Properties

Label 700.2.be.e.443.6
Level $700$
Weight $2$
Character 700.443
Analytic conductor $5.590$
Analytic rank $0$
Dimension $72$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [700,2,Mod(107,700)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("700.107"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(700, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([6, 3, 4])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 700 = 2^{2} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 700.be (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [72,-2,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.58952814149\)
Analytic rank: \(0\)
Dimension: \(72\)
Relative dimension: \(18\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 140)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 443.6
Character \(\chi\) \(=\) 700.443
Dual form 700.2.be.e.207.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.952442 + 1.04540i) q^{2} +(-2.71477 - 0.727420i) q^{3} +(-0.185707 - 1.99136i) q^{4} +(3.34610 - 2.14518i) q^{6} +(2.59868 + 0.496852i) q^{7} +(2.25864 + 1.70252i) q^{8} +(4.24276 + 2.44956i) q^{9} +(-2.75736 + 1.59196i) q^{11} +(-0.944404 + 5.54117i) q^{12} +(-2.41925 - 2.41925i) q^{13} +(-2.99450 + 2.24343i) q^{14} +(-3.93103 + 0.739618i) q^{16} +(-2.24094 - 0.600458i) q^{17} +(-6.60174 + 2.10230i) q^{18} +(1.39787 - 2.42118i) q^{19} +(-6.69340 - 3.23917i) q^{21} +(0.961994 - 4.39878i) q^{22} +(1.39288 + 5.19830i) q^{23} +(-4.89323 - 6.26492i) q^{24} +(4.83327 - 0.224879i) q^{26} +(-3.77420 - 3.77420i) q^{27} +(0.506818 - 5.26718i) q^{28} +1.72334i q^{29} +(3.01685 - 1.74178i) q^{31} +(2.97088 - 4.81392i) q^{32} +(8.64362 - 2.31605i) q^{33} +(2.76208 - 1.77077i) q^{34} +(4.09004 - 8.90375i) q^{36} +(0.623610 + 2.32734i) q^{37} +(1.19970 + 3.76736i) q^{38} +(4.80790 + 8.32752i) q^{39} +2.72503 q^{41} +(9.76129 - 3.91213i) q^{42} +(3.96477 - 3.96477i) q^{43} +(3.68223 + 5.19525i) q^{44} +(-6.76092 - 3.49497i) q^{46} +(6.10452 - 1.63570i) q^{47} +(11.2098 + 0.851615i) q^{48} +(6.50628 + 2.58232i) q^{49} +(5.64685 + 3.26021i) q^{51} +(-4.36833 + 5.26687i) q^{52} +(3.37866 - 12.6093i) q^{53} +(7.54024 - 0.350826i) q^{54} +(5.02357 + 5.54651i) q^{56} +(-5.55610 + 5.55610i) q^{57} +(-1.80158 - 1.64139i) q^{58} +(0.951402 + 1.64788i) q^{59} +(5.83980 - 10.1148i) q^{61} +(-1.05253 + 4.81275i) q^{62} +(9.80850 + 8.47363i) q^{63} +(2.20286 + 7.69073i) q^{64} +(-5.81136 + 11.2419i) q^{66} +(-1.51938 + 5.67039i) q^{67} +(-0.779570 + 4.57403i) q^{68} -15.1254i q^{69} -0.562181i q^{71} +(5.41242 + 12.7560i) q^{72} +(-0.866554 + 3.23402i) q^{73} +(-3.02695 - 1.56474i) q^{74} +(-5.08103 - 2.33403i) q^{76} +(-7.95646 + 2.76700i) q^{77} +(-13.2848 - 2.90533i) q^{78} +(4.13532 - 7.16259i) q^{79} +(0.151981 + 0.263239i) q^{81} +(-2.59543 + 2.84874i) q^{82} +(4.38250 - 4.38250i) q^{83} +(-5.20734 + 13.9305i) q^{84} +(0.368541 + 7.92097i) q^{86} +(1.25360 - 4.67848i) q^{87} +(-8.93821 - 1.09879i) q^{88} +(-2.51180 - 1.45019i) q^{89} +(-5.08485 - 7.48887i) q^{91} +(10.0930 - 3.73908i) q^{92} +(-9.45706 + 2.53401i) q^{93} +(-4.10425 + 7.93955i) q^{94} +(-11.5670 + 10.9076i) q^{96} +(10.9216 - 10.9216i) q^{97} +(-8.89640 + 4.34213i) q^{98} -15.5984 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 72 q - 2 q^{2} - 16 q^{6} + 4 q^{8} - 10 q^{12} - 28 q^{16} - 4 q^{17} + 20 q^{18} + 4 q^{21} + 16 q^{22} - 4 q^{26} - 42 q^{28} + 38 q^{32} + 64 q^{33} + 16 q^{36} + 4 q^{37} - 12 q^{38} - 40 q^{41} - 78 q^{42}+ \cdots + 90 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/700\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(351\) \(477\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.952442 + 1.04540i −0.673478 + 0.739207i
\(3\) −2.71477 0.727420i −1.56737 0.419976i −0.632384 0.774655i \(-0.717924\pi\)
−0.934988 + 0.354678i \(0.884590\pi\)
\(4\) −0.185707 1.99136i −0.0928534 0.995680i
\(5\) 0 0
\(6\) 3.34610 2.14518i 1.36604 0.875768i
\(7\) 2.59868 + 0.496852i 0.982209 + 0.187792i
\(8\) 2.25864 + 1.70252i 0.798548 + 0.601931i
\(9\) 4.24276 + 2.44956i 1.41425 + 0.816519i
\(10\) 0 0
\(11\) −2.75736 + 1.59196i −0.831375 + 0.479994i −0.854323 0.519742i \(-0.826028\pi\)
0.0229484 + 0.999737i \(0.492695\pi\)
\(12\) −0.944404 + 5.54117i −0.272626 + 1.59960i
\(13\) −2.41925 2.41925i −0.670980 0.670980i 0.286962 0.957942i \(-0.407355\pi\)
−0.957942 + 0.286962i \(0.907355\pi\)
\(14\) −2.99450 + 2.24343i −0.800314 + 0.599581i
\(15\) 0 0
\(16\) −3.93103 + 0.739618i −0.982756 + 0.184905i
\(17\) −2.24094 0.600458i −0.543508 0.145632i −0.0233890 0.999726i \(-0.507446\pi\)
−0.520119 + 0.854094i \(0.674112\pi\)
\(18\) −6.60174 + 2.10230i −1.55604 + 0.495517i
\(19\) 1.39787 2.42118i 0.320693 0.555456i −0.659938 0.751320i \(-0.729418\pi\)
0.980631 + 0.195863i \(0.0627510\pi\)
\(20\) 0 0
\(21\) −6.69340 3.23917i −1.46062 0.706845i
\(22\) 0.961994 4.39878i 0.205098 0.937824i
\(23\) 1.39288 + 5.19830i 0.290435 + 1.08392i 0.944775 + 0.327719i \(0.106280\pi\)
−0.654340 + 0.756201i \(0.727053\pi\)
\(24\) −4.89323 6.26492i −0.998826 1.27882i
\(25\) 0 0
\(26\) 4.83327 0.224879i 0.947883 0.0441024i
\(27\) −3.77420 3.77420i −0.726345 0.726345i
\(28\) 0.506818 5.26718i 0.0957796 0.995403i
\(29\) 1.72334i 0.320017i 0.987116 + 0.160009i \(0.0511522\pi\)
−0.987116 + 0.160009i \(0.948848\pi\)
\(30\) 0 0
\(31\) 3.01685 1.74178i 0.541843 0.312833i −0.203983 0.978974i \(-0.565389\pi\)
0.745825 + 0.666141i \(0.232055\pi\)
\(32\) 2.97088 4.81392i 0.525183 0.850990i
\(33\) 8.64362 2.31605i 1.50466 0.403173i
\(34\) 2.76208 1.77077i 0.473693 0.303684i
\(35\) 0 0
\(36\) 4.09004 8.90375i 0.681673 1.48396i
\(37\) 0.623610 + 2.32734i 0.102521 + 0.382613i 0.998052 0.0623856i \(-0.0198709\pi\)
−0.895531 + 0.444999i \(0.853204\pi\)
\(38\) 1.19970 + 3.76736i 0.194617 + 0.611146i
\(39\) 4.80790 + 8.32752i 0.769880 + 1.33347i
\(40\) 0 0
\(41\) 2.72503 0.425578 0.212789 0.977098i \(-0.431745\pi\)
0.212789 + 0.977098i \(0.431745\pi\)
\(42\) 9.76129 3.91213i 1.50620 0.603654i
\(43\) 3.96477 3.96477i 0.604622 0.604622i −0.336914 0.941536i \(-0.609383\pi\)
0.941536 + 0.336914i \(0.109383\pi\)
\(44\) 3.68223 + 5.19525i 0.555117 + 0.783214i
\(45\) 0 0
\(46\) −6.76092 3.49497i −0.996843 0.515305i
\(47\) 6.10452 1.63570i 0.890435 0.238591i 0.215531 0.976497i \(-0.430852\pi\)
0.674904 + 0.737905i \(0.264185\pi\)
\(48\) 11.2098 + 0.851615i 1.61800 + 0.122920i
\(49\) 6.50628 + 2.58232i 0.929468 + 0.368903i
\(50\) 0 0
\(51\) 5.64685 + 3.26021i 0.790717 + 0.456521i
\(52\) −4.36833 + 5.26687i −0.605778 + 0.730384i
\(53\) 3.37866 12.6093i 0.464094 1.73202i −0.195780 0.980648i \(-0.562724\pi\)
0.659874 0.751376i \(-0.270610\pi\)
\(54\) 7.54024 0.350826i 1.02610 0.0477414i
\(55\) 0 0
\(56\) 5.02357 + 5.54651i 0.671303 + 0.741183i
\(57\) −5.55610 + 5.55610i −0.735924 + 0.735924i
\(58\) −1.80158 1.64139i −0.236559 0.215525i
\(59\) 0.951402 + 1.64788i 0.123862 + 0.214535i 0.921288 0.388882i \(-0.127139\pi\)
−0.797426 + 0.603417i \(0.793805\pi\)
\(60\) 0 0
\(61\) 5.83980 10.1148i 0.747709 1.29507i −0.201209 0.979548i \(-0.564487\pi\)
0.948918 0.315522i \(-0.102180\pi\)
\(62\) −1.05253 + 4.81275i −0.133671 + 0.611220i
\(63\) 9.80850 + 8.47363i 1.23575 + 1.06758i
\(64\) 2.20286 + 7.69073i 0.275358 + 0.961342i
\(65\) 0 0
\(66\) −5.81136 + 11.2419i −0.715329 + 1.38378i
\(67\) −1.51938 + 5.67039i −0.185621 + 0.692748i 0.808875 + 0.587980i \(0.200077\pi\)
−0.994497 + 0.104768i \(0.966590\pi\)
\(68\) −0.779570 + 4.57403i −0.0945367 + 0.554682i
\(69\) 15.1254i 1.82088i
\(70\) 0 0
\(71\) 0.562181i 0.0667186i −0.999443 0.0333593i \(-0.989379\pi\)
0.999443 0.0333593i \(-0.0106206\pi\)
\(72\) 5.41242 + 12.7560i 0.637860 + 1.50331i
\(73\) −0.866554 + 3.23402i −0.101423 + 0.378514i −0.997915 0.0645454i \(-0.979440\pi\)
0.896492 + 0.443059i \(0.146107\pi\)
\(74\) −3.02695 1.56474i −0.351876 0.181897i
\(75\) 0 0
\(76\) −5.08103 2.33403i −0.582834 0.267731i
\(77\) −7.95646 + 2.76700i −0.906723 + 0.315329i
\(78\) −13.2848 2.90533i −1.50421 0.328963i
\(79\) 4.13532 7.16259i 0.465260 0.805855i −0.533953 0.845514i \(-0.679294\pi\)
0.999213 + 0.0396596i \(0.0126274\pi\)
\(80\) 0 0
\(81\) 0.151981 + 0.263239i 0.0168868 + 0.0292487i
\(82\) −2.59543 + 2.84874i −0.286618 + 0.314590i
\(83\) 4.38250 4.38250i 0.481042 0.481042i −0.424423 0.905464i \(-0.639523\pi\)
0.905464 + 0.424423i \(0.139523\pi\)
\(84\) −5.20734 + 13.9305i −0.568168 + 1.51994i
\(85\) 0 0
\(86\) 0.368541 + 7.92097i 0.0397408 + 0.854141i
\(87\) 1.25360 4.67848i 0.134400 0.501586i
\(88\) −8.93821 1.09879i −0.952816 0.117132i
\(89\) −2.51180 1.45019i −0.266250 0.153720i 0.360932 0.932592i \(-0.382459\pi\)
−0.627182 + 0.778872i \(0.715792\pi\)
\(90\) 0 0
\(91\) −5.08485 7.48887i −0.533037 0.785047i
\(92\) 10.0930 3.73908i 1.05227 0.389826i
\(93\) −9.45706 + 2.53401i −0.980652 + 0.262765i
\(94\) −4.10425 + 7.93955i −0.423321 + 0.818902i
\(95\) 0 0
\(96\) −11.5670 + 10.9076i −1.18055 + 1.11325i
\(97\) 10.9216 10.9216i 1.10892 1.10892i 0.115629 0.993292i \(-0.463111\pi\)
0.993292 0.115629i \(-0.0368885\pi\)
\(98\) −8.89640 + 4.34213i −0.898672 + 0.438621i
\(99\) −15.5984 −1.56770
\(100\) 0 0
\(101\) 5.73271 + 9.92934i 0.570426 + 0.988007i 0.996522 + 0.0833288i \(0.0265552\pi\)
−0.426096 + 0.904678i \(0.640111\pi\)
\(102\) −8.78651 + 2.79803i −0.869994 + 0.277047i
\(103\) −3.39107 12.6556i −0.334132 1.24700i −0.904807 0.425821i \(-0.859985\pi\)
0.570676 0.821176i \(-0.306681\pi\)
\(104\) −1.34539 9.58302i −0.131926 0.939693i
\(105\) 0 0
\(106\) 9.96376 + 15.5417i 0.967766 + 1.50954i
\(107\) −0.397018 + 0.106381i −0.0383812 + 0.0102842i −0.277959 0.960593i \(-0.589658\pi\)
0.239577 + 0.970877i \(0.422991\pi\)
\(108\) −6.81489 + 8.21668i −0.655763 + 0.790650i
\(109\) 6.32499 3.65173i 0.605824 0.349773i −0.165505 0.986209i \(-0.552926\pi\)
0.771329 + 0.636436i \(0.219592\pi\)
\(110\) 0 0
\(111\) 6.77183i 0.642753i
\(112\) −10.5830 0.0311065i −0.999996 0.00293929i
\(113\) 11.6304 + 11.6304i 1.09410 + 1.09410i 0.995086 + 0.0990127i \(0.0315684\pi\)
0.0990127 + 0.995086i \(0.468432\pi\)
\(114\) −0.516461 11.1002i −0.0483710 1.03963i
\(115\) 0 0
\(116\) 3.43180 0.320037i 0.318635 0.0297147i
\(117\) −4.33820 16.1904i −0.401067 1.49680i
\(118\) −2.62884 0.574915i −0.242004 0.0529252i
\(119\) −5.52515 2.67381i −0.506489 0.245108i
\(120\) 0 0
\(121\) −0.431317 + 0.747063i −0.0392106 + 0.0679148i
\(122\) 5.01193 + 15.7387i 0.453759 + 1.42491i
\(123\) −7.39783 1.98224i −0.667040 0.178733i
\(124\) −4.02876 5.68418i −0.361793 0.510454i
\(125\) 0 0
\(126\) −18.2003 + 2.18312i −1.62141 + 0.194488i
\(127\) 1.32146 + 1.32146i 0.117261 + 0.117261i 0.763302 0.646042i \(-0.223577\pi\)
−0.646042 + 0.763302i \(0.723577\pi\)
\(128\) −10.1380 5.02211i −0.896078 0.443896i
\(129\) −13.6475 + 7.87939i −1.20159 + 0.693741i
\(130\) 0 0
\(131\) 3.52422 + 2.03471i 0.307912 + 0.177773i 0.645992 0.763344i \(-0.276444\pi\)
−0.338080 + 0.941118i \(0.609777\pi\)
\(132\) −6.21727 16.7824i −0.541144 1.46072i
\(133\) 4.83558 5.59733i 0.419298 0.485350i
\(134\) −4.48068 6.98907i −0.387072 0.603764i
\(135\) 0 0
\(136\) −4.03917 5.17146i −0.346356 0.443449i
\(137\) 15.5676 + 4.17132i 1.33003 + 0.356380i 0.852726 0.522359i \(-0.174948\pi\)
0.477303 + 0.878739i \(0.341615\pi\)
\(138\) 15.8120 + 14.4061i 1.34601 + 1.22632i
\(139\) 17.0814 1.44882 0.724411 0.689369i \(-0.242112\pi\)
0.724411 + 0.689369i \(0.242112\pi\)
\(140\) 0 0
\(141\) −17.7622 −1.49585
\(142\) 0.587702 + 0.535445i 0.0493189 + 0.0449336i
\(143\) 10.5221 + 2.81939i 0.879902 + 0.235769i
\(144\) −18.4901 6.49125i −1.54084 0.540937i
\(145\) 0 0
\(146\) −2.55549 3.98611i −0.211494 0.329893i
\(147\) −15.7846 11.7432i −1.30189 0.968562i
\(148\) 4.51877 1.67403i 0.371441 0.137605i
\(149\) 7.75810 + 4.47914i 0.635569 + 0.366946i 0.782905 0.622141i \(-0.213737\pi\)
−0.147337 + 0.989086i \(0.547070\pi\)
\(150\) 0 0
\(151\) −5.83274 + 3.36754i −0.474662 + 0.274046i −0.718189 0.695848i \(-0.755029\pi\)
0.243527 + 0.969894i \(0.421695\pi\)
\(152\) 7.27937 3.08866i 0.590435 0.250524i
\(153\) −8.03690 8.03690i −0.649745 0.649745i
\(154\) 4.68546 10.9531i 0.377565 0.882623i
\(155\) 0 0
\(156\) 15.6902 11.1207i 1.25622 0.890371i
\(157\) −10.9964 2.94647i −0.877606 0.235154i −0.208232 0.978080i \(-0.566771\pi\)
−0.669374 + 0.742926i \(0.733437\pi\)
\(158\) 3.54909 + 11.1450i 0.282350 + 0.886649i
\(159\) −18.3446 + 31.7737i −1.45482 + 2.51982i
\(160\) 0 0
\(161\) 1.03686 + 14.2008i 0.0817163 + 1.11918i
\(162\) −0.419942 0.0918394i −0.0329937 0.00721558i
\(163\) −0.000732309 0.00273302i −5.73589e−5 0.000214066i 0.965897 0.258926i \(-0.0833686\pi\)
−0.965954 + 0.258712i \(0.916702\pi\)
\(164\) −0.506057 5.42652i −0.0395164 0.423740i
\(165\) 0 0
\(166\) 0.407370 + 8.75552i 0.0316181 + 0.679560i
\(167\) 2.32482 + 2.32482i 0.179900 + 0.179900i 0.791312 0.611412i \(-0.209398\pi\)
−0.611412 + 0.791312i \(0.709398\pi\)
\(168\) −9.60319 18.7117i −0.740902 1.44364i
\(169\) 1.29445i 0.0995729i
\(170\) 0 0
\(171\) 11.8616 6.84831i 0.907081 0.523703i
\(172\) −8.63157 7.15900i −0.658151 0.545869i
\(173\) −15.5233 + 4.15945i −1.18021 + 0.316237i −0.795010 0.606596i \(-0.792535\pi\)
−0.385201 + 0.922833i \(0.625868\pi\)
\(174\) 3.69689 + 5.76649i 0.280261 + 0.437157i
\(175\) 0 0
\(176\) 9.66180 8.29743i 0.728286 0.625443i
\(177\) −1.38414 5.16567i −0.104038 0.388276i
\(178\) 3.90837 1.24461i 0.292945 0.0932871i
\(179\) −9.08714 15.7394i −0.679205 1.17642i −0.975221 0.221235i \(-0.928991\pi\)
0.296016 0.955183i \(-0.404342\pi\)
\(180\) 0 0
\(181\) −4.28458 −0.318471 −0.159235 0.987241i \(-0.550903\pi\)
−0.159235 + 0.987241i \(0.550903\pi\)
\(182\) 12.6719 + 1.81703i 0.939301 + 0.134687i
\(183\) −23.2114 + 23.2114i −1.71584 + 1.71584i
\(184\) −5.70419 + 14.1125i −0.420518 + 1.04038i
\(185\) 0 0
\(186\) 6.35826 12.2999i 0.466210 0.901871i
\(187\) 7.13498 1.91181i 0.521761 0.139806i
\(188\) −4.39092 11.8525i −0.320241 0.864434i
\(189\) −7.93272 11.6832i −0.577020 0.849824i
\(190\) 0 0
\(191\) −10.0103 5.77946i −0.724321 0.418187i 0.0920200 0.995757i \(-0.470668\pi\)
−0.816341 + 0.577570i \(0.804001\pi\)
\(192\) −0.385874 22.4810i −0.0278481 1.62242i
\(193\) −1.19666 + 4.46599i −0.0861374 + 0.321469i −0.995527 0.0944758i \(-0.969882\pi\)
0.909390 + 0.415945i \(0.136549\pi\)
\(194\) 1.01521 + 21.8196i 0.0728876 + 1.56656i
\(195\) 0 0
\(196\) 3.93406 13.4359i 0.281005 0.959706i
\(197\) −6.77330 + 6.77330i −0.482578 + 0.482578i −0.905954 0.423376i \(-0.860845\pi\)
0.423376 + 0.905954i \(0.360845\pi\)
\(198\) 14.8566 16.3065i 1.05581 1.15885i
\(199\) −0.869824 1.50658i −0.0616602 0.106799i 0.833547 0.552448i \(-0.186306\pi\)
−0.895208 + 0.445649i \(0.852973\pi\)
\(200\) 0 0
\(201\) 8.24951 14.2886i 0.581876 1.00784i
\(202\) −15.8402 3.46418i −1.11451 0.243739i
\(203\) −0.856247 + 4.47842i −0.0600968 + 0.314324i
\(204\) 5.44359 11.8504i 0.381128 0.829691i
\(205\) 0 0
\(206\) 16.4599 + 8.50875i 1.14682 + 0.592833i
\(207\) −6.82387 + 25.4670i −0.474292 + 1.77008i
\(208\) 11.2995 + 7.72082i 0.783477 + 0.535342i
\(209\) 8.90141i 0.615723i
\(210\) 0 0
\(211\) 23.7584i 1.63560i 0.575506 + 0.817798i \(0.304805\pi\)
−0.575506 + 0.817798i \(0.695195\pi\)
\(212\) −25.7371 4.38649i −1.76763 0.301265i
\(213\) −0.408942 + 1.52619i −0.0280202 + 0.104573i
\(214\) 0.266927 0.516363i 0.0182467 0.0352978i
\(215\) 0 0
\(216\) −2.09890 14.9502i −0.142812 1.01723i
\(217\) 8.70524 3.02740i 0.590950 0.205513i
\(218\) −2.20668 + 10.0902i −0.149455 + 0.683393i
\(219\) 4.70499 8.14928i 0.317934 0.550677i
\(220\) 0 0
\(221\) 3.96874 + 6.87406i 0.266966 + 0.462399i
\(222\) 7.07924 + 6.44977i 0.475128 + 0.432881i
\(223\) 13.2313 13.2313i 0.886031 0.886031i −0.108108 0.994139i \(-0.534479\pi\)
0.994139 + 0.108108i \(0.0344793\pi\)
\(224\) 10.1122 11.0338i 0.675648 0.737224i
\(225\) 0 0
\(226\) −23.2357 + 1.08109i −1.54562 + 0.0719133i
\(227\) 5.38070 20.0810i 0.357130 1.33283i −0.520654 0.853768i \(-0.674312\pi\)
0.877783 0.479058i \(-0.159022\pi\)
\(228\) 12.0960 + 10.0324i 0.801077 + 0.664411i
\(229\) −15.4800 8.93740i −1.02295 0.590600i −0.107992 0.994152i \(-0.534442\pi\)
−0.914957 + 0.403552i \(0.867776\pi\)
\(230\) 0 0
\(231\) 23.6127 1.72408i 1.55360 0.113436i
\(232\) −2.93403 + 3.89241i −0.192628 + 0.255549i
\(233\) −0.340822 + 0.0913229i −0.0223280 + 0.00598276i −0.269966 0.962870i \(-0.587012\pi\)
0.247638 + 0.968853i \(0.420346\pi\)
\(234\) 21.0573 + 10.8853i 1.37656 + 0.711592i
\(235\) 0 0
\(236\) 3.10483 2.20061i 0.202107 0.143247i
\(237\) −16.4367 + 16.4367i −1.06768 + 1.06768i
\(238\) 8.05758 3.22931i 0.522295 0.209325i
\(239\) 24.1080 1.55941 0.779707 0.626145i \(-0.215368\pi\)
0.779707 + 0.626145i \(0.215368\pi\)
\(240\) 0 0
\(241\) −2.17712 3.77087i −0.140240 0.242903i 0.787347 0.616510i \(-0.211454\pi\)
−0.927587 + 0.373607i \(0.878121\pi\)
\(242\) −0.370172 1.16243i −0.0237956 0.0747239i
\(243\) 3.92325 + 14.6418i 0.251677 + 0.939270i
\(244\) −21.2267 9.75074i −1.35890 0.624227i
\(245\) 0 0
\(246\) 9.11823 5.84569i 0.581357 0.372708i
\(247\) −9.23923 + 2.47564i −0.587878 + 0.157521i
\(248\) 9.77938 + 1.20220i 0.620991 + 0.0763397i
\(249\) −15.0854 + 8.70955i −0.955998 + 0.551945i
\(250\) 0 0
\(251\) 13.3373i 0.841841i 0.907098 + 0.420920i \(0.138293\pi\)
−0.907098 + 0.420920i \(0.861707\pi\)
\(252\) 15.0525 21.1059i 0.948221 1.32954i
\(253\) −12.1162 12.1162i −0.761736 0.761736i
\(254\) −2.64006 + 0.122835i −0.165652 + 0.00770734i
\(255\) 0 0
\(256\) 14.9059 5.81492i 0.931621 0.363432i
\(257\) −2.60327 9.71554i −0.162388 0.606039i −0.998359 0.0572656i \(-0.981762\pi\)
0.835971 0.548773i \(-0.184905\pi\)
\(258\) 4.76137 21.7717i 0.296430 1.35545i
\(259\) 0.464217 + 6.35786i 0.0288450 + 0.395058i
\(260\) 0 0
\(261\) −4.22143 + 7.31173i −0.261300 + 0.452585i
\(262\) −5.48369 + 1.74626i −0.338784 + 0.107884i
\(263\) −10.3861 2.78295i −0.640435 0.171604i −0.0760347 0.997105i \(-0.524226\pi\)
−0.564401 + 0.825501i \(0.690893\pi\)
\(264\) 23.4659 + 9.48480i 1.44423 + 0.583749i
\(265\) 0 0
\(266\) 1.24582 + 10.3862i 0.0763862 + 0.636821i
\(267\) 5.76406 + 5.76406i 0.352755 + 0.352755i
\(268\) 11.5739 + 1.97259i 0.706991 + 0.120495i
\(269\) 8.18828 4.72750i 0.499248 0.288241i −0.229155 0.973390i \(-0.573596\pi\)
0.728403 + 0.685149i \(0.240263\pi\)
\(270\) 0 0
\(271\) −12.4949 7.21392i −0.759010 0.438214i 0.0699304 0.997552i \(-0.477722\pi\)
−0.828940 + 0.559337i \(0.811056\pi\)
\(272\) 9.25330 + 0.702976i 0.561064 + 0.0426242i
\(273\) 8.35664 + 24.0294i 0.505767 + 1.45432i
\(274\) −19.1879 + 12.3013i −1.15918 + 0.743152i
\(275\) 0 0
\(276\) −30.1201 + 2.80889i −1.81302 + 0.169075i
\(277\) 31.9620 + 8.56419i 1.92041 + 0.514572i 0.988332 + 0.152314i \(0.0486724\pi\)
0.932078 + 0.362259i \(0.117994\pi\)
\(278\) −16.2690 + 17.8568i −0.975750 + 1.07098i
\(279\) 17.0664 1.02174
\(280\) 0 0
\(281\) −10.1670 −0.606514 −0.303257 0.952909i \(-0.598074\pi\)
−0.303257 + 0.952909i \(0.598074\pi\)
\(282\) 16.9175 18.5685i 1.00742 1.10574i
\(283\) −26.7548 7.16893i −1.59041 0.426148i −0.648280 0.761402i \(-0.724511\pi\)
−0.942128 + 0.335254i \(0.891178\pi\)
\(284\) −1.11950 + 0.104401i −0.0664304 + 0.00619505i
\(285\) 0 0
\(286\) −12.9691 + 8.31446i −0.766877 + 0.491644i
\(287\) 7.08148 + 1.35394i 0.418007 + 0.0799204i
\(288\) 24.3967 13.1470i 1.43759 0.774692i
\(289\) −10.0612 5.80882i −0.591834 0.341695i
\(290\) 0 0
\(291\) −37.5943 + 21.7051i −2.20381 + 1.27237i
\(292\) 6.60103 + 1.12504i 0.386296 + 0.0658380i
\(293\) 3.07964 + 3.07964i 0.179914 + 0.179914i 0.791318 0.611404i \(-0.209395\pi\)
−0.611404 + 0.791318i \(0.709395\pi\)
\(294\) 27.3102 5.31645i 1.59276 0.310062i
\(295\) 0 0
\(296\) −2.55384 + 6.31833i −0.148439 + 0.367245i
\(297\) 16.4152 + 4.39844i 0.952506 + 0.255223i
\(298\) −12.0716 + 3.84417i −0.699291 + 0.222687i
\(299\) 9.20626 15.9457i 0.532412 0.922164i
\(300\) 0 0
\(301\) 12.2731 8.33327i 0.707408 0.480322i
\(302\) 2.03494 9.30491i 0.117098 0.535437i
\(303\) −8.34018 31.1260i −0.479131 1.78814i
\(304\) −3.70431 + 10.5516i −0.212457 + 0.605176i
\(305\) 0 0
\(306\) 16.0564 0.747062i 0.917885 0.0427067i
\(307\) 13.3345 + 13.3345i 0.761042 + 0.761042i 0.976511 0.215469i \(-0.0691280\pi\)
−0.215469 + 0.976511i \(0.569128\pi\)
\(308\) 6.98766 + 15.3303i 0.398159 + 0.873526i
\(309\) 36.8239i 2.09484i
\(310\) 0 0
\(311\) −1.35454 + 0.782046i −0.0768091 + 0.0443457i −0.537913 0.843001i \(-0.680787\pi\)
0.461104 + 0.887346i \(0.347454\pi\)
\(312\) −3.31847 + 26.9944i −0.187871 + 1.52825i
\(313\) 11.7632 3.15193i 0.664893 0.178157i 0.0894395 0.995992i \(-0.471492\pi\)
0.575453 + 0.817835i \(0.304826\pi\)
\(314\) 13.5536 8.68922i 0.764876 0.490361i
\(315\) 0 0
\(316\) −15.0313 6.90478i −0.845574 0.388424i
\(317\) 7.08901 + 26.4565i 0.398158 + 1.48595i 0.816334 + 0.577581i \(0.196003\pi\)
−0.418175 + 0.908366i \(0.637330\pi\)
\(318\) −15.7440 49.4400i −0.882878 2.77245i
\(319\) −2.74350 4.75188i −0.153606 0.266054i
\(320\) 0 0
\(321\) 1.15520 0.0644768
\(322\) −15.8330 12.4415i −0.882337 0.693336i
\(323\) −4.58635 + 4.58635i −0.255191 + 0.255191i
\(324\) 0.495979 0.351534i 0.0275544 0.0195297i
\(325\) 0 0
\(326\) 0.00355457 + 0.00183749i 0.000196869 + 0.000101769i
\(327\) −19.8272 + 5.31269i −1.09645 + 0.293792i
\(328\) 6.15485 + 4.63941i 0.339845 + 0.256169i
\(329\) 16.6764 1.21762i 0.919399 0.0671296i
\(330\) 0 0
\(331\) 3.38809 + 1.95612i 0.186226 + 0.107518i 0.590215 0.807246i \(-0.299043\pi\)
−0.403988 + 0.914764i \(0.632376\pi\)
\(332\) −9.54099 7.91327i −0.523630 0.434297i
\(333\) −3.05513 + 11.4019i −0.167420 + 0.624821i
\(334\) −4.64461 + 0.216101i −0.254142 + 0.0118245i
\(335\) 0 0
\(336\) 28.7077 + 7.78271i 1.56613 + 0.424581i
\(337\) −12.6447 + 12.6447i −0.688801 + 0.688801i −0.961967 0.273166i \(-0.911929\pi\)
0.273166 + 0.961967i \(0.411929\pi\)
\(338\) 1.35321 + 1.23289i 0.0736050 + 0.0670602i
\(339\) −23.1137 40.0341i −1.25537 2.17436i
\(340\) 0 0
\(341\) −5.54569 + 9.60542i −0.300316 + 0.520163i
\(342\) −4.13831 + 18.9227i −0.223774 + 1.02322i
\(343\) 15.6247 + 9.94328i 0.843655 + 0.536886i
\(344\) 15.7051 2.20488i 0.846761 0.118879i
\(345\) 0 0
\(346\) 10.4367 20.1896i 0.561083 1.08540i
\(347\) −1.55280 + 5.79511i −0.0833585 + 0.311098i −0.994998 0.0998921i \(-0.968150\pi\)
0.911640 + 0.410990i \(0.134817\pi\)
\(348\) −9.54934 1.62753i −0.511899 0.0872450i
\(349\) 15.1860i 0.812888i 0.913676 + 0.406444i \(0.133231\pi\)
−0.913676 + 0.406444i \(0.866769\pi\)
\(350\) 0 0
\(351\) 18.2615i 0.974725i
\(352\) −0.528203 + 18.0032i −0.0281533 + 0.959576i
\(353\) −8.90620 + 33.2384i −0.474029 + 1.76910i 0.151035 + 0.988528i \(0.451739\pi\)
−0.625065 + 0.780573i \(0.714927\pi\)
\(354\) 6.71849 + 3.47303i 0.357084 + 0.184590i
\(355\) 0 0
\(356\) −2.42139 + 5.27121i −0.128333 + 0.279373i
\(357\) 13.0545 + 11.2779i 0.690918 + 0.596889i
\(358\) 25.1089 + 5.49120i 1.32705 + 0.290219i
\(359\) −4.20241 + 7.27878i −0.221795 + 0.384159i −0.955353 0.295467i \(-0.904525\pi\)
0.733558 + 0.679626i \(0.237858\pi\)
\(360\) 0 0
\(361\) 5.59193 + 9.68551i 0.294312 + 0.509764i
\(362\) 4.08082 4.47909i 0.214483 0.235416i
\(363\) 1.71435 1.71435i 0.0899803 0.0899803i
\(364\) −13.9687 + 11.5165i −0.732161 + 0.603629i
\(365\) 0 0
\(366\) −2.15759 46.3727i −0.112779 2.42394i
\(367\) −7.95960 + 29.7056i −0.415488 + 1.55062i 0.368369 + 0.929679i \(0.379916\pi\)
−0.783857 + 0.620941i \(0.786751\pi\)
\(368\) −9.32020 19.4044i −0.485849 1.01153i
\(369\) 11.5616 + 6.67511i 0.601875 + 0.347493i
\(370\) 0 0
\(371\) 15.0450 31.0889i 0.781099 1.61406i
\(372\) 6.80237 + 18.3618i 0.352687 + 0.952017i
\(373\) 14.5253 3.89204i 0.752091 0.201522i 0.137646 0.990482i \(-0.456046\pi\)
0.614446 + 0.788959i \(0.289380\pi\)
\(374\) −4.79706 + 9.27977i −0.248050 + 0.479846i
\(375\) 0 0
\(376\) 16.5727 + 6.69860i 0.854671 + 0.345454i
\(377\) 4.16920 4.16920i 0.214725 0.214725i
\(378\) 19.7690 + 2.83470i 1.01681 + 0.145801i
\(379\) 1.92262 0.0987586 0.0493793 0.998780i \(-0.484276\pi\)
0.0493793 + 0.998780i \(0.484276\pi\)
\(380\) 0 0
\(381\) −2.62620 4.54871i −0.134544 0.233038i
\(382\) 15.5761 4.96015i 0.796941 0.253783i
\(383\) −4.13733 15.4407i −0.211408 0.788984i −0.987400 0.158242i \(-0.949417\pi\)
0.775993 0.630742i \(-0.217249\pi\)
\(384\) 23.8691 + 21.0084i 1.21806 + 1.07208i
\(385\) 0 0
\(386\) −3.52898 5.50459i −0.179621 0.280176i
\(387\) 26.5335 7.10963i 1.34877 0.361403i
\(388\) −23.7771 19.7206i −1.20710 1.00116i
\(389\) 9.81327 5.66569i 0.497552 0.287262i −0.230150 0.973155i \(-0.573922\pi\)
0.727702 + 0.685893i \(0.240588\pi\)
\(390\) 0 0
\(391\) 12.4854i 0.631415i
\(392\) 10.2989 + 16.9096i 0.520171 + 0.854062i
\(393\) −8.08735 8.08735i −0.407953 0.407953i
\(394\) −0.629605 13.5320i −0.0317190 0.681730i
\(395\) 0 0
\(396\) 2.89673 + 31.0620i 0.145566 + 1.56092i
\(397\) −3.01844 11.2650i −0.151491 0.565372i −0.999380 0.0351987i \(-0.988794\pi\)
0.847889 0.530173i \(-0.177873\pi\)
\(398\) 2.40343 + 0.525620i 0.120473 + 0.0263469i
\(399\) −17.1991 + 11.6780i −0.861031 + 0.584630i
\(400\) 0 0
\(401\) 13.8361 23.9649i 0.690943 1.19675i −0.280587 0.959829i \(-0.590529\pi\)
0.971529 0.236919i \(-0.0761376\pi\)
\(402\) 7.08004 + 22.2330i 0.353120 + 1.10888i
\(403\) −11.5123 3.08472i −0.573470 0.153661i
\(404\) 18.7083 13.2598i 0.930772 0.659701i
\(405\) 0 0
\(406\) −3.86620 5.16056i −0.191876 0.256114i
\(407\) −5.42456 5.42456i −0.268885 0.268885i
\(408\) 7.20361 + 16.9775i 0.356632 + 0.840511i
\(409\) 11.9780 6.91550i 0.592274 0.341950i −0.173722 0.984795i \(-0.555579\pi\)
0.765996 + 0.642845i \(0.222246\pi\)
\(410\) 0 0
\(411\) −39.2281 22.6483i −1.93498 1.11716i
\(412\) −24.5722 + 9.10307i −1.21058 + 0.448476i
\(413\) 1.65364 + 4.75501i 0.0813702 + 0.233979i
\(414\) −20.1238 31.3895i −0.989031 1.54271i
\(415\) 0 0
\(416\) −18.8334 + 4.45878i −0.923383 + 0.218610i
\(417\) −46.3719 12.4253i −2.27084 0.608471i
\(418\) −9.30550 8.47808i −0.455147 0.414676i
\(419\) −20.6976 −1.01114 −0.505572 0.862784i \(-0.668719\pi\)
−0.505572 + 0.862784i \(0.668719\pi\)
\(420\) 0 0
\(421\) 26.7517 1.30380 0.651898 0.758306i \(-0.273973\pi\)
0.651898 + 0.758306i \(0.273973\pi\)
\(422\) −24.8369 22.6285i −1.20904 1.10154i
\(423\) 29.9067 + 8.01348i 1.45411 + 0.389629i
\(424\) 29.0988 22.7276i 1.41316 1.10375i
\(425\) 0 0
\(426\) −1.20598 1.88112i −0.0584300 0.0911404i
\(427\) 20.2013 23.3837i 0.977611 1.13162i
\(428\) 0.285571 + 0.770850i 0.0138036 + 0.0372605i
\(429\) −26.5142 15.3080i −1.28012 0.739076i
\(430\) 0 0
\(431\) 34.9346 20.1695i 1.68274 0.971531i 0.722914 0.690937i \(-0.242802\pi\)
0.959827 0.280594i \(-0.0905313\pi\)
\(432\) 17.6279 + 12.0450i 0.848125 + 0.579516i
\(433\) −16.5835 16.5835i −0.796954 0.796954i 0.185660 0.982614i \(-0.440558\pi\)
−0.982614 + 0.185660i \(0.940558\pi\)
\(434\) −5.12641 + 11.9839i −0.246075 + 0.575243i
\(435\) 0 0
\(436\) −8.44651 11.9172i −0.404514 0.570729i
\(437\) 14.5331 + 3.89412i 0.695210 + 0.186281i
\(438\) 4.03800 + 12.6803i 0.192943 + 0.605888i
\(439\) −2.87067 + 4.97215i −0.137010 + 0.237308i −0.926363 0.376631i \(-0.877082\pi\)
0.789354 + 0.613939i \(0.210416\pi\)
\(440\) 0 0
\(441\) 21.2790 + 26.8936i 1.01329 + 1.28065i
\(442\) −10.9661 2.39824i −0.521604 0.114073i
\(443\) 0.221517 + 0.826713i 0.0105246 + 0.0392783i 0.970988 0.239126i \(-0.0768610\pi\)
−0.960464 + 0.278405i \(0.910194\pi\)
\(444\) −13.4851 + 1.25757i −0.639976 + 0.0596819i
\(445\) 0 0
\(446\) 1.22990 + 26.4339i 0.0582373 + 1.25168i
\(447\) −17.8032 17.8032i −0.842064 0.842064i
\(448\) 1.90338 + 21.0803i 0.0899265 + 0.995948i
\(449\) 4.66158i 0.219993i −0.993932 0.109997i \(-0.964916\pi\)
0.993932 0.109997i \(-0.0350840\pi\)
\(450\) 0 0
\(451\) −7.51388 + 4.33814i −0.353815 + 0.204275i
\(452\) 21.0005 25.3202i 0.987781 1.19096i
\(453\) 18.2842 4.89923i 0.859065 0.230186i
\(454\) 15.8678 + 24.7510i 0.744715 + 1.16162i
\(455\) 0 0
\(456\) −22.0086 + 3.08984i −1.03065 + 0.144695i
\(457\) −8.23274 30.7250i −0.385111 1.43726i −0.837991 0.545684i \(-0.816270\pi\)
0.452880 0.891572i \(-0.350397\pi\)
\(458\) 24.0870 7.67041i 1.12551 0.358415i
\(459\) 6.19150 + 10.7240i 0.288995 + 0.500553i
\(460\) 0 0
\(461\) −23.4445 −1.09192 −0.545959 0.837812i \(-0.683835\pi\)
−0.545959 + 0.837812i \(0.683835\pi\)
\(462\) −20.6874 + 26.3267i −0.962466 + 1.22483i
\(463\) 1.84160 1.84160i 0.0855866 0.0855866i −0.663017 0.748604i \(-0.730724\pi\)
0.748604 + 0.663017i \(0.230724\pi\)
\(464\) −1.27462 6.77451i −0.0591726 0.314499i
\(465\) 0 0
\(466\) 0.229144 0.443274i 0.0106149 0.0205343i
\(467\) −8.01462 + 2.14751i −0.370872 + 0.0993749i −0.439441 0.898271i \(-0.644823\pi\)
0.0685687 + 0.997646i \(0.478157\pi\)
\(468\) −31.4352 + 11.6456i −1.45309 + 0.538317i
\(469\) −6.76572 + 13.9806i −0.312412 + 0.645565i
\(470\) 0 0
\(471\) 27.7093 + 15.9980i 1.27678 + 0.737147i
\(472\) −0.656670 + 5.34173i −0.0302257 + 0.245873i
\(473\) −4.62053 + 17.2441i −0.212452 + 0.792883i
\(474\) −1.52785 32.8378i −0.0701766 1.50829i
\(475\) 0 0
\(476\) −4.29847 + 11.4991i −0.197020 + 0.527060i
\(477\) 45.2221 45.2221i 2.07058 2.07058i
\(478\) −22.9614 + 25.2024i −1.05023 + 1.15273i
\(479\) 6.99926 + 12.1231i 0.319805 + 0.553918i 0.980447 0.196783i \(-0.0630494\pi\)
−0.660643 + 0.750701i \(0.729716\pi\)
\(480\) 0 0
\(481\) 4.12176 7.13910i 0.187936 0.325515i
\(482\) 6.01563 + 1.31559i 0.274005 + 0.0599236i
\(483\) 7.51507 39.3060i 0.341948 1.78849i
\(484\) 1.56777 + 0.720172i 0.0712622 + 0.0327351i
\(485\) 0 0
\(486\) −19.0431 9.84409i −0.863813 0.446537i
\(487\) 6.87083 25.6423i 0.311347 1.16196i −0.615995 0.787750i \(-0.711246\pi\)
0.927342 0.374214i \(-0.122087\pi\)
\(488\) 30.4106 12.9033i 1.37662 0.584107i
\(489\) 0.00795220i 0.000359611i
\(490\) 0 0
\(491\) 35.5868i 1.60601i −0.595973 0.803004i \(-0.703234\pi\)
0.595973 0.803004i \(-0.296766\pi\)
\(492\) −2.57353 + 15.0999i −0.116024 + 0.680754i
\(493\) 1.03480 3.86191i 0.0466049 0.173932i
\(494\) 6.21181 12.0166i 0.279482 0.540651i
\(495\) 0 0
\(496\) −10.5711 + 9.07830i −0.474655 + 0.407628i
\(497\) 0.279321 1.46093i 0.0125293 0.0655316i
\(498\) 5.26303 24.0656i 0.235842 1.07840i
\(499\) −4.94115 + 8.55833i −0.221196 + 0.383123i −0.955172 0.296053i \(-0.904330\pi\)
0.733975 + 0.679176i \(0.237663\pi\)
\(500\) 0 0
\(501\) −4.62022 8.00245i −0.206416 0.357523i
\(502\) −13.9427 12.7030i −0.622295 0.566962i
\(503\) −16.5308 + 16.5308i −0.737071 + 0.737071i −0.972010 0.234939i \(-0.924511\pi\)
0.234939 + 0.972010i \(0.424511\pi\)
\(504\) 7.72730 + 35.8380i 0.344201 + 1.59635i
\(505\) 0 0
\(506\) 24.2061 1.12624i 1.07609 0.0500676i
\(507\) −0.941607 + 3.51413i −0.0418182 + 0.156068i
\(508\) 2.38610 2.87690i 0.105866 0.127642i
\(509\) −0.789343 0.455727i −0.0349870 0.0201998i 0.482404 0.875949i \(-0.339764\pi\)
−0.517391 + 0.855749i \(0.673097\pi\)
\(510\) 0 0
\(511\) −3.85873 + 7.97365i −0.170700 + 0.352733i
\(512\) −8.11815 + 21.1210i −0.358775 + 0.933424i
\(513\) −14.4138 + 3.86218i −0.636386 + 0.170519i
\(514\) 12.6361 + 6.53204i 0.557352 + 0.288116i
\(515\) 0 0
\(516\) 18.2251 + 25.7138i 0.802316 + 1.13199i
\(517\) −14.2284 + 14.2284i −0.625763 + 0.625763i
\(518\) −7.08863 5.57021i −0.311456 0.244741i
\(519\) 45.1677 1.98264
\(520\) 0 0
\(521\) 3.24107 + 5.61370i 0.141994 + 0.245941i 0.928247 0.371963i \(-0.121315\pi\)
−0.786254 + 0.617904i \(0.787982\pi\)
\(522\) −3.62299 11.3771i −0.158574 0.497961i
\(523\) 1.22075 + 4.55591i 0.0533798 + 0.199216i 0.987466 0.157831i \(-0.0504502\pi\)
−0.934086 + 0.357047i \(0.883783\pi\)
\(524\) 3.39736 7.39585i 0.148415 0.323089i
\(525\) 0 0
\(526\) 12.8015 8.20701i 0.558170 0.357842i
\(527\) −7.80645 + 2.09173i −0.340054 + 0.0911173i
\(528\) −32.2653 + 15.4974i −1.40417 + 0.674439i
\(529\) −5.16358 + 2.98119i −0.224503 + 0.129617i
\(530\) 0 0
\(531\) 9.32205i 0.404542i
\(532\) −12.0443 8.58991i −0.522187 0.372420i
\(533\) −6.59253 6.59253i −0.285554 0.285554i
\(534\) −11.5157 + 0.535792i −0.498332 + 0.0231860i
\(535\) 0 0
\(536\) −13.0857 + 10.2206i −0.565214 + 0.441462i
\(537\) 13.2203 + 49.3390i 0.570500 + 2.12913i
\(538\) −2.85675 + 13.0627i −0.123163 + 0.563172i
\(539\) −22.0511 + 3.23736i −0.949808 + 0.139443i
\(540\) 0 0
\(541\) −9.43554 + 16.3428i −0.405666 + 0.702633i −0.994399 0.105694i \(-0.966294\pi\)
0.588733 + 0.808328i \(0.299627\pi\)
\(542\) 19.4421 6.19125i 0.835108 0.265937i
\(543\) 11.6317 + 3.11669i 0.499162 + 0.133750i
\(544\) −9.54813 + 9.00382i −0.409373 + 0.386036i
\(545\) 0 0
\(546\) −33.0794 14.1506i −1.41567 0.605590i
\(547\) 9.42028 + 9.42028i 0.402782 + 0.402782i 0.879212 0.476430i \(-0.158069\pi\)
−0.476430 + 0.879212i \(0.658069\pi\)
\(548\) 5.41559 31.7753i 0.231343 1.35737i
\(549\) 49.5537 28.6098i 2.11490 1.22104i
\(550\) 0 0
\(551\) 4.17252 + 2.40901i 0.177756 + 0.102627i
\(552\) 25.7512 34.1627i 1.09605 1.45406i
\(553\) 14.3051 16.5586i 0.608316 0.704145i
\(554\) −39.3949 + 25.2560i −1.67373 + 1.07303i
\(555\) 0 0
\(556\) −3.17213 34.0151i −0.134528 1.44256i
\(557\) −36.6573 9.82230i −1.55322 0.416184i −0.622711 0.782452i \(-0.713969\pi\)
−0.930509 + 0.366268i \(0.880635\pi\)
\(558\) −16.2547 + 17.8411i −0.688117 + 0.755274i
\(559\) −19.1836 −0.811378
\(560\) 0 0
\(561\) −20.7605 −0.876510
\(562\) 9.68351 10.6286i 0.408474 0.448339i
\(563\) 36.6293 + 9.81479i 1.54374 + 0.413644i 0.927472 0.373892i \(-0.121977\pi\)
0.616269 + 0.787536i \(0.288643\pi\)
\(564\) 3.29856 + 35.3709i 0.138895 + 1.48938i
\(565\) 0 0
\(566\) 32.9768 21.1414i 1.38612 0.888638i
\(567\) 0.264159 + 0.759585i 0.0110936 + 0.0318996i
\(568\) 0.957124 1.26976i 0.0401600 0.0532780i
\(569\) −7.96777 4.60019i −0.334026 0.192850i 0.323601 0.946194i \(-0.395106\pi\)
−0.657627 + 0.753344i \(0.728440\pi\)
\(570\) 0 0
\(571\) −14.8692 + 8.58473i −0.622256 + 0.359260i −0.777747 0.628578i \(-0.783637\pi\)
0.155491 + 0.987837i \(0.450304\pi\)
\(572\) 3.66039 21.4769i 0.153049 0.897993i
\(573\) 22.9716 + 22.9716i 0.959652 + 0.959652i
\(574\) −8.16010 + 6.11341i −0.340596 + 0.255169i
\(575\) 0 0
\(576\) −9.49267 + 38.0259i −0.395528 + 1.58441i
\(577\) 29.5776 + 7.92529i 1.23133 + 0.329934i 0.815097 0.579324i \(-0.196683\pi\)
0.416233 + 0.909258i \(0.363350\pi\)
\(578\) 15.6552 4.98534i 0.651171 0.207363i
\(579\) 6.49731 11.2537i 0.270019 0.467687i
\(580\) 0 0
\(581\) 13.5662 9.21126i 0.562819 0.382147i
\(582\) 13.1160 59.9737i 0.543675 2.48599i
\(583\) 10.7574 + 40.1471i 0.445525 + 1.66272i
\(584\) −7.46322 + 5.82916i −0.308830 + 0.241212i
\(585\) 0 0
\(586\) −6.15262 + 0.286264i −0.254162 + 0.0118255i
\(587\) −31.4917 31.4917i −1.29980 1.29980i −0.928520 0.371283i \(-0.878918\pi\)
−0.371283 0.928520i \(-0.621082\pi\)
\(588\) −20.4536 + 33.6136i −0.843493 + 1.38620i
\(589\) 9.73911i 0.401293i
\(590\) 0 0
\(591\) 23.3150 13.4609i 0.959050 0.553708i
\(592\) −4.17277 8.68761i −0.171500 0.357059i
\(593\) 7.35708 1.97132i 0.302119 0.0809525i −0.104575 0.994517i \(-0.533348\pi\)
0.406694 + 0.913564i \(0.366682\pi\)
\(594\) −20.2326 + 12.9711i −0.830155 + 0.532212i
\(595\) 0 0
\(596\) 7.47885 16.2810i 0.306346 0.666895i
\(597\) 1.26546 + 4.72275i 0.0517917 + 0.193289i
\(598\) 7.90115 + 24.8116i 0.323102 + 1.01462i
\(599\) 0.0710719 + 0.123100i 0.00290392 + 0.00502974i 0.867474 0.497483i \(-0.165742\pi\)
−0.864570 + 0.502513i \(0.832409\pi\)
\(600\) 0 0
\(601\) −13.9872 −0.570550 −0.285275 0.958446i \(-0.592085\pi\)
−0.285275 + 0.958446i \(0.592085\pi\)
\(602\) −2.97783 + 20.7672i −0.121367 + 0.846407i
\(603\) −20.3363 + 20.3363i −0.828157 + 0.828157i
\(604\) 7.78915 + 10.9897i 0.316936 + 0.447165i
\(605\) 0 0
\(606\) 40.4825 + 20.9269i 1.64449 + 0.850097i
\(607\) −31.6805 + 8.48876i −1.28587 + 0.344548i −0.836091 0.548591i \(-0.815165\pi\)
−0.449781 + 0.893139i \(0.648498\pi\)
\(608\) −7.50247 13.9223i −0.304265 0.564622i
\(609\) 5.58221 11.5350i 0.226203 0.467423i
\(610\) 0 0
\(611\) −18.7255 10.8112i −0.757554 0.437374i
\(612\) −14.5119 + 17.4969i −0.586607 + 0.707269i
\(613\) −1.33983 + 5.00032i −0.0541153 + 0.201961i −0.987691 0.156420i \(-0.950005\pi\)
0.933575 + 0.358381i \(0.116671\pi\)
\(614\) −26.6402 + 1.23950i −1.07511 + 0.0500220i
\(615\) 0 0
\(616\) −22.6816 7.29638i −0.913868 0.293979i
\(617\) −18.4714 + 18.4714i −0.743630 + 0.743630i −0.973275 0.229644i \(-0.926244\pi\)
0.229644 + 0.973275i \(0.426244\pi\)
\(618\) −38.4955 35.0726i −1.54852 1.41083i
\(619\) −4.38197 7.58980i −0.176126 0.305060i 0.764424 0.644714i \(-0.223023\pi\)
−0.940551 + 0.339654i \(0.889690\pi\)
\(620\) 0 0
\(621\) 14.3624 24.8764i 0.576343 0.998255i
\(622\) 0.472576 2.16089i 0.0189486 0.0866437i
\(623\) −5.80684 5.01657i −0.232646 0.200985i
\(624\) −25.0592 29.1797i −1.00317 1.16812i
\(625\) 0 0
\(626\) −7.90871 + 15.2992i −0.316096 + 0.611478i
\(627\) 6.47506 24.1653i 0.258589 0.965068i
\(628\) −3.82538 + 22.4449i −0.152649 + 0.895649i
\(629\) 5.58989i 0.222883i
\(630\) 0 0
\(631\) 31.2397i 1.24363i 0.783164 + 0.621816i \(0.213605\pi\)
−0.783164 + 0.621816i \(0.786395\pi\)
\(632\) 21.5346 9.13722i 0.856602 0.363459i
\(633\) 17.2823 64.4986i 0.686911 2.56359i
\(634\) −34.4094 17.7875i −1.36657 0.706432i
\(635\) 0 0
\(636\) 66.6796 + 30.6300i 2.64402 + 1.21456i
\(637\) −9.49304 21.9876i −0.376128 0.871180i
\(638\) 7.58062 + 1.65785i 0.300120 + 0.0656348i
\(639\) 1.37709 2.38520i 0.0544770 0.0943569i
\(640\) 0 0
\(641\) −24.9696 43.2485i −0.986238 1.70821i −0.636299 0.771443i \(-0.719535\pi\)
−0.349939 0.936772i \(-0.613798\pi\)
\(642\) −1.10026 + 1.20764i −0.0434237 + 0.0476617i
\(643\) −16.3136 + 16.3136i −0.643345 + 0.643345i −0.951376 0.308031i \(-0.900330\pi\)
0.308031 + 0.951376i \(0.400330\pi\)
\(644\) 28.0863 4.70195i 1.10675 0.185283i
\(645\) 0 0
\(646\) −0.426319 9.16279i −0.0167733 0.360505i
\(647\) −4.17257 + 15.5722i −0.164041 + 0.612208i 0.834120 + 0.551583i \(0.185976\pi\)
−0.998161 + 0.0606248i \(0.980691\pi\)
\(648\) −0.104899 + 0.853310i −0.00412083 + 0.0335212i
\(649\) −5.24671 3.02919i −0.205951 0.118906i
\(650\) 0 0
\(651\) −25.8349 + 1.88633i −1.01255 + 0.0739310i
\(652\) −0.00530642 + 0.00196583i −0.000207816 + 7.69879e-5i
\(653\) 21.8713 5.86041i 0.855891 0.229335i 0.195914 0.980621i \(-0.437233\pi\)
0.659977 + 0.751286i \(0.270566\pi\)
\(654\) 13.3304 25.7873i 0.521261 1.00836i
\(655\) 0 0
\(656\) −10.7122 + 2.01548i −0.418240 + 0.0786914i
\(657\) −11.5985 + 11.5985i −0.452501 + 0.452501i
\(658\) −14.6104 + 18.5931i −0.569573 + 0.724836i
\(659\) 0.119381 0.00465044 0.00232522 0.999997i \(-0.499260\pi\)
0.00232522 + 0.999997i \(0.499260\pi\)
\(660\) 0 0
\(661\) 10.3433 + 17.9151i 0.402307 + 0.696816i 0.994004 0.109344i \(-0.0348751\pi\)
−0.591697 + 0.806161i \(0.701542\pi\)
\(662\) −5.27188 + 1.67881i −0.204897 + 0.0652489i
\(663\) −5.77388 21.5484i −0.224239 0.836871i
\(664\) 17.3597 2.43718i 0.673689 0.0945810i
\(665\) 0 0
\(666\) −9.00968 14.0535i −0.349118 0.544562i
\(667\) −8.95846 + 2.40041i −0.346873 + 0.0929443i
\(668\) 4.19781 5.06128i 0.162418 0.195827i
\(669\) −45.5445 + 26.2951i −1.76085 + 1.01663i
\(670\) 0 0
\(671\) 37.1869i 1.43559i
\(672\) −35.4784 + 22.5983i −1.36861 + 0.871749i
\(673\) −34.9098 34.9098i −1.34568 1.34568i −0.890299 0.455376i \(-0.849505\pi\)
−0.455376 0.890299i \(-0.650495\pi\)
\(674\) −1.17537 25.2621i −0.0452737 0.973058i
\(675\) 0 0
\(676\) −2.57771 + 0.240388i −0.0991427 + 0.00924569i
\(677\) 1.32612 + 4.94915i 0.0509669 + 0.190211i 0.986716 0.162456i \(-0.0519415\pi\)
−0.935749 + 0.352667i \(0.885275\pi\)
\(678\) 63.8660 + 13.9672i 2.45276 + 0.536408i
\(679\) 33.8082 22.9554i 1.29744 0.880946i
\(680\) 0 0
\(681\) −29.2147 + 50.6014i −1.11951 + 1.93905i
\(682\) −4.75952 14.9461i −0.182251 0.572314i
\(683\) −40.4498 10.8385i −1.54777 0.414724i −0.619003 0.785389i \(-0.712463\pi\)
−0.928767 + 0.370665i \(0.879130\pi\)
\(684\) −15.8402 22.3490i −0.605666 0.854534i
\(685\) 0 0
\(686\) −25.2763 + 6.86361i −0.965053 + 0.262054i
\(687\) 35.5235 + 35.5235i 1.35530 + 1.35530i
\(688\) −12.6532 + 18.5180i −0.482399 + 0.705994i
\(689\) −38.6789 + 22.3313i −1.47355 + 0.850755i
\(690\) 0 0
\(691\) 29.5825 + 17.0795i 1.12537 + 0.649734i 0.942767 0.333452i \(-0.108213\pi\)
0.182606 + 0.983186i \(0.441547\pi\)
\(692\) 11.1657 + 30.1400i 0.424457 + 1.14575i
\(693\) −40.5352 7.75009i −1.53981 0.294402i
\(694\) −4.57924 7.14280i −0.173826 0.271137i
\(695\) 0 0
\(696\) 10.7966 8.43272i 0.409245 0.319641i
\(697\) −6.10663 1.63627i −0.231305 0.0619780i
\(698\) −15.8754 14.4638i −0.600892 0.547462i
\(699\) 0.991682 0.0375089
\(700\) 0 0
\(701\) −28.1444 −1.06300 −0.531499 0.847059i \(-0.678371\pi\)
−0.531499 + 0.847059i \(0.678371\pi\)
\(702\) −19.0905 17.3930i −0.720523 0.656456i
\(703\) 6.50664 + 1.74345i 0.245402 + 0.0657554i
\(704\) −18.3174 17.6992i −0.690364 0.667065i
\(705\) 0 0
\(706\) −26.2647 40.9682i −0.988483 1.54186i
\(707\) 9.96406 + 28.6515i 0.374737 + 1.07755i
\(708\) −10.0297 + 3.71562i −0.376938 + 0.139641i
\(709\) 3.23053 + 1.86515i 0.121325 + 0.0700471i 0.559434 0.828875i \(-0.311018\pi\)
−0.438109 + 0.898922i \(0.644352\pi\)
\(710\) 0 0
\(711\) 35.0903 20.2594i 1.31599 0.759788i
\(712\) −3.20427 7.55183i −0.120085 0.283017i
\(713\) 13.2564 + 13.2564i 0.496456 + 0.496456i
\(714\) −24.2235 + 2.90560i −0.906543 + 0.108739i
\(715\) 0 0
\(716\) −29.6553 + 21.0187i −1.10827 + 0.785505i
\(717\) −65.4475 17.5366i −2.44418 0.654917i
\(718\) −3.60666 11.3258i −0.134599 0.422675i
\(719\) −14.3205 + 24.8039i −0.534066 + 0.925029i 0.465142 + 0.885236i \(0.346003\pi\)
−0.999208 + 0.0397933i \(0.987330\pi\)
\(720\) 0 0
\(721\) −2.52432 34.5728i −0.0940106 1.28756i
\(722\) −15.4512 3.37911i −0.575034 0.125757i
\(723\) 3.16736 + 11.8207i 0.117795 + 0.439618i
\(724\) 0.795677 + 8.53215i 0.0295711 + 0.317095i
\(725\) 0 0
\(726\) 0.159356 + 3.42500i 0.00591425 + 0.127114i
\(727\) 35.3576 + 35.3576i 1.31134 + 1.31134i 0.920429 + 0.390911i \(0.127840\pi\)
0.390911 + 0.920429i \(0.372160\pi\)
\(728\) 1.26511 25.5717i 0.0468883 0.947749i
\(729\) 43.5147i 1.61166i
\(730\) 0 0
\(731\) −11.2655 + 6.50414i −0.416669 + 0.240564i
\(732\) 50.5328 + 41.9118i 1.86775 + 1.54910i
\(733\) −19.8341 + 5.31453i −0.732589 + 0.196297i −0.605782 0.795631i \(-0.707140\pi\)
−0.126807 + 0.991927i \(0.540473\pi\)
\(734\) −23.4731 36.6138i −0.866407 1.35144i
\(735\) 0 0
\(736\) 29.1623 + 8.73831i 1.07494 + 0.322098i
\(737\) −4.83758 18.0541i −0.178194 0.665031i
\(738\) −17.9899 + 5.72883i −0.662219 + 0.210881i
\(739\) 24.2010 + 41.9174i 0.890249 + 1.54196i 0.839576 + 0.543242i \(0.182803\pi\)
0.0506730 + 0.998715i \(0.483863\pi\)
\(740\) 0 0
\(741\) 26.8832 0.987579
\(742\) 18.1707 + 45.3384i 0.667068 + 1.66443i
\(743\) 3.78255 3.78255i 0.138768 0.138768i −0.634310 0.773078i \(-0.718716\pi\)
0.773078 + 0.634310i \(0.218716\pi\)
\(744\) −25.6743 10.3774i −0.941264 0.380454i
\(745\) 0 0
\(746\) −9.76578 + 18.8916i −0.357551 + 0.691672i
\(747\) 29.3290 7.85869i 1.07309 0.287535i
\(748\) −5.13212 13.8533i −0.187649 0.506526i
\(749\) −1.08458 + 0.0791901i −0.0396296 + 0.00289354i
\(750\) 0 0
\(751\) 15.5554 + 8.98090i 0.567623 + 0.327718i 0.756200 0.654341i \(-0.227054\pi\)
−0.188576 + 0.982059i \(0.560387\pi\)
\(752\) −22.7872 + 10.9450i −0.830964 + 0.399123i
\(753\) 9.70180 36.2076i 0.353553 1.31948i
\(754\) 0.387544 + 8.32940i 0.0141135 + 0.303339i
\(755\) 0 0
\(756\) −21.7922 + 17.9665i −0.792574 + 0.653436i
\(757\) 35.0017 35.0017i 1.27216 1.27216i 0.327204 0.944954i \(-0.393894\pi\)
0.944954 0.327204i \(-0.106106\pi\)
\(758\) −1.83119 + 2.00990i −0.0665118 + 0.0730030i
\(759\) 24.0790 + 41.7061i 0.874013 + 1.51384i
\(760\) 0 0
\(761\) −18.0493 + 31.2622i −0.654285 + 1.13325i 0.327788 + 0.944751i \(0.393697\pi\)
−0.982073 + 0.188503i \(0.939636\pi\)
\(762\) 7.25651 + 1.58697i 0.262876 + 0.0574897i
\(763\) 18.2510 6.34710i 0.660730 0.229781i
\(764\) −9.64999 + 21.0074i −0.349125 + 0.760022i
\(765\) 0 0
\(766\) 20.0822 + 10.3813i 0.725601 + 0.375090i
\(767\) 1.68495 6.28831i 0.0608399 0.227058i
\(768\) −44.6960 + 4.94329i −1.61283 + 0.178375i
\(769\) 22.5137i 0.811865i −0.913903 0.405933i \(-0.866947\pi\)
0.913903 0.405933i \(-0.133053\pi\)
\(770\) 0 0
\(771\) 28.2691i 1.01809i
\(772\) 9.11563 + 1.55361i 0.328079 + 0.0559158i
\(773\) −5.98883 + 22.3506i −0.215403 + 0.803896i 0.770621 + 0.637294i \(0.219946\pi\)
−0.986024 + 0.166602i \(0.946720\pi\)
\(774\) −17.8392 + 34.5095i −0.641218 + 1.24042i
\(775\) 0 0
\(776\) 43.2622 6.07370i 1.55302 0.218033i
\(777\) 3.36460 17.5978i 0.120704 0.631318i
\(778\) −3.42368 + 15.6550i −0.122745 + 0.561259i
\(779\) 3.80923 6.59778i 0.136480 0.236390i
\(780\) 0 0
\(781\) 0.894971 + 1.55014i 0.0320246 + 0.0554682i
\(782\) 13.0522 + 11.8917i 0.466747 + 0.425245i
\(783\) 6.50425 6.50425i 0.232443 0.232443i
\(784\) −27.4863 5.33900i −0.981653 0.190679i
\(785\) 0 0
\(786\) 16.1572 0.751751i 0.576309 0.0268141i
\(787\) 9.53044 35.5681i 0.339724 1.26787i −0.558933 0.829213i \(-0.688789\pi\)
0.898657 0.438653i \(-0.144544\pi\)
\(788\) 14.7459 + 12.2302i 0.525302 + 0.435684i
\(789\) 26.1715 + 15.1101i 0.931731 + 0.537935i
\(790\) 0 0
\(791\) 24.4452 + 36.0024i 0.869170 + 1.28010i
\(792\) −35.2311 26.5565i −1.25188 0.943646i
\(793\) −38.5982 + 10.3424i −1.37066 + 0.367268i
\(794\) 14.6512 + 7.57376i 0.519953 + 0.268783i
\(795\) 0 0
\(796\) −2.83861 + 2.01192i −0.100612 + 0.0713105i
\(797\) 8.30328 8.30328i 0.294117 0.294117i −0.544587 0.838704i \(-0.683314\pi\)
0.838704 + 0.544587i \(0.183314\pi\)
\(798\) 4.17304 29.1025i 0.147724 1.03022i
\(799\) −14.6620 −0.518705
\(800\) 0 0
\(801\) −7.10464 12.3056i −0.251030 0.434797i
\(802\) 11.8747 + 37.2894i 0.419309 + 1.31673i
\(803\) −2.75904 10.2969i −0.0973645 0.363369i
\(804\) −29.9857 13.7743i −1.05751 0.485781i
\(805\) 0 0
\(806\) 14.1896 9.09693i 0.499807 0.320426i
\(807\) −25.6682 + 6.87776i −0.903562 + 0.242109i
\(808\) −3.95679 + 32.1868i −0.139199 + 1.13233i
\(809\) 27.1489 15.6744i 0.954504 0.551083i 0.0600265 0.998197i \(-0.480881\pi\)
0.894477 + 0.447114i \(0.147548\pi\)
\(810\) 0 0
\(811\) 9.76550i 0.342913i −0.985192 0.171456i \(-0.945153\pi\)
0.985192 0.171456i \(-0.0548473\pi\)
\(812\) 9.07716 + 0.873423i 0.318546 + 0.0306511i
\(813\) 28.6732 + 28.6732i 1.00561 + 1.00561i
\(814\) 10.8374 0.504234i 0.379850 0.0176734i
\(815\) 0 0
\(816\) −24.6092 8.63946i −0.861495 0.302441i
\(817\) −4.05719 15.1416i −0.141943 0.529739i
\(818\) −4.17892 + 19.1084i −0.146112 + 0.668109i
\(819\) −3.22937 44.2291i −0.112843 1.54549i
\(820\) 0 0
\(821\) 3.83240 6.63791i 0.133752 0.231665i −0.791368 0.611340i \(-0.790631\pi\)
0.925120 + 0.379675i \(0.123964\pi\)
\(822\) 61.0390 19.4377i 2.12898 0.677966i
\(823\) 52.8907 + 14.1720i 1.84365 + 0.494006i 0.999138 0.0415239i \(-0.0132213\pi\)
0.844517 + 0.535530i \(0.179888\pi\)
\(824\) 13.8873 34.3578i 0.483786 1.19691i
\(825\) 0 0
\(826\) −6.54586 2.80016i −0.227760 0.0974302i
\(827\) −35.5553 35.5553i −1.23638 1.23638i −0.961470 0.274910i \(-0.911352\pi\)
−0.274910 0.961470i \(-0.588648\pi\)
\(828\) 51.9813 + 8.85938i 1.80647 + 0.307885i
\(829\) 23.4882 13.5609i 0.815780 0.470991i −0.0331794 0.999449i \(-0.510563\pi\)
0.848959 + 0.528459i \(0.177230\pi\)
\(830\) 0 0
\(831\) −80.5397 46.4996i −2.79389 1.61305i
\(832\) 13.2765 23.9351i 0.460281 0.829800i
\(833\) −13.0296 9.69357i −0.451449 0.335862i
\(834\) 57.1560 36.6426i 1.97915 1.26883i
\(835\) 0 0
\(836\) 17.7259 1.65305i 0.613063 0.0571720i
\(837\) −17.9600 4.81237i −0.620789 0.166340i
\(838\) 19.7133 21.6372i 0.680984 0.747445i
\(839\) 3.82948 0.132208 0.0661042 0.997813i \(-0.478943\pi\)
0.0661042 + 0.997813i \(0.478943\pi\)
\(840\) 0 0
\(841\) 26.0301 0.897589
\(842\) −25.4794 + 27.9661i −0.878079 + 0.963775i
\(843\) 27.6011 + 7.39570i 0.950634 + 0.254722i
\(844\) 47.3115 4.41210i 1.62853 0.151871i
\(845\) 0 0
\(846\) −36.8617 + 23.6320i −1.26733 + 0.812485i
\(847\) −1.49203 + 1.72708i −0.0512669 + 0.0593431i
\(848\) −3.95551 + 52.0665i −0.135833 + 1.78797i
\(849\) 67.4183 + 38.9240i 2.31379 + 1.33587i
\(850\) 0 0
\(851\) −11.2296 + 6.48342i −0.384946 + 0.222249i
\(852\) 3.11514 + 0.530926i 0.106723 + 0.0181892i
\(853\) 1.20013 + 1.20013i 0.0410916 + 0.0410916i 0.727354 0.686262i \(-0.240750\pi\)
−0.686262 + 0.727354i \(0.740750\pi\)
\(854\) 5.20460 + 43.3900i 0.178098 + 1.48478i
\(855\) 0 0
\(856\) −1.07783 0.435655i −0.0368396 0.0148904i
\(857\) 25.5819 + 6.85466i 0.873862 + 0.234151i 0.667757 0.744379i \(-0.267254\pi\)
0.206105 + 0.978530i \(0.433921\pi\)
\(858\) 41.2561 13.1379i 1.40846 0.448519i
\(859\) −19.8151 + 34.3208i −0.676083 + 1.17101i 0.300068 + 0.953918i \(0.402991\pi\)
−0.976151 + 0.217093i \(0.930343\pi\)
\(860\) 0 0
\(861\) −18.2397 8.82684i −0.621608 0.300818i
\(862\) −12.1881 + 55.7308i −0.415128 + 1.89820i
\(863\) 2.57861 + 9.62351i 0.0877769 + 0.327588i 0.995826 0.0912768i \(-0.0290948\pi\)
−0.908049 + 0.418865i \(0.862428\pi\)
\(864\) −29.3814 + 6.95601i −0.999575 + 0.236648i
\(865\) 0 0
\(866\) 33.1312 1.54150i 1.12585 0.0523825i
\(867\) 23.0883 + 23.0883i 0.784120 + 0.784120i
\(868\) −7.64527 16.7731i −0.259497 0.569315i
\(869\) 26.3331i 0.893290i
\(870\) 0 0
\(871\) 17.3938 10.0423i 0.589368 0.340272i
\(872\) 20.5030 + 2.52047i 0.694318 + 0.0853540i
\(873\) 73.0908 19.5846i 2.47375 0.662839i
\(874\) −17.9128 + 11.4839i −0.605909 + 0.388448i
\(875\) 0 0
\(876\) −17.1019 7.85595i −0.577820 0.265428i
\(877\) −0.664074 2.47836i −0.0224242 0.0836882i 0.953807 0.300420i \(-0.0971269\pi\)
−0.976231 + 0.216732i \(0.930460\pi\)
\(878\) −2.46372 7.73668i −0.0831464 0.261100i
\(879\) −6.12031 10.6007i −0.206433 0.357553i
\(880\) 0 0
\(881\) 20.5639 0.692816 0.346408 0.938084i \(-0.387401\pi\)
0.346408 + 0.938084i \(0.387401\pi\)
\(882\) −48.3815 3.36965i −1.62909 0.113462i
\(883\) 26.6080 26.6080i 0.895429 0.895429i −0.0995985 0.995028i \(-0.531756\pi\)
0.995028 + 0.0995985i \(0.0317558\pi\)
\(884\) 12.9517 9.17974i 0.435613 0.308748i
\(885\) 0 0
\(886\) −1.07522 0.555823i −0.0361229 0.0186732i
\(887\) −7.10873 + 1.90478i −0.238688 + 0.0639562i −0.376180 0.926547i \(-0.622762\pi\)
0.137492 + 0.990503i \(0.456096\pi\)
\(888\) 11.5292 15.2951i 0.386893 0.513269i
\(889\) 2.77748 + 4.09062i 0.0931537 + 0.137195i
\(890\) 0 0
\(891\) −0.838132 0.483895i −0.0280785 0.0162111i
\(892\) −28.8053 23.8911i −0.964474 0.799932i
\(893\) 4.57299 17.0666i 0.153029 0.571112i
\(894\) 35.5680 1.65488i 1.18957 0.0553475i
\(895\) 0 0
\(896\) −23.8501 18.0879i −0.796775 0.604276i
\(897\) −36.5921 + 36.5921i −1.22177 + 1.22177i
\(898\) 4.87319 + 4.43988i 0.162621 + 0.148161i
\(899\) 3.00169 + 5.19908i 0.100112 + 0.173399i
\(900\) 0 0
\(901\) −15.1427 + 26.2280i −0.504478 + 0.873781i
\(902\) 2.62146 11.9868i 0.0872852 0.399117i
\(903\) −39.3804 + 13.6952i −1.31050 + 0.455748i
\(904\) 6.46788 + 46.0699i 0.215119 + 1.53226i
\(905\) 0 0
\(906\) −12.2930 + 23.7804i −0.408407 + 0.790052i
\(907\) −3.60588 + 13.4573i −0.119731 + 0.446843i −0.999597 0.0283786i \(-0.990966\pi\)
0.879866 + 0.475222i \(0.157632\pi\)
\(908\) −40.9878 6.98572i −1.36023 0.231829i
\(909\) 56.1704i 1.86305i
\(910\) 0 0
\(911\) 9.10653i 0.301713i 0.988556 + 0.150856i \(0.0482031\pi\)
−0.988556 + 0.150856i \(0.951797\pi\)
\(912\) 17.7318 25.9506i 0.587158 0.859309i
\(913\) −5.10735 + 19.0609i −0.169029 + 0.630823i
\(914\) 39.9610 + 20.6573i 1.32179 + 0.683283i
\(915\) 0 0
\(916\) −14.9228 + 32.4860i −0.493064 + 1.07337i
\(917\) 8.14737 + 7.03857i 0.269050 + 0.232434i
\(918\) −17.1079 3.74142i −0.564644 0.123485i
\(919\) −17.5872 + 30.4620i −0.580149 + 1.00485i 0.415312 + 0.909679i \(0.363672\pi\)
−0.995461 + 0.0951683i \(0.969661\pi\)
\(920\) 0 0
\(921\) −26.5004 45.9000i −0.873217 1.51246i
\(922\) 22.3295 24.5088i 0.735384 0.807154i
\(923\) −1.36006 + 1.36006i −0.0447668 + 0.0447668i
\(924\) −7.81830 46.7013i −0.257203 1.53636i
\(925\) 0 0
\(926\) 0.171184 + 3.67923i 0.00562546 + 0.120907i
\(927\) 16.6132 62.0014i 0.545650 2.03639i
\(928\) 8.29605 + 5.11985i 0.272331 + 0.168067i
\(929\) −32.5064 18.7676i −1.06650 0.615745i −0.139278 0.990253i \(-0.544478\pi\)
−0.927223 + 0.374509i \(0.877811\pi\)
\(930\) 0 0
\(931\) 15.3472 12.1431i 0.502983 0.397974i
\(932\) 0.245150 + 0.661739i 0.00803015 + 0.0216760i
\(933\) 4.24615 1.13775i 0.139013 0.0372483i
\(934\) 5.38846 10.4238i 0.176316 0.341078i
\(935\) 0 0
\(936\) 17.7660 43.9540i 0.580700 1.43668i
\(937\) 14.9371 14.9371i 0.487973 0.487973i −0.419693 0.907666i \(-0.637862\pi\)
0.907666 + 0.419693i \(0.137862\pi\)
\(938\) −8.17133 20.3886i −0.266804 0.665711i
\(939\) −34.2270 −1.11696
\(940\) 0 0
\(941\) −3.05589 5.29296i −0.0996192 0.172546i 0.811908 0.583786i \(-0.198429\pi\)
−0.911527 + 0.411240i \(0.865096\pi\)
\(942\) −43.1157 + 13.7300i −1.40479 + 0.447349i
\(943\) 3.79564 + 14.1655i 0.123603 + 0.461293i
\(944\) −4.95878 5.77417i −0.161395 0.187933i
\(945\) 0 0
\(946\) −13.6261 21.2543i −0.443022 0.691036i
\(947\) 41.6507 11.1603i 1.35347 0.362660i 0.492053 0.870565i \(-0.336247\pi\)
0.861413 + 0.507905i \(0.169580\pi\)
\(948\) 35.7837 + 29.6789i 1.16220 + 0.963926i
\(949\) 9.92033 5.72751i 0.322028 0.185923i
\(950\) 0 0
\(951\) 76.9801i 2.49625i
\(952\) −7.92707 15.4458i −0.256918 0.500602i
\(953\) −26.8326 26.8326i −0.869193 0.869193i 0.123190 0.992383i \(-0.460687\pi\)
−0.992383 + 0.123190i \(0.960687\pi\)
\(954\) 4.20357 + 90.3464i 0.136096 + 2.92507i
\(955\) 0 0
\(956\) −4.47701 48.0076i −0.144797 1.55268i
\(957\) 3.99135 + 14.8959i 0.129022 + 0.481517i
\(958\) −19.3398 4.22953i −0.624841 0.136650i
\(959\) 38.3826 + 18.5747i 1.23944 + 0.599809i
\(960\) 0 0
\(961\) −9.43240 + 16.3374i −0.304271 + 0.527013i
\(962\) 3.53745 + 11.1085i 0.114052 + 0.358151i
\(963\) −1.94504 0.521171i −0.0626779 0.0167945i
\(964\) −7.10486 + 5.03570i −0.228832 + 0.162189i
\(965\) 0 0
\(966\) 33.9327 + 45.2930i 1.09177 + 1.45728i
\(967\) 9.65871 + 9.65871i 0.310603 + 0.310603i 0.845143 0.534540i \(-0.179515\pi\)
−0.534540 + 0.845143i \(0.679515\pi\)
\(968\) −2.24608 + 0.953017i −0.0721916 + 0.0306311i
\(969\) 15.7871 9.11468i 0.507155 0.292806i
\(970\) 0 0
\(971\) 18.9435 + 10.9371i 0.607927 + 0.350987i 0.772154 0.635436i \(-0.219179\pi\)
−0.164226 + 0.986423i \(0.552513\pi\)
\(972\) 28.4284 10.5317i 0.911843 0.337804i
\(973\) 44.3890 + 8.48690i 1.42305 + 0.272078i
\(974\) 20.2623 + 31.6056i 0.649246 + 1.01271i
\(975\) 0 0
\(976\) −15.4753 + 44.0809i −0.495352 + 1.41099i
\(977\) −25.1707 6.74446i −0.805281 0.215774i −0.167380 0.985893i \(-0.553531\pi\)
−0.637901 + 0.770118i \(0.720197\pi\)
\(978\) −0.00831321 0.00757402i −0.000265827 0.000242190i
\(979\) 9.23458 0.295138
\(980\) 0 0
\(981\) 35.7805 1.14238
\(982\) 37.2023 + 33.8944i 1.18717 + 1.08161i
\(983\) −46.8710 12.5590i −1.49495 0.400571i −0.583547 0.812080i \(-0.698336\pi\)
−0.911406 + 0.411508i \(0.865002\pi\)
\(984\) −13.3342 17.0721i −0.425078 0.544239i
\(985\) 0 0
\(986\) 3.05165 + 4.76002i 0.0971842 + 0.151590i
\(987\) −46.1583 8.82518i −1.46923 0.280909i
\(988\) 6.64569 + 17.9389i 0.211427 + 0.570712i
\(989\) 26.1325 + 15.0876i 0.830965 + 0.479758i
\(990\) 0 0
\(991\) 3.40592 1.96641i 0.108193 0.0624650i −0.444927 0.895567i \(-0.646770\pi\)
0.553120 + 0.833102i \(0.313437\pi\)
\(992\) 0.577912 19.6975i 0.0183487 0.625397i
\(993\) −7.77497 7.77497i −0.246731 0.246731i
\(994\) 1.26121 + 1.68345i 0.0400032 + 0.0533958i
\(995\) 0 0
\(996\) 20.1453 + 28.4230i 0.638329 + 0.900617i
\(997\) 49.5831 + 13.2857i 1.57031 + 0.420764i 0.935910 0.352240i \(-0.114580\pi\)
0.634402 + 0.773004i \(0.281247\pi\)
\(998\) −4.24068 13.3168i −0.134236 0.421535i
\(999\) 6.43023 11.1375i 0.203443 0.352374i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 700.2.be.e.443.6 72
4.3 odd 2 inner 700.2.be.e.443.16 72
5.2 odd 4 inner 700.2.be.e.107.4 72
5.3 odd 4 140.2.w.b.107.15 yes 72
5.4 even 2 140.2.w.b.23.13 yes 72
7.4 even 3 inner 700.2.be.e.543.8 72
20.3 even 4 140.2.w.b.107.11 yes 72
20.7 even 4 inner 700.2.be.e.107.8 72
20.19 odd 2 140.2.w.b.23.3 72
28.11 odd 6 inner 700.2.be.e.543.4 72
35.3 even 12 980.2.x.m.67.3 72
35.4 even 6 140.2.w.b.123.11 yes 72
35.9 even 6 980.2.k.k.883.2 36
35.13 even 4 980.2.x.m.667.15 72
35.18 odd 12 140.2.w.b.67.3 yes 72
35.19 odd 6 980.2.k.j.883.2 36
35.23 odd 12 980.2.k.k.687.11 36
35.24 odd 6 980.2.x.m.263.11 72
35.32 odd 12 inner 700.2.be.e.207.16 72
35.33 even 12 980.2.k.j.687.11 36
35.34 odd 2 980.2.x.m.863.13 72
140.3 odd 12 980.2.x.m.67.13 72
140.19 even 6 980.2.k.j.883.11 36
140.23 even 12 980.2.k.k.687.2 36
140.39 odd 6 140.2.w.b.123.15 yes 72
140.59 even 6 980.2.x.m.263.15 72
140.67 even 12 inner 700.2.be.e.207.6 72
140.79 odd 6 980.2.k.k.883.11 36
140.83 odd 4 980.2.x.m.667.11 72
140.103 odd 12 980.2.k.j.687.2 36
140.123 even 12 140.2.w.b.67.13 yes 72
140.139 even 2 980.2.x.m.863.3 72
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
140.2.w.b.23.3 72 20.19 odd 2
140.2.w.b.23.13 yes 72 5.4 even 2
140.2.w.b.67.3 yes 72 35.18 odd 12
140.2.w.b.67.13 yes 72 140.123 even 12
140.2.w.b.107.11 yes 72 20.3 even 4
140.2.w.b.107.15 yes 72 5.3 odd 4
140.2.w.b.123.11 yes 72 35.4 even 6
140.2.w.b.123.15 yes 72 140.39 odd 6
700.2.be.e.107.4 72 5.2 odd 4 inner
700.2.be.e.107.8 72 20.7 even 4 inner
700.2.be.e.207.6 72 140.67 even 12 inner
700.2.be.e.207.16 72 35.32 odd 12 inner
700.2.be.e.443.6 72 1.1 even 1 trivial
700.2.be.e.443.16 72 4.3 odd 2 inner
700.2.be.e.543.4 72 28.11 odd 6 inner
700.2.be.e.543.8 72 7.4 even 3 inner
980.2.k.j.687.2 36 140.103 odd 12
980.2.k.j.687.11 36 35.33 even 12
980.2.k.j.883.2 36 35.19 odd 6
980.2.k.j.883.11 36 140.19 even 6
980.2.k.k.687.2 36 140.23 even 12
980.2.k.k.687.11 36 35.23 odd 12
980.2.k.k.883.2 36 35.9 even 6
980.2.k.k.883.11 36 140.79 odd 6
980.2.x.m.67.3 72 35.3 even 12
980.2.x.m.67.13 72 140.3 odd 12
980.2.x.m.263.11 72 35.24 odd 6
980.2.x.m.263.15 72 140.59 even 6
980.2.x.m.667.11 72 140.83 odd 4
980.2.x.m.667.15 72 35.13 even 4
980.2.x.m.863.3 72 140.139 even 2
980.2.x.m.863.13 72 35.34 odd 2