Properties

Label 700.2.be.e.443.16
Level $700$
Weight $2$
Character 700.443
Analytic conductor $5.590$
Analytic rank $0$
Dimension $72$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [700,2,Mod(107,700)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(700, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([6, 3, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("700.107"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 700 = 2^{2} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 700.be (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [72,-2,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.58952814149\)
Analytic rank: \(0\)
Dimension: \(72\)
Relative dimension: \(18\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 140)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 443.16
Character \(\chi\) \(=\) 700.443
Dual form 700.2.be.e.207.16

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.34754 + 0.429119i) q^{2} +(2.71477 + 0.727420i) q^{3} +(1.63171 + 1.15651i) q^{4} +(3.34610 + 2.14518i) q^{6} +(-2.59868 - 0.496852i) q^{7} +(1.70252 + 2.25864i) q^{8} +(4.24276 + 2.44956i) q^{9} +(2.75736 - 1.59196i) q^{11} +(3.58846 + 4.32659i) q^{12} +(-2.41925 - 2.41925i) q^{13} +(-3.28861 - 1.78467i) q^{14} +(1.32498 + 3.77418i) q^{16} +(-2.24094 - 0.600458i) q^{17} +(4.66612 + 5.12151i) q^{18} +(-1.39787 + 2.42118i) q^{19} +(-6.69340 - 3.23917i) q^{21} +(4.39878 - 0.961994i) q^{22} +(-1.39288 - 5.19830i) q^{23} +(2.97897 + 7.37012i) q^{24} +(-2.22189 - 4.29818i) q^{26} +(3.77420 + 3.77420i) q^{27} +(-3.66569 - 3.81611i) q^{28} +1.72334i q^{29} +(-3.01685 + 1.74178i) q^{31} +(0.165897 + 5.65442i) q^{32} +(8.64362 - 2.31605i) q^{33} +(-2.76208 - 1.77077i) q^{34} +(4.09004 + 8.90375i) q^{36} +(0.623610 + 2.32734i) q^{37} +(-2.92265 + 2.66278i) q^{38} +(-4.80790 - 8.32752i) q^{39} +2.72503 q^{41} +(-7.62961 - 7.23716i) q^{42} +(-3.96477 + 3.96477i) q^{43} +(6.34034 + 0.591276i) q^{44} +(0.353728 - 7.60261i) q^{46} +(-6.10452 + 1.63570i) q^{47} +(0.851615 + 11.2098i) q^{48} +(6.50628 + 2.58232i) q^{49} +(-5.64685 - 3.26021i) q^{51} +(-1.14965 - 6.74541i) q^{52} +(3.37866 - 12.6093i) q^{53} +(3.46629 + 6.70545i) q^{54} +(-3.30209 - 6.71537i) q^{56} +(-5.55610 + 5.55610i) q^{57} +(-0.739519 + 2.32227i) q^{58} +(-0.951402 - 1.64788i) q^{59} +(5.83980 - 10.1148i) q^{61} +(-4.81275 + 1.05253i) q^{62} +(-9.80850 - 8.47363i) q^{63} +(-2.20286 + 7.69073i) q^{64} +(12.6415 + 0.588172i) q^{66} +(1.51938 - 5.67039i) q^{67} +(-2.96214 - 3.57144i) q^{68} -15.1254i q^{69} +0.562181i q^{71} +(1.69071 + 13.7532i) q^{72} +(-0.866554 + 3.23402i) q^{73} +(-0.158369 + 3.40378i) q^{74} +(-5.08103 + 2.33403i) q^{76} +(-7.95646 + 2.76700i) q^{77} +(-2.90533 - 13.2848i) q^{78} +(-4.13532 + 7.16259i) q^{79} +(0.151981 + 0.263239i) q^{81} +(3.67208 + 1.16936i) q^{82} +(-4.38250 + 4.38250i) q^{83} +(-7.17559 - 13.0264i) q^{84} +(-7.04404 + 3.64132i) q^{86} +(-1.25360 + 4.67848i) q^{87} +(8.29011 + 3.51752i) q^{88} +(-2.51180 - 1.45019i) q^{89} +(5.08485 + 7.48887i) q^{91} +(3.73908 - 10.0930i) q^{92} +(-9.45706 + 2.53401i) q^{93} +(-8.92798 - 0.415394i) q^{94} +(-3.66277 + 15.4711i) q^{96} +(10.9216 - 10.9216i) q^{97} +(7.65933 + 6.27174i) q^{98} +15.5984 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 72 q - 2 q^{2} - 16 q^{6} + 4 q^{8} - 10 q^{12} - 28 q^{16} - 4 q^{17} + 20 q^{18} + 4 q^{21} + 16 q^{22} - 4 q^{26} - 42 q^{28} + 38 q^{32} + 64 q^{33} + 16 q^{36} + 4 q^{37} - 12 q^{38} - 40 q^{41} - 78 q^{42}+ \cdots + 90 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/700\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(351\) \(477\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.34754 + 0.429119i 0.952853 + 0.303433i
\(3\) 2.71477 + 0.727420i 1.56737 + 0.419976i 0.934988 0.354678i \(-0.115410\pi\)
0.632384 + 0.774655i \(0.282076\pi\)
\(4\) 1.63171 + 1.15651i 0.815857 + 0.578253i
\(5\) 0 0
\(6\) 3.34610 + 2.14518i 1.36604 + 0.875768i
\(7\) −2.59868 0.496852i −0.982209 0.187792i
\(8\) 1.70252 + 2.25864i 0.601931 + 0.798548i
\(9\) 4.24276 + 2.44956i 1.41425 + 0.816519i
\(10\) 0 0
\(11\) 2.75736 1.59196i 0.831375 0.479994i −0.0229484 0.999737i \(-0.507305\pi\)
0.854323 + 0.519742i \(0.173972\pi\)
\(12\) 3.58846 + 4.32659i 1.03590 + 1.24898i
\(13\) −2.41925 2.41925i −0.670980 0.670980i 0.286962 0.957942i \(-0.407355\pi\)
−0.957942 + 0.286962i \(0.907355\pi\)
\(14\) −3.28861 1.78467i −0.878918 0.476973i
\(15\) 0 0
\(16\) 1.32498 + 3.77418i 0.331246 + 0.943544i
\(17\) −2.24094 0.600458i −0.543508 0.145632i −0.0233890 0.999726i \(-0.507446\pi\)
−0.520119 + 0.854094i \(0.674112\pi\)
\(18\) 4.66612 + 5.12151i 1.09982 + 1.20715i
\(19\) −1.39787 + 2.42118i −0.320693 + 0.555456i −0.980631 0.195863i \(-0.937249\pi\)
0.659938 + 0.751320i \(0.270582\pi\)
\(20\) 0 0
\(21\) −6.69340 3.23917i −1.46062 0.706845i
\(22\) 4.39878 0.961994i 0.937824 0.205098i
\(23\) −1.39288 5.19830i −0.290435 1.08392i −0.944775 0.327719i \(-0.893720\pi\)
0.654340 0.756201i \(-0.272947\pi\)
\(24\) 2.97897 + 7.37012i 0.608079 + 1.50442i
\(25\) 0 0
\(26\) −2.22189 4.29818i −0.435748 0.842942i
\(27\) 3.77420 + 3.77420i 0.726345 + 0.726345i
\(28\) −3.66569 3.81611i −0.692751 0.721177i
\(29\) 1.72334i 0.320017i 0.987116 + 0.160009i \(0.0511522\pi\)
−0.987116 + 0.160009i \(0.948848\pi\)
\(30\) 0 0
\(31\) −3.01685 + 1.74178i −0.541843 + 0.312833i −0.745825 0.666141i \(-0.767945\pi\)
0.203983 + 0.978974i \(0.434611\pi\)
\(32\) 0.165897 + 5.65442i 0.0293267 + 0.999570i
\(33\) 8.64362 2.31605i 1.50466 0.403173i
\(34\) −2.76208 1.77077i −0.473693 0.303684i
\(35\) 0 0
\(36\) 4.09004 + 8.90375i 0.681673 + 1.48396i
\(37\) 0.623610 + 2.32734i 0.102521 + 0.382613i 0.998052 0.0623856i \(-0.0198709\pi\)
−0.895531 + 0.444999i \(0.853204\pi\)
\(38\) −2.92265 + 2.66278i −0.474117 + 0.431959i
\(39\) −4.80790 8.32752i −0.769880 1.33347i
\(40\) 0 0
\(41\) 2.72503 0.425578 0.212789 0.977098i \(-0.431745\pi\)
0.212789 + 0.977098i \(0.431745\pi\)
\(42\) −7.62961 7.23716i −1.17728 1.11672i
\(43\) −3.96477 + 3.96477i −0.604622 + 0.604622i −0.941536 0.336914i \(-0.890617\pi\)
0.336914 + 0.941536i \(0.390617\pi\)
\(44\) 6.34034 + 0.591276i 0.955842 + 0.0891383i
\(45\) 0 0
\(46\) 0.353728 7.60261i 0.0521544 1.12094i
\(47\) −6.10452 + 1.63570i −0.890435 + 0.238591i −0.674904 0.737905i \(-0.735815\pi\)
−0.215531 + 0.976497i \(0.569148\pi\)
\(48\) 0.851615 + 11.2098i 0.122920 + 1.61800i
\(49\) 6.50628 + 2.58232i 0.929468 + 0.368903i
\(50\) 0 0
\(51\) −5.64685 3.26021i −0.790717 0.456521i
\(52\) −1.14965 6.74541i −0.159427 0.935420i
\(53\) 3.37866 12.6093i 0.464094 1.73202i −0.195780 0.980648i \(-0.562724\pi\)
0.659874 0.751376i \(-0.270610\pi\)
\(54\) 3.46629 + 6.70545i 0.471703 + 0.912496i
\(55\) 0 0
\(56\) −3.30209 6.71537i −0.441261 0.897379i
\(57\) −5.55610 + 5.55610i −0.735924 + 0.735924i
\(58\) −0.739519 + 2.32227i −0.0971036 + 0.304929i
\(59\) −0.951402 1.64788i −0.123862 0.214535i 0.797426 0.603417i \(-0.206195\pi\)
−0.921288 + 0.388882i \(0.872861\pi\)
\(60\) 0 0
\(61\) 5.83980 10.1148i 0.747709 1.29507i −0.201209 0.979548i \(-0.564487\pi\)
0.948918 0.315522i \(-0.102180\pi\)
\(62\) −4.81275 + 1.05253i −0.611220 + 0.133671i
\(63\) −9.80850 8.47363i −1.23575 1.06758i
\(64\) −2.20286 + 7.69073i −0.275358 + 0.961342i
\(65\) 0 0
\(66\) 12.6415 + 0.588172i 1.55606 + 0.0723990i
\(67\) 1.51938 5.67039i 0.185621 0.692748i −0.808875 0.587980i \(-0.799923\pi\)
0.994497 0.104768i \(-0.0334100\pi\)
\(68\) −2.96214 3.57144i −0.359212 0.433100i
\(69\) 15.1254i 1.82088i
\(70\) 0 0
\(71\) 0.562181i 0.0667186i 0.999443 + 0.0333593i \(0.0106206\pi\)
−0.999443 + 0.0333593i \(0.989379\pi\)
\(72\) 1.69071 + 13.7532i 0.199253 + 1.62084i
\(73\) −0.866554 + 3.23402i −0.101423 + 0.378514i −0.997915 0.0645454i \(-0.979440\pi\)
0.896492 + 0.443059i \(0.146107\pi\)
\(74\) −0.158369 + 3.40378i −0.0184100 + 0.395682i
\(75\) 0 0
\(76\) −5.08103 + 2.33403i −0.582834 + 0.267731i
\(77\) −7.95646 + 2.76700i −0.906723 + 0.315329i
\(78\) −2.90533 13.2848i −0.328963 1.50421i
\(79\) −4.13532 + 7.16259i −0.465260 + 0.805855i −0.999213 0.0396596i \(-0.987373\pi\)
0.533953 + 0.845514i \(0.320706\pi\)
\(80\) 0 0
\(81\) 0.151981 + 0.263239i 0.0168868 + 0.0292487i
\(82\) 3.67208 + 1.16936i 0.405513 + 0.129134i
\(83\) −4.38250 + 4.38250i −0.481042 + 0.481042i −0.905464 0.424423i \(-0.860477\pi\)
0.424423 + 0.905464i \(0.360477\pi\)
\(84\) −7.17559 13.0264i −0.782921 1.42129i
\(85\) 0 0
\(86\) −7.04404 + 3.64132i −0.759578 + 0.392654i
\(87\) −1.25360 + 4.67848i −0.134400 + 0.501586i
\(88\) 8.29011 + 3.51752i 0.883729 + 0.374969i
\(89\) −2.51180 1.45019i −0.266250 0.153720i 0.360932 0.932592i \(-0.382459\pi\)
−0.627182 + 0.778872i \(0.715792\pi\)
\(90\) 0 0
\(91\) 5.08485 + 7.48887i 0.533037 + 0.785047i
\(92\) 3.73908 10.0930i 0.389826 1.05227i
\(93\) −9.45706 + 2.53401i −0.980652 + 0.262765i
\(94\) −8.92798 0.415394i −0.920850 0.0428446i
\(95\) 0 0
\(96\) −3.66277 + 15.4711i −0.373830 + 1.57902i
\(97\) 10.9216 10.9216i 1.10892 1.10892i 0.115629 0.993292i \(-0.463111\pi\)
0.993292 0.115629i \(-0.0368885\pi\)
\(98\) 7.65933 + 6.27174i 0.773709 + 0.633541i
\(99\) 15.5984 1.56770
\(100\) 0 0
\(101\) 5.73271 + 9.92934i 0.570426 + 0.988007i 0.996522 + 0.0833288i \(0.0265552\pi\)
−0.426096 + 0.904678i \(0.640111\pi\)
\(102\) −6.21032 6.81642i −0.614914 0.674926i
\(103\) 3.39107 + 12.6556i 0.334132 + 1.24700i 0.904807 + 0.425821i \(0.140015\pi\)
−0.570676 + 0.821176i \(0.693319\pi\)
\(104\) 1.34539 9.58302i 0.131926 0.939693i
\(105\) 0 0
\(106\) 9.96376 15.5417i 0.967766 1.50954i
\(107\) 0.397018 0.106381i 0.0383812 0.0102842i −0.239577 0.970877i \(-0.577009\pi\)
0.277959 + 0.960593i \(0.410342\pi\)
\(108\) 1.79353 + 10.5233i 0.172582 + 1.01260i
\(109\) 6.32499 3.65173i 0.605824 0.349773i −0.165505 0.986209i \(-0.552926\pi\)
0.771329 + 0.636436i \(0.219592\pi\)
\(110\) 0 0
\(111\) 6.77183i 0.642753i
\(112\) −1.56800 10.4662i −0.148162 0.988963i
\(113\) 11.6304 + 11.6304i 1.09410 + 1.09410i 0.995086 + 0.0990127i \(0.0315684\pi\)
0.0990127 + 0.995086i \(0.468432\pi\)
\(114\) −9.87128 + 5.10283i −0.924530 + 0.477924i
\(115\) 0 0
\(116\) −1.99306 + 2.81201i −0.185051 + 0.261088i
\(117\) −4.33820 16.1904i −0.401067 1.49680i
\(118\) −0.574915 2.62884i −0.0529252 0.242004i
\(119\) 5.52515 + 2.67381i 0.506489 + 0.245108i
\(120\) 0 0
\(121\) −0.431317 + 0.747063i −0.0392106 + 0.0679148i
\(122\) 12.2098 11.1241i 1.10542 1.00713i
\(123\) 7.39783 + 1.98224i 0.667040 + 0.178733i
\(124\) −6.93702 0.646921i −0.622963 0.0580952i
\(125\) 0 0
\(126\) −9.58112 15.6275i −0.853554 1.39221i
\(127\) −1.32146 1.32146i −0.117261 0.117261i 0.646042 0.763302i \(-0.276423\pi\)
−0.763302 + 0.646042i \(0.776423\pi\)
\(128\) −6.26868 + 9.41826i −0.554078 + 0.832465i
\(129\) −13.6475 + 7.87939i −1.20159 + 0.693741i
\(130\) 0 0
\(131\) −3.52422 2.03471i −0.307912 0.177773i 0.338080 0.941118i \(-0.390223\pi\)
−0.645992 + 0.763344i \(0.723556\pi\)
\(132\) 16.7824 + 6.21727i 1.46072 + 0.541144i
\(133\) 4.83558 5.59733i 0.419298 0.485350i
\(134\) 4.48068 6.98907i 0.387072 0.603764i
\(135\) 0 0
\(136\) −2.45903 6.08376i −0.210860 0.521678i
\(137\) 15.5676 + 4.17132i 1.33003 + 0.356380i 0.852726 0.522359i \(-0.174948\pi\)
0.477303 + 0.878739i \(0.341615\pi\)
\(138\) 6.49058 20.3820i 0.552515 1.73503i
\(139\) −17.0814 −1.44882 −0.724411 0.689369i \(-0.757888\pi\)
−0.724411 + 0.689369i \(0.757888\pi\)
\(140\) 0 0
\(141\) −17.7622 −1.49585
\(142\) −0.241242 + 0.757560i −0.0202446 + 0.0635730i
\(143\) −10.5221 2.81939i −0.879902 0.235769i
\(144\) −3.62347 + 19.2585i −0.301956 + 1.60488i
\(145\) 0 0
\(146\) −2.55549 + 3.98611i −0.211494 + 0.329893i
\(147\) 15.7846 + 11.7432i 1.30189 + 0.968562i
\(148\) −1.67403 + 4.51877i −0.137605 + 0.371441i
\(149\) 7.75810 + 4.47914i 0.635569 + 0.366946i 0.782905 0.622141i \(-0.213737\pi\)
−0.147337 + 0.989086i \(0.547070\pi\)
\(150\) 0 0
\(151\) 5.83274 3.36754i 0.474662 0.274046i −0.243527 0.969894i \(-0.578305\pi\)
0.718189 + 0.695848i \(0.244971\pi\)
\(152\) −7.84845 + 0.964826i −0.636593 + 0.0782577i
\(153\) −8.03690 8.03690i −0.649745 0.649745i
\(154\) −11.9090 + 0.314371i −0.959655 + 0.0253327i
\(155\) 0 0
\(156\) 1.78572 19.1485i 0.142972 1.53311i
\(157\) −10.9964 2.94647i −0.877606 0.235154i −0.208232 0.978080i \(-0.566771\pi\)
−0.669374 + 0.742926i \(0.733437\pi\)
\(158\) −8.64611 + 7.87732i −0.687847 + 0.626686i
\(159\) 18.3446 31.7737i 1.45482 2.51982i
\(160\) 0 0
\(161\) 1.03686 + 14.2008i 0.0817163 + 1.11918i
\(162\) 0.0918394 + 0.419942i 0.00721558 + 0.0329937i
\(163\) 0.000732309 0.00273302i 5.73589e−5 0.000214066i 0.965954 0.258712i \(-0.0832981\pi\)
−0.965897 + 0.258926i \(0.916631\pi\)
\(164\) 4.44647 + 3.15152i 0.347211 + 0.246092i
\(165\) 0 0
\(166\) −7.78619 + 4.02497i −0.604326 + 0.312398i
\(167\) −2.32482 2.32482i −0.179900 0.179900i 0.611412 0.791312i \(-0.290602\pi\)
−0.791312 + 0.611412i \(0.790602\pi\)
\(168\) −4.07952 20.6327i −0.314742 1.59185i
\(169\) 1.29445i 0.0995729i
\(170\) 0 0
\(171\) −11.8616 + 6.84831i −0.907081 + 0.523703i
\(172\) −11.0547 + 1.88409i −0.842910 + 0.143661i
\(173\) −15.5233 + 4.15945i −1.18021 + 0.316237i −0.795010 0.606596i \(-0.792535\pi\)
−0.385201 + 0.922833i \(0.625868\pi\)
\(174\) −3.69689 + 5.76649i −0.280261 + 0.437157i
\(175\) 0 0
\(176\) 9.66180 + 8.29743i 0.728286 + 0.625443i
\(177\) −1.38414 5.16567i −0.104038 0.388276i
\(178\) −2.76244 3.03204i −0.207054 0.227261i
\(179\) 9.08714 + 15.7394i 0.679205 + 1.17642i 0.975221 + 0.221235i \(0.0710086\pi\)
−0.296016 + 0.955183i \(0.595658\pi\)
\(180\) 0 0
\(181\) −4.28458 −0.318471 −0.159235 0.987241i \(-0.550903\pi\)
−0.159235 + 0.987241i \(0.550903\pi\)
\(182\) 3.63841 + 12.2735i 0.269697 + 0.909775i
\(183\) 23.2114 23.2114i 1.71584 1.71584i
\(184\) 9.36965 11.9962i 0.690740 0.884371i
\(185\) 0 0
\(186\) −13.8311 0.643525i −1.01415 0.0471855i
\(187\) −7.13498 + 1.91181i −0.521761 + 0.139806i
\(188\) −11.8525 4.39092i −0.864434 0.320241i
\(189\) −7.93272 11.6832i −0.577020 0.849824i
\(190\) 0 0
\(191\) 10.0103 + 5.77946i 0.724321 + 0.418187i 0.816341 0.577570i \(-0.195999\pi\)
−0.0920200 + 0.995757i \(0.529332\pi\)
\(192\) −11.5747 + 19.2762i −0.835329 + 1.39114i
\(193\) −1.19666 + 4.46599i −0.0861374 + 0.321469i −0.995527 0.0944758i \(-0.969882\pi\)
0.909390 + 0.415945i \(0.136549\pi\)
\(194\) 19.4040 10.0306i 1.39312 0.720156i
\(195\) 0 0
\(196\) 7.62992 + 11.7382i 0.544994 + 0.838440i
\(197\) −6.77330 + 6.77330i −0.482578 + 0.482578i −0.905954 0.423376i \(-0.860845\pi\)
0.423376 + 0.905954i \(0.360845\pi\)
\(198\) 21.0194 + 6.69356i 1.49379 + 0.475691i
\(199\) 0.869824 + 1.50658i 0.0616602 + 0.106799i 0.895208 0.445649i \(-0.147027\pi\)
−0.833547 + 0.552448i \(0.813694\pi\)
\(200\) 0 0
\(201\) 8.24951 14.2886i 0.581876 1.00784i
\(202\) 3.46418 + 15.8402i 0.243739 + 1.11451i
\(203\) 0.856247 4.47842i 0.0600968 0.314324i
\(204\) −5.44359 11.8504i −0.381128 0.829691i
\(205\) 0 0
\(206\) −0.861178 + 18.5091i −0.0600011 + 1.28959i
\(207\) 6.82387 25.4670i 0.474292 1.77008i
\(208\) 5.92521 12.3362i 0.410840 0.855358i
\(209\) 8.90141i 0.615723i
\(210\) 0 0
\(211\) 23.7584i 1.63560i −0.575506 0.817798i \(-0.695195\pi\)
0.575506 0.817798i \(-0.304805\pi\)
\(212\) 20.0958 16.6674i 1.38018 1.14472i
\(213\) −0.408942 + 1.52619i −0.0280202 + 0.104573i
\(214\) 0.580647 + 0.0270159i 0.0396922 + 0.00184677i
\(215\) 0 0
\(216\) −2.09890 + 14.9502i −0.142812 + 1.01723i
\(217\) 8.70524 3.02740i 0.590950 0.205513i
\(218\) 10.0902 2.20668i 0.683393 0.149455i
\(219\) −4.70499 + 8.14928i −0.317934 + 0.550677i
\(220\) 0 0
\(221\) 3.96874 + 6.87406i 0.266966 + 0.462399i
\(222\) −2.90592 + 9.12529i −0.195032 + 0.612449i
\(223\) −13.2313 + 13.2313i −0.886031 + 0.886031i −0.994139 0.108108i \(-0.965521\pi\)
0.108108 + 0.994139i \(0.465521\pi\)
\(224\) 2.37830 14.7765i 0.158907 0.987294i
\(225\) 0 0
\(226\) 10.6816 + 20.6633i 0.710530 + 1.37450i
\(227\) −5.38070 + 20.0810i −0.357130 + 1.33283i 0.520654 + 0.853768i \(0.325688\pi\)
−0.877783 + 0.479058i \(0.840978\pi\)
\(228\) −15.4916 + 2.64030i −1.02596 + 0.174858i
\(229\) −15.4800 8.93740i −1.02295 0.590600i −0.107992 0.994152i \(-0.534442\pi\)
−0.914957 + 0.403552i \(0.867776\pi\)
\(230\) 0 0
\(231\) −23.6127 + 1.72408i −1.55360 + 0.113436i
\(232\) −3.89241 + 2.93403i −0.255549 + 0.192628i
\(233\) −0.340822 + 0.0913229i −0.0223280 + 0.00598276i −0.269966 0.962870i \(-0.587012\pi\)
0.247638 + 0.968853i \(0.420346\pi\)
\(234\) 1.10171 23.6787i 0.0720208 1.54793i
\(235\) 0 0
\(236\) 0.353364 3.78917i 0.0230020 0.246654i
\(237\) −16.4367 + 16.4367i −1.06768 + 1.06768i
\(238\) 6.29796 + 5.97401i 0.408236 + 0.387237i
\(239\) −24.1080 −1.55941 −0.779707 0.626145i \(-0.784632\pi\)
−0.779707 + 0.626145i \(0.784632\pi\)
\(240\) 0 0
\(241\) −2.17712 3.77087i −0.140240 0.242903i 0.787347 0.616510i \(-0.211454\pi\)
−0.927587 + 0.373607i \(0.878121\pi\)
\(242\) −0.901794 + 0.821609i −0.0579695 + 0.0528150i
\(243\) −3.92325 14.6418i −0.251677 0.939270i
\(244\) 21.2267 9.75074i 1.35890 0.624227i
\(245\) 0 0
\(246\) 9.11823 + 5.84569i 0.581357 + 0.372708i
\(247\) 9.23923 2.47564i 0.587878 0.157521i
\(248\) −9.07029 3.84856i −0.575964 0.244384i
\(249\) −15.0854 + 8.70955i −0.955998 + 0.551945i
\(250\) 0 0
\(251\) 13.3373i 0.841841i −0.907098 0.420920i \(-0.861707\pi\)
0.907098 0.420920i \(-0.138293\pi\)
\(252\) −6.20485 25.1701i −0.390869 1.58557i
\(253\) −12.1162 12.1162i −0.761736 0.761736i
\(254\) −1.21365 2.34778i −0.0761514 0.147313i
\(255\) 0 0
\(256\) −12.4888 + 10.0015i −0.780552 + 0.625091i
\(257\) −2.60327 9.71554i −0.162388 0.606039i −0.998359 0.0572656i \(-0.981762\pi\)
0.835971 0.548773i \(-0.184905\pi\)
\(258\) −21.7717 + 4.76137i −1.35545 + 0.296430i
\(259\) −0.464217 6.35786i −0.0288450 0.395058i
\(260\) 0 0
\(261\) −4.22143 + 7.31173i −0.261300 + 0.452585i
\(262\) −3.87589 4.25415i −0.239453 0.262822i
\(263\) 10.3861 + 2.78295i 0.640435 + 0.171604i 0.564401 0.825501i \(-0.309107\pi\)
0.0760347 + 0.997105i \(0.475774\pi\)
\(264\) 19.9470 + 15.5797i 1.22765 + 0.958862i
\(265\) 0 0
\(266\) 8.91804 5.46758i 0.546800 0.335239i
\(267\) −5.76406 5.76406i −0.352755 0.352755i
\(268\) 9.03703 7.49529i 0.552024 0.457848i
\(269\) 8.18828 4.72750i 0.499248 0.288241i −0.229155 0.973390i \(-0.573596\pi\)
0.728403 + 0.685149i \(0.240263\pi\)
\(270\) 0 0
\(271\) 12.4949 + 7.21392i 0.759010 + 0.438214i 0.828940 0.559337i \(-0.188944\pi\)
−0.0699304 + 0.997552i \(0.522278\pi\)
\(272\) −0.702976 9.25330i −0.0426242 0.561064i
\(273\) 8.35664 + 24.0294i 0.505767 + 1.45432i
\(274\) 19.1879 + 12.3013i 1.15918 + 0.743152i
\(275\) 0 0
\(276\) 17.4926 24.6803i 1.05293 1.48558i
\(277\) 31.9620 + 8.56419i 1.92041 + 0.514572i 0.988332 + 0.152314i \(0.0486724\pi\)
0.932078 + 0.362259i \(0.117994\pi\)
\(278\) −23.0178 7.32993i −1.38051 0.439620i
\(279\) −17.0664 −1.02174
\(280\) 0 0
\(281\) −10.1670 −0.606514 −0.303257 0.952909i \(-0.598074\pi\)
−0.303257 + 0.952909i \(0.598074\pi\)
\(282\) −23.9352 7.62209i −1.42532 0.453889i
\(283\) 26.7548 + 7.16893i 1.59041 + 0.426148i 0.942128 0.335254i \(-0.108822\pi\)
0.648280 + 0.761402i \(0.275489\pi\)
\(284\) −0.650166 + 0.917319i −0.0385803 + 0.0544329i
\(285\) 0 0
\(286\) −12.9691 8.31446i −0.766877 0.491644i
\(287\) −7.08148 1.35394i −0.418007 0.0799204i
\(288\) −13.1470 + 24.3967i −0.774692 + 1.43759i
\(289\) −10.0612 5.80882i −0.591834 0.341695i
\(290\) 0 0
\(291\) 37.5943 21.7051i 2.20381 1.27237i
\(292\) −5.15414 + 4.27483i −0.301623 + 0.250165i
\(293\) 3.07964 + 3.07964i 0.179914 + 0.179914i 0.791318 0.611404i \(-0.209395\pi\)
−0.611404 + 0.791318i \(0.709395\pi\)
\(294\) 16.2311 + 22.5979i 0.946619 + 1.31793i
\(295\) 0 0
\(296\) −4.19491 + 5.37085i −0.243824 + 0.312174i
\(297\) 16.4152 + 4.39844i 0.952506 + 0.255223i
\(298\) 8.53225 + 9.36496i 0.494260 + 0.542498i
\(299\) −9.20626 + 15.9457i −0.532412 + 0.922164i
\(300\) 0 0
\(301\) 12.2731 8.33327i 0.707408 0.480322i
\(302\) 9.30491 2.03494i 0.535437 0.117098i
\(303\) 8.34018 + 31.1260i 0.479131 + 1.78814i
\(304\) −10.9901 2.06778i −0.630326 0.118595i
\(305\) 0 0
\(306\) −7.38124 14.2788i −0.421958 0.816265i
\(307\) −13.3345 13.3345i −0.761042 0.761042i 0.215469 0.976511i \(-0.430872\pi\)
−0.976511 + 0.215469i \(0.930872\pi\)
\(308\) −16.1827 4.68675i −0.922096 0.267052i
\(309\) 36.8239i 2.09484i
\(310\) 0 0
\(311\) 1.35454 0.782046i 0.0768091 0.0443457i −0.461104 0.887346i \(-0.652546\pi\)
0.537913 + 0.843001i \(0.319213\pi\)
\(312\) 10.6233 25.0370i 0.601426 1.41744i
\(313\) 11.7632 3.15193i 0.664893 0.178157i 0.0894395 0.995992i \(-0.471492\pi\)
0.575453 + 0.817835i \(0.304826\pi\)
\(314\) −13.5536 8.68922i −0.764876 0.490361i
\(315\) 0 0
\(316\) −15.0313 + 6.90478i −0.845574 + 0.388424i
\(317\) 7.08901 + 26.4565i 0.398158 + 1.48595i 0.816334 + 0.577581i \(0.196003\pi\)
−0.418175 + 0.908366i \(0.637330\pi\)
\(318\) 38.3547 34.9443i 2.15082 1.95958i
\(319\) 2.74350 + 4.75188i 0.153606 + 0.266054i
\(320\) 0 0
\(321\) 1.15520 0.0644768
\(322\) −4.69660 + 19.5810i −0.261731 + 1.09121i
\(323\) 4.58635 4.58635i 0.255191 0.255191i
\(324\) −0.0564478 + 0.605297i −0.00313599 + 0.0336276i
\(325\) 0 0
\(326\) −0.000185973 0.00399709i −1.03001e−5 0.000221378i
\(327\) 19.8272 5.31269i 1.09645 0.293792i
\(328\) 4.63941 + 6.15485i 0.256169 + 0.339845i
\(329\) 16.6764 1.21762i 0.919399 0.0671296i
\(330\) 0 0
\(331\) −3.38809 1.95612i −0.186226 0.107518i 0.403988 0.914764i \(-0.367624\pi\)
−0.590215 + 0.807246i \(0.700957\pi\)
\(332\) −12.2194 + 2.08260i −0.670625 + 0.114297i
\(333\) −3.05513 + 11.4019i −0.167420 + 0.624821i
\(334\) −2.13515 4.13040i −0.116830 0.226005i
\(335\) 0 0
\(336\) 3.35656 29.5539i 0.183115 1.61230i
\(337\) −12.6447 + 12.6447i −0.688801 + 0.688801i −0.961967 0.273166i \(-0.911929\pi\)
0.273166 + 0.961967i \(0.411929\pi\)
\(338\) 0.555471 1.74432i 0.0302137 0.0948783i
\(339\) 23.1137 + 40.0341i 1.25537 + 2.17436i
\(340\) 0 0
\(341\) −5.54569 + 9.60542i −0.300316 + 0.520163i
\(342\) −18.9227 + 4.13831i −1.02322 + 0.223774i
\(343\) −15.6247 9.94328i −0.843655 0.536886i
\(344\) −15.7051 2.20488i −0.846761 0.118879i
\(345\) 0 0
\(346\) −22.7031 1.05631i −1.22052 0.0567876i
\(347\) 1.55280 5.79511i 0.0833585 0.311098i −0.911640 0.410990i \(-0.865183\pi\)
0.994998 + 0.0998921i \(0.0318498\pi\)
\(348\) −7.45621 + 6.18416i −0.399695 + 0.331506i
\(349\) 15.1860i 0.812888i 0.913676 + 0.406444i \(0.133231\pi\)
−0.913676 + 0.406444i \(0.866769\pi\)
\(350\) 0 0
\(351\) 18.2615i 0.974725i
\(352\) 9.45906 + 15.3272i 0.504169 + 0.816941i
\(353\) −8.90620 + 33.2384i −0.474029 + 1.76910i 0.151035 + 0.988528i \(0.451739\pi\)
−0.625065 + 0.780573i \(0.714927\pi\)
\(354\) 0.351508 7.55490i 0.0186825 0.401538i
\(355\) 0 0
\(356\) −2.42139 5.27121i −0.128333 0.279373i
\(357\) 13.0545 + 11.2779i 0.690918 + 0.596889i
\(358\) 5.49120 + 25.1089i 0.290219 + 1.32705i
\(359\) 4.20241 7.27878i 0.221795 0.384159i −0.733558 0.679626i \(-0.762142\pi\)
0.955353 + 0.295467i \(0.0954752\pi\)
\(360\) 0 0
\(361\) 5.59193 + 9.68551i 0.294312 + 0.509764i
\(362\) −5.77364 1.83859i −0.303456 0.0966344i
\(363\) −1.71435 + 1.71435i −0.0899803 + 0.0899803i
\(364\) −0.363904 + 18.1004i −0.0190737 + 0.948717i
\(365\) 0 0
\(366\) 41.2387 21.3178i 2.15558 1.11430i
\(367\) 7.95960 29.7056i 0.415488 1.55062i −0.368369 0.929679i \(-0.620084\pi\)
0.783857 0.620941i \(-0.213249\pi\)
\(368\) 17.7737 12.1446i 0.926521 0.633083i
\(369\) 11.5616 + 6.67511i 0.601875 + 0.347493i
\(370\) 0 0
\(371\) −15.0450 + 31.0889i −0.781099 + 1.61406i
\(372\) −18.3618 6.80237i −0.952017 0.352687i
\(373\) 14.5253 3.89204i 0.752091 0.201522i 0.137646 0.990482i \(-0.456046\pi\)
0.614446 + 0.788959i \(0.289380\pi\)
\(374\) −10.4350 0.485514i −0.539583 0.0251053i
\(375\) 0 0
\(376\) −14.0875 11.0031i −0.726507 0.567440i
\(377\) 4.16920 4.16920i 0.214725 0.214725i
\(378\) −5.67617 19.1476i −0.291951 0.984844i
\(379\) −1.92262 −0.0987586 −0.0493793 0.998780i \(-0.515724\pi\)
−0.0493793 + 0.998780i \(0.515724\pi\)
\(380\) 0 0
\(381\) −2.62620 4.54871i −0.134544 0.233038i
\(382\) 11.0092 + 12.0836i 0.563280 + 0.618253i
\(383\) 4.13733 + 15.4407i 0.211408 + 0.788984i 0.987400 + 0.158242i \(0.0505827\pi\)
−0.775993 + 0.630742i \(0.782751\pi\)
\(384\) −23.8691 + 21.0084i −1.21806 + 1.07208i
\(385\) 0 0
\(386\) −3.52898 + 5.50459i −0.179621 + 0.280176i
\(387\) −26.5335 + 7.10963i −1.34877 + 0.361403i
\(388\) 30.4519 5.19004i 1.54596 0.263484i
\(389\) 9.81327 5.66569i 0.497552 0.287262i −0.230150 0.973155i \(-0.573922\pi\)
0.727702 + 0.685893i \(0.240588\pi\)
\(390\) 0 0
\(391\) 12.4854i 0.631415i
\(392\) 5.24454 + 19.0917i 0.264889 + 0.964279i
\(393\) −8.08735 8.08735i −0.407953 0.407953i
\(394\) −12.0338 + 6.22073i −0.606255 + 0.313396i
\(395\) 0 0
\(396\) 25.4521 + 18.0396i 1.27902 + 0.906526i
\(397\) −3.01844 11.2650i −0.151491 0.565372i −0.999380 0.0351987i \(-0.988794\pi\)
0.847889 0.530173i \(-0.177873\pi\)
\(398\) 0.525620 + 2.40343i 0.0263469 + 0.120473i
\(399\) 17.1991 11.6780i 0.861031 0.584630i
\(400\) 0 0
\(401\) 13.8361 23.9649i 0.690943 1.19675i −0.280587 0.959829i \(-0.590529\pi\)
0.971529 0.236919i \(-0.0761376\pi\)
\(402\) 17.2480 15.7144i 0.860253 0.783761i
\(403\) 11.5123 + 3.08472i 0.573470 + 0.153661i
\(404\) −2.12921 + 22.8318i −0.105932 + 1.13592i
\(405\) 0 0
\(406\) 3.07560 5.66741i 0.152639 0.281269i
\(407\) 5.42456 + 5.42456i 0.268885 + 0.268885i
\(408\) −2.25024 18.3047i −0.111403 0.906220i
\(409\) 11.9780 6.91550i 0.592274 0.341950i −0.173722 0.984795i \(-0.555579\pi\)
0.765996 + 0.642845i \(0.222246\pi\)
\(410\) 0 0
\(411\) 39.2281 + 22.6483i 1.93498 + 1.11716i
\(412\) −9.10307 + 24.5722i −0.448476 + 1.21058i
\(413\) 1.65364 + 4.75501i 0.0813702 + 0.233979i
\(414\) 20.1238 31.3895i 0.989031 1.54271i
\(415\) 0 0
\(416\) 13.2781 14.0808i 0.651013 0.690369i
\(417\) −46.3719 12.4253i −2.27084 0.608471i
\(418\) −3.81976 + 11.9950i −0.186830 + 0.586694i
\(419\) 20.6976 1.01114 0.505572 0.862784i \(-0.331281\pi\)
0.505572 + 0.862784i \(0.331281\pi\)
\(420\) 0 0
\(421\) 26.7517 1.30380 0.651898 0.758306i \(-0.273973\pi\)
0.651898 + 0.758306i \(0.273973\pi\)
\(422\) 10.1952 32.0153i 0.496293 1.55848i
\(423\) −29.9067 8.01348i −1.45411 0.389629i
\(424\) 34.2321 13.8364i 1.66246 0.671957i
\(425\) 0 0
\(426\) −1.20598 + 1.88112i −0.0584300 + 0.0911404i
\(427\) −20.2013 + 23.3837i −0.977611 + 1.13162i
\(428\) 0.770850 + 0.285571i 0.0372605 + 0.0138036i
\(429\) −26.5142 15.3080i −1.28012 0.739076i
\(430\) 0 0
\(431\) −34.9346 + 20.1695i −1.68274 + 0.971531i −0.722914 + 0.690937i \(0.757198\pi\)
−0.959827 + 0.280594i \(0.909469\pi\)
\(432\) −9.24374 + 19.2452i −0.444740 + 0.925937i
\(433\) −16.5835 16.5835i −0.796954 0.796954i 0.185660 0.982614i \(-0.440558\pi\)
−0.982614 + 0.185660i \(0.940558\pi\)
\(434\) 13.0298 0.343956i 0.625448 0.0165104i
\(435\) 0 0
\(436\) 14.5438 + 1.35630i 0.696523 + 0.0649552i
\(437\) 14.5331 + 3.89412i 0.695210 + 0.186281i
\(438\) −9.83716 + 8.96246i −0.470038 + 0.428243i
\(439\) 2.87067 4.97215i 0.137010 0.237308i −0.789354 0.613939i \(-0.789584\pi\)
0.926363 + 0.376631i \(0.122918\pi\)
\(440\) 0 0
\(441\) 21.2790 + 26.8936i 1.01329 + 1.28065i
\(442\) 2.39824 + 10.9661i 0.114073 + 0.521604i
\(443\) −0.221517 0.826713i −0.0105246 0.0392783i 0.960464 0.278405i \(-0.0898056\pi\)
−0.970988 + 0.239126i \(0.923139\pi\)
\(444\) −7.83166 + 11.0497i −0.371674 + 0.524395i
\(445\) 0 0
\(446\) −23.5074 + 12.1518i −1.11311 + 0.575407i
\(447\) 17.8032 + 17.8032i 0.842064 + 0.842064i
\(448\) 9.54570 18.8913i 0.450992 0.892528i
\(449\) 4.66158i 0.219993i −0.993932 0.109997i \(-0.964916\pi\)
0.993932 0.109997i \(-0.0350840\pi\)
\(450\) 0 0
\(451\) 7.51388 4.33814i 0.353815 0.204275i
\(452\) 5.52687 + 32.4282i 0.259962 + 1.52529i
\(453\) 18.2842 4.89923i 0.859065 0.230186i
\(454\) −15.8678 + 24.7510i −0.744715 + 1.16162i
\(455\) 0 0
\(456\) −22.0086 3.08984i −1.03065 0.144695i
\(457\) −8.23274 30.7250i −0.385111 1.43726i −0.837991 0.545684i \(-0.816270\pi\)
0.452880 0.891572i \(-0.350397\pi\)
\(458\) −17.0247 18.6863i −0.795513 0.873151i
\(459\) −6.19150 10.7240i −0.288995 0.500553i
\(460\) 0 0
\(461\) −23.4445 −1.09192 −0.545959 0.837812i \(-0.683835\pi\)
−0.545959 + 0.837812i \(0.683835\pi\)
\(462\) −32.5589 7.80940i −1.51478 0.363326i
\(463\) −1.84160 + 1.84160i −0.0855866 + 0.0855866i −0.748604 0.663017i \(-0.769276\pi\)
0.663017 + 0.748604i \(0.269276\pi\)
\(464\) −6.50421 + 2.28341i −0.301950 + 0.106004i
\(465\) 0 0
\(466\) −0.498458 0.0231919i −0.0230906 0.00107434i
\(467\) 8.01462 2.14751i 0.370872 0.0993749i −0.0685687 0.997646i \(-0.521843\pi\)
0.439441 + 0.898271i \(0.355177\pi\)
\(468\) 11.6456 31.4352i 0.538317 1.45309i
\(469\) −6.76572 + 13.9806i −0.312412 + 0.645565i
\(470\) 0 0
\(471\) −27.7093 15.9980i −1.27678 0.737147i
\(472\) 2.10217 4.95441i 0.0967603 0.228045i
\(473\) −4.62053 + 17.2441i −0.212452 + 0.792883i
\(474\) −29.2023 + 15.0957i −1.34131 + 0.693371i
\(475\) 0 0
\(476\) 5.92318 + 10.7528i 0.271488 + 0.492852i
\(477\) 45.2221 45.2221i 2.07058 2.07058i
\(478\) −32.4864 10.3452i −1.48589 0.473177i
\(479\) −6.99926 12.1231i −0.319805 0.553918i 0.660643 0.750701i \(-0.270284\pi\)
−0.980447 + 0.196783i \(0.936951\pi\)
\(480\) 0 0
\(481\) 4.12176 7.13910i 0.187936 0.325515i
\(482\) −1.31559 6.01563i −0.0599236 0.274005i
\(483\) −7.51507 + 39.3060i −0.341948 + 1.78849i
\(484\) −1.56777 + 0.720172i −0.0712622 + 0.0327351i
\(485\) 0 0
\(486\) 0.996328 21.4139i 0.0451943 0.971353i
\(487\) −6.87083 + 25.6423i −0.311347 + 1.16196i 0.615995 + 0.787750i \(0.288754\pi\)
−0.927342 + 0.374214i \(0.877913\pi\)
\(488\) 32.7881 4.03070i 1.48425 0.182461i
\(489\) 0.00795220i 0.000359611i
\(490\) 0 0
\(491\) 35.5868i 1.60601i 0.595973 + 0.803004i \(0.296766\pi\)
−0.595973 + 0.803004i \(0.703234\pi\)
\(492\) 9.77867 + 11.7901i 0.440856 + 0.531538i
\(493\) 1.03480 3.86191i 0.0466049 0.173932i
\(494\) 13.5126 + 0.628702i 0.607959 + 0.0282866i
\(495\) 0 0
\(496\) −10.5711 9.07830i −0.474655 0.407628i
\(497\) 0.279321 1.46093i 0.0125293 0.0655316i
\(498\) −24.0656 + 5.26303i −1.07840 + 0.235842i
\(499\) 4.94115 8.55833i 0.221196 0.383123i −0.733975 0.679176i \(-0.762337\pi\)
0.955172 + 0.296053i \(0.0956705\pi\)
\(500\) 0 0
\(501\) −4.62022 8.00245i −0.206416 0.357523i
\(502\) 5.72327 17.9725i 0.255442 0.802151i
\(503\) 16.5308 16.5308i 0.737071 0.737071i −0.234939 0.972010i \(-0.575489\pi\)
0.972010 + 0.234939i \(0.0754890\pi\)
\(504\) 2.43970 36.5803i 0.108673 1.62942i
\(505\) 0 0
\(506\) −11.1277 21.5262i −0.494687 0.956958i
\(507\) 0.941607 3.51413i 0.0418182 0.156068i
\(508\) −0.627968 3.68452i −0.0278616 0.163474i
\(509\) −0.789343 0.455727i −0.0349870 0.0201998i 0.482404 0.875949i \(-0.339764\pi\)
−0.517391 + 0.855749i \(0.673097\pi\)
\(510\) 0 0
\(511\) 3.85873 7.97365i 0.170700 0.352733i
\(512\) −21.1210 + 8.11815i −0.933424 + 0.358775i
\(513\) −14.4138 + 3.86218i −0.636386 + 0.170519i
\(514\) 0.661113 14.2092i 0.0291604 0.626739i
\(515\) 0 0
\(516\) −31.3814 2.92651i −1.38149 0.128833i
\(517\) −14.2284 + 14.2284i −0.625763 + 0.625763i
\(518\) 2.10273 8.76666i 0.0923885 0.385185i
\(519\) −45.1677 −1.98264
\(520\) 0 0
\(521\) 3.24107 + 5.61370i 0.141994 + 0.245941i 0.928247 0.371963i \(-0.121315\pi\)
−0.786254 + 0.617904i \(0.787982\pi\)
\(522\) −8.82613 + 8.04134i −0.386309 + 0.351960i
\(523\) −1.22075 4.55591i −0.0533798 0.199216i 0.934086 0.357047i \(-0.116217\pi\)
−0.987466 + 0.157831i \(0.949550\pi\)
\(524\) −3.39736 7.39585i −0.148415 0.323089i
\(525\) 0 0
\(526\) 12.8015 + 8.20701i 0.558170 + 0.357842i
\(527\) 7.80645 2.09173i 0.340054 0.0911173i
\(528\) 20.1938 + 29.5538i 0.878824 + 1.28616i
\(529\) −5.16358 + 2.98119i −0.224503 + 0.129617i
\(530\) 0 0
\(531\) 9.32205i 0.404542i
\(532\) 14.3636 3.54087i 0.622743 0.153516i
\(533\) −6.59253 6.59253i −0.285554 0.285554i
\(534\) −5.29382 10.2408i −0.229086 0.443161i
\(535\) 0 0
\(536\) 15.3941 6.22222i 0.664924 0.268759i
\(537\) 13.2203 + 49.3390i 0.570500 + 2.12913i
\(538\) 13.0627 2.85675i 0.563172 0.123163i
\(539\) 22.0511 3.23736i 0.949808 0.139443i
\(540\) 0 0
\(541\) −9.43554 + 16.3428i −0.405666 + 0.702633i −0.994399 0.105694i \(-0.966294\pi\)
0.588733 + 0.808328i \(0.299627\pi\)
\(542\) 13.7417 + 15.0828i 0.590256 + 0.647862i
\(543\) −11.6317 3.11669i −0.499162 0.133750i
\(544\) 3.02348 12.7708i 0.129631 0.547545i
\(545\) 0 0
\(546\) 0.949434 + 35.9665i 0.0406320 + 1.53922i
\(547\) −9.42028 9.42028i −0.402782 0.402782i 0.476430 0.879212i \(-0.341931\pi\)
−0.879212 + 0.476430i \(0.841931\pi\)
\(548\) 20.5777 + 24.8104i 0.879035 + 1.05985i
\(549\) 49.5537 28.6098i 2.11490 1.22104i
\(550\) 0 0
\(551\) −4.17252 2.40901i −0.177756 0.102627i
\(552\) 34.1627 25.7512i 1.45406 1.09605i
\(553\) 14.3051 16.5586i 0.608316 0.704145i
\(554\) 39.3949 + 25.2560i 1.67373 + 1.07303i
\(555\) 0 0
\(556\) −27.8719 19.7547i −1.18203 0.837786i
\(557\) −36.6573 9.82230i −1.55322 0.416184i −0.622711 0.782452i \(-0.713969\pi\)
−0.930509 + 0.366268i \(0.880635\pi\)
\(558\) −22.9976 7.32349i −0.973564 0.310028i
\(559\) 19.1836 0.811378
\(560\) 0 0
\(561\) −20.7605 −0.876510
\(562\) −13.7005 4.36286i −0.577919 0.184036i
\(563\) −36.6293 9.81479i −1.54374 0.413644i −0.616269 0.787536i \(-0.711357\pi\)
−0.927472 + 0.373892i \(0.878023\pi\)
\(564\) −28.9828 20.5421i −1.22040 0.864978i
\(565\) 0 0
\(566\) 32.9768 + 21.1414i 1.38612 + 0.888638i
\(567\) −0.264159 0.759585i −0.0110936 0.0318996i
\(568\) −1.26976 + 0.957124i −0.0532780 + 0.0401600i
\(569\) −7.96777 4.60019i −0.334026 0.192850i 0.323601 0.946194i \(-0.395106\pi\)
−0.657627 + 0.753344i \(0.728440\pi\)
\(570\) 0 0
\(571\) 14.8692 8.58473i 0.622256 0.359260i −0.155491 0.987837i \(-0.549696\pi\)
0.777747 + 0.628578i \(0.216363\pi\)
\(572\) −13.9084 16.7693i −0.581540 0.701160i
\(573\) 22.9716 + 22.9716i 0.959652 + 0.959652i
\(574\) −8.96156 4.86328i −0.374048 0.202989i
\(575\) 0 0
\(576\) −28.1851 + 27.2339i −1.17438 + 1.13474i
\(577\) 29.5776 + 7.92529i 1.23133 + 0.329934i 0.815097 0.579324i \(-0.196683\pi\)
0.416233 + 0.909258i \(0.363350\pi\)
\(578\) −11.0651 12.1450i −0.460249 0.505167i
\(579\) −6.49731 + 11.2537i −0.270019 + 0.467687i
\(580\) 0 0
\(581\) 13.5662 9.21126i 0.562819 0.382147i
\(582\) 59.9737 13.1160i 2.48599 0.543675i
\(583\) −10.7574 40.1471i −0.445525 1.66272i
\(584\) −8.77981 + 3.54876i −0.363311 + 0.146849i
\(585\) 0 0
\(586\) 2.82840 + 5.47146i 0.116840 + 0.226024i
\(587\) 31.4917 + 31.4917i 1.29980 + 1.29980i 0.928520 + 0.371283i \(0.121082\pi\)
0.371283 + 0.928520i \(0.378918\pi\)
\(588\) 12.1749 + 37.4165i 0.502084 + 1.54303i
\(589\) 9.73911i 0.401293i
\(590\) 0 0
\(591\) −23.3150 + 13.4609i −0.959050 + 0.553708i
\(592\) −7.95753 + 5.43731i −0.327053 + 0.223472i
\(593\) 7.35708 1.97132i 0.302119 0.0809525i −0.104575 0.994517i \(-0.533348\pi\)
0.406694 + 0.913564i \(0.366682\pi\)
\(594\) 20.2326 + 12.9711i 0.830155 + 0.532212i
\(595\) 0 0
\(596\) 7.47885 + 16.2810i 0.306346 + 0.666895i
\(597\) 1.26546 + 4.72275i 0.0517917 + 0.193289i
\(598\) −19.2484 + 17.5369i −0.787125 + 0.717136i
\(599\) −0.0710719 0.123100i −0.00290392 0.00502974i 0.864570 0.502513i \(-0.167591\pi\)
−0.867474 + 0.497483i \(0.834258\pi\)
\(600\) 0 0
\(601\) −13.9872 −0.570550 −0.285275 0.958446i \(-0.592085\pi\)
−0.285275 + 0.958446i \(0.592085\pi\)
\(602\) 20.1144 5.96279i 0.819801 0.243025i
\(603\) 20.3363 20.3363i 0.828157 0.828157i
\(604\) 13.4119 + 1.25075i 0.545724 + 0.0508923i
\(605\) 0 0
\(606\) −2.11803 + 45.5223i −0.0860390 + 1.84922i
\(607\) 31.6805 8.48876i 1.28587 0.344548i 0.449781 0.893139i \(-0.351502\pi\)
0.836091 + 0.548591i \(0.184835\pi\)
\(608\) −13.9223 7.50247i −0.564622 0.304265i
\(609\) 5.58221 11.5350i 0.226203 0.467423i
\(610\) 0 0
\(611\) 18.7255 + 10.8112i 0.757554 + 0.437374i
\(612\) −3.81920 22.4087i −0.154382 0.905817i
\(613\) −1.33983 + 5.00032i −0.0541153 + 0.201961i −0.987691 0.156420i \(-0.950005\pi\)
0.933575 + 0.358381i \(0.116671\pi\)
\(614\) −12.2467 23.6909i −0.494236 0.956086i
\(615\) 0 0
\(616\) −19.7957 13.2599i −0.797590 0.534256i
\(617\) −18.4714 + 18.4714i −0.743630 + 0.743630i −0.973275 0.229644i \(-0.926244\pi\)
0.229644 + 0.973275i \(0.426244\pi\)
\(618\) −15.8018 + 49.6215i −0.635642 + 1.99607i
\(619\) 4.38197 + 7.58980i 0.176126 + 0.305060i 0.940551 0.339654i \(-0.110310\pi\)
−0.764424 + 0.644714i \(0.776977\pi\)
\(620\) 0 0
\(621\) 14.3624 24.8764i 0.576343 0.998255i
\(622\) 2.16089 0.472576i 0.0866437 0.0189486i
\(623\) 5.80684 + 5.01657i 0.232646 + 0.200985i
\(624\) 25.0592 29.1797i 1.00317 1.16812i
\(625\) 0 0
\(626\) 17.2038 + 0.800447i 0.687604 + 0.0319923i
\(627\) −6.47506 + 24.1653i −0.258589 + 0.965068i
\(628\) −14.5353 17.5252i −0.580022 0.699330i
\(629\) 5.58989i 0.222883i
\(630\) 0 0
\(631\) 31.2397i 1.24363i −0.783164 0.621816i \(-0.786395\pi\)
0.783164 0.621816i \(-0.213605\pi\)
\(632\) −23.2181 + 2.85425i −0.923568 + 0.113536i
\(633\) 17.2823 64.4986i 0.686911 2.56359i
\(634\) −1.80029 + 38.6932i −0.0714985 + 1.53670i
\(635\) 0 0
\(636\) 66.6796 30.6300i 2.64402 1.21456i
\(637\) −9.49304 21.9876i −0.376128 0.871180i
\(638\) 1.65785 + 7.58062i 0.0656348 + 0.300120i
\(639\) −1.37709 + 2.38520i −0.0544770 + 0.0943569i
\(640\) 0 0
\(641\) −24.9696 43.2485i −0.986238 1.70821i −0.636299 0.771443i \(-0.719535\pi\)
−0.349939 0.936772i \(-0.613798\pi\)
\(642\) 1.55667 + 0.495716i 0.0614369 + 0.0195644i
\(643\) 16.3136 16.3136i 0.643345 0.643345i −0.308031 0.951376i \(-0.599670\pi\)
0.951376 + 0.308031i \(0.0996701\pi\)
\(644\) −14.7314 + 24.3707i −0.580499 + 0.960341i
\(645\) 0 0
\(646\) 8.14837 4.21219i 0.320593 0.165727i
\(647\) 4.17257 15.5722i 0.164041 0.612208i −0.834120 0.551583i \(-0.814024\pi\)
0.998161 0.0606248i \(-0.0193093\pi\)
\(648\) −0.335810 + 0.791438i −0.0131919 + 0.0310906i
\(649\) −5.24671 3.02919i −0.205951 0.118906i
\(650\) 0 0
\(651\) 25.8349 1.88633i 1.01255 0.0739310i
\(652\) −0.00196583 + 0.00530642i −7.69879e−5 + 0.000207816i
\(653\) 21.8713 5.86041i 0.855891 0.229335i 0.195914 0.980621i \(-0.437233\pi\)
0.659977 + 0.751286i \(0.270566\pi\)
\(654\) 28.9977 + 1.34918i 1.13390 + 0.0527572i
\(655\) 0 0
\(656\) 3.61062 + 10.2847i 0.140971 + 0.401552i
\(657\) −11.5985 + 11.5985i −0.452501 + 0.452501i
\(658\) 22.9946 + 5.51536i 0.896421 + 0.215011i
\(659\) −0.119381 −0.00465044 −0.00232522 0.999997i \(-0.500740\pi\)
−0.00232522 + 0.999997i \(0.500740\pi\)
\(660\) 0 0
\(661\) 10.3433 + 17.9151i 0.402307 + 0.696816i 0.994004 0.109344i \(-0.0348751\pi\)
−0.591697 + 0.806161i \(0.701542\pi\)
\(662\) −3.72618 4.08983i −0.144822 0.158956i
\(663\) 5.77388 + 21.5484i 0.224239 + 0.836871i
\(664\) −17.3597 2.43718i −0.673689 0.0945810i
\(665\) 0 0
\(666\) −9.00968 + 14.0535i −0.349118 + 0.544562i
\(667\) 8.95846 2.40041i 0.346873 0.0929443i
\(668\) −1.10477 6.48210i −0.0427449 0.250800i
\(669\) −45.5445 + 26.2951i −1.76085 + 1.01663i
\(670\) 0 0
\(671\) 37.1869i 1.43559i
\(672\) 17.2052 38.3847i 0.663706 1.48072i
\(673\) −34.9098 34.9098i −1.34568 1.34568i −0.890299 0.455376i \(-0.849505\pi\)
−0.455376 0.890299i \(-0.650495\pi\)
\(674\) −22.4653 + 11.6131i −0.865330 + 0.447321i
\(675\) 0 0
\(676\) 1.49704 2.11217i 0.0575784 0.0812373i
\(677\) 1.32612 + 4.94915i 0.0509669 + 0.190211i 0.986716 0.162456i \(-0.0519415\pi\)
−0.935749 + 0.352667i \(0.885275\pi\)
\(678\) 13.9672 + 63.8660i 0.536408 + 2.45276i
\(679\) −33.8082 + 22.9554i −1.29744 + 0.880946i
\(680\) 0 0
\(681\) −29.2147 + 50.6014i −1.11951 + 1.93905i
\(682\) −11.5949 + 10.5639i −0.443992 + 0.404513i
\(683\) 40.4498 + 10.8385i 1.54777 + 0.414724i 0.928767 0.370665i \(-0.120870\pi\)
0.619003 + 0.785389i \(0.287537\pi\)
\(684\) −27.2749 2.54356i −1.04288 0.0972553i
\(685\) 0 0
\(686\) −16.7880 20.1038i −0.640970 0.767566i
\(687\) −35.5235 35.5235i −1.35530 1.35530i
\(688\) −20.2170 9.71049i −0.770766 0.370209i
\(689\) −38.6789 + 22.3313i −1.47355 + 0.850755i
\(690\) 0 0
\(691\) −29.5825 17.0795i −1.12537 0.649734i −0.182606 0.983186i \(-0.558453\pi\)
−0.942767 + 0.333452i \(0.891787\pi\)
\(692\) −30.1400 11.1657i −1.14575 0.424457i
\(693\) −40.5352 7.75009i −1.53981 0.294402i
\(694\) 4.57924 7.14280i 0.173826 0.271137i
\(695\) 0 0
\(696\) −12.7013 + 5.13379i −0.481440 + 0.194596i
\(697\) −6.10663 1.63627i −0.231305 0.0619780i
\(698\) −6.51659 + 20.4637i −0.246657 + 0.774562i
\(699\) −0.991682 −0.0375089
\(700\) 0 0
\(701\) −28.1444 −1.06300 −0.531499 0.847059i \(-0.678371\pi\)
−0.531499 + 0.847059i \(0.678371\pi\)
\(702\) 7.83633 24.6080i 0.295763 0.928770i
\(703\) −6.50664 1.74345i −0.245402 0.0657554i
\(704\) 6.16927 + 24.7130i 0.232513 + 0.931406i
\(705\) 0 0
\(706\) −26.2647 + 40.9682i −0.988483 + 1.54186i
\(707\) −9.96406 28.6515i −0.374737 1.07755i
\(708\) 3.71562 10.0297i 0.139641 0.376938i
\(709\) 3.23053 + 1.86515i 0.121325 + 0.0700471i 0.559434 0.828875i \(-0.311018\pi\)
−0.438109 + 0.898922i \(0.644352\pi\)
\(710\) 0 0
\(711\) −35.0903 + 20.2594i −1.31599 + 0.759788i
\(712\) −1.00094 8.14221i −0.0375118 0.305142i
\(713\) 13.2564 + 13.2564i 0.496456 + 0.496456i
\(714\) 12.7519 + 20.7993i 0.477228 + 0.778395i
\(715\) 0 0
\(716\) −3.37509 + 36.1915i −0.126133 + 1.35254i
\(717\) −65.4475 17.5366i −2.44418 0.654917i
\(718\) 8.78636 8.00510i 0.327904 0.298748i
\(719\) 14.3205 24.8039i 0.534066 0.925029i −0.465142 0.885236i \(-0.653997\pi\)
0.999208 0.0397933i \(-0.0126699\pi\)
\(720\) 0 0
\(721\) −2.52432 34.5728i −0.0940106 1.28756i
\(722\) 3.37911 + 15.4512i 0.125757 + 0.575034i
\(723\) −3.16736 11.8207i −0.117795 0.439618i
\(724\) −6.99122 4.95515i −0.259827 0.184157i
\(725\) 0 0
\(726\) −3.04582 + 1.57450i −0.113041 + 0.0584350i
\(727\) −35.3576 35.3576i −1.31134 1.31134i −0.920429 0.390911i \(-0.872160\pi\)
−0.390911 0.920429i \(-0.627840\pi\)
\(728\) −8.25757 + 24.2348i −0.306046 + 0.898200i
\(729\) 43.5147i 1.61166i
\(730\) 0 0
\(731\) 11.2655 6.50414i 0.416669 0.240564i
\(732\) 64.7186 11.0303i 2.39207 0.407690i
\(733\) −19.8341 + 5.31453i −0.732589 + 0.196297i −0.605782 0.795631i \(-0.707140\pi\)
−0.126807 + 0.991927i \(0.540473\pi\)
\(734\) 23.4731 36.6138i 0.866407 1.35144i
\(735\) 0 0
\(736\) 29.1623 8.73831i 1.07494 0.322098i
\(737\) −4.83758 18.0541i −0.178194 0.665031i
\(738\) 12.7153 + 13.9563i 0.468058 + 0.513738i
\(739\) −24.2010 41.9174i −0.890249 1.54196i −0.839576 0.543242i \(-0.817197\pi\)
−0.0506730 0.998715i \(-0.516137\pi\)
\(740\) 0 0
\(741\) 26.8832 0.987579
\(742\) −33.6146 + 35.4374i −1.23403 + 1.30095i
\(743\) −3.78255 + 3.78255i −0.138768 + 0.138768i −0.773078 0.634310i \(-0.781284\pi\)
0.634310 + 0.773078i \(0.281284\pi\)
\(744\) −21.8242 17.0459i −0.800115 0.624931i
\(745\) 0 0
\(746\) 21.2435 + 0.988403i 0.777781 + 0.0361880i
\(747\) −29.3290 + 7.85869i −1.07309 + 0.287535i
\(748\) −13.8533 5.13212i −0.506526 0.187649i
\(749\) −1.08458 + 0.0791901i −0.0396296 + 0.00289354i
\(750\) 0 0
\(751\) −15.5554 8.98090i −0.567623 0.327718i 0.188576 0.982059i \(-0.439613\pi\)
−0.756200 + 0.654341i \(0.772946\pi\)
\(752\) −14.2618 20.8723i −0.520075 0.761133i
\(753\) 9.70180 36.2076i 0.353553 1.31948i
\(754\) 7.40724 3.82908i 0.269756 0.139447i
\(755\) 0 0
\(756\) 0.567715 28.2378i 0.0206476 1.02700i
\(757\) 35.0017 35.0017i 1.27216 1.27216i 0.327204 0.944954i \(-0.393894\pi\)
0.944954 0.327204i \(-0.106106\pi\)
\(758\) −2.59081 0.825034i −0.0941024 0.0299666i
\(759\) −24.0790 41.7061i −0.874013 1.51384i
\(760\) 0 0
\(761\) −18.0493 + 31.2622i −0.654285 + 1.13325i 0.327788 + 0.944751i \(0.393697\pi\)
−0.982073 + 0.188503i \(0.939636\pi\)
\(762\) −1.58697 7.25651i −0.0574897 0.262876i
\(763\) −18.2510 + 6.34710i −0.660730 + 0.229781i
\(764\) 9.64999 + 21.0074i 0.349125 + 0.760022i
\(765\) 0 0
\(766\) −1.05069 + 22.5824i −0.0379631 + 0.815934i
\(767\) −1.68495 + 6.28831i −0.0608399 + 0.227058i
\(768\) −41.1796 + 18.0670i −1.48594 + 0.651937i
\(769\) 22.5137i 0.811865i −0.913903 0.405933i \(-0.866947\pi\)
0.913903 0.405933i \(-0.133053\pi\)
\(770\) 0 0
\(771\) 28.2691i 1.01809i
\(772\) −7.11756 + 5.90328i −0.256167 + 0.212464i
\(773\) −5.98883 + 22.3506i −0.215403 + 0.803896i 0.770621 + 0.637294i \(0.219946\pi\)
−0.986024 + 0.166602i \(0.946720\pi\)
\(774\) −38.8057 1.80552i −1.39484 0.0648982i
\(775\) 0 0
\(776\) 43.2622 + 6.07370i 1.55302 + 0.218033i
\(777\) 3.36460 17.5978i 0.120704 0.631318i
\(778\) 15.6550 3.42368i 0.561259 0.122745i
\(779\) −3.80923 + 6.59778i −0.136480 + 0.236390i
\(780\) 0 0
\(781\) 0.894971 + 1.55014i 0.0320246 + 0.0554682i
\(782\) −5.35773 + 16.8246i −0.191592 + 0.601646i
\(783\) −6.50425 + 6.50425i −0.232443 + 0.232443i
\(784\) −1.12541 + 27.9774i −0.0401933 + 0.999192i
\(785\) 0 0
\(786\) −7.42758 14.3684i −0.264933 0.512505i
\(787\) −9.53044 + 35.5681i −0.339724 + 1.26787i 0.558933 + 0.829213i \(0.311211\pi\)
−0.898657 + 0.438653i \(0.855456\pi\)
\(788\) −18.8855 + 3.21873i −0.672767 + 0.114662i
\(789\) 26.1715 + 15.1101i 0.931731 + 0.537935i
\(790\) 0 0
\(791\) −24.4452 36.0024i −0.869170 1.28010i
\(792\) 26.5565 + 35.2311i 0.943646 + 1.25188i
\(793\) −38.5982 + 10.3424i −1.37066 + 0.367268i
\(794\) 0.766546 16.4752i 0.0272037 0.584684i
\(795\) 0 0
\(796\) −0.323065 + 3.46427i −0.0114507 + 0.122788i
\(797\) 8.30328 8.30328i 0.294117 0.294117i −0.544587 0.838704i \(-0.683314\pi\)
0.838704 + 0.544587i \(0.183314\pi\)
\(798\) 28.1877 8.35605i 0.997832 0.295801i
\(799\) 14.6620 0.518705
\(800\) 0 0
\(801\) −7.10464 12.3056i −0.251030 0.434797i
\(802\) 28.9284 26.3562i 1.02150 0.930670i
\(803\) 2.75904 + 10.2969i 0.0973645 + 0.363369i
\(804\) 29.9857 13.7743i 1.05751 0.485781i
\(805\) 0 0
\(806\) 14.1896 + 9.09693i 0.499807 + 0.320426i
\(807\) 25.6682 6.87776i 0.903562 0.242109i
\(808\) −12.6667 + 29.8530i −0.445614 + 1.05022i
\(809\) 27.1489 15.6744i 0.954504 0.551083i 0.0600265 0.998197i \(-0.480881\pi\)
0.894477 + 0.447114i \(0.147548\pi\)
\(810\) 0 0
\(811\) 9.76550i 0.342913i 0.985192 + 0.171456i \(0.0548473\pi\)
−0.985192 + 0.171456i \(0.945153\pi\)
\(812\) 6.57648 6.31725i 0.230789 0.221692i
\(813\) 28.6732 + 28.6732i 1.00561 + 1.00561i
\(814\) 4.98202 + 9.63757i 0.174620 + 0.337797i
\(815\) 0 0
\(816\) 4.82262 25.6319i 0.168826 0.897297i
\(817\) −4.05719 15.1416i −0.141943 0.529739i
\(818\) 19.1084 4.17892i 0.668109 0.146112i
\(819\) 3.22937 + 44.2291i 0.112843 + 1.54549i
\(820\) 0 0
\(821\) 3.83240 6.63791i 0.133752 0.231665i −0.791368 0.611340i \(-0.790631\pi\)
0.925120 + 0.379675i \(0.123964\pi\)
\(822\) 43.1425 + 47.3530i 1.50477 + 1.65163i
\(823\) −52.8907 14.1720i −1.84365 0.494006i −0.844517 0.535530i \(-0.820112\pi\)
−0.999138 + 0.0415239i \(0.986779\pi\)
\(824\) −22.8111 + 29.2056i −0.794663 + 1.01743i
\(825\) 0 0
\(826\) 0.187877 + 7.11716i 0.00653708 + 0.247638i
\(827\) 35.5553 + 35.5553i 1.23638 + 1.23638i 0.961470 + 0.274910i \(0.0886479\pi\)
0.274910 + 0.961470i \(0.411352\pi\)
\(828\) 40.5874 33.6631i 1.41051 1.16987i
\(829\) 23.4882 13.5609i 0.815780 0.470991i −0.0331794 0.999449i \(-0.510563\pi\)
0.848959 + 0.528459i \(0.177230\pi\)
\(830\) 0 0
\(831\) 80.5397 + 46.4996i 2.79389 + 1.61305i
\(832\) 23.9351 13.2765i 0.829800 0.460281i
\(833\) −13.0296 9.69357i −0.451449 0.335862i
\(834\) −57.1560 36.6426i −1.97915 1.26883i
\(835\) 0 0
\(836\) −10.2945 + 14.5246i −0.356044 + 0.502342i
\(837\) −17.9600 4.81237i −0.620789 0.166340i
\(838\) 27.8908 + 8.88173i 0.963472 + 0.306814i
\(839\) −3.82948 −0.132208 −0.0661042 0.997813i \(-0.521057\pi\)
−0.0661042 + 0.997813i \(0.521057\pi\)
\(840\) 0 0
\(841\) 26.0301 0.897589
\(842\) 36.0489 + 11.4796i 1.24233 + 0.395614i
\(843\) −27.6011 7.39570i −0.950634 0.254722i
\(844\) 27.4767 38.7669i 0.945788 1.33441i
\(845\) 0 0
\(846\) −36.8617 23.6320i −1.26733 0.812485i
\(847\) 1.49203 1.72708i 0.0512669 0.0593431i
\(848\) 52.0665 3.95551i 1.78797 0.135833i
\(849\) 67.4183 + 38.9240i 2.31379 + 1.33587i
\(850\) 0 0
\(851\) 11.2296 6.48342i 0.384946 0.222249i
\(852\) −2.43233 + 2.01737i −0.0833302 + 0.0691138i
\(853\) 1.20013 + 1.20013i 0.0410916 + 0.0410916i 0.727354 0.686262i \(-0.240750\pi\)
−0.686262 + 0.727354i \(0.740750\pi\)
\(854\) −37.2564 + 22.8416i −1.27489 + 0.781624i
\(855\) 0 0
\(856\) 0.916206 + 0.715604i 0.0313153 + 0.0244588i
\(857\) 25.5819 + 6.85466i 0.873862 + 0.234151i 0.667757 0.744379i \(-0.267254\pi\)
0.206105 + 0.978530i \(0.433921\pi\)
\(858\) −29.1599 32.0058i −0.995503 1.09266i
\(859\) 19.8151 34.3208i 0.676083 1.17101i −0.300068 0.953918i \(-0.597009\pi\)
0.976151 0.217093i \(-0.0696574\pi\)
\(860\) 0 0
\(861\) −18.2397 8.82684i −0.621608 0.300818i
\(862\) −55.7308 + 12.1881i −1.89820 + 0.415128i
\(863\) −2.57861 9.62351i −0.0877769 0.327588i 0.908049 0.418865i \(-0.137572\pi\)
−0.995826 + 0.0912768i \(0.970905\pi\)
\(864\) −20.7148 + 21.9670i −0.704731 + 0.747334i
\(865\) 0 0
\(866\) −15.2306 29.4632i −0.517558 1.00120i
\(867\) −23.0883 23.0883i −0.784120 0.784120i
\(868\) 17.7057 + 5.12781i 0.600970 + 0.174049i
\(869\) 26.3331i 0.893290i
\(870\) 0 0
\(871\) −17.3938 + 10.0423i −0.589368 + 0.340272i
\(872\) 19.0163 + 8.06870i 0.643974 + 0.273241i
\(873\) 73.0908 19.5846i 2.47375 0.662839i
\(874\) 17.9128 + 11.4839i 0.605909 + 0.388448i
\(875\) 0 0
\(876\) −17.1019 + 7.85595i −0.577820 + 0.265428i
\(877\) −0.664074 2.47836i −0.0224242 0.0836882i 0.953807 0.300420i \(-0.0971269\pi\)
−0.976231 + 0.216732i \(0.930460\pi\)
\(878\) 6.00198 5.46830i 0.202557 0.184546i
\(879\) 6.12031 + 10.6007i 0.206433 + 0.357553i
\(880\) 0 0
\(881\) 20.5639 0.692816 0.346408 0.938084i \(-0.387401\pi\)
0.346408 + 0.938084i \(0.387401\pi\)
\(882\) 17.1337 + 45.3714i 0.576922 + 1.52773i
\(883\) −26.6080 + 26.6080i −0.895429 + 0.895429i −0.995028 0.0995985i \(-0.968244\pi\)
0.0995985 + 0.995028i \(0.468244\pi\)
\(884\) −1.47404 + 15.8064i −0.0495775 + 0.531626i
\(885\) 0 0
\(886\) 0.0562553 1.20908i 0.00188993 0.0406199i
\(887\) 7.10873 1.90478i 0.238688 0.0639562i −0.137492 0.990503i \(-0.543904\pi\)
0.376180 + 0.926547i \(0.377238\pi\)
\(888\) −15.2951 + 11.5292i −0.513269 + 0.386893i
\(889\) 2.77748 + 4.09062i 0.0931537 + 0.137195i
\(890\) 0 0
\(891\) 0.838132 + 0.483895i 0.0280785 + 0.0162111i
\(892\) −36.8917 + 6.28760i −1.23523 + 0.210524i
\(893\) 4.57299 17.0666i 0.153029 0.571112i
\(894\) 16.3508 + 31.6302i 0.546854 + 1.05787i
\(895\) 0 0
\(896\) 20.9698 21.3604i 0.700551 0.713602i
\(897\) −36.5921 + 36.5921i −1.22177 + 1.22177i
\(898\) 2.00037 6.28165i 0.0667532 0.209621i
\(899\) −3.00169 5.19908i −0.100112 0.173399i
\(900\) 0 0
\(901\) −15.1427 + 26.2280i −0.504478 + 0.873781i
\(902\) 11.9868 2.62146i 0.399117 0.0872852i
\(903\) 39.3804 13.6952i 1.31050 0.455748i
\(904\) −6.46788 + 46.0699i −0.215119 + 1.53226i
\(905\) 0 0
\(906\) 26.7409 + 1.24418i 0.888408 + 0.0413352i
\(907\) 3.60588 13.4573i 0.119731 0.446843i −0.879866 0.475222i \(-0.842368\pi\)
0.999597 + 0.0283786i \(0.00903439\pi\)
\(908\) −32.0036 + 26.5437i −1.06208 + 0.880884i
\(909\) 56.1704i 1.86305i
\(910\) 0 0
\(911\) 9.10653i 0.301713i −0.988556 0.150856i \(-0.951797\pi\)
0.988556 0.150856i \(-0.0482031\pi\)
\(912\) −28.3315 13.6080i −0.938148 0.450605i
\(913\) −5.10735 + 19.0609i −0.169029 + 0.630823i
\(914\) 2.09074 44.9359i 0.0691557 1.48635i
\(915\) 0 0
\(916\) −14.9228 32.4860i −0.493064 1.07337i
\(917\) 8.14737 + 7.03857i 0.269050 + 0.232434i
\(918\) −3.74142 17.1079i −0.123485 0.564644i
\(919\) 17.5872 30.4620i 0.580149 1.00485i −0.415312 0.909679i \(-0.636328\pi\)
0.995461 0.0951683i \(-0.0303389\pi\)
\(920\) 0 0
\(921\) −26.5004 45.9000i −0.873217 1.51246i
\(922\) −31.5923 10.0605i −1.04044 0.331324i
\(923\) 1.36006 1.36006i 0.0447668 0.0447668i
\(924\) −40.5231 24.4951i −1.33311 0.805829i
\(925\) 0 0
\(926\) −3.27190 + 1.69136i −0.107521 + 0.0555817i
\(927\) −16.6132 + 62.0014i −0.545650 + 2.03639i
\(928\) −9.74452 + 0.285898i −0.319879 + 0.00938505i
\(929\) −32.5064 18.7676i −1.06650 0.615745i −0.139278 0.990253i \(-0.544478\pi\)
−0.927223 + 0.374509i \(0.877811\pi\)
\(930\) 0 0
\(931\) −15.3472 + 12.1431i −0.502983 + 0.397974i
\(932\) −0.661739 0.245150i −0.0216760 0.00803015i
\(933\) 4.24615 1.13775i 0.139013 0.0372483i
\(934\) 11.7215 + 0.545370i 0.383540 + 0.0178451i
\(935\) 0 0
\(936\) 29.1823 37.3628i 0.953853 1.22124i
\(937\) 14.9371 14.9371i 0.487973 0.487973i −0.419693 0.907666i \(-0.637862\pi\)
0.907666 + 0.419693i \(0.137862\pi\)
\(938\) −15.1164 + 15.9361i −0.493568 + 0.520333i
\(939\) 34.2270 1.11696
\(940\) 0 0
\(941\) −3.05589 5.29296i −0.0996192 0.172546i 0.811908 0.583786i \(-0.198429\pi\)
−0.911527 + 0.411240i \(0.865096\pi\)
\(942\) −30.4743 33.4484i −0.992905 1.08981i
\(943\) −3.79564 14.1655i −0.123603 0.461293i
\(944\) 4.95878 5.77417i 0.161395 0.187933i
\(945\) 0 0
\(946\) −13.6261 + 21.2543i −0.443022 + 0.691036i
\(947\) −41.6507 + 11.1603i −1.35347 + 0.362660i −0.861413 0.507905i \(-0.830420\pi\)
−0.492053 + 0.870565i \(0.663753\pi\)
\(948\) −45.8291 + 7.81083i −1.48846 + 0.253684i
\(949\) 9.92033 5.72751i 0.322028 0.185923i
\(950\) 0 0
\(951\) 76.9801i 2.49625i
\(952\) 3.36749 + 17.0315i 0.109141 + 0.551994i
\(953\) −26.8326 26.8326i −0.869193 0.869193i 0.123190 0.992383i \(-0.460687\pi\)
−0.992383 + 0.123190i \(0.960687\pi\)
\(954\) 80.3441 41.5328i 2.60123 1.34467i
\(955\) 0 0
\(956\) −39.3373 27.8810i −1.27226 0.901736i
\(957\) 3.99135 + 14.8959i 0.129022 + 0.481517i
\(958\) −4.22953 19.3398i −0.136650 0.624841i
\(959\) −38.3826 18.5747i −1.23944 0.599809i
\(960\) 0 0
\(961\) −9.43240 + 16.3374i −0.304271 + 0.527013i
\(962\) 8.61774 7.85148i 0.277847 0.253142i
\(963\) 1.94504 + 0.521171i 0.0626779 + 0.0167945i
\(964\) 0.808611 8.67084i 0.0260436 0.279269i
\(965\) 0 0
\(966\) −26.9938 + 49.7415i −0.868511 + 1.60041i
\(967\) −9.65871 9.65871i −0.310603 0.310603i 0.534540 0.845143i \(-0.320485\pi\)
−0.845143 + 0.534540i \(0.820485\pi\)
\(968\) −2.42167 + 0.297700i −0.0778353 + 0.00956845i
\(969\) 15.7871 9.11468i 0.507155 0.292806i
\(970\) 0 0
\(971\) −18.9435 10.9371i −0.607927 0.350987i 0.164226 0.986423i \(-0.447487\pi\)
−0.772154 + 0.635436i \(0.780821\pi\)
\(972\) 10.5317 28.4284i 0.337804 0.911843i
\(973\) 44.3890 + 8.48690i 1.42305 + 0.272078i
\(974\) −20.2623 + 31.6056i −0.649246 + 1.01271i
\(975\) 0 0
\(976\) 45.9128 + 8.63844i 1.46963 + 0.276510i
\(977\) −25.1707 6.74446i −0.805281 0.215774i −0.167380 0.985893i \(-0.553531\pi\)
−0.637901 + 0.770118i \(0.720197\pi\)
\(978\) −0.00341244 + 0.0107159i −0.000109118 + 0.000342657i
\(979\) −9.23458 −0.295138
\(980\) 0 0
\(981\) 35.7805 1.14238
\(982\) −15.2709 + 47.9545i −0.487315 + 1.53029i
\(983\) 46.8710 + 12.5590i 1.49495 + 0.400571i 0.911406 0.411508i \(-0.134998\pi\)
0.583547 + 0.812080i \(0.301664\pi\)
\(984\) 8.11777 + 20.0838i 0.258785 + 0.640248i
\(985\) 0 0
\(986\) 3.05165 4.76002i 0.0971842 0.151590i
\(987\) 46.1583 + 8.82518i 1.46923 + 0.280909i
\(988\) 17.9389 + 6.64569i 0.570712 + 0.211427i
\(989\) 26.1325 + 15.0876i 0.830965 + 0.479758i
\(990\) 0 0
\(991\) −3.40592 + 1.96641i −0.108193 + 0.0624650i −0.553120 0.833102i \(-0.686563\pi\)
0.444927 + 0.895567i \(0.353230\pi\)
\(992\) −10.3492 16.7696i −0.328589 0.532435i
\(993\) −7.77497 7.77497i −0.246731 0.246731i
\(994\) 1.00331 1.84879i 0.0318230 0.0586402i
\(995\) 0 0
\(996\) −34.6877 3.23485i −1.09912 0.102500i
\(997\) 49.5831 + 13.2857i 1.57031 + 0.420764i 0.935910 0.352240i \(-0.114580\pi\)
0.634402 + 0.773004i \(0.281247\pi\)
\(998\) 10.3309 9.41233i 0.327020 0.297942i
\(999\) −6.43023 + 11.1375i −0.203443 + 0.352374i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 700.2.be.e.443.16 72
4.3 odd 2 inner 700.2.be.e.443.6 72
5.2 odd 4 inner 700.2.be.e.107.8 72
5.3 odd 4 140.2.w.b.107.11 yes 72
5.4 even 2 140.2.w.b.23.3 72
7.4 even 3 inner 700.2.be.e.543.4 72
20.3 even 4 140.2.w.b.107.15 yes 72
20.7 even 4 inner 700.2.be.e.107.4 72
20.19 odd 2 140.2.w.b.23.13 yes 72
28.11 odd 6 inner 700.2.be.e.543.8 72
35.3 even 12 980.2.x.m.67.13 72
35.4 even 6 140.2.w.b.123.15 yes 72
35.9 even 6 980.2.k.k.883.11 36
35.13 even 4 980.2.x.m.667.11 72
35.18 odd 12 140.2.w.b.67.13 yes 72
35.19 odd 6 980.2.k.j.883.11 36
35.23 odd 12 980.2.k.k.687.2 36
35.24 odd 6 980.2.x.m.263.15 72
35.32 odd 12 inner 700.2.be.e.207.6 72
35.33 even 12 980.2.k.j.687.2 36
35.34 odd 2 980.2.x.m.863.3 72
140.3 odd 12 980.2.x.m.67.3 72
140.19 even 6 980.2.k.j.883.2 36
140.23 even 12 980.2.k.k.687.11 36
140.39 odd 6 140.2.w.b.123.11 yes 72
140.59 even 6 980.2.x.m.263.11 72
140.67 even 12 inner 700.2.be.e.207.16 72
140.79 odd 6 980.2.k.k.883.2 36
140.83 odd 4 980.2.x.m.667.15 72
140.103 odd 12 980.2.k.j.687.11 36
140.123 even 12 140.2.w.b.67.3 yes 72
140.139 even 2 980.2.x.m.863.13 72
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
140.2.w.b.23.3 72 5.4 even 2
140.2.w.b.23.13 yes 72 20.19 odd 2
140.2.w.b.67.3 yes 72 140.123 even 12
140.2.w.b.67.13 yes 72 35.18 odd 12
140.2.w.b.107.11 yes 72 5.3 odd 4
140.2.w.b.107.15 yes 72 20.3 even 4
140.2.w.b.123.11 yes 72 140.39 odd 6
140.2.w.b.123.15 yes 72 35.4 even 6
700.2.be.e.107.4 72 20.7 even 4 inner
700.2.be.e.107.8 72 5.2 odd 4 inner
700.2.be.e.207.6 72 35.32 odd 12 inner
700.2.be.e.207.16 72 140.67 even 12 inner
700.2.be.e.443.6 72 4.3 odd 2 inner
700.2.be.e.443.16 72 1.1 even 1 trivial
700.2.be.e.543.4 72 7.4 even 3 inner
700.2.be.e.543.8 72 28.11 odd 6 inner
980.2.k.j.687.2 36 35.33 even 12
980.2.k.j.687.11 36 140.103 odd 12
980.2.k.j.883.2 36 140.19 even 6
980.2.k.j.883.11 36 35.19 odd 6
980.2.k.k.687.2 36 35.23 odd 12
980.2.k.k.687.11 36 140.23 even 12
980.2.k.k.883.2 36 140.79 odd 6
980.2.k.k.883.11 36 35.9 even 6
980.2.x.m.67.3 72 140.3 odd 12
980.2.x.m.67.13 72 35.3 even 12
980.2.x.m.263.11 72 140.59 even 6
980.2.x.m.263.15 72 35.24 odd 6
980.2.x.m.667.11 72 35.13 even 4
980.2.x.m.667.15 72 140.83 odd 4
980.2.x.m.863.3 72 35.34 odd 2
980.2.x.m.863.13 72 140.139 even 2