074i −0.349125 + 0.760022i
\(765\) 0 0
\(766\) −1.05069 22.5824i −0.0379631 0.815934i
\(767\) −6.28831 + 1.68495i −0.227058 + 0.0608399i
\(768\) 18.0670 41.1796i 0.651937 1.48594i
\(769\) 22.5137i 0.811865i −0.913903 0.405933i \(-0.866947\pi\)
0.913903 0.405933i \(-0.133053\pi\)
\(770\) 0 0
\(771\) 28.2691i 1.01809i
\(772\) −5.90328 + 7.11756i −0.212464 + 0.256167i
\(773\) 22.3506 5.98883i 0.803896 0.215403i 0.166602 0.986024i \(-0.446720\pi\)
0.637294 + 0.770621i \(0.280054\pi\)
\(774\) 38.8057 1.80552i 1.39484 0.0648982i
\(775\) 0 0
\(776\) 43.2622 6.07370i 1.55302 0.218033i
\(777\) 17.5978 3.36460i 0.631318 0.120704i
\(778\) −3.42368 + 15.6550i −0.122745 + 0.561259i
\(779\) 3.80923 + 6.59778i 0.136480 + 0.236390i
\(780\) 0 0
\(781\) 0.894971 1.55014i 0.0320246 0.0554682i
\(782\) −16.8246 + 5.35773i −0.601646 + 0.191592i
\(783\) 6.50425 6.50425i 0.232443 0.232443i
\(784\) 1.12541 + 27.9774i 0.0401933 + 0.999192i
\(785\) 0 0
\(786\) −7.42758 + 14.3684i −0.264933 + 0.512505i
\(787\) −35.5681 + 9.53044i −1.26787 + 0.339724i −0.829213 0.558933i \(-0.811211\pi\)
−0.438653 + 0.898657i \(0.644544\pi\)
\(788\) 3.21873 18.8855i 0.114662 0.672767i
\(789\) −26.1715 + 15.1101i −0.931731 + 0.537935i
\(790\) 0 0
\(791\) −24.4452 + 36.0024i −0.869170 + 1.28010i
\(792\) −35.2311 26.5565i −1.25188 0.943646i
\(793\) 10.3424 38.5982i 0.367268 1.37066i
\(794\) −0.766546 16.4752i −0.0272037 0.584684i
\(795\) 0 0
\(796\) −0.323065 3.46427i −0.0114507 0.122788i
\(797\) 8.30328 8.30328i 0.294117 0.294117i −0.544587 0.838704i \(-0.683314\pi\)
0.838704 + 0.544587i \(0.183314\pi\)
\(798\) −8.35605 + 28.1877i −0.295801 + 0.997832i
\(799\) −14.6620 −0.518705
\(800\) 0 0
\(801\) −7.10464 + 12.3056i −0.251030 + 0.434797i
\(802\) 26.3562 28.9284i 0.930670 1.02150i
\(803\) 10.2969 + 2.75904i 0.363369 + 0.0973645i
\(804\) −29.9857 13.7743i −1.05751 0.485781i
\(805\) 0 0
\(806\) 14.1896 9.09693i 0.499807 0.320426i
\(807\) 6.87776 25.6682i 0.242109 0.903562i
\(808\) 29.8530 12.6667i 1.05022 0.445614i
\(809\) −27.1489 15.6744i −0.954504 0.551083i −0.0600265 0.998197i \(-0.519119\pi\)
−0.894477 + 0.447114i \(0.852452\pi\)
\(810\) 0 0
\(811\) 9.76550i 0.342913i −0.985192 0.171456i \(-0.945153\pi\)
0.985192 0.171456i \(-0.0548473\pi\)
\(812\) 6.31725 6.57648i 0.221692 0.230789i
\(813\) 28.6732 + 28.6732i 1.00561 + 1.00561i
\(814\) −4.98202 + 9.63757i −0.174620 + 0.337797i
\(815\) 0 0
\(816\) 4.82262 + 25.6319i 0.168826 + 0.897297i
\(817\) 15.1416 + 4.05719i 0.529739 + 0.141943i
\(818\) −4.17892 + 19.1084i −0.146112 + 0.668109i
\(819\) −3.22937 + 44.2291i −0.112843 + 1.54549i
\(820\) 0 0
\(821\) 3.83240 + 6.63791i 0.133752 + 0.231665i 0.925120 0.379675i \(-0.123964\pi\)
−0.791368 + 0.611340i \(0.790631\pi\)
\(822\) −47.3530 43.1425i −1.65163 1.50477i
\(823\) −14.1720 52.8907i −0.494006 1.84365i −0.535530 0.844517i \(-0.679888\pi\)
0.0415239 0.999138i \(-0.486779\pi\)
\(824\) 22.8111 + 29.2056i 0.794663 + 1.01743i
\(825\) 0 0
\(826\) 0.187877 7.11716i 0.00653708 0.247638i
\(827\) −35.5553 35.5553i −1.23638 1.23638i −0.961470 0.274910i \(-0.911352\pi\)
−0.274910 0.961470i \(-0.588648\pi\)
\(828\) −33.6631 + 40.5874i −1.16987 + 1.41051i
\(829\) −23.4882 13.5609i −0.815780 0.470991i 0.0331794 0.999449i \(-0.489437\pi\)
−0.848959 + 0.528459i \(0.822770\pi\)
\(830\) 0 0
\(831\) 80.5397 46.4996i 2.79389 1.61305i
\(832\) 13.2765 23.9351i 0.460281 0.829800i
\(833\) −9.69357 13.0296i −0.335862 0.451449i
\(834\) 57.1560 36.6426i 1.97915 1.26883i
\(835\) 0 0
\(836\) −10.2945 14.5246i −0.356044 0.502342i
\(837\) 4.81237 + 17.9600i 0.166340 + 0.620789i
\(838\) 8.88173 + 27.8908i 0.306814 + 0.963472i
\(839\) 3.82948 0.132208 0.0661042 0.997813i \(-0.478943\pi\)
0.0661042 + 0.997813i \(0.478943\pi\)
\(840\) 0 0
\(841\) 26.0301 0.897589
\(842\) −11.4796 36.0489i −0.395614 1.24233i
\(843\) −7.39570 27.6011i −0.254722 0.950634i
\(844\) −27.4767 38.7669i −0.945788 1.33441i
\(845\) 0 0
\(846\) −36.8617 + 23.6320i −1.26733 + 0.812485i
\(847\) 1.72708 1.49203i 0.0593431 0.0512669i
\(848\) −3.95551 + 52.0665i −0.135833 + 1.78797i
\(849\) −67.4183 + 38.9240i −2.31379 + 1.33587i
\(850\) 0 0
\(851\) 11.2296 + 6.48342i 0.384946 + 0.222249i
\(852\) −2.01737 + 2.43233i −0.0691138 + 0.0833302i
\(853\) 1.20013 + 1.20013i 0.0410916 + 0.0410916i 0.727354 0.686262i \(-0.240750\pi\)
−0.686262 + 0.727354i \(0.740750\pi\)
\(854\) 37.2564 + 22.8416i 1.27489 + 0.781624i
\(855\) 0 0
\(856\) 0.916206 0.715604i 0.0313153 0.0244588i
\(857\) −6.85466 25.5819i −0.234151 0.873862i −0.978530 0.206105i \(-0.933921\pi\)
0.744379 0.667757i \(-0.232746\pi\)
\(858\) −32.0058 29.1599i −1.09266 0.995503i
\(859\) −19.8151 34.3208i −0.676083 1.17101i −0.976151 0.217093i \(-0.930343\pi\)
0.300068 0.953918i \(-0.402991\pi\)
\(860\) 0 0
\(861\) −18.2397 + 8.82684i −0.621608 + 0.300818i
\(862\) −12.1881 + 55.7308i −0.415128 + 1.89820i
\(863\) −9.62351 2.57861i −0.327588 0.0877769i 0.0912768 0.995826i \(-0.470905\pi\)
−0.418865 + 0.908049i \(0.637572\pi\)
\(864\) 20.7148 + 21.9670i 0.704731 + 0.747334i
\(865\) 0 0
\(866\) −15.2306 + 29.4632i −0.517558 + 1.00120i
\(867\) 23.0883 + 23.0883i 0.784120 + 0.784120i
\(868\) 5.12781 + 17.7057i 0.174049 + 0.600970i
\(869\) 26.3331i 0.893290i
\(870\) 0 0
\(871\) −17.3938 10.0423i −0.589368 0.340272i
\(872\) −8.06870 19.0163i −0.273241 0.643974i
\(873\) −19.5846 + 73.0908i −0.662839 + 2.47375i
\(874\) −17.9128 + 11.4839i −0.605909 + 0.388448i
\(875\) 0 0
\(876\) −17.1019 7.85595i −0.577820 0.265428i
\(877\) 2.47836 + 0.664074i 0.0836882 + 0.0224242i 0.300420 0.953807i \(-0.402873\pi\)
−0.216732 + 0.976231i \(0.569540\pi\)
\(878\) −5.46830 + 6.00198i −0.184546 + 0.202557i
\(879\) −6.12031 + 10.6007i −0.206433 + 0.357553i
\(880\) 0 0
\(881\) 20.5639 0.692816 0.346408 0.938084i \(-0.387401\pi\)
0.346408 + 0.938084i \(0.387401\pi\)
\(882\) −45.3714 17.1337i −1.52773 0.576922i
\(883\) 26.6080 26.6080i 0.895429 0.895429i −0.0995985 0.995028i \(-0.531756\pi\)
0.995028 + 0.0995985i \(0.0317558\pi\)
\(884\) 1.47404 + 15.8064i 0.0495775 + 0.531626i
\(885\) 0 0
\(886\) 0.0562553 + 1.20908i 0.00188993 + 0.0406199i
\(887\) 1.90478 7.10873i 0.0639562 0.238688i −0.926547 0.376180i \(-0.877238\pi\)
0.990503 + 0.137492i \(0.0439042\pi\)
\(888\) 11.5292 15.2951i 0.386893 0.513269i
\(889\) −2.77748 + 4.09062i −0.0931537 + 0.137195i
\(890\) 0 0
\(891\) 0.838132 0.483895i 0.0280785 0.0162111i
\(892\) −6.28760 + 36.8917i −0.210524 + 1.23523i
\(893\) −17.0666 + 4.57299i −0.571112 + 0.153029i
\(894\) −16.3508 + 31.6302i −0.546854 + 1.05787i
\(895\) 0 0
\(896\) 20.9698 + 21.3604i 0.700551 + 0.713602i
\(897\) −36.5921 + 36.5921i −1.22177 + 1.22177i
\(898\) −6.28165 + 2.00037i −0.209621 + 0.0667532i
\(899\) 3.00169 5.19908i 0.100112 0.173399i
\(900\) 0 0
\(901\) −15.1427 26.2280i −0.504478 0.873781i
\(902\) 2.62146 11.9868i 0.0872852 0.399117i
\(903\) −13.6952 + 39.3804i −0.455748 + 1.31050i
\(904\) 6.46788 + 46.0699i 0.215119 + 1.53226i
\(905\) 0 0
\(906\) 26.7409 1.24418i 0.888408 0.0413352i
\(907\) 13.4573 3.60588i 0.446843 0.119731i −0.0283786 0.999597i \(-0.509034\pi\)
0.475222 + 0.879866i \(0.342368\pi\)
\(908\) 26.5437 32.0036i 0.880884 1.06208i
\(909\) 56.1704i 1.86305i
\(910\) 0 0
\(911\) 9.10653i 0.301713i 0.988556 + 0.150856i \(0.0482031\pi\)
−0.988556 + 0.150856i \(0.951797\pi\)
\(912\) 13.6080 + 28.3315i 0.450605 + 0.938148i
\(913\) 19.0609 5.10735i 0.630823 0.169029i
\(914\) −2.09074 44.9359i −0.0691557 1.48635i
\(915\) 0 0
\(916\) −14.9228 + 32.4860i −0.493064 + 1.07337i
\(917\) −7.03857 8.14737i −0.232434 0.269050i
\(918\) −17.1079 3.74142i −0.564644 0.123485i
\(919\) −17.5872 30.4620i −0.580149 1.00485i −0.995461 0.0951683i \(-0.969661\pi\)
0.415312 0.909679i \(-0.363672\pi\)
\(920\) 0 0
\(921\) −26.5004 + 45.9000i −0.873217 + 1.51246i
\(922\) 10.0605 + 31.5923i 0.331324 + 1.04044i
\(923\) −1.36006 + 1.36006i −0.0447668 + 0.0447668i
\(924\) 40.5231 24.4951i 1.33311 0.805829i
\(925\) 0 0
\(926\) −3.27190 1.69136i −0.107521 0.0555817i
\(927\) −62.0014 + 16.6132i −2.03639 + 0.545650i
\(928\) 0.285898 9.74452i 0.00938505 0.319879i
\(929\) 32.5064 18.7676i 1.06650 0.615745i 0.139278 0.990253i \(-0.455522\pi\)
0.927223 + 0.374509i \(0.122189\pi\)
\(930\) 0 0
\(931\) −15.3472 12.1431i −0.502983 0.397974i
\(932\) 0.245150 + 0.661739i 0.00803015 + 0.0216760i
\(933\) −1.13775 + 4.24615i −0.0372483 + 0.139013i
\(934\) −11.7215 + 0.545370i −0.383540 + 0.0178451i
\(935\) 0 0
\(936\) 29.1823 + 37.3628i 0.953853 + 1.22124i
\(937\) 14.9371 14.9371i 0.487973 0.487973i −0.419693 0.907666i \(-0.637862\pi\)
0.907666 + 0.419693i \(0.137862\pi\)
\(938\) 15.9361 15.1164i 0.520333 0.493568i
\(939\) −34.2270 −1.11696
\(940\) 0 0
\(941\) −3.05589 + 5.29296i −0.0996192 + 0.172546i −0.911527 0.411240i \(-0.865096\pi\)
0.811908 + 0.583786i \(0.198429\pi\)
\(942\) 33.4484 + 30.4743i 1.08981 + 0.992905i
\(943\) −14.1655 3.79564i −0.461293 0.123603i
\(944\) −4.95878 5.77417i −0.161395 0.187933i
\(945\) 0 0
\(946\) −13.6261 21.2543i −0.443022 0.691036i
\(947\) −11.1603 + 41.6507i −0.362660 + 1.35347i 0.507905 + 0.861413i \(0.330420\pi\)
−0.870565 + 0.492053i \(0.836247\pi\)
\(948\) 7.81083 45.8291i 0.253684 1.48846i
\(949\) −9.92033 5.72751i −0.322028 0.185923i
\(950\) 0 0
\(951\) 76.9801i 2.49625i
\(952\) −17.0315 3.36749i −0.551994 0.109141i
\(953\) −26.8326 26.8326i −0.869193 0.869193i 0.123190 0.992383i \(-0.460687\pi\)
−0.992383 + 0.123190i \(0.960687\pi\)
\(954\) −80.3441 41.5328i −2.60123 1.34467i
\(955\) 0 0
\(956\) −39.3373 + 27.8810i −1.27226 + 0.901736i
\(957\) −14.8959 3.99135i −0.481517 0.129022i
\(958\) −19.3398 4.22953i −0.624841 0.136650i
\(959\) 38.3826 18.5747i 1.23944 0.599809i
\(960\) 0 0
\(961\) −9.43240 16.3374i −0.304271 0.527013i
\(962\) 7.85148 8.61774i 0.253142 0.277847i
\(963\) 0.521171 + 1.94504i 0.0167945 + 0.0626779i
\(964\) −0.808611 8.67084i −0.0260436 0.279269i
\(965\) 0 0
\(966\) −26.9938 49.7415i −0.868511 1.60041i
\(967\) 9.65871 + 9.65871i 0.310603 + 0.310603i 0.845143 0.534540i \(-0.179515\pi\)
−0.534540 + 0.845143i \(0.679515\pi\)
\(968\) 0.297700 2.42167i 0.00956845 0.0778353i
\(969\) −15.7871 9.11468i −0.507155 0.292806i
\(970\) 0 0
\(971\) −18.9435 + 10.9371i −0.607927 + 0.350987i −0.772154 0.635436i \(-0.780821\pi\)
0.164226 + 0.986423i \(0.447487\pi\)
\(972\) 28.4284 10.5317i 0.911843 0.337804i
\(973\) 8.48690 + 44.3890i 0.272078 + 1.42305i
\(974\) 20.2623 + 31.6056i 0.649246 + 1.01271i
\(975\) 0 0
\(976\) 45.9128 8.63844i 1.46963 0.276510i
\(977\) 6.74446 + 25.1707i 0.215774 + 0.805281i 0.985893 + 0.167380i \(0.0535306\pi\)
−0.770118 + 0.637901i \(0.779803\pi\)
\(978\) 0.0107159 0.00341244i 0.000342657 0.000109118i
\(979\) 9.23458 0.295138
\(980\) 0 0
\(981\) 35.7805 1.14238
\(982\) −47.9545 + 15.2709i −1.53029 + 0.487315i
\(983\) 12.5590 + 46.8710i 0.400571 + 1.49495i 0.812080 + 0.583547i \(0.198336\pi\)
−0.411508 + 0.911406i \(0.634998\pi\)
\(984\) −8.11777 + 20.0838i −0.258785 + 0.640248i
\(985\) 0 0
\(986\) 3.05165 + 4.76002i 0.0971842 + 0.151590i
\(987\) −8.82518 46.1583i −0.280909 1.46923i
\(988\) 6.64569 + 17.9389i 0.211427 + 0.570712i
\(989\) −26.1325 + 15.0876i −0.830965 + 0.479758i
\(990\) 0 0
\(991\) −3.40592 1.96641i −0.108193 0.0624650i 0.444927 0.895567i \(-0.353230\pi\)
−0.553120 + 0.833102i \(0.686563\pi\)
\(992\) 16.7696 + 10.3492i 0.532435 + 0.328589i
\(993\) −7.77497 7.77497i −0.246731 0.246731i
\(994\) −1.00331 1.84879i −0.0318230 0.0586402i
\(995\) 0 0
\(996\) −34.6877 + 3.23485i −1.09912 + 0.102500i
\(997\) −13.2857 49.5831i −0.420764 1.57031i −0.773004 0.634402i \(-0.781247\pi\)
0.352240 0.935910i \(-0.385420\pi\)
\(998\) −9.41233 + 10.3309i −0.297942 + 0.327020i
\(999\) 6.43023 + 11.1375i 0.203443 + 0.352374i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 700.2.be.e.543.8 72
4.3 odd 2 inner 700.2.be.e.543.4 72
5.2 odd 4 inner 700.2.be.e.207.16 72
5.3 odd 4 140.2.w.b.67.3 yes 72
5.4 even 2 140.2.w.b.123.11 yes 72
7.2 even 3 inner 700.2.be.e.443.6 72
20.3 even 4 140.2.w.b.67.13 yes 72
20.7 even 4 inner 700.2.be.e.207.6 72
20.19 odd 2 140.2.w.b.123.15 yes 72
28.23 odd 6 inner 700.2.be.e.443.16 72
35.2 odd 12 inner 700.2.be.e.107.4 72
35.3 even 12 980.2.k.j.687.11 36
35.4 even 6 980.2.k.k.883.2 36
35.9 even 6 140.2.w.b.23.13 yes 72
35.13 even 4 980.2.x.m.67.3 72
35.18 odd 12 980.2.k.k.687.11 36
35.19 odd 6 980.2.x.m.863.13 72
35.23 odd 12 140.2.w.b.107.15 yes 72
35.24 odd 6 980.2.k.j.883.2 36
35.33 even 12 980.2.x.m.667.15 72
35.34 odd 2 980.2.x.m.263.11 72
140.3 odd 12 980.2.k.j.687.2 36
140.19 even 6 980.2.x.m.863.3 72
140.23 even 12 140.2.w.b.107.11 yes 72
140.39 odd 6 980.2.k.k.883.11 36
140.59 even 6 980.2.k.j.883.11 36
140.79 odd 6 140.2.w.b.23.3 72
140.83 odd 4 980.2.x.m.67.13 72
140.103 odd 12 980.2.x.m.667.11 72
140.107 even 12 inner 700.2.be.e.107.8 72
140.123 even 12 980.2.k.k.687.2 36
140.139 even 2 980.2.x.m.263.15 72
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
140.2.w.b.23.3 72 140.79 odd 6
140.2.w.b.23.13 yes 72 35.9 even 6
140.2.w.b.67.3 yes 72 5.3 odd 4
140.2.w.b.67.13 yes 72 20.3 even 4
140.2.w.b.107.11 yes 72 140.23 even 12
140.2.w.b.107.15 yes 72 35.23 odd 12
140.2.w.b.123.11 yes 72 5.4 even 2
140.2.w.b.123.15 yes 72 20.19 odd 2
700.2.be.e.107.4 72 35.2 odd 12 inner
700.2.be.e.107.8 72 140.107 even 12 inner
700.2.be.e.207.6 72 20.7 even 4 inner
700.2.be.e.207.16 72 5.2 odd 4 inner
700.2.be.e.443.6 72 7.2 even 3 inner
700.2.be.e.443.16 72 28.23 odd 6 inner
700.2.be.e.543.4 72 4.3 odd 2 inner
700.2.be.e.543.8 72 1.1 even 1 trivial
980.2.k.j.687.2 36 140.3 odd 12
980.2.k.j.687.11 36 35.3 even 12
980.2.k.j.883.2 36 35.24 odd 6
980.2.k.j.883.11 36 140.59 even 6
980.2.k.k.687.2 36 140.123 even 12
980.2.k.k.687.11 36 35.18 odd 12
980.2.k.k.883.2 36 35.4 even 6
980.2.k.k.883.11 36 140.39 odd 6
980.2.x.m.67.3 72 35.13 even 4
980.2.x.m.67.13 72 140.83 odd 4
980.2.x.m.263.11 72 35.34 odd 2
980.2.x.m.263.15 72 140.139 even 2
980.2.x.m.667.11 72 140.103 odd 12
980.2.x.m.667.15 72 35.33 even 12
980.2.x.m.863.3 72 140.19 even 6
980.2.x.m.863.13 72 35.19 odd 6