Properties

Label 70.3.l.a.23.1
Level $70$
Weight $3$
Character 70.23
Analytic conductor $1.907$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [70,3,Mod(23,70)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(70, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([9, 4])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("70.23"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 70 = 2 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 70.l (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,4,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.90736185052\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{12})\)
Coefficient field: 8.0.3317760000.2
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 25x^{4} + 625 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 23.1
Root \(0.578737 - 2.15988i\) of defining polynomial
Character \(\chi\) \(=\) 70.23
Dual form 70.3.l.a.67.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.366025 - 1.36603i) q^{2} +(-0.636376 + 2.37499i) q^{3} +(-1.73205 + 1.00000i) q^{4} +(4.96410 - 0.598076i) q^{5} +3.47723 q^{6} +(6.99656 - 0.219274i) q^{7} +(2.00000 + 2.00000i) q^{8} +(2.55863 + 1.47723i) q^{9} +(-2.63397 - 6.56218i) q^{10} +(3.73861 + 6.47547i) q^{11} +(-1.27275 - 4.74998i) q^{12} +(-10.9545 - 10.9545i) q^{13} +(-2.86045 - 9.47723i) q^{14} +(-1.73861 + 12.1703i) q^{15} +(2.00000 - 3.46410i) q^{16} +(-20.4282 - 5.47371i) q^{17} +(1.08140 - 4.03586i) q^{18} +(12.4982 + 7.21584i) q^{19} +(-8.00000 + 6.00000i) q^{20} +(-3.93168 + 16.7563i) q^{21} +(7.47723 - 7.47723i) q^{22} +(-20.0711 + 5.37803i) q^{23} +(-6.02273 + 3.47723i) q^{24} +(24.2846 - 5.93782i) q^{25} +(-10.9545 + 18.9737i) q^{26} +(-20.7842 + 20.7842i) q^{27} +(-11.8991 + 7.37636i) q^{28} -15.8634i q^{29} +(17.2613 - 2.07965i) q^{30} +(-8.00000 - 13.8564i) q^{31} +(-5.46410 - 1.46410i) q^{32} +(-17.7583 + 4.75833i) q^{33} +29.9089i q^{34} +(34.6005 - 5.27298i) q^{35} -5.90890 q^{36} +(-17.1865 - 64.1410i) q^{37} +(5.28236 - 19.7140i) q^{38} +(32.9879 - 19.0455i) q^{39} +(11.1244 + 8.73205i) q^{40} -27.9545 q^{41} +(24.3286 - 0.762464i) q^{42} +(39.6475 + 39.6475i) q^{43} +(-12.9509 - 7.47723i) q^{44} +(13.5848 + 5.80284i) q^{45} +(14.6931 + 25.4491i) q^{46} +(-18.6173 - 69.4806i) q^{47} +(6.95445 + 6.95445i) q^{48} +(48.9038 - 3.06832i) q^{49} +(-17.0000 - 31.0000i) q^{50} +(26.0000 - 45.0333i) q^{51} +(29.9281 + 8.01921i) q^{52} +(-10.9641 + 40.9185i) q^{53} +(35.9992 + 20.7842i) q^{54} +(22.4317 + 29.9089i) q^{55} +(14.4317 + 13.5546i) q^{56} +(-25.0911 + 25.0911i) q^{57} +(-21.6697 + 5.80639i) q^{58} +(-55.8784 + 32.2614i) q^{59} +(-9.15892 - 22.8182i) q^{60} +(-29.5455 + 51.1744i) q^{61} +(-16.0000 + 16.0000i) q^{62} +(18.2255 + 9.77446i) q^{63} +8.00000i q^{64} +(-60.9306 - 47.8274i) q^{65} +(13.0000 + 22.5167i) q^{66} +(53.5698 + 14.3540i) q^{67} +(40.8563 - 10.9474i) q^{68} -51.0911i q^{69} +(-19.8677 - 45.3351i) q^{70} -36.3406 q^{71} +(2.16281 + 8.07171i) q^{72} +(17.1198 - 63.8921i) q^{73} +(-81.3275 + 46.9545i) q^{74} +(-1.35189 + 61.4544i) q^{75} -28.8634 q^{76} +(27.5773 + 44.4862i) q^{77} +(-38.0911 - 38.0911i) q^{78} +(35.6837 + 20.6020i) q^{79} +(7.85641 - 18.3923i) q^{80} +(-22.8406 - 39.5610i) q^{81} +(10.2320 + 38.1865i) q^{82} +(-9.12474 - 9.12474i) q^{83} +(-9.94644 - 32.9545i) q^{84} +(-104.681 - 14.9545i) q^{85} +(39.6475 - 68.6715i) q^{86} +(37.6753 + 10.0951i) q^{87} +(-5.47371 + 20.4282i) q^{88} +(-42.1986 - 24.3634i) q^{89} +(2.95445 - 20.6812i) q^{90} +(-79.0455 - 74.2415i) q^{91} +(29.3861 - 29.3861i) q^{92} +(37.9998 - 10.1820i) q^{93} +(-88.0979 + 50.8634i) q^{94} +(66.3579 + 28.3453i) q^{95} +(6.95445 - 12.0455i) q^{96} +(-63.7723 + 63.7723i) q^{97} +(-22.0915 - 65.6808i) q^{98} +22.0911i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{2} - 4 q^{3} + 12 q^{5} - 16 q^{6} - 4 q^{7} + 16 q^{8} - 28 q^{10} + 8 q^{11} - 8 q^{12} + 8 q^{15} + 16 q^{16} - 16 q^{17} + 32 q^{18} - 64 q^{20} + 100 q^{21} + 16 q^{22} - 4 q^{23} + 28 q^{25}+ \cdots - 132 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/70\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(57\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.366025 1.36603i −0.183013 0.683013i
\(3\) −0.636376 + 2.37499i −0.212125 + 0.791663i 0.775033 + 0.631920i \(0.217733\pi\)
−0.987159 + 0.159743i \(0.948934\pi\)
\(4\) −1.73205 + 1.00000i −0.433013 + 0.250000i
\(5\) 4.96410 0.598076i 0.992820 0.119615i
\(6\) 3.47723 0.579538
\(7\) 6.99656 0.219274i 0.999509 0.0313248i
\(8\) 2.00000 + 2.00000i 0.250000 + 0.250000i
\(9\) 2.55863 + 1.47723i 0.284292 + 0.164136i
\(10\) −2.63397 6.56218i −0.263397 0.656218i
\(11\) 3.73861 + 6.47547i 0.339874 + 0.588679i 0.984409 0.175896i \(-0.0562823\pi\)
−0.644535 + 0.764575i \(0.722949\pi\)
\(12\) −1.27275 4.74998i −0.106063 0.395832i
\(13\) −10.9545 10.9545i −0.842650 0.842650i 0.146553 0.989203i \(-0.453182\pi\)
−0.989203 + 0.146553i \(0.953182\pi\)
\(14\) −2.86045 9.47723i −0.204318 0.676945i
\(15\) −1.73861 + 12.1703i −0.115908 + 0.811353i
\(16\) 2.00000 3.46410i 0.125000 0.216506i
\(17\) −20.4282 5.47371i −1.20166 0.321983i −0.398173 0.917310i \(-0.630356\pi\)
−0.803483 + 0.595327i \(0.797022\pi\)
\(18\) 1.08140 4.03586i 0.0600780 0.224214i
\(19\) 12.4982 + 7.21584i 0.657800 + 0.379781i 0.791438 0.611249i \(-0.209333\pi\)
−0.133638 + 0.991030i \(0.542666\pi\)
\(20\) −8.00000 + 6.00000i −0.400000 + 0.300000i
\(21\) −3.93168 + 16.7563i −0.187223 + 0.797919i
\(22\) 7.47723 7.47723i 0.339874 0.339874i
\(23\) −20.0711 + 5.37803i −0.872656 + 0.233828i −0.667236 0.744846i \(-0.732523\pi\)
−0.205420 + 0.978674i \(0.565856\pi\)
\(24\) −6.02273 + 3.47723i −0.250947 + 0.144884i
\(25\) 24.2846 5.93782i 0.971384 0.237513i
\(26\) −10.9545 + 18.9737i −0.421325 + 0.729756i
\(27\) −20.7842 + 20.7842i −0.769784 + 0.769784i
\(28\) −11.8991 + 7.37636i −0.424969 + 0.263441i
\(29\) 15.8634i 0.547012i −0.961870 0.273506i \(-0.911817\pi\)
0.961870 0.273506i \(-0.0881834\pi\)
\(30\) 17.2613 2.07965i 0.575377 0.0693215i
\(31\) −8.00000 13.8564i −0.258065 0.446981i 0.707659 0.706554i \(-0.249751\pi\)
−0.965723 + 0.259573i \(0.916418\pi\)
\(32\) −5.46410 1.46410i −0.170753 0.0457532i
\(33\) −17.7583 + 4.75833i −0.538131 + 0.144192i
\(34\) 29.9089i 0.879674i
\(35\) 34.6005 5.27298i 0.988586 0.150656i
\(36\) −5.90890 −0.164136
\(37\) −17.1865 64.1410i −0.464501 1.73354i −0.658540 0.752546i \(-0.728826\pi\)
0.194039 0.980994i \(-0.437841\pi\)
\(38\) 5.28236 19.7140i 0.139009 0.518790i
\(39\) 32.9879 19.0455i 0.845843 0.488347i
\(40\) 11.1244 + 8.73205i 0.278109 + 0.218301i
\(41\) −27.9545 −0.681816 −0.340908 0.940097i \(-0.610734\pi\)
−0.340908 + 0.940097i \(0.610734\pi\)
\(42\) 24.3286 0.762464i 0.579253 0.0181539i
\(43\) 39.6475 + 39.6475i 0.922035 + 0.922035i 0.997173 0.0751379i \(-0.0239397\pi\)
−0.0751379 + 0.997173i \(0.523940\pi\)
\(44\) −12.9509 7.47723i −0.294339 0.169937i
\(45\) 13.5848 + 5.80284i 0.301884 + 0.128952i
\(46\) 14.6931 + 25.4491i 0.319414 + 0.553242i
\(47\) −18.6173 69.4806i −0.396112 1.47831i −0.819877 0.572539i \(-0.805958\pi\)
0.423765 0.905772i \(-0.360708\pi\)
\(48\) 6.95445 + 6.95445i 0.144884 + 0.144884i
\(49\) 48.9038 3.06832i 0.998038 0.0626188i
\(50\) −17.0000 31.0000i −0.340000 0.620000i
\(51\) 26.0000 45.0333i 0.509804 0.883006i
\(52\) 29.9281 + 8.01921i 0.575541 + 0.154216i
\(53\) −10.9641 + 40.9185i −0.206870 + 0.772048i 0.782002 + 0.623276i \(0.214199\pi\)
−0.988872 + 0.148772i \(0.952468\pi\)
\(54\) 35.9992 + 20.7842i 0.666652 + 0.384892i
\(55\) 22.4317 + 29.9089i 0.407849 + 0.543798i
\(56\) 14.4317 + 13.5546i 0.257709 + 0.242046i
\(57\) −25.0911 + 25.0911i −0.440195 + 0.440195i
\(58\) −21.6697 + 5.80639i −0.373616 + 0.100110i
\(59\) −55.8784 + 32.2614i −0.947091 + 0.546803i −0.892176 0.451688i \(-0.850822\pi\)
−0.0549148 + 0.998491i \(0.517489\pi\)
\(60\) −9.15892 22.8182i −0.152649 0.380303i
\(61\) −29.5455 + 51.1744i −0.484353 + 0.838924i −0.999838 0.0179740i \(-0.994278\pi\)
0.515485 + 0.856898i \(0.327612\pi\)
\(62\) −16.0000 + 16.0000i −0.258065 + 0.258065i
\(63\) 18.2255 + 9.77446i 0.289294 + 0.155150i
\(64\) 8.00000i 0.125000i
\(65\) −60.9306 47.8274i −0.937394 0.735806i
\(66\) 13.0000 + 22.5167i 0.196970 + 0.341162i
\(67\) 53.5698 + 14.3540i 0.799550 + 0.214239i 0.635386 0.772194i \(-0.280841\pi\)
0.164163 + 0.986433i \(0.447508\pi\)
\(68\) 40.8563 10.9474i 0.600828 0.160991i
\(69\) 51.0911i 0.740451i
\(70\) −19.8677 45.3351i −0.283824 0.647645i
\(71\) −36.3406 −0.511839 −0.255920 0.966698i \(-0.582378\pi\)
−0.255920 + 0.966698i \(0.582378\pi\)
\(72\) 2.16281 + 8.07171i 0.0300390 + 0.112107i
\(73\) 17.1198 63.8921i 0.234518 0.875234i −0.743847 0.668350i \(-0.767001\pi\)
0.978365 0.206884i \(-0.0663324\pi\)
\(74\) −81.3275 + 46.9545i −1.09902 + 0.634520i
\(75\) −1.35189 + 61.4544i −0.0180252 + 0.819392i
\(76\) −28.8634 −0.379781
\(77\) 27.5773 + 44.4862i 0.358147 + 0.577743i
\(78\) −38.0911 38.0911i −0.488347 0.488347i
\(79\) 35.6837 + 20.6020i 0.451692 + 0.260784i 0.708544 0.705666i \(-0.249352\pi\)
−0.256853 + 0.966451i \(0.582686\pi\)
\(80\) 7.85641 18.3923i 0.0982051 0.229904i
\(81\) −22.8406 39.5610i −0.281982 0.488408i
\(82\) 10.2320 + 38.1865i 0.124781 + 0.465689i
\(83\) −9.12474 9.12474i −0.109937 0.109937i 0.649999 0.759935i \(-0.274769\pi\)
−0.759935 + 0.649999i \(0.774769\pi\)
\(84\) −9.94644 32.9545i −0.118410 0.392315i
\(85\) −104.681 14.9545i −1.23154 0.175935i
\(86\) 39.6475 68.6715i 0.461018 0.798506i
\(87\) 37.6753 + 10.0951i 0.433049 + 0.116035i
\(88\) −5.47371 + 20.4282i −0.0622012 + 0.232138i
\(89\) −42.1986 24.3634i −0.474141 0.273746i 0.243830 0.969818i \(-0.421596\pi\)
−0.717972 + 0.696072i \(0.754929\pi\)
\(90\) 2.95445 20.6812i 0.0328272 0.229791i
\(91\) −79.0455 74.2415i −0.868632 0.815841i
\(92\) 29.3861 29.3861i 0.319414 0.319414i
\(93\) 37.9998 10.1820i 0.408600 0.109484i
\(94\) −88.0979 + 50.8634i −0.937212 + 0.541100i
\(95\) 66.3579 + 28.3453i 0.698505 + 0.298371i
\(96\) 6.95445 12.0455i 0.0724422 0.125474i
\(97\) −63.7723 + 63.7723i −0.657446 + 0.657446i −0.954775 0.297329i \(-0.903904\pi\)
0.297329 + 0.954775i \(0.403904\pi\)
\(98\) −22.0915 65.6808i −0.225423 0.670212i
\(99\) 22.0911i 0.223142i
\(100\) −36.1244 + 34.5692i −0.361244 + 0.345692i
\(101\) 48.7495 + 84.4366i 0.482668 + 0.836006i 0.999802 0.0198988i \(-0.00633440\pi\)
−0.517134 + 0.855905i \(0.673001\pi\)
\(102\) −71.0333 19.0333i −0.696405 0.186601i
\(103\) −46.8019 + 12.5405i −0.454388 + 0.121753i −0.478752 0.877950i \(-0.658911\pi\)
0.0243641 + 0.999703i \(0.492244\pi\)
\(104\) 43.8178i 0.421325i
\(105\) −9.49569 + 85.5315i −0.0904352 + 0.814585i
\(106\) 59.9089 0.565178
\(107\) 42.6126 + 159.032i 0.398249 + 1.48628i 0.816176 + 0.577803i \(0.196090\pi\)
−0.417927 + 0.908480i \(0.637243\pi\)
\(108\) 15.2151 56.7834i 0.140880 0.525772i
\(109\) 146.122 84.3634i 1.34057 0.773976i 0.353675 0.935368i \(-0.384932\pi\)
0.986890 + 0.161393i \(0.0515986\pi\)
\(110\) 32.6458 41.5897i 0.296780 0.378088i
\(111\) 163.271 1.47091
\(112\) 13.2335 24.6754i 0.118157 0.220316i
\(113\) 56.6356 + 56.6356i 0.501200 + 0.501200i 0.911811 0.410611i \(-0.134684\pi\)
−0.410611 + 0.911811i \(0.634684\pi\)
\(114\) 43.4591 + 25.0911i 0.381220 + 0.220097i
\(115\) −96.4185 + 38.7012i −0.838422 + 0.336532i
\(116\) 15.8634 + 27.4761i 0.136753 + 0.236863i
\(117\) −11.8462 44.2106i −0.101249 0.377868i
\(118\) 64.5228 + 64.5228i 0.546803 + 0.546803i
\(119\) −144.127 33.8178i −1.21115 0.284183i
\(120\) −27.8178 + 20.8634i −0.231815 + 0.173861i
\(121\) 32.5455 56.3705i 0.268971 0.465872i
\(122\) 80.7199 + 21.6288i 0.661639 + 0.177286i
\(123\) 17.7896 66.3915i 0.144631 0.539768i
\(124\) 27.7128 + 16.0000i 0.223490 + 0.129032i
\(125\) 117.000 44.0000i 0.936000 0.352000i
\(126\) 6.68116 28.4742i 0.0530251 0.225986i
\(127\) 3.04555 3.04555i 0.0239807 0.0239807i −0.695015 0.718995i \(-0.744602\pi\)
0.718995 + 0.695015i \(0.244602\pi\)
\(128\) 10.9282 2.92820i 0.0853766 0.0228766i
\(129\) −119.393 + 68.9317i −0.925528 + 0.534354i
\(130\) −43.0313 + 100.739i −0.331010 + 0.774914i
\(131\) 56.9545 98.6480i 0.434767 0.753038i −0.562510 0.826791i \(-0.690164\pi\)
0.997277 + 0.0737524i \(0.0234975\pi\)
\(132\) 26.0000 26.0000i 0.196970 0.196970i
\(133\) 89.0267 + 47.7456i 0.669374 + 0.358989i
\(134\) 78.4317i 0.585311i
\(135\) −90.7442 + 115.605i −0.672179 + 0.856335i
\(136\) −29.9089 51.8037i −0.219918 0.380910i
\(137\) −140.390 37.6173i −1.02474 0.274579i −0.292965 0.956123i \(-0.594642\pi\)
−0.731776 + 0.681545i \(0.761308\pi\)
\(138\) −69.7917 + 18.7006i −0.505737 + 0.135512i
\(139\) 177.022i 1.27354i −0.771055 0.636769i \(-0.780271\pi\)
0.771055 0.636769i \(-0.219729\pi\)
\(140\) −54.6569 + 43.7336i −0.390406 + 0.312383i
\(141\) 176.863 1.25435
\(142\) 13.3016 + 49.6422i 0.0936731 + 0.349593i
\(143\) 29.9807 111.890i 0.209656 0.782445i
\(144\) 10.2345 5.90890i 0.0710730 0.0410340i
\(145\) −9.48749 78.7473i −0.0654310 0.543085i
\(146\) −93.5445 −0.640716
\(147\) −23.8340 + 118.099i −0.162136 + 0.803393i
\(148\) 93.9089 + 93.9089i 0.634520 + 0.634520i
\(149\) 219.026 + 126.454i 1.46997 + 0.848688i 0.999432 0.0336923i \(-0.0107266\pi\)
0.470538 + 0.882380i \(0.344060\pi\)
\(150\) 84.4431 20.6471i 0.562954 0.137648i
\(151\) −102.954 178.322i −0.681818 1.18094i −0.974426 0.224710i \(-0.927856\pi\)
0.292608 0.956232i \(-0.405477\pi\)
\(152\) 10.5647 + 39.4281i 0.0695047 + 0.259395i
\(153\) −44.1822 44.1822i −0.288773 0.288773i
\(154\) 50.6753 53.9545i 0.329061 0.350354i
\(155\) −48.0000 64.0000i −0.309677 0.412903i
\(156\) −38.0911 + 65.9757i −0.244174 + 0.422921i
\(157\) 256.004 + 68.5960i 1.63060 + 0.436917i 0.954091 0.299518i \(-0.0968259\pi\)
0.676508 + 0.736436i \(0.263493\pi\)
\(158\) 15.0817 56.2856i 0.0954537 0.356238i
\(159\) −90.2038 52.0792i −0.567320 0.327542i
\(160\) −28.0000 4.00000i −0.175000 0.0250000i
\(161\) −139.249 + 42.0288i −0.864904 + 0.261049i
\(162\) −45.6812 + 45.6812i −0.281982 + 0.281982i
\(163\) −241.475 + 64.7031i −1.48144 + 0.396952i −0.906838 0.421479i \(-0.861511\pi\)
−0.574606 + 0.818430i \(0.694845\pi\)
\(164\) 48.4185 27.9545i 0.295235 0.170454i
\(165\) −85.3083 + 34.2417i −0.517020 + 0.207525i
\(166\) −9.12474 + 15.8045i −0.0549683 + 0.0952079i
\(167\) 8.01191 8.01191i 0.0479755 0.0479755i −0.682712 0.730688i \(-0.739200\pi\)
0.730688 + 0.682712i \(0.239200\pi\)
\(168\) −41.3760 + 25.6493i −0.246286 + 0.152674i
\(169\) 71.0000i 0.420118i
\(170\) 17.8878 + 148.471i 0.105222 + 0.873358i
\(171\) 21.3188 + 36.9253i 0.124672 + 0.215938i
\(172\) −108.319 29.0240i −0.629762 0.168744i
\(173\) 119.961 32.1435i 0.693418 0.185801i 0.105138 0.994458i \(-0.466472\pi\)
0.588281 + 0.808657i \(0.299805\pi\)
\(174\) 55.1605i 0.317014i
\(175\) 168.607 46.8693i 0.963468 0.267825i
\(176\) 29.9089 0.169937
\(177\) −41.0608 153.241i −0.231982 0.865768i
\(178\) −17.8352 + 66.5619i −0.100198 + 0.373943i
\(179\) −114.000 + 65.8178i −0.636870 + 0.367697i −0.783408 0.621508i \(-0.786520\pi\)
0.146538 + 0.989205i \(0.453187\pi\)
\(180\) −29.3324 + 3.53397i −0.162958 + 0.0196332i
\(181\) −149.681 −0.826968 −0.413484 0.910511i \(-0.635688\pi\)
−0.413484 + 0.910511i \(0.635688\pi\)
\(182\) −72.4831 + 135.153i −0.398259 + 0.742596i
\(183\) −102.737 102.737i −0.561402 0.561402i
\(184\) −50.8983 29.3861i −0.276621 0.159707i
\(185\) −123.677 308.123i −0.668523 1.66553i
\(186\) −27.8178 48.1819i −0.149558 0.259042i
\(187\) −40.9282 152.746i −0.218867 0.816823i
\(188\) 101.727 + 101.727i 0.541100 + 0.541100i
\(189\) −140.860 + 149.975i −0.745293 + 0.793519i
\(190\) 14.4317 101.022i 0.0759562 0.531693i
\(191\) −113.034 + 195.780i −0.591799 + 1.02503i 0.402191 + 0.915556i \(0.368249\pi\)
−0.993990 + 0.109470i \(0.965085\pi\)
\(192\) −18.9999 5.09101i −0.0989579 0.0265157i
\(193\) −57.2326 + 213.595i −0.296542 + 1.10671i 0.643443 + 0.765494i \(0.277505\pi\)
−0.939985 + 0.341215i \(0.889161\pi\)
\(194\) 110.457 + 63.7723i 0.569365 + 0.328723i
\(195\) 152.364 114.273i 0.781356 0.586017i
\(196\) −81.6356 + 54.2183i −0.416508 + 0.276624i
\(197\) 84.9089 84.9089i 0.431010 0.431010i −0.457962 0.888972i \(-0.651420\pi\)
0.888972 + 0.457962i \(0.151420\pi\)
\(198\) 30.1770 8.08590i 0.152409 0.0408379i
\(199\) −71.4085 + 41.2277i −0.358837 + 0.207175i −0.668570 0.743649i \(-0.733093\pi\)
0.309734 + 0.950823i \(0.399760\pi\)
\(200\) 60.4449 + 36.6936i 0.302224 + 0.183468i
\(201\) −68.1812 + 118.093i −0.339210 + 0.587529i
\(202\) 97.4990 97.4990i 0.482668 0.482668i
\(203\) −3.47841 110.989i −0.0171350 0.546744i
\(204\) 104.000i 0.509804i
\(205\) −138.769 + 16.7189i −0.676921 + 0.0815556i
\(206\) 34.2614 + 59.3425i 0.166317 + 0.288070i
\(207\) −59.2991 15.8891i −0.286469 0.0767591i
\(208\) −59.8562 + 16.0384i −0.287770 + 0.0771078i
\(209\) 107.909i 0.516311i
\(210\) 120.314 18.3353i 0.572923 0.0873111i
\(211\) 205.703 0.974895 0.487448 0.873152i \(-0.337928\pi\)
0.487448 + 0.873152i \(0.337928\pi\)
\(212\) −21.9282 81.8371i −0.103435 0.386024i
\(213\) 23.1263 86.3085i 0.108574 0.405204i
\(214\) 201.645 116.420i 0.942266 0.544018i
\(215\) 220.527 + 173.102i 1.02570 + 0.805126i
\(216\) −83.1366 −0.384892
\(217\) −59.0109 95.1931i −0.271939 0.438678i
\(218\) −168.727 168.727i −0.773976 0.773976i
\(219\) 140.848 + 81.3188i 0.643143 + 0.371319i
\(220\) −68.7617 29.3721i −0.312553 0.133509i
\(221\) 163.818 + 283.741i 0.741257 + 1.28389i
\(222\) −59.7614 223.033i −0.269196 1.00465i
\(223\) 62.8872 + 62.8872i 0.282005 + 0.282005i 0.833908 0.551903i \(-0.186098\pi\)
−0.551903 + 0.833908i \(0.686098\pi\)
\(224\) −38.5510 9.04555i −0.172103 0.0403819i
\(225\) 70.9068 + 20.6812i 0.315141 + 0.0919163i
\(226\) 56.6356 98.0958i 0.250600 0.434052i
\(227\) 249.547 + 66.8659i 1.09933 + 0.294564i 0.762490 0.647000i \(-0.223976\pi\)
0.336836 + 0.941563i \(0.390643\pi\)
\(228\) 18.3680 68.5502i 0.0805612 0.300659i
\(229\) 106.598 + 61.5445i 0.465494 + 0.268753i 0.714352 0.699787i \(-0.246722\pi\)
−0.248857 + 0.968540i \(0.580055\pi\)
\(230\) 88.1584 + 117.545i 0.383297 + 0.511063i
\(231\) −123.204 + 37.1859i −0.533350 + 0.160978i
\(232\) 31.7267 31.7267i 0.136753 0.136753i
\(233\) 307.851 82.4883i 1.32125 0.354027i 0.471802 0.881704i \(-0.343604\pi\)
0.849445 + 0.527677i \(0.176937\pi\)
\(234\) −56.0568 + 32.3644i −0.239559 + 0.138309i
\(235\) −133.973 333.774i −0.570097 1.42032i
\(236\) 64.5228 111.757i 0.273402 0.473545i
\(237\) −71.6377 + 71.6377i −0.302269 + 0.302269i
\(238\) 6.55823 + 209.260i 0.0275556 + 0.879242i
\(239\) 174.725i 0.731065i 0.930798 + 0.365533i \(0.119113\pi\)
−0.930798 + 0.365533i \(0.880887\pi\)
\(240\) 38.6819 + 30.3633i 0.161175 + 0.126514i
\(241\) 121.909 + 211.152i 0.505846 + 0.876151i 0.999977 + 0.00676366i \(0.00215296\pi\)
−0.494131 + 0.869387i \(0.664514\pi\)
\(242\) −88.9161 23.8250i −0.367422 0.0984504i
\(243\) −147.033 + 39.3974i −0.605074 + 0.162129i
\(244\) 118.182i 0.484353i
\(245\) 240.929 44.4797i 0.983382 0.181550i
\(246\) −97.2039 −0.395138
\(247\) −57.8654 215.956i −0.234273 0.874318i
\(248\) 11.7128 43.7128i 0.0472291 0.176261i
\(249\) 27.4779 15.8644i 0.110353 0.0637124i
\(250\) −102.930 143.720i −0.411720 0.574879i
\(251\) 54.2733 0.216228 0.108114 0.994138i \(-0.465519\pi\)
0.108114 + 0.994138i \(0.465519\pi\)
\(252\) −41.3420 + 1.29567i −0.164056 + 0.00514153i
\(253\) −109.863 109.863i −0.434243 0.434243i
\(254\) −5.27505 3.04555i −0.0207679 0.0119903i
\(255\) 102.133 239.100i 0.400523 0.937647i
\(256\) −8.00000 13.8564i −0.0312500 0.0541266i
\(257\) 5.60709 + 20.9259i 0.0218175 + 0.0814238i 0.975976 0.217877i \(-0.0699132\pi\)
−0.954159 + 0.299301i \(0.903247\pi\)
\(258\) 137.863 + 137.863i 0.534354 + 0.534354i
\(259\) −134.311 444.998i −0.518575 1.71814i
\(260\) 153.362 + 21.9089i 0.589855 + 0.0842650i
\(261\) 23.4338 40.5884i 0.0897845 0.155511i
\(262\) −155.602 41.6936i −0.593902 0.159136i
\(263\) −87.0184 + 324.757i −0.330868 + 1.23482i 0.577411 + 0.816454i \(0.304063\pi\)
−0.908279 + 0.418364i \(0.862604\pi\)
\(264\) −45.0333 26.0000i −0.170581 0.0984848i
\(265\) −29.9545 + 209.681i −0.113036 + 0.791250i
\(266\) 32.6356 139.089i 0.122690 0.522890i
\(267\) 84.7169 84.7169i 0.317292 0.317292i
\(268\) −107.140 + 28.7080i −0.399775 + 0.107119i
\(269\) −93.6867 + 54.0901i −0.348278 + 0.201078i −0.663926 0.747798i \(-0.731111\pi\)
0.315649 + 0.948876i \(0.397778\pi\)
\(270\) 191.134 + 81.6444i 0.707905 + 0.302387i
\(271\) 30.7603 53.2785i 0.113507 0.196600i −0.803675 0.595068i \(-0.797125\pi\)
0.917182 + 0.398469i \(0.130458\pi\)
\(272\) −59.8178 + 59.8178i −0.219918 + 0.219918i
\(273\) 226.626 140.487i 0.830130 0.514604i
\(274\) 205.545i 0.750162i
\(275\) 129.241 + 135.055i 0.469967 + 0.491109i
\(276\) 51.0911 + 88.4924i 0.185113 + 0.320625i
\(277\) 344.920 + 92.4210i 1.24520 + 0.333650i 0.820480 0.571675i \(-0.193706\pi\)
0.424719 + 0.905325i \(0.360373\pi\)
\(278\) −241.816 + 64.7945i −0.869842 + 0.233074i
\(279\) 47.2712i 0.169431i
\(280\) 79.7470 + 58.6551i 0.284811 + 0.209482i
\(281\) −398.542 −1.41830 −0.709150 0.705057i \(-0.750921\pi\)
−0.709150 + 0.705057i \(0.750921\pi\)
\(282\) −64.7365 241.600i −0.229562 0.856737i
\(283\) −127.393 + 475.436i −0.450151 + 1.67999i 0.251814 + 0.967776i \(0.418973\pi\)
−0.701965 + 0.712211i \(0.747694\pi\)
\(284\) 62.9437 36.3406i 0.221633 0.127960i
\(285\) −109.548 + 139.561i −0.384380 + 0.489688i
\(286\) −163.818 −0.572790
\(287\) −195.585 + 6.12967i −0.681481 + 0.0213577i
\(288\) −11.8178 11.8178i −0.0410340 0.0410340i
\(289\) 137.067 + 79.1356i 0.474280 + 0.273826i
\(290\) −104.098 + 41.7837i −0.358959 + 0.144082i
\(291\) −110.875 192.042i −0.381015 0.659937i
\(292\) 34.2397 + 127.784i 0.117259 + 0.437617i
\(293\) −187.818 187.818i −0.641016 0.641016i 0.309789 0.950805i \(-0.399742\pi\)
−0.950805 + 0.309789i \(0.899742\pi\)
\(294\) 170.050 10.6693i 0.578400 0.0362900i
\(295\) −258.091 + 193.568i −0.874885 + 0.656164i
\(296\) 93.9089 162.655i 0.317260 0.549510i
\(297\) −212.291 56.8832i −0.714785 0.191526i
\(298\) 92.5711 345.480i 0.310641 1.15933i
\(299\) 278.781 + 160.954i 0.932379 + 0.538309i
\(300\) −59.1128 107.794i −0.197043 0.359313i
\(301\) 286.090 + 268.703i 0.950465 + 0.892700i
\(302\) −205.909 + 205.909i −0.681818 + 0.681818i
\(303\) −231.559 + 62.0460i −0.764221 + 0.204772i
\(304\) 49.9928 28.8634i 0.164450 0.0949452i
\(305\) −116.061 + 271.705i −0.380528 + 0.890837i
\(306\) −44.1822 + 76.5258i −0.144386 + 0.250084i
\(307\) −171.398 + 171.398i −0.558300 + 0.558300i −0.928823 0.370523i \(-0.879178\pi\)
0.370523 + 0.928823i \(0.379178\pi\)
\(308\) −92.2516 49.4751i −0.299518 0.160633i
\(309\) 119.135i 0.385549i
\(310\) −69.8564 + 88.9948i −0.225343 + 0.287080i
\(311\) 1.73861 + 3.01137i 0.00559039 + 0.00968285i 0.868807 0.495151i \(-0.164887\pi\)
−0.863217 + 0.504834i \(0.831554\pi\)
\(312\) 104.067 + 27.8846i 0.333547 + 0.0893738i
\(313\) −20.6120 + 5.52297i −0.0658530 + 0.0176453i −0.291595 0.956542i \(-0.594186\pi\)
0.225742 + 0.974187i \(0.427519\pi\)
\(314\) 374.816i 1.19368i
\(315\) 96.3193 + 37.6212i 0.305776 + 0.119432i
\(316\) −82.4079 −0.260784
\(317\) −105.415 393.415i −0.332540 1.24106i −0.906511 0.422182i \(-0.861264\pi\)
0.573971 0.818876i \(-0.305402\pi\)
\(318\) −38.1246 + 142.283i −0.119889 + 0.447431i
\(319\) 102.723 59.3069i 0.322015 0.185915i
\(320\) 4.78461 + 39.7128i 0.0149519 + 0.124103i
\(321\) −404.818 −1.26111
\(322\) 108.381 + 174.835i 0.336588 + 0.542965i
\(323\) −215.818 215.818i −0.668167 0.668167i
\(324\) 79.1221 + 45.6812i 0.244204 + 0.140991i
\(325\) −331.070 200.979i −1.01868 0.618397i
\(326\) 176.772 + 306.179i 0.542246 + 0.939198i
\(327\) 107.374 + 400.724i 0.328360 + 1.22546i
\(328\) −55.9089 55.9089i −0.170454 0.170454i
\(329\) −145.492 482.043i −0.442226 1.46518i
\(330\) 78.0000 + 104.000i 0.236364 + 0.315152i
\(331\) 210.317 364.279i 0.635398 1.10054i −0.351033 0.936363i \(-0.614169\pi\)
0.986431 0.164179i \(-0.0524973\pi\)
\(332\) 24.9293 + 6.67977i 0.0750881 + 0.0201198i
\(333\) 50.7767 189.501i 0.152483 0.569073i
\(334\) −13.8770 8.01191i −0.0415480 0.0239877i
\(335\) 274.511 + 39.2158i 0.819435 + 0.117062i
\(336\) 50.1822 + 47.1323i 0.149352 + 0.140275i
\(337\) −34.2712 + 34.2712i −0.101695 + 0.101695i −0.756124 0.654429i \(-0.772909\pi\)
0.654429 + 0.756124i \(0.272909\pi\)
\(338\) 96.9878 25.9878i 0.286946 0.0768870i
\(339\) −170.551 + 98.4674i −0.503099 + 0.290464i
\(340\) 196.268 78.7793i 0.577257 0.231704i
\(341\) 59.8178 103.607i 0.175419 0.303834i
\(342\) 42.6377 42.6377i 0.124672 0.124672i
\(343\) 341.486 32.1910i 0.995586 0.0938514i
\(344\) 158.590i 0.461018i
\(345\) −30.5564 253.621i −0.0885692 0.735134i
\(346\) −87.8178 152.105i −0.253809 0.439610i
\(347\) −139.784 37.4549i −0.402834 0.107939i 0.0517123 0.998662i \(-0.483532\pi\)
−0.454547 + 0.890723i \(0.650199\pi\)
\(348\) −75.3506 + 20.1901i −0.216525 + 0.0580176i
\(349\) 248.861i 0.713070i 0.934282 + 0.356535i \(0.116042\pi\)
−0.934282 + 0.356535i \(0.883958\pi\)
\(350\) −125.739 213.166i −0.359255 0.609045i
\(351\) 455.358 1.29732
\(352\) −10.9474 40.8563i −0.0311006 0.116069i
\(353\) 103.352 385.714i 0.292781 1.09267i −0.650182 0.759778i \(-0.725307\pi\)
0.942963 0.332896i \(-0.108026\pi\)
\(354\) −194.302 + 112.180i −0.548875 + 0.316893i
\(355\) −180.398 + 21.7344i −0.508164 + 0.0612238i
\(356\) 97.4534 0.273746
\(357\) 172.036 320.780i 0.481894 0.898542i
\(358\) 131.636 + 131.636i 0.367697 + 0.367697i
\(359\) −370.734 214.043i −1.03269 0.596221i −0.114933 0.993373i \(-0.536665\pi\)
−0.917753 + 0.397152i \(0.869999\pi\)
\(360\) 15.5639 + 38.7753i 0.0432331 + 0.107709i
\(361\) −76.3634 132.265i −0.211533 0.366386i
\(362\) 54.7871 + 204.468i 0.151346 + 0.564829i
\(363\) 113.168 + 113.168i 0.311758 + 0.311758i
\(364\) 211.152 + 49.5445i 0.580089 + 0.136111i
\(365\) 46.7723 327.406i 0.128143 0.897002i
\(366\) −102.737 + 177.945i −0.280701 + 0.486188i
\(367\) 227.458 + 60.9472i 0.619777 + 0.166069i 0.555026 0.831833i \(-0.312708\pi\)
0.0647505 + 0.997901i \(0.479375\pi\)
\(368\) −21.5121 + 80.2844i −0.0584569 + 0.218164i
\(369\) −71.5251 41.2950i −0.193835 0.111911i
\(370\) −375.636 + 281.727i −1.01523 + 0.761424i
\(371\) −67.7386 + 288.693i −0.182584 + 0.778149i
\(372\) −55.6356 + 55.6356i −0.149558 + 0.149558i
\(373\) −146.535 + 39.2640i −0.392856 + 0.105265i −0.449839 0.893110i \(-0.648519\pi\)
0.0569830 + 0.998375i \(0.481852\pi\)
\(374\) −193.674 + 111.818i −0.517845 + 0.298978i
\(375\) 30.0435 + 305.874i 0.0801160 + 0.815665i
\(376\) 101.727 176.196i 0.270550 0.468606i
\(377\) −173.774 + 173.774i −0.460940 + 0.460940i
\(378\) 256.428 + 137.524i 0.678382 + 0.363820i
\(379\) 66.4317i 0.175281i 0.996152 + 0.0876407i \(0.0279327\pi\)
−0.996152 + 0.0876407i \(0.972067\pi\)
\(380\) −143.281 + 17.2625i −0.377054 + 0.0454276i
\(381\) 5.29503 + 9.17126i 0.0138977 + 0.0240716i
\(382\) 308.814 + 82.7464i 0.808413 + 0.216614i
\(383\) 657.478 176.171i 1.71665 0.459975i 0.739612 0.673034i \(-0.235009\pi\)
0.977040 + 0.213058i \(0.0683424\pi\)
\(384\) 27.8178i 0.0724422i
\(385\) 163.503 + 204.341i 0.424683 + 0.530756i
\(386\) 312.725 0.810167
\(387\) 42.8750 + 160.012i 0.110788 + 0.413467i
\(388\) 46.6845 174.229i 0.120321 0.449044i
\(389\) −80.4633 + 46.4555i −0.206846 + 0.119423i −0.599845 0.800116i \(-0.704771\pi\)
0.392999 + 0.919539i \(0.371438\pi\)
\(390\) −211.869 166.307i −0.543255 0.426427i
\(391\) 439.453 1.12392
\(392\) 103.944 + 91.6710i 0.265164 + 0.233855i
\(393\) 198.043 + 198.043i 0.503927 + 0.503927i
\(394\) −147.067 84.9089i −0.373265 0.215505i
\(395\) 189.459 + 80.9287i 0.479643 + 0.204883i
\(396\) −22.0911 38.2629i −0.0557856 0.0966235i
\(397\) 93.6525 + 349.516i 0.235900 + 0.880393i 0.977741 + 0.209816i \(0.0672865\pi\)
−0.741840 + 0.670576i \(0.766047\pi\)
\(398\) 82.4555 + 82.4555i 0.207175 + 0.207175i
\(399\) −170.050 + 181.053i −0.426190 + 0.453768i
\(400\) 28.0000 96.0000i 0.0700000 0.240000i
\(401\) 315.270 546.064i 0.786210 1.36176i −0.142064 0.989858i \(-0.545374\pi\)
0.928274 0.371898i \(-0.121293\pi\)
\(402\) 186.274 + 49.9121i 0.463369 + 0.124159i
\(403\) −64.1537 + 239.425i −0.159190 + 0.594107i
\(404\) −168.873 97.4990i −0.418003 0.241334i
\(405\) −137.043 182.725i −0.338379 0.451172i
\(406\) −150.341 + 45.3764i −0.370297 + 0.111765i
\(407\) 351.089 351.089i 0.862627 0.862627i
\(408\) 142.067 38.0666i 0.348203 0.0933006i
\(409\) 176.077 101.658i 0.430507 0.248554i −0.269055 0.963125i \(-0.586711\pi\)
0.699563 + 0.714571i \(0.253378\pi\)
\(410\) 73.6313 + 183.442i 0.179589 + 0.447420i
\(411\) 178.681 309.485i 0.434747 0.753004i
\(412\) 68.5228 68.5228i 0.166317 0.166317i
\(413\) −383.883 + 237.972i −0.929498 + 0.576202i
\(414\) 86.8199i 0.209710i
\(415\) −50.7534 39.8388i −0.122297 0.0959972i
\(416\) 43.8178 + 75.8947i 0.105331 + 0.182439i
\(417\) 420.425 + 112.652i 1.00821 + 0.270150i
\(418\) 147.406 39.4974i 0.352647 0.0944914i
\(419\) 716.269i 1.70947i 0.519062 + 0.854736i \(0.326281\pi\)
−0.519062 + 0.854736i \(0.673719\pi\)
\(420\) −69.0844 157.641i −0.164487 0.375335i
\(421\) −692.449 −1.64477 −0.822386 0.568929i \(-0.807358\pi\)
−0.822386 + 0.568929i \(0.807358\pi\)
\(422\) −75.2925 280.995i −0.178418 0.665866i
\(423\) 55.0038 205.277i 0.130033 0.485289i
\(424\) −103.765 + 59.9089i −0.244729 + 0.141295i
\(425\) −528.592 11.6281i −1.24375 0.0273602i
\(426\) −126.364 −0.296630
\(427\) −195.496 + 364.524i −0.457836 + 0.853685i
\(428\) −232.840 232.840i −0.544018 0.544018i
\(429\) 246.658 + 142.408i 0.574960 + 0.331953i
\(430\) 155.743 364.605i 0.362194 0.847918i
\(431\) −248.737 430.824i −0.577115 0.999592i −0.995808 0.0914647i \(-0.970845\pi\)
0.418693 0.908128i \(-0.362488\pi\)
\(432\) 30.4301 + 113.567i 0.0704401 + 0.262886i
\(433\) −191.729 191.729i −0.442792 0.442792i 0.450158 0.892949i \(-0.351368\pi\)
−0.892949 + 0.450158i \(0.851368\pi\)
\(434\) −108.437 + 115.453i −0.249854 + 0.266022i
\(435\) 193.062 + 27.5802i 0.443820 + 0.0634028i
\(436\) −168.727 + 292.243i −0.386988 + 0.670283i
\(437\) −289.660 77.6141i −0.662837 0.177607i
\(438\) 59.5295 222.167i 0.135912 0.507231i
\(439\) −460.252 265.727i −1.04841 0.605300i −0.126206 0.992004i \(-0.540280\pi\)
−0.922204 + 0.386704i \(0.873614\pi\)
\(440\) −14.9545 + 104.681i −0.0339874 + 0.237912i
\(441\) 129.659 + 64.3913i 0.294012 + 0.146012i
\(442\) 327.636 327.636i 0.741257 0.741257i
\(443\) −152.513 + 40.8658i −0.344274 + 0.0922479i −0.426813 0.904340i \(-0.640364\pi\)
0.0825391 + 0.996588i \(0.473697\pi\)
\(444\) −282.794 + 163.271i −0.636924 + 0.367728i
\(445\) −224.049 95.7042i −0.503481 0.215066i
\(446\) 62.8872 108.924i 0.141003 0.244224i
\(447\) −439.711 + 439.711i −0.983693 + 0.983693i
\(448\) 1.75419 + 55.9725i 0.00391560 + 0.124939i
\(449\) 297.590i 0.662784i −0.943493 0.331392i \(-0.892482\pi\)
0.943493 0.331392i \(-0.107518\pi\)
\(450\) 2.29729 104.430i 0.00510508 0.232067i
\(451\) −104.511 181.018i −0.231731 0.401371i
\(452\) −154.731 41.4601i −0.342326 0.0917260i
\(453\) 489.031 131.036i 1.07954 0.289262i
\(454\) 365.362i 0.804763i
\(455\) −436.792 321.267i −0.959983 0.706082i
\(456\) −100.364 −0.220097
\(457\) 188.834 + 704.739i 0.413204 + 1.54210i 0.788406 + 0.615155i \(0.210907\pi\)
−0.375202 + 0.926943i \(0.622427\pi\)
\(458\) 45.0537 168.143i 0.0983705 0.367124i
\(459\) 538.349 310.816i 1.17287 0.677158i
\(460\) 128.301 163.451i 0.278914 0.355328i
\(461\) −16.3644 −0.0354976 −0.0177488 0.999842i \(-0.505650\pi\)
−0.0177488 + 0.999842i \(0.505650\pi\)
\(462\) 95.8927 + 154.689i 0.207560 + 0.334824i
\(463\) 185.921 + 185.921i 0.401557 + 0.401557i 0.878781 0.477225i \(-0.158357\pi\)
−0.477225 + 0.878781i \(0.658357\pi\)
\(464\) −54.9523 31.7267i −0.118432 0.0683765i
\(465\) 182.545 73.2714i 0.392571 0.157573i
\(466\) −225.362 390.339i −0.483610 0.837637i
\(467\) −84.3641 314.851i −0.180651 0.674200i −0.995520 0.0945537i \(-0.969858\pi\)
0.814869 0.579646i \(-0.196809\pi\)
\(468\) 64.7288 + 64.7288i 0.138309 + 0.138309i
\(469\) 377.952 + 88.6822i 0.805868 + 0.189088i
\(470\) −406.907 + 305.180i −0.865759 + 0.649319i
\(471\) −325.830 + 564.354i −0.691783 + 1.19820i
\(472\) −176.279 47.2339i −0.373474 0.100072i
\(473\) −108.509 + 404.963i −0.229407 + 0.856158i
\(474\) 124.080 + 71.6377i 0.261772 + 0.151134i
\(475\) 346.360 + 101.022i 0.729179 + 0.212677i
\(476\) 283.453 85.5530i 0.595490 0.179733i
\(477\) −88.4990 + 88.4990i −0.185532 + 0.185532i
\(478\) 238.678 63.9537i 0.499327 0.133794i
\(479\) 452.460 261.228i 0.944592 0.545361i 0.0531954 0.998584i \(-0.483059\pi\)
0.891397 + 0.453223i \(0.149726\pi\)
\(480\) 27.3185 63.9542i 0.0569135 0.133238i
\(481\) −514.360 + 890.898i −1.06936 + 1.85218i
\(482\) 243.818 243.818i 0.505846 0.505846i
\(483\) −11.2029 357.462i −0.0231945 0.740087i
\(484\) 130.182i 0.268971i
\(485\) −278.431 + 354.713i −0.574085 + 0.731366i
\(486\) 107.636 + 186.430i 0.221472 + 0.383602i
\(487\) −286.054 76.6478i −0.587379 0.157388i −0.0471240 0.998889i \(-0.515006\pi\)
−0.540255 + 0.841501i \(0.681672\pi\)
\(488\) −161.440 + 43.2577i −0.330819 + 0.0886428i
\(489\) 614.677i 1.25701i
\(490\) −148.946 312.834i −0.303972 0.638436i
\(491\) −232.000 −0.472505 −0.236253 0.971692i \(-0.575919\pi\)
−0.236253 + 0.971692i \(0.575919\pi\)
\(492\) 35.5791 + 132.783i 0.0723153 + 0.269884i
\(493\) −86.8314 + 324.059i −0.176129 + 0.657321i
\(494\) −273.822 + 158.091i −0.554295 + 0.320022i
\(495\) 13.2122 + 109.662i 0.0266912 + 0.221540i
\(496\) −64.0000 −0.129032
\(497\) −254.259 + 7.96853i −0.511588 + 0.0160333i
\(498\) −31.7288 31.7288i −0.0637124 0.0637124i
\(499\) 181.375 + 104.717i 0.363477 + 0.209853i 0.670605 0.741815i \(-0.266035\pi\)
−0.307128 + 0.951668i \(0.599368\pi\)
\(500\) −158.650 + 193.210i −0.317300 + 0.386420i
\(501\) 13.9296 + 24.1268i 0.0278036 + 0.0481572i
\(502\) −19.8654 74.1387i −0.0395725 0.147687i
\(503\) −104.055 104.055i −0.206870 0.206870i 0.596066 0.802935i \(-0.296730\pi\)
−0.802935 + 0.596066i \(0.796730\pi\)
\(504\) 16.9021 + 56.0000i 0.0335360 + 0.111111i
\(505\) 292.497 + 389.996i 0.579202 + 0.772269i
\(506\) −109.863 + 190.289i −0.217121 + 0.376065i
\(507\) −168.624 45.1827i −0.332592 0.0891178i
\(508\) −2.22950 + 8.32059i −0.00438877 + 0.0163791i
\(509\) 65.4629 + 37.7950i 0.128611 + 0.0742535i 0.562925 0.826508i \(-0.309676\pi\)
−0.434314 + 0.900761i \(0.643009\pi\)
\(510\) −364.000 52.0000i −0.713725 0.101961i
\(511\) 105.770 450.779i 0.206987 0.882151i
\(512\) −16.0000 + 16.0000i −0.0312500 + 0.0312500i
\(513\) −409.740 + 109.789i −0.798713 + 0.214014i
\(514\) 26.5330 15.3188i 0.0516206 0.0298032i
\(515\) −224.829 + 90.2436i −0.436562 + 0.175230i
\(516\) 137.863 238.786i 0.267177 0.462764i
\(517\) 380.317 380.317i 0.735622 0.735622i
\(518\) −558.717 + 346.353i −1.07860 + 0.668635i
\(519\) 305.362i 0.588367i
\(520\) −26.2064 217.516i −0.0503969 0.418300i
\(521\) −172.135 298.146i −0.330393 0.572257i 0.652196 0.758050i \(-0.273848\pi\)
−0.982589 + 0.185793i \(0.940514\pi\)
\(522\) −64.0222 17.1547i −0.122648 0.0328634i
\(523\) 57.3080 15.3556i 0.109576 0.0293607i −0.203615 0.979051i \(-0.565269\pi\)
0.313190 + 0.949690i \(0.398602\pi\)
\(524\) 227.818i 0.434767i
\(525\) 4.01673 + 430.266i 0.00765092 + 0.819554i
\(526\) 475.477 0.903949
\(527\) 87.5793 + 326.851i 0.166185 + 0.620210i
\(528\) −19.0333 + 71.0333i −0.0360480 + 0.134533i
\(529\) −84.2017 + 48.6139i −0.159171 + 0.0918977i
\(530\) 297.394 35.8301i 0.561121 0.0676039i
\(531\) −190.629 −0.359001
\(532\) −201.944 + 6.32897i −0.379595 + 0.0118966i
\(533\) 306.226 + 306.226i 0.574532 + 0.574532i
\(534\) −146.734 84.7169i −0.274783 0.158646i
\(535\) 306.647 + 763.967i 0.573171 + 1.42798i
\(536\) 78.4317 + 135.848i 0.146328 + 0.253447i
\(537\) −83.7698 312.633i −0.155996 0.582185i
\(538\) 108.180 + 108.180i 0.201078 + 0.201078i
\(539\) 202.701 + 305.204i 0.376069 + 0.566241i
\(540\) 41.5683 290.978i 0.0769784 0.538849i
\(541\) 358.793 621.448i 0.663203 1.14870i −0.316566 0.948571i \(-0.602530\pi\)
0.979769 0.200131i \(-0.0641368\pi\)
\(542\) −84.0388 22.5181i −0.155053 0.0415464i
\(543\) 95.2536 355.491i 0.175421 0.654680i
\(544\) 103.607 + 59.8178i 0.190455 + 0.109959i
\(545\) 674.907 506.180i 1.23836 0.928771i
\(546\) −274.859 258.154i −0.503405 0.472810i
\(547\) 392.507 392.507i 0.717563 0.717563i −0.250543 0.968105i \(-0.580609\pi\)
0.968105 + 0.250543i \(0.0806091\pi\)
\(548\) 280.779 75.2345i 0.512370 0.137289i
\(549\) −151.192 + 87.2909i −0.275396 + 0.159000i
\(550\) 137.183 225.980i 0.249424 0.410873i
\(551\) 114.467 198.263i 0.207745 0.359825i
\(552\) 102.182 102.182i 0.185113 0.185113i
\(553\) 254.180 + 136.319i 0.459639 + 0.246507i
\(554\) 504.998i 0.911549i
\(555\) 810.495 97.6486i 1.46035 0.175943i
\(556\) 177.022 + 306.611i 0.318384 + 0.551458i
\(557\) −193.665 51.8922i −0.347692 0.0931638i 0.0807466 0.996735i \(-0.474270\pi\)
−0.428439 + 0.903571i \(0.640936\pi\)
\(558\) −64.5737 + 17.3025i −0.115723 + 0.0310080i
\(559\) 868.634i 1.55391i
\(560\) 50.9349 130.406i 0.0909552 0.232867i
\(561\) 388.816 0.693076
\(562\) 145.877 + 544.419i 0.259567 + 0.968717i
\(563\) −159.367 + 594.765i −0.283067 + 1.05642i 0.667173 + 0.744903i \(0.267504\pi\)
−0.950240 + 0.311518i \(0.899163\pi\)
\(564\) −306.336 + 176.863i −0.543149 + 0.313588i
\(565\) 315.017 + 247.273i 0.557553 + 0.437650i
\(566\) 696.087 1.22984
\(567\) −168.480 271.783i −0.297143 0.479335i
\(568\) −72.6812 72.6812i −0.127960 0.127960i
\(569\) 72.8214 + 42.0435i 0.127981 + 0.0738901i 0.562624 0.826713i \(-0.309792\pi\)
−0.434642 + 0.900603i \(0.643125\pi\)
\(570\) 230.742 + 98.5629i 0.404810 + 0.172917i
\(571\) 167.327 + 289.818i 0.293041 + 0.507562i 0.974527 0.224269i \(-0.0719993\pi\)
−0.681486 + 0.731831i \(0.738666\pi\)
\(572\) 59.9615 + 223.779i 0.104828 + 0.391223i
\(573\) −393.043 393.043i −0.685940 0.685940i
\(574\) 79.9624 + 264.931i 0.139307 + 0.461552i
\(575\) −455.485 + 249.782i −0.792148 + 0.434404i
\(576\) −11.8178 + 20.4690i −0.0205170 + 0.0355365i
\(577\) −444.640 119.141i −0.770606 0.206483i −0.147967 0.988992i \(-0.547273\pi\)
−0.622639 + 0.782509i \(0.713940\pi\)
\(578\) 57.9313 216.203i 0.100227 0.374053i
\(579\) −470.864 271.854i −0.813237 0.469522i
\(580\) 95.1801 + 126.907i 0.164104 + 0.218805i
\(581\) −65.8427 61.8410i −0.113326 0.106439i
\(582\) −221.751 + 221.751i −0.381015 + 0.381015i
\(583\) −305.957 + 81.9810i −0.524798 + 0.140619i
\(584\) 162.024 93.5445i 0.277438 0.160179i
\(585\) −85.2470 212.381i −0.145721 0.363044i
\(586\) −187.818 + 325.310i −0.320508 + 0.555136i
\(587\) 484.313 484.313i 0.825064 0.825064i −0.161765 0.986829i \(-0.551719\pi\)
0.986829 + 0.161765i \(0.0517187\pi\)
\(588\) −76.8170 228.387i −0.130641 0.388413i
\(589\) 230.907i 0.392032i
\(590\) 358.887 + 281.708i 0.608283 + 0.477471i
\(591\) 147.624 + 255.692i 0.249786 + 0.432643i
\(592\) −256.564 68.7461i −0.433385 0.116125i
\(593\) 206.021 55.2031i 0.347422 0.0930913i −0.0808885 0.996723i \(-0.525776\pi\)
0.428310 + 0.903632i \(0.359109\pi\)
\(594\) 310.816i 0.523259i
\(595\) −735.688 81.6760i −1.23645 0.137271i
\(596\) −505.818 −0.848688
\(597\) −52.4727 195.831i −0.0878940 0.328025i
\(598\) 117.827 439.736i 0.197035 0.735344i
\(599\) 71.5663 41.3188i 0.119476 0.0689797i −0.439071 0.898452i \(-0.644692\pi\)
0.558547 + 0.829473i \(0.311359\pi\)
\(600\) −125.613 + 120.205i −0.209354 + 0.200342i
\(601\) 785.362 1.30676 0.653380 0.757030i \(-0.273351\pi\)
0.653380 + 0.757030i \(0.273351\pi\)
\(602\) 262.339 489.158i 0.435778 0.812555i
\(603\) 115.861 + 115.861i 0.192141 + 0.192141i
\(604\) 356.645 + 205.909i 0.590471 + 0.340909i
\(605\) 127.846 299.294i 0.211315 0.494701i
\(606\) 169.513 + 293.605i 0.279724 + 0.484497i
\(607\) −181.102 675.882i −0.298356 1.11348i −0.938515 0.345237i \(-0.887798\pi\)
0.640159 0.768242i \(-0.278868\pi\)
\(608\) −57.7267 57.7267i −0.0949452 0.0949452i
\(609\) 265.811 + 62.3696i 0.436472 + 0.102413i
\(610\) 413.638 + 59.0911i 0.678095 + 0.0968707i
\(611\) −557.180 + 965.064i −0.911915 + 1.57948i
\(612\) 120.708 + 32.3436i 0.197235 + 0.0528490i
\(613\) 49.4286 184.470i 0.0806339 0.300930i −0.913818 0.406125i \(-0.866880\pi\)
0.994452 + 0.105195i \(0.0335466\pi\)
\(614\) 296.870 + 171.398i 0.483502 + 0.279150i
\(615\) 48.6020 340.214i 0.0790276 0.553193i
\(616\) −33.8178 + 144.127i −0.0548990 + 0.233973i
\(617\) −423.089 + 423.089i −0.685720 + 0.685720i −0.961283 0.275563i \(-0.911136\pi\)
0.275563 + 0.961283i \(0.411136\pi\)
\(618\) −162.741 + 43.6063i −0.263335 + 0.0705603i
\(619\) 93.5101 53.9881i 0.151066 0.0872182i −0.422561 0.906334i \(-0.638869\pi\)
0.573628 + 0.819116i \(0.305536\pi\)
\(620\) 147.138 + 62.8513i 0.237320 + 0.101373i
\(621\) 305.383 528.939i 0.491760 0.851753i
\(622\) 3.47723 3.47723i 0.00559039 0.00559039i
\(623\) −300.587 161.207i −0.482484 0.258759i
\(624\) 152.364i 0.244174i
\(625\) 554.485 288.395i 0.887175 0.461433i
\(626\) 15.0890 + 26.1350i 0.0241039 + 0.0417491i
\(627\) −256.282 68.6707i −0.408744 0.109523i
\(628\) −512.008 + 137.192i −0.815299 + 0.218459i
\(629\) 1404.36i 2.23268i
\(630\) 16.1362 145.345i 0.0256130 0.230706i
\(631\) −711.200 −1.12710 −0.563550 0.826082i \(-0.690565\pi\)
−0.563550 + 0.826082i \(0.690565\pi\)
\(632\) 30.1634 + 112.571i 0.0477269 + 0.178119i
\(633\) −130.904 + 488.542i −0.206800 + 0.771789i
\(634\) −498.831 + 288.000i −0.786799 + 0.454259i
\(635\) 13.2969 16.9399i 0.0209401 0.0266770i
\(636\) 208.317 0.327542
\(637\) −569.327 502.103i −0.893762 0.788231i
\(638\) −118.614 118.614i −0.185915 0.185915i
\(639\) −92.9821 53.6832i −0.145512 0.0840113i
\(640\) 52.4974 21.0718i 0.0820272 0.0329247i
\(641\) 214.658 + 371.799i 0.334880 + 0.580030i 0.983462 0.181115i \(-0.0579707\pi\)
−0.648581 + 0.761145i \(0.724637\pi\)
\(642\) 148.174 + 552.991i 0.230800 + 0.861357i
\(643\) −289.770 289.770i −0.450653 0.450653i 0.444918 0.895571i \(-0.353233\pi\)
−0.895571 + 0.444918i \(0.853233\pi\)
\(644\) 199.158 212.046i 0.309252 0.329263i
\(645\) −551.453 + 413.590i −0.854967 + 0.641225i
\(646\) −215.818 + 373.807i −0.334083 + 0.578649i
\(647\) 435.592 + 116.716i 0.673248 + 0.180396i 0.579218 0.815173i \(-0.303358\pi\)
0.0940307 + 0.995569i \(0.470025\pi\)
\(648\) 33.4409 124.803i 0.0516064 0.192598i
\(649\) −417.815 241.226i −0.643783 0.371688i
\(650\) −153.362 + 525.814i −0.235942 + 0.808944i
\(651\) 263.636 79.5715i 0.404970 0.122230i
\(652\) 353.545 353.545i 0.542246 0.542246i
\(653\) 340.019 91.1077i 0.520702 0.139522i 0.0111110 0.999938i \(-0.496463\pi\)
0.509592 + 0.860416i \(0.329797\pi\)
\(654\) 508.098 293.350i 0.776908 0.448548i
\(655\) 223.729 523.762i 0.341570 0.799636i
\(656\) −55.9089 + 96.8371i −0.0852270 + 0.147617i
\(657\) 138.186 138.186i 0.210329 0.210329i
\(658\) −605.230 + 375.186i −0.919802 + 0.570192i
\(659\) 900.158i 1.36595i −0.730444 0.682973i \(-0.760687\pi\)
0.730444 0.682973i \(-0.239313\pi\)
\(660\) 113.517 144.617i 0.171995 0.219116i
\(661\) 174.090 + 301.533i 0.263374 + 0.456177i 0.967136 0.254259i \(-0.0818314\pi\)
−0.703763 + 0.710435i \(0.748498\pi\)
\(662\) −574.596 153.963i −0.867970 0.232572i
\(663\) −778.131 + 208.500i −1.17365 + 0.314479i
\(664\) 36.4990i 0.0549683i
\(665\) 470.493 + 183.769i 0.707508 + 0.276344i
\(666\) −277.449 −0.416590
\(667\) 85.3137 + 318.395i 0.127907 + 0.477354i
\(668\) −5.86512 + 21.8889i −0.00878012 + 0.0327679i
\(669\) −189.376 + 109.336i −0.283074 + 0.163433i
\(670\) −46.9081 389.343i −0.0700121 0.581109i
\(671\) −441.837 −0.658476
\(672\) 46.0160 85.8018i 0.0684762 0.127681i
\(673\) −13.2277 13.2277i −0.0196549 0.0196549i 0.697211 0.716866i \(-0.254424\pi\)
−0.716866 + 0.697211i \(0.754424\pi\)
\(674\) 59.3595 + 34.2712i 0.0880705 + 0.0508475i
\(675\) −381.323 + 628.148i −0.564922 + 0.930589i
\(676\) −71.0000 122.976i −0.105030 0.181917i
\(677\) −153.597 573.233i −0.226879 0.846725i −0.981643 0.190728i \(-0.938915\pi\)
0.754764 0.655997i \(-0.227752\pi\)
\(678\) 196.935 + 196.935i 0.290464 + 0.290464i
\(679\) −432.203 + 460.170i −0.636529 + 0.677718i
\(680\) −179.453 239.271i −0.263902 0.351869i
\(681\) −317.612 + 550.120i −0.466390 + 0.807812i
\(682\) −163.425 43.7897i −0.239627 0.0642077i
\(683\) 73.3428 273.719i 0.107383 0.400760i −0.891221 0.453569i \(-0.850151\pi\)
0.998605 + 0.0528086i \(0.0168173\pi\)
\(684\) −73.8506 42.6377i −0.107969 0.0623358i
\(685\) −719.406 102.772i −1.05023 0.150032i
\(686\) −168.966 454.696i −0.246307 0.662822i
\(687\) −214.004 + 214.004i −0.311505 + 0.311505i
\(688\) 216.638 58.0480i 0.314881 0.0843721i
\(689\) 568.346 328.135i 0.824885 0.476248i
\(690\) −335.269 + 134.573i −0.485897 + 0.195033i
\(691\) −369.671 + 640.290i −0.534980 + 0.926613i 0.464184 + 0.885739i \(0.346348\pi\)
−0.999164 + 0.0408742i \(0.986986\pi\)
\(692\) −175.636 + 175.636i −0.253809 + 0.253809i
\(693\) 4.84399 + 154.562i 0.00698989 + 0.223033i
\(694\) 204.657i 0.294895i
\(695\) −105.872 878.754i −0.152335 1.26439i
\(696\) 55.1605 + 95.5407i 0.0792535 + 0.137271i
\(697\) 571.058 + 153.015i 0.819308 + 0.219533i
\(698\) 339.951 91.0896i 0.487036 0.130501i
\(699\) 783.636i 1.12108i
\(700\) −245.166 + 249.787i −0.350238 + 0.356838i
\(701\) 189.638 0.270525 0.135262 0.990810i \(-0.456812\pi\)
0.135262 + 0.990810i \(0.456812\pi\)
\(702\) −166.673 622.031i −0.237425 0.886084i
\(703\) 248.030 925.662i 0.352817 1.31673i
\(704\) −51.8037 + 29.9089i −0.0735849 + 0.0424842i
\(705\) 877.968 105.778i 1.24534 0.150039i
\(706\) −564.725 −0.799893
\(707\) 359.594 + 580.077i 0.508619 + 0.820476i
\(708\) 224.360 + 224.360i 0.316893 + 0.316893i
\(709\) −571.534 329.975i −0.806112 0.465409i 0.0394916 0.999220i \(-0.487426\pi\)
−0.845604 + 0.533811i \(0.820760\pi\)
\(710\) 95.7202 + 238.473i 0.134817 + 0.335878i
\(711\) 60.8675 + 105.426i 0.0856083 + 0.148278i
\(712\) −35.6704 133.124i −0.0500989 0.186972i
\(713\) 235.089 + 235.089i 0.329718 + 0.329718i
\(714\) −501.163 117.592i −0.701909 0.164695i
\(715\) 81.9089 573.362i 0.114558 0.801905i
\(716\) 131.636 228.000i 0.183849 0.318435i
\(717\) −414.969 111.191i −0.578757 0.155078i
\(718\) −156.691 + 584.778i −0.218232 + 0.814454i
\(719\) 851.435 + 491.576i 1.18419 + 0.683694i 0.956981 0.290151i \(-0.0937056\pi\)
0.227212 + 0.973845i \(0.427039\pi\)
\(720\) 47.2712 35.4534i 0.0656545 0.0492409i
\(721\) −324.703 + 98.0031i −0.450351 + 0.135927i
\(722\) −152.727 + 152.727i −0.211533 + 0.211533i
\(723\) −579.065 + 155.160i −0.800919 + 0.214606i
\(724\) 259.255 149.681i 0.358088 0.206742i
\(725\) −94.1938 385.235i −0.129922 0.531359i
\(726\) 113.168 196.013i 0.155879 0.269990i
\(727\) 291.624 291.624i 0.401133 0.401133i −0.477499 0.878632i \(-0.658457\pi\)
0.878632 + 0.477499i \(0.158457\pi\)
\(728\) −9.60809 306.574i −0.0131979 0.421118i
\(729\) 785.404i 1.07737i
\(730\) −464.364 + 55.9467i −0.636116 + 0.0766394i
\(731\) −592.907 1026.94i −0.811090 1.40485i
\(732\) 280.681 + 75.2084i 0.383445 + 0.102744i
\(733\) −660.223 + 176.906i −0.900713 + 0.241345i −0.679323 0.733840i \(-0.737726\pi\)
−0.221391 + 0.975185i \(0.571060\pi\)
\(734\) 333.022i 0.453708i
\(735\) −47.6825 + 600.508i −0.0648741 + 0.817018i
\(736\) 117.545 0.159707
\(737\) 107.328 + 400.554i 0.145628 + 0.543492i
\(738\) −30.2301 + 112.820i −0.0409621 + 0.152873i
\(739\) 110.947 64.0554i 0.150131 0.0866785i −0.423052 0.906105i \(-0.639041\pi\)
0.573184 + 0.819427i \(0.305708\pi\)
\(740\) 522.338 + 410.009i 0.705862 + 0.554066i
\(741\) 549.718 0.741860
\(742\) 419.157 13.1364i 0.564901 0.0177041i
\(743\) 443.624 + 443.624i 0.597071 + 0.597071i 0.939532 0.342461i \(-0.111260\pi\)
−0.342461 + 0.939532i \(0.611260\pi\)
\(744\) 96.3637 + 55.6356i 0.129521 + 0.0747790i
\(745\) 1162.89 + 496.739i 1.56093 + 0.666763i
\(746\) 107.271 + 185.799i 0.143795 + 0.249061i
\(747\) −9.86753 36.8261i −0.0132095 0.0492987i
\(748\) 223.636 + 223.636i 0.298978 + 0.298978i
\(749\) 333.013 + 1103.34i 0.444611 + 1.47308i
\(750\) 406.835 152.998i 0.542447 0.203997i
\(751\) 141.957 245.876i 0.189023 0.327398i −0.755902 0.654685i \(-0.772801\pi\)
0.944925 + 0.327287i \(0.106134\pi\)
\(752\) −277.923 74.4691i −0.369578 0.0990281i
\(753\) −34.5382 + 128.898i −0.0458675 + 0.171180i
\(754\) 300.986 + 173.774i 0.399186 + 0.230470i
\(755\) −617.727 823.636i −0.818181 1.09091i
\(756\) 94.0021 400.625i 0.124341 0.529927i
\(757\) −494.590 + 494.590i −0.653355 + 0.653355i −0.953799 0.300444i \(-0.902865\pi\)
0.300444 + 0.953799i \(0.402865\pi\)
\(758\) 90.7474 24.3157i 0.119719 0.0320787i
\(759\) 330.839 191.010i 0.435888 0.251660i
\(760\) 76.0253 + 189.406i 0.100033 + 0.249219i
\(761\) 17.7288 30.7072i 0.0232967 0.0403511i −0.854142 0.520040i \(-0.825917\pi\)
0.877439 + 0.479689i \(0.159250\pi\)
\(762\) 10.5901 10.5901i 0.0138977 0.0138977i
\(763\) 1003.85 622.294i 1.31566 0.815589i
\(764\) 452.135i 0.591799i
\(765\) −245.749 192.901i −0.321241 0.252158i
\(766\) −481.307 833.648i −0.628338 1.08831i
\(767\) 965.523 + 258.711i 1.25883 + 0.337302i
\(768\) 37.9998 10.1820i 0.0494789 0.0132578i
\(769\) 702.447i 0.913455i 0.889607 + 0.456728i \(0.150979\pi\)
−0.889607 + 0.456728i \(0.849021\pi\)
\(770\) 219.289 298.143i 0.284790 0.387199i
\(771\) −53.2671 −0.0690883
\(772\) −114.465 427.190i −0.148271 0.553355i
\(773\) −216.901 + 809.487i −0.280597 + 1.04720i 0.671400 + 0.741095i \(0.265693\pi\)
−0.951997 + 0.306107i \(0.900973\pi\)
\(774\) 202.887 117.137i 0.262127 0.151339i
\(775\) −276.554 288.995i −0.356844 0.372897i
\(776\) −255.089 −0.328723
\(777\) 1142.34 35.8011i 1.47019 0.0460760i
\(778\) 92.9110 + 92.9110i 0.119423 + 0.119423i
\(779\) −349.380 201.715i −0.448498 0.258941i
\(780\) −149.630 + 350.292i −0.191833 + 0.449092i
\(781\) −135.863 235.322i −0.173961 0.301309i
\(782\) −160.851 600.305i −0.205692 0.767653i
\(783\) 329.707 + 329.707i 0.421081 + 0.421081i
\(784\) 87.1787 175.545i 0.111197 0.223909i
\(785\) 1311.86 + 187.408i 1.67115 + 0.238736i
\(786\) 198.043 343.021i 0.251964 0.436414i
\(787\) −695.596 186.384i −0.883858 0.236829i −0.211787 0.977316i \(-0.567928\pi\)
−0.672071 + 0.740487i \(0.734595\pi\)
\(788\) −62.1576 + 231.975i −0.0788802 + 0.294385i
\(789\) −715.918 413.335i −0.907374 0.523872i
\(790\) 41.2039 288.428i 0.0521569 0.365098i
\(791\) 408.673 + 383.836i 0.516654 + 0.485254i
\(792\) −44.1822 + 44.1822i −0.0557856 + 0.0557856i
\(793\) 884.243 236.932i 1.11506 0.298779i
\(794\) 443.168 255.863i 0.558147 0.322246i
\(795\) −478.928 204.578i −0.602425 0.257330i
\(796\) 82.4555 142.817i 0.103587 0.179418i
\(797\) −82.4079 + 82.4079i −0.103398 + 0.103398i −0.756913 0.653516i \(-0.773293\pi\)
0.653516 + 0.756913i \(0.273293\pi\)
\(798\) 309.566 + 166.022i 0.387927 + 0.208048i
\(799\) 1521.27i 1.90396i
\(800\) −141.387 3.11027i −0.176734 0.00388784i
\(801\) −71.9803 124.674i −0.0898631 0.155647i
\(802\) −861.334 230.794i −1.07398 0.287773i
\(803\) 477.736 128.009i 0.594938 0.159413i
\(804\) 272.725i 0.339210i
\(805\) −666.112 + 291.917i −0.827468 + 0.362630i
\(806\) 350.542 0.434916
\(807\) −68.8433 256.927i −0.0853077 0.318373i
\(808\) −71.3742 + 266.372i −0.0883344 + 0.329668i
\(809\) 289.803 167.318i 0.358224 0.206821i −0.310078 0.950711i \(-0.600355\pi\)
0.668301 + 0.743891i \(0.267022\pi\)
\(810\) −199.445 + 254.087i −0.246229 + 0.313687i
\(811\) 522.455 0.644211 0.322106 0.946704i \(-0.395609\pi\)
0.322106 + 0.946704i \(0.395609\pi\)
\(812\) 117.014 + 188.760i 0.144106 + 0.232463i
\(813\) 106.961 + 106.961i 0.131563 + 0.131563i
\(814\) −608.104 351.089i −0.747057 0.431313i
\(815\) −1160.01 + 465.614i −1.42333 + 0.571305i
\(816\) −104.000 180.133i −0.127451 0.220752i
\(817\) 209.432 + 781.613i 0.256343 + 0.956686i
\(818\) −203.317 203.317i −0.248554 0.248554i
\(819\) −92.5768 306.725i −0.113036 0.374511i
\(820\) 223.636 167.727i 0.272726 0.204545i
\(821\) 196.950 341.128i 0.239891 0.415503i −0.720792 0.693151i \(-0.756222\pi\)
0.960683 + 0.277648i \(0.0895550\pi\)
\(822\) −488.166 130.804i −0.593876 0.159129i
\(823\) −67.2617 + 251.024i −0.0817275 + 0.305011i −0.994674 0.103067i \(-0.967134\pi\)
0.912947 + 0.408078i \(0.133801\pi\)
\(824\) −118.685 68.5228i −0.144035 0.0831587i
\(825\) −403.000 + 221.000i −0.488485 + 0.267879i
\(826\) 465.586 + 437.290i 0.563663 + 0.529406i
\(827\) 143.561 143.561i 0.173592 0.173592i −0.614964 0.788556i \(-0.710829\pi\)
0.788556 + 0.614964i \(0.210829\pi\)
\(828\) 118.598 31.7783i 0.143234 0.0383796i
\(829\) −566.219 + 326.907i −0.683015 + 0.394339i −0.800990 0.598678i \(-0.795693\pi\)
0.117975 + 0.993017i \(0.462360\pi\)
\(830\) −35.8438 + 83.9125i −0.0431853 + 0.101099i
\(831\) −438.998 + 760.367i −0.528277 + 0.915002i
\(832\) 87.6356 87.6356i 0.105331 0.105331i
\(833\) −1015.81 205.005i −1.21946 0.246105i
\(834\) 615.545i 0.738063i
\(835\) 34.9802 44.5636i 0.0418924 0.0533696i
\(836\) −107.909 186.904i −0.129078 0.223569i
\(837\) 454.267 + 121.720i 0.542732 + 0.145425i
\(838\) 978.442 262.173i 1.16759 0.312855i
\(839\) 128.301i 0.152922i 0.997073 + 0.0764608i \(0.0243620\pi\)
−0.997073 + 0.0764608i \(0.975638\pi\)
\(840\) −190.054 + 152.072i −0.226255 + 0.181038i
\(841\) 589.354 0.700778
\(842\) 253.454 + 945.903i 0.301014 + 1.12340i
\(843\) 253.623 946.534i 0.300858 1.12282i
\(844\) −356.288 + 205.703i −0.422142 + 0.243724i
\(845\) 42.4634 + 352.451i 0.0502526 + 0.417102i
\(846\) −300.547 −0.355256
\(847\) 215.346 401.537i 0.254246 0.474069i
\(848\) 119.818 + 119.818i 0.141295 + 0.141295i
\(849\) −1048.09 605.113i −1.23449 0.712736i
\(850\) 177.594 + 726.326i 0.208934 + 0.854501i
\(851\) 689.905 + 1194.95i 0.810699 + 1.40417i
\(852\) 46.2526 + 172.617i 0.0542871 + 0.202602i
\(853\) −941.404 941.404i −1.10364 1.10364i −0.993968 0.109671i \(-0.965020\pi\)
−0.109671 0.993968i \(-0.534980\pi\)
\(854\) 569.505 + 133.628i 0.666868 + 0.156473i
\(855\) 127.913 + 170.551i 0.149606 + 0.199475i
\(856\) −232.840 + 403.290i −0.272009 + 0.471133i
\(857\) 334.297 + 89.5747i 0.390078 + 0.104521i 0.448527 0.893769i \(-0.351949\pi\)
−0.0584487 + 0.998290i \(0.518615\pi\)
\(858\) 104.250 389.066i 0.121503 0.453456i
\(859\) 39.8336 + 22.9979i 0.0463720 + 0.0267729i 0.523007 0.852329i \(-0.324810\pi\)
−0.476635 + 0.879101i \(0.658144\pi\)
\(860\) −555.065 79.2950i −0.645425 0.0922035i
\(861\) 109.908 468.413i 0.127651 0.544034i
\(862\) −497.473 + 497.473i −0.577115 + 0.577115i
\(863\) 1354.85 363.032i 1.56993 0.420663i 0.634143 0.773216i \(-0.281353\pi\)
0.935792 + 0.352554i \(0.114687\pi\)
\(864\) 143.997 83.1366i 0.166663 0.0962230i
\(865\) 576.276 231.310i 0.666215 0.267410i
\(866\) −191.729 + 332.084i −0.221396 + 0.383469i
\(867\) −275.172 + 275.172i −0.317385 + 0.317385i
\(868\) 197.403 + 105.868i 0.227423 + 0.121968i
\(869\) 308.091i 0.354535i
\(870\) −32.9902 273.822i −0.0379197 0.314738i
\(871\) −429.588 744.068i −0.493212 0.854269i
\(872\) 460.970 + 123.517i 0.528635 + 0.141647i
\(873\) −257.376 + 68.9636i −0.294817 + 0.0789961i
\(874\) 424.091i 0.485230i
\(875\) 808.950 333.504i 0.924514 0.381147i
\(876\) −325.275 −0.371319
\(877\) 288.777 + 1077.73i 0.329278 + 1.22888i 0.909941 + 0.414738i \(0.136127\pi\)
−0.580663 + 0.814144i \(0.697207\pi\)
\(878\) −194.525 + 725.979i −0.221555 + 0.826855i
\(879\) 565.588 326.542i 0.643445 0.371493i
\(880\) 148.471 17.8878i 0.168717 0.0203270i
\(881\) −1392.40 −1.58048 −0.790239 0.612798i \(-0.790044\pi\)
−0.790239 + 0.612798i \(0.790044\pi\)
\(882\) 40.5015 200.687i 0.0459201 0.227536i
\(883\) −652.590 652.590i −0.739060 0.739060i 0.233336 0.972396i \(-0.425036\pi\)
−0.972396 + 0.233336i \(0.925036\pi\)
\(884\) −567.482 327.636i −0.641947 0.370629i
\(885\) −295.480 736.146i −0.333875 0.831803i
\(886\) 111.648 + 193.379i 0.126013 + 0.218261i
\(887\) 130.525 + 487.127i 0.147154 + 0.549185i 0.999650 + 0.0264521i \(0.00842094\pi\)
−0.852496 + 0.522733i \(0.824912\pi\)
\(888\) 326.542 + 326.542i 0.367728 + 0.367728i
\(889\) 20.6406 21.9762i 0.0232177 0.0247201i
\(890\) −48.7267 + 341.087i −0.0547491 + 0.383244i
\(891\) 170.784 295.807i 0.191677 0.331994i
\(892\) −171.811 46.0366i −0.192613 0.0516105i
\(893\) 268.679 1002.72i 0.300872 1.12287i
\(894\) 761.601 + 439.711i 0.851903 + 0.491846i
\(895\) −526.542 + 394.907i −0.588316 + 0.441237i
\(896\) 75.8178 22.8836i 0.0846181 0.0255398i
\(897\) −559.675 + 559.675i −0.623941 + 0.623941i
\(898\) −406.516 + 108.926i −0.452690 + 0.121298i
\(899\) −219.809 + 126.907i −0.244504 + 0.141164i
\(900\) −143.495 + 35.0860i −0.159439 + 0.0389845i
\(901\) 447.952 775.876i 0.497172 0.861128i
\(902\) −209.022 + 209.022i −0.231731 + 0.231731i
\(903\) −820.227 + 508.465i −0.908336 + 0.563084i
\(904\) 226.542i 0.250600i
\(905\) −743.032 + 89.5207i −0.821030 + 0.0989179i
\(906\) −357.996 620.067i −0.395139 0.684401i
\(907\) −1.84469 0.494284i −0.00203384 0.000544966i 0.257802 0.966198i \(-0.417002\pi\)
−0.259836 + 0.965653i \(0.583668\pi\)
\(908\) −499.094 + 133.732i −0.549663 + 0.147282i
\(909\) 288.056i 0.316893i
\(910\) −278.982 + 714.261i −0.306574 + 0.784902i
\(911\) 456.063 0.500618 0.250309 0.968166i \(-0.419468\pi\)
0.250309 + 0.968166i \(0.419468\pi\)
\(912\) 36.7359 + 137.100i 0.0402806 + 0.150329i
\(913\) 24.9731 93.2008i 0.0273528 0.102082i
\(914\) 893.573 515.905i 0.977651 0.564447i
\(915\) −571.439 448.550i −0.624523 0.490219i
\(916\) −246.178 −0.268753
\(917\) 376.855 702.686i 0.410965 0.766288i
\(918\) −621.631 621.631i −0.677158 0.677158i
\(919\) −459.799 265.465i −0.500326 0.288863i 0.228522 0.973539i \(-0.426611\pi\)
−0.728848 + 0.684675i \(0.759944\pi\)
\(920\) −270.239 115.435i −0.293738 0.125472i
\(921\) −297.995 516.142i −0.323556 0.560415i
\(922\) 5.98978 + 22.3542i 0.00649651 + 0.0242453i
\(923\) 398.091 + 398.091i 0.431301 + 0.431301i
\(924\) 176.210 187.612i 0.190703 0.203043i
\(925\) −798.226 1455.59i −0.862947 1.57361i
\(926\) 185.921 322.024i 0.200778 0.347758i
\(927\) −138.274 37.0504i −0.149163 0.0399681i
\(928\) −23.2256 + 86.6790i −0.0250275 + 0.0934041i
\(929\) −971.957 561.159i −1.04624 0.604047i −0.124645 0.992201i \(-0.539779\pi\)
−0.921594 + 0.388155i \(0.873113\pi\)
\(930\) −166.907 222.542i −0.179470 0.239293i
\(931\) 633.350 + 314.534i 0.680290 + 0.337845i
\(932\) −450.725 + 450.725i −0.483610 + 0.483610i
\(933\) −8.25837 + 2.21282i −0.00885142 + 0.00237173i
\(934\) −399.215 + 230.487i −0.427425 + 0.246774i
\(935\) −294.525 733.768i −0.315000 0.784779i
\(936\) 64.7288 112.114i 0.0691547 0.119779i
\(937\) −194.820 + 194.820i −0.207919 + 0.207919i −0.803382 0.595464i \(-0.796968\pi\)
0.595464 + 0.803382i \(0.296968\pi\)
\(938\) −17.1980 548.752i −0.0183347 0.585024i
\(939\) 52.4679i 0.0558764i
\(940\) 565.822 + 444.141i 0.601938 + 0.472491i
\(941\) −405.362 702.108i −0.430778 0.746130i 0.566162 0.824294i \(-0.308428\pi\)
−0.996941 + 0.0781640i \(0.975094\pi\)
\(942\) 890.183 + 238.524i 0.944993 + 0.253210i
\(943\) 561.077 150.340i 0.594991 0.159427i
\(944\) 258.091i 0.273402i
\(945\) −609.548 + 828.737i −0.645025 + 0.876970i
\(946\) 592.907 0.626751
\(947\) −166.389 620.971i −0.175701 0.655724i −0.996431 0.0844087i \(-0.973100\pi\)
0.820730 0.571316i \(-0.193567\pi\)
\(948\) 52.4424 195.718i 0.0553190 0.206453i
\(949\) −887.441 + 512.364i −0.935133 + 0.539899i
\(950\) 11.2216 510.113i 0.0118122 0.536961i
\(951\) 1001.44 1.05304
\(952\) −220.619 355.890i −0.231742 0.373834i
\(953\) 372.594 + 372.594i 0.390970 + 0.390970i 0.875033 0.484063i \(-0.160840\pi\)
−0.484063 + 0.875033i \(0.660840\pi\)
\(954\) 153.285 + 88.4990i 0.160676 + 0.0927662i
\(955\) −444.019 + 1039.47i −0.464941 + 1.08846i
\(956\) −174.725 302.632i −0.182766 0.316561i
\(957\) 75.4831 + 281.707i 0.0788747 + 0.294364i
\(958\) −522.455 522.455i −0.545361 0.545361i
\(959\) −990.493 232.408i −1.03284 0.242344i
\(960\) −97.3623 13.9089i −0.101419 0.0144884i
\(961\) 352.500 610.548i 0.366805 0.635326i
\(962\) 1405.26 + 376.538i 1.46077 + 0.391411i
\(963\) −125.897 + 469.853i −0.130734 + 0.487906i
\(964\) −422.305 243.818i −0.438076 0.252923i
\(965\) −156.362 + 1094.54i −0.162033 + 1.13423i
\(966\) −484.202 + 146.144i −0.501244 + 0.151287i
\(967\) −989.576 + 989.576i −1.02335 + 1.02335i −0.0236256 + 0.999721i \(0.507521\pi\)
−0.999721 + 0.0236256i \(0.992479\pi\)
\(968\) 177.832 47.6500i 0.183711 0.0492252i
\(969\) 649.906 375.224i 0.670698 0.387228i
\(970\) 586.459 + 250.510i 0.604597 + 0.258258i
\(971\) −306.911 + 531.585i −0.316077 + 0.547462i −0.979666 0.200636i \(-0.935699\pi\)
0.663589 + 0.748098i \(0.269033\pi\)
\(972\) 215.271 215.271i 0.221472 0.221472i
\(973\) −38.8162 1238.54i −0.0398933 1.27291i
\(974\) 418.812i 0.429991i
\(975\) 688.008 658.390i 0.705649 0.675272i
\(976\) 118.182 + 204.698i 0.121088 + 0.209731i
\(977\) 417.882 + 111.971i 0.427720 + 0.114607i 0.466256 0.884650i \(-0.345603\pi\)
−0.0385359 + 0.999257i \(0.512269\pi\)
\(978\) −839.664 + 224.987i −0.858553 + 0.230048i
\(979\) 364.341i 0.372156i
\(980\) −372.821 + 317.970i −0.380429 + 0.324459i
\(981\) 498.495 0.508150
\(982\) 84.9179 + 316.918i 0.0864744 + 0.322727i
\(983\) −229.825 + 857.718i −0.233799 + 0.872551i 0.744887 + 0.667191i \(0.232503\pi\)
−0.978686 + 0.205360i \(0.934163\pi\)
\(984\) 168.362 97.2039i 0.171100 0.0987845i
\(985\) 370.714 472.278i 0.376360 0.479470i
\(986\) 474.455 0.481192
\(987\) 1237.44 38.7815i 1.25373 0.0392923i
\(988\) 316.182 + 316.182i 0.320022 + 0.320022i
\(989\) −1008.99 582.543i −1.02022 0.589023i
\(990\) 144.966 58.1874i 0.146430 0.0587751i
\(991\) 426.768 + 739.184i 0.430644 + 0.745897i 0.996929 0.0783124i \(-0.0249532\pi\)
−0.566285 + 0.824210i \(0.691620\pi\)
\(992\) 23.4256 + 87.4256i 0.0236145 + 0.0881307i
\(993\) 731.319 + 731.319i 0.736474 + 0.736474i
\(994\) 103.951 + 344.408i 0.104578 + 0.346487i
\(995\) −329.822 + 247.366i −0.331479 + 0.248610i
\(996\) −31.7288 + 54.9559i −0.0318562 + 0.0551766i
\(997\) 992.040 + 265.816i 0.995025 + 0.266616i 0.719360 0.694638i \(-0.244435\pi\)
0.275665 + 0.961254i \(0.411102\pi\)
\(998\) 76.6581 286.092i 0.0768117 0.286665i
\(999\) 1690.32 + 975.909i 1.69202 + 0.976886i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 70.3.l.a.23.1 8
5.2 odd 4 inner 70.3.l.a.37.2 yes 8
5.3 odd 4 350.3.p.c.107.1 8
5.4 even 2 350.3.p.c.93.2 8
7.2 even 3 490.3.f.l.393.1 4
7.4 even 3 inner 70.3.l.a.53.2 yes 8
7.5 odd 6 490.3.f.e.393.2 4
35.2 odd 12 490.3.f.l.197.1 4
35.4 even 6 350.3.p.c.193.1 8
35.12 even 12 490.3.f.e.197.2 4
35.18 odd 12 350.3.p.c.207.2 8
35.32 odd 12 inner 70.3.l.a.67.1 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
70.3.l.a.23.1 8 1.1 even 1 trivial
70.3.l.a.37.2 yes 8 5.2 odd 4 inner
70.3.l.a.53.2 yes 8 7.4 even 3 inner
70.3.l.a.67.1 yes 8 35.32 odd 12 inner
350.3.p.c.93.2 8 5.4 even 2
350.3.p.c.107.1 8 5.3 odd 4
350.3.p.c.193.1 8 35.4 even 6
350.3.p.c.207.2 8 35.18 odd 12
490.3.f.e.197.2 4 35.12 even 12
490.3.f.e.393.2 4 7.5 odd 6
490.3.f.l.197.1 4 35.2 odd 12
490.3.f.l.393.1 4 7.2 even 3