Properties

Label 350.3.p.c.93.2
Level $350$
Weight $3$
Character 350.93
Analytic conductor $9.537$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [350,3,Mod(93,350)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(350, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([9, 4])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("350.93"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 350 = 2 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 350.p (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,-4,4,0,0,-16,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.53680925261\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{12})\)
Coefficient field: 8.0.3317760000.2
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 25x^{4} + 625 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 70)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 93.2
Root \(-0.578737 + 2.15988i\) of defining polynomial
Character \(\chi\) \(=\) 350.93
Dual form 350.3.p.c.207.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.366025 + 1.36603i) q^{2} +(0.636376 - 2.37499i) q^{3} +(-1.73205 + 1.00000i) q^{4} +3.47723 q^{6} +(-6.99656 + 0.219274i) q^{7} +(-2.00000 - 2.00000i) q^{8} +(2.55863 + 1.47723i) q^{9} +(3.73861 + 6.47547i) q^{11} +(1.27275 + 4.74998i) q^{12} +(10.9545 + 10.9545i) q^{13} +(-2.86045 - 9.47723i) q^{14} +(2.00000 - 3.46410i) q^{16} +(20.4282 + 5.47371i) q^{17} +(-1.08140 + 4.03586i) q^{18} +(12.4982 + 7.21584i) q^{19} +(-3.93168 + 16.7563i) q^{21} +(-7.47723 + 7.47723i) q^{22} +(20.0711 - 5.37803i) q^{23} +(-6.02273 + 3.47723i) q^{24} +(-10.9545 + 18.9737i) q^{26} +(20.7842 - 20.7842i) q^{27} +(11.8991 - 7.37636i) q^{28} -15.8634i q^{29} +(-8.00000 - 13.8564i) q^{31} +(5.46410 + 1.46410i) q^{32} +(17.7583 - 4.75833i) q^{33} +29.9089i q^{34} -5.90890 q^{36} +(17.1865 + 64.1410i) q^{37} +(-5.28236 + 19.7140i) q^{38} +(32.9879 - 19.0455i) q^{39} -27.9545 q^{41} +(-24.3286 + 0.762464i) q^{42} +(-39.6475 - 39.6475i) q^{43} +(-12.9509 - 7.47723i) q^{44} +(14.6931 + 25.4491i) q^{46} +(18.6173 + 69.4806i) q^{47} +(-6.95445 - 6.95445i) q^{48} +(48.9038 - 3.06832i) q^{49} +(26.0000 - 45.0333i) q^{51} +(-29.9281 - 8.01921i) q^{52} +(10.9641 - 40.9185i) q^{53} +(35.9992 + 20.7842i) q^{54} +(14.4317 + 13.5546i) q^{56} +(25.0911 - 25.0911i) q^{57} +(21.6697 - 5.80639i) q^{58} +(-55.8784 + 32.2614i) q^{59} +(-29.5455 + 51.1744i) q^{61} +(16.0000 - 16.0000i) q^{62} +(-18.2255 - 9.77446i) q^{63} +8.00000i q^{64} +(13.0000 + 22.5167i) q^{66} +(-53.5698 - 14.3540i) q^{67} +(-40.8563 + 10.9474i) q^{68} -51.0911i q^{69} -36.3406 q^{71} +(-2.16281 - 8.07171i) q^{72} +(-17.1198 + 63.8921i) q^{73} +(-81.3275 + 46.9545i) q^{74} -28.8634 q^{76} +(-27.5773 - 44.4862i) q^{77} +(38.0911 + 38.0911i) q^{78} +(35.6837 + 20.6020i) q^{79} +(-22.8406 - 39.5610i) q^{81} +(-10.2320 - 38.1865i) q^{82} +(9.12474 + 9.12474i) q^{83} +(-9.94644 - 32.9545i) q^{84} +(39.6475 - 68.6715i) q^{86} +(-37.6753 - 10.0951i) q^{87} +(5.47371 - 20.4282i) q^{88} +(-42.1986 - 24.3634i) q^{89} +(-79.0455 - 74.2415i) q^{91} +(-29.3861 + 29.3861i) q^{92} +(-37.9998 + 10.1820i) q^{93} +(-88.0979 + 50.8634i) q^{94} +(6.95445 - 12.0455i) q^{96} +(63.7723 - 63.7723i) q^{97} +(22.0915 + 65.6808i) q^{98} +22.0911i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 4 q^{2} + 4 q^{3} - 16 q^{6} + 4 q^{7} - 16 q^{8} + 8 q^{11} + 8 q^{12} + 16 q^{16} + 16 q^{17} - 32 q^{18} + 100 q^{21} - 16 q^{22} + 4 q^{23} + 232 q^{27} + 40 q^{28} - 64 q^{31} + 16 q^{32} + 52 q^{33}+ \cdots + 132 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/350\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.366025 + 1.36603i 0.183013 + 0.683013i
\(3\) 0.636376 2.37499i 0.212125 0.791663i −0.775033 0.631920i \(-0.782267\pi\)
0.987159 0.159743i \(-0.0510664\pi\)
\(4\) −1.73205 + 1.00000i −0.433013 + 0.250000i
\(5\) 0 0
\(6\) 3.47723 0.579538
\(7\) −6.99656 + 0.219274i −0.999509 + 0.0313248i
\(8\) −2.00000 2.00000i −0.250000 0.250000i
\(9\) 2.55863 + 1.47723i 0.284292 + 0.164136i
\(10\) 0 0
\(11\) 3.73861 + 6.47547i 0.339874 + 0.588679i 0.984409 0.175896i \(-0.0562823\pi\)
−0.644535 + 0.764575i \(0.722949\pi\)
\(12\) 1.27275 + 4.74998i 0.106063 + 0.395832i
\(13\) 10.9545 + 10.9545i 0.842650 + 0.842650i 0.989203 0.146553i \(-0.0468178\pi\)
−0.146553 + 0.989203i \(0.546818\pi\)
\(14\) −2.86045 9.47723i −0.204318 0.676945i
\(15\) 0 0
\(16\) 2.00000 3.46410i 0.125000 0.216506i
\(17\) 20.4282 + 5.47371i 1.20166 + 0.321983i 0.803483 0.595327i \(-0.202978\pi\)
0.398173 + 0.917310i \(0.369644\pi\)
\(18\) −1.08140 + 4.03586i −0.0600780 + 0.224214i
\(19\) 12.4982 + 7.21584i 0.657800 + 0.379781i 0.791438 0.611249i \(-0.209333\pi\)
−0.133638 + 0.991030i \(0.542666\pi\)
\(20\) 0 0
\(21\) −3.93168 + 16.7563i −0.187223 + 0.797919i
\(22\) −7.47723 + 7.47723i −0.339874 + 0.339874i
\(23\) 20.0711 5.37803i 0.872656 0.233828i 0.205420 0.978674i \(-0.434144\pi\)
0.667236 + 0.744846i \(0.267477\pi\)
\(24\) −6.02273 + 3.47723i −0.250947 + 0.144884i
\(25\) 0 0
\(26\) −10.9545 + 18.9737i −0.421325 + 0.729756i
\(27\) 20.7842 20.7842i 0.769784 0.769784i
\(28\) 11.8991 7.37636i 0.424969 0.263441i
\(29\) 15.8634i 0.547012i −0.961870 0.273506i \(-0.911817\pi\)
0.961870 0.273506i \(-0.0881834\pi\)
\(30\) 0 0
\(31\) −8.00000 13.8564i −0.258065 0.446981i 0.707659 0.706554i \(-0.249751\pi\)
−0.965723 + 0.259573i \(0.916418\pi\)
\(32\) 5.46410 + 1.46410i 0.170753 + 0.0457532i
\(33\) 17.7583 4.75833i 0.538131 0.144192i
\(34\) 29.9089i 0.879674i
\(35\) 0 0
\(36\) −5.90890 −0.164136
\(37\) 17.1865 + 64.1410i 0.464501 + 1.73354i 0.658540 + 0.752546i \(0.271174\pi\)
−0.194039 + 0.980994i \(0.562159\pi\)
\(38\) −5.28236 + 19.7140i −0.139009 + 0.518790i
\(39\) 32.9879 19.0455i 0.845843 0.488347i
\(40\) 0 0
\(41\) −27.9545 −0.681816 −0.340908 0.940097i \(-0.610734\pi\)
−0.340908 + 0.940097i \(0.610734\pi\)
\(42\) −24.3286 + 0.762464i −0.579253 + 0.0181539i
\(43\) −39.6475 39.6475i −0.922035 0.922035i 0.0751379 0.997173i \(-0.476060\pi\)
−0.997173 + 0.0751379i \(0.976060\pi\)
\(44\) −12.9509 7.47723i −0.294339 0.169937i
\(45\) 0 0
\(46\) 14.6931 + 25.4491i 0.319414 + 0.553242i
\(47\) 18.6173 + 69.4806i 0.396112 + 1.47831i 0.819877 + 0.572539i \(0.194042\pi\)
−0.423765 + 0.905772i \(0.639292\pi\)
\(48\) −6.95445 6.95445i −0.144884 0.144884i
\(49\) 48.9038 3.06832i 0.998038 0.0626188i
\(50\) 0 0
\(51\) 26.0000 45.0333i 0.509804 0.883006i
\(52\) −29.9281 8.01921i −0.575541 0.154216i
\(53\) 10.9641 40.9185i 0.206870 0.772048i −0.782002 0.623276i \(-0.785801\pi\)
0.988872 0.148772i \(-0.0475320\pi\)
\(54\) 35.9992 + 20.7842i 0.666652 + 0.384892i
\(55\) 0 0
\(56\) 14.4317 + 13.5546i 0.257709 + 0.242046i
\(57\) 25.0911 25.0911i 0.440195 0.440195i
\(58\) 21.6697 5.80639i 0.373616 0.100110i
\(59\) −55.8784 + 32.2614i −0.947091 + 0.546803i −0.892176 0.451688i \(-0.850822\pi\)
−0.0549148 + 0.998491i \(0.517489\pi\)
\(60\) 0 0
\(61\) −29.5455 + 51.1744i −0.484353 + 0.838924i −0.999838 0.0179740i \(-0.994278\pi\)
0.515485 + 0.856898i \(0.327612\pi\)
\(62\) 16.0000 16.0000i 0.258065 0.258065i
\(63\) −18.2255 9.77446i −0.289294 0.155150i
\(64\) 8.00000i 0.125000i
\(65\) 0 0
\(66\) 13.0000 + 22.5167i 0.196970 + 0.341162i
\(67\) −53.5698 14.3540i −0.799550 0.214239i −0.164163 0.986433i \(-0.552492\pi\)
−0.635386 + 0.772194i \(0.719159\pi\)
\(68\) −40.8563 + 10.9474i −0.600828 + 0.160991i
\(69\) 51.0911i 0.740451i
\(70\) 0 0
\(71\) −36.3406 −0.511839 −0.255920 0.966698i \(-0.582378\pi\)
−0.255920 + 0.966698i \(0.582378\pi\)
\(72\) −2.16281 8.07171i −0.0300390 0.112107i
\(73\) −17.1198 + 63.8921i −0.234518 + 0.875234i 0.743847 + 0.668350i \(0.232999\pi\)
−0.978365 + 0.206884i \(0.933668\pi\)
\(74\) −81.3275 + 46.9545i −1.09902 + 0.634520i
\(75\) 0 0
\(76\) −28.8634 −0.379781
\(77\) −27.5773 44.4862i −0.358147 0.577743i
\(78\) 38.0911 + 38.0911i 0.488347 + 0.488347i
\(79\) 35.6837 + 20.6020i 0.451692 + 0.260784i 0.708544 0.705666i \(-0.249352\pi\)
−0.256853 + 0.966451i \(0.582686\pi\)
\(80\) 0 0
\(81\) −22.8406 39.5610i −0.281982 0.488408i
\(82\) −10.2320 38.1865i −0.124781 0.465689i
\(83\) 9.12474 + 9.12474i 0.109937 + 0.109937i 0.759935 0.649999i \(-0.225231\pi\)
−0.649999 + 0.759935i \(0.725231\pi\)
\(84\) −9.94644 32.9545i −0.118410 0.392315i
\(85\) 0 0
\(86\) 39.6475 68.6715i 0.461018 0.798506i
\(87\) −37.6753 10.0951i −0.433049 0.116035i
\(88\) 5.47371 20.4282i 0.0622012 0.232138i
\(89\) −42.1986 24.3634i −0.474141 0.273746i 0.243830 0.969818i \(-0.421596\pi\)
−0.717972 + 0.696072i \(0.754929\pi\)
\(90\) 0 0
\(91\) −79.0455 74.2415i −0.868632 0.815841i
\(92\) −29.3861 + 29.3861i −0.319414 + 0.319414i
\(93\) −37.9998 + 10.1820i −0.408600 + 0.109484i
\(94\) −88.0979 + 50.8634i −0.937212 + 0.541100i
\(95\) 0 0
\(96\) 6.95445 12.0455i 0.0724422 0.125474i
\(97\) 63.7723 63.7723i 0.657446 0.657446i −0.297329 0.954775i \(-0.596096\pi\)
0.954775 + 0.297329i \(0.0960959\pi\)
\(98\) 22.0915 + 65.6808i 0.225423 + 0.670212i
\(99\) 22.0911i 0.223142i
\(100\) 0 0
\(101\) 48.7495 + 84.4366i 0.482668 + 0.836006i 0.999802 0.0198988i \(-0.00633440\pi\)
−0.517134 + 0.855905i \(0.673001\pi\)
\(102\) 71.0333 + 19.0333i 0.696405 + 0.186601i
\(103\) 46.8019 12.5405i 0.454388 0.121753i −0.0243641 0.999703i \(-0.507756\pi\)
0.478752 + 0.877950i \(0.341089\pi\)
\(104\) 43.8178i 0.421325i
\(105\) 0 0
\(106\) 59.9089 0.565178
\(107\) −42.6126 159.032i −0.398249 1.48628i −0.816176 0.577803i \(-0.803910\pi\)
0.417927 0.908480i \(-0.362757\pi\)
\(108\) −15.2151 + 56.7834i −0.140880 + 0.525772i
\(109\) 146.122 84.3634i 1.34057 0.773976i 0.353675 0.935368i \(-0.384932\pi\)
0.986890 + 0.161393i \(0.0515986\pi\)
\(110\) 0 0
\(111\) 163.271 1.47091
\(112\) −13.2335 + 24.6754i −0.118157 + 0.220316i
\(113\) −56.6356 56.6356i −0.501200 0.501200i 0.410611 0.911811i \(-0.365316\pi\)
−0.911811 + 0.410611i \(0.865316\pi\)
\(114\) 43.4591 + 25.0911i 0.381220 + 0.220097i
\(115\) 0 0
\(116\) 15.8634 + 27.4761i 0.136753 + 0.236863i
\(117\) 11.8462 + 44.2106i 0.101249 + 0.377868i
\(118\) −64.5228 64.5228i −0.546803 0.546803i
\(119\) −144.127 33.8178i −1.21115 0.284183i
\(120\) 0 0
\(121\) 32.5455 56.3705i 0.268971 0.465872i
\(122\) −80.7199 21.6288i −0.661639 0.177286i
\(123\) −17.7896 + 66.3915i −0.144631 + 0.539768i
\(124\) 27.7128 + 16.0000i 0.223490 + 0.129032i
\(125\) 0 0
\(126\) 6.68116 28.4742i 0.0530251 0.225986i
\(127\) −3.04555 + 3.04555i −0.0239807 + 0.0239807i −0.718995 0.695015i \(-0.755398\pi\)
0.695015 + 0.718995i \(0.255398\pi\)
\(128\) −10.9282 + 2.92820i −0.0853766 + 0.0228766i
\(129\) −119.393 + 68.9317i −0.925528 + 0.534354i
\(130\) 0 0
\(131\) 56.9545 98.6480i 0.434767 0.753038i −0.562510 0.826791i \(-0.690164\pi\)
0.997277 + 0.0737524i \(0.0234975\pi\)
\(132\) −26.0000 + 26.0000i −0.196970 + 0.196970i
\(133\) −89.0267 47.7456i −0.669374 0.358989i
\(134\) 78.4317i 0.585311i
\(135\) 0 0
\(136\) −29.9089 51.8037i −0.219918 0.380910i
\(137\) 140.390 + 37.6173i 1.02474 + 0.274579i 0.731776 0.681545i \(-0.238692\pi\)
0.292965 + 0.956123i \(0.405358\pi\)
\(138\) 69.7917 18.7006i 0.505737 0.135512i
\(139\) 177.022i 1.27354i −0.771055 0.636769i \(-0.780271\pi\)
0.771055 0.636769i \(-0.219729\pi\)
\(140\) 0 0
\(141\) 176.863 1.25435
\(142\) −13.3016 49.6422i −0.0936731 0.349593i
\(143\) −29.9807 + 111.890i −0.209656 + 0.782445i
\(144\) 10.2345 5.90890i 0.0710730 0.0410340i
\(145\) 0 0
\(146\) −93.5445 −0.640716
\(147\) 23.8340 118.099i 0.162136 0.803393i
\(148\) −93.9089 93.9089i −0.634520 0.634520i
\(149\) 219.026 + 126.454i 1.46997 + 0.848688i 0.999432 0.0336923i \(-0.0107266\pi\)
0.470538 + 0.882380i \(0.344060\pi\)
\(150\) 0 0
\(151\) −102.954 178.322i −0.681818 1.18094i −0.974426 0.224710i \(-0.927856\pi\)
0.292608 0.956232i \(-0.405477\pi\)
\(152\) −10.5647 39.4281i −0.0695047 0.259395i
\(153\) 44.1822 + 44.1822i 0.288773 + 0.288773i
\(154\) 50.6753 53.9545i 0.329061 0.350354i
\(155\) 0 0
\(156\) −38.0911 + 65.9757i −0.244174 + 0.422921i
\(157\) −256.004 68.5960i −1.63060 0.436917i −0.676508 0.736436i \(-0.736507\pi\)
−0.954091 + 0.299518i \(0.903174\pi\)
\(158\) −15.0817 + 56.2856i −0.0954537 + 0.356238i
\(159\) −90.2038 52.0792i −0.567320 0.327542i
\(160\) 0 0
\(161\) −139.249 + 42.0288i −0.864904 + 0.261049i
\(162\) 45.6812 45.6812i 0.281982 0.281982i
\(163\) 241.475 64.7031i 1.48144 0.396952i 0.574606 0.818430i \(-0.305155\pi\)
0.906838 + 0.421479i \(0.138489\pi\)
\(164\) 48.4185 27.9545i 0.295235 0.170454i
\(165\) 0 0
\(166\) −9.12474 + 15.8045i −0.0549683 + 0.0952079i
\(167\) −8.01191 + 8.01191i −0.0479755 + 0.0479755i −0.730688 0.682712i \(-0.760800\pi\)
0.682712 + 0.730688i \(0.260800\pi\)
\(168\) 41.3760 25.6493i 0.246286 0.152674i
\(169\) 71.0000i 0.420118i
\(170\) 0 0
\(171\) 21.3188 + 36.9253i 0.124672 + 0.215938i
\(172\) 108.319 + 29.0240i 0.629762 + 0.168744i
\(173\) −119.961 + 32.1435i −0.693418 + 0.185801i −0.588281 0.808657i \(-0.700195\pi\)
−0.105138 + 0.994458i \(0.533528\pi\)
\(174\) 55.1605i 0.317014i
\(175\) 0 0
\(176\) 29.9089 0.169937
\(177\) 41.0608 + 153.241i 0.231982 + 0.865768i
\(178\) 17.8352 66.5619i 0.100198 0.373943i
\(179\) −114.000 + 65.8178i −0.636870 + 0.367697i −0.783408 0.621508i \(-0.786520\pi\)
0.146538 + 0.989205i \(0.453187\pi\)
\(180\) 0 0
\(181\) −149.681 −0.826968 −0.413484 0.910511i \(-0.635688\pi\)
−0.413484 + 0.910511i \(0.635688\pi\)
\(182\) 72.4831 135.153i 0.398259 0.742596i
\(183\) 102.737 + 102.737i 0.561402 + 0.561402i
\(184\) −50.8983 29.3861i −0.276621 0.159707i
\(185\) 0 0
\(186\) −27.8178 48.1819i −0.149558 0.259042i
\(187\) 40.9282 + 152.746i 0.218867 + 0.816823i
\(188\) −101.727 101.727i −0.541100 0.541100i
\(189\) −140.860 + 149.975i −0.745293 + 0.793519i
\(190\) 0 0
\(191\) −113.034 + 195.780i −0.591799 + 1.02503i 0.402191 + 0.915556i \(0.368249\pi\)
−0.993990 + 0.109470i \(0.965085\pi\)
\(192\) 18.9999 + 5.09101i 0.0989579 + 0.0265157i
\(193\) 57.2326 213.595i 0.296542 1.10671i −0.643443 0.765494i \(-0.722495\pi\)
0.939985 0.341215i \(-0.110839\pi\)
\(194\) 110.457 + 63.7723i 0.569365 + 0.328723i
\(195\) 0 0
\(196\) −81.6356 + 54.2183i −0.416508 + 0.276624i
\(197\) −84.9089 + 84.9089i −0.431010 + 0.431010i −0.888972 0.457962i \(-0.848580\pi\)
0.457962 + 0.888972i \(0.348580\pi\)
\(198\) −30.1770 + 8.08590i −0.152409 + 0.0408379i
\(199\) −71.4085 + 41.2277i −0.358837 + 0.207175i −0.668570 0.743649i \(-0.733093\pi\)
0.309734 + 0.950823i \(0.399760\pi\)
\(200\) 0 0
\(201\) −68.1812 + 118.093i −0.339210 + 0.587529i
\(202\) −97.4990 + 97.4990i −0.482668 + 0.482668i
\(203\) 3.47841 + 110.989i 0.0171350 + 0.546744i
\(204\) 104.000i 0.509804i
\(205\) 0 0
\(206\) 34.2614 + 59.3425i 0.166317 + 0.288070i
\(207\) 59.2991 + 15.8891i 0.286469 + 0.0767591i
\(208\) 59.8562 16.0384i 0.287770 0.0771078i
\(209\) 107.909i 0.516311i
\(210\) 0 0
\(211\) 205.703 0.974895 0.487448 0.873152i \(-0.337928\pi\)
0.487448 + 0.873152i \(0.337928\pi\)
\(212\) 21.9282 + 81.8371i 0.103435 + 0.386024i
\(213\) −23.1263 + 86.3085i −0.108574 + 0.405204i
\(214\) 201.645 116.420i 0.942266 0.544018i
\(215\) 0 0
\(216\) −83.1366 −0.384892
\(217\) 59.0109 + 95.1931i 0.271939 + 0.438678i
\(218\) 168.727 + 168.727i 0.773976 + 0.773976i
\(219\) 140.848 + 81.3188i 0.643143 + 0.371319i
\(220\) 0 0
\(221\) 163.818 + 283.741i 0.741257 + 1.28389i
\(222\) 59.7614 + 223.033i 0.269196 + 1.00465i
\(223\) −62.8872 62.8872i −0.282005 0.282005i 0.551903 0.833908i \(-0.313902\pi\)
−0.833908 + 0.551903i \(0.813902\pi\)
\(224\) −38.5510 9.04555i −0.172103 0.0403819i
\(225\) 0 0
\(226\) 56.6356 98.0958i 0.250600 0.434052i
\(227\) −249.547 66.8659i −1.09933 0.294564i −0.336836 0.941563i \(-0.609357\pi\)
−0.762490 + 0.647000i \(0.776024\pi\)
\(228\) −18.3680 + 68.5502i −0.0805612 + 0.300659i
\(229\) 106.598 + 61.5445i 0.465494 + 0.268753i 0.714352 0.699787i \(-0.246722\pi\)
−0.248857 + 0.968540i \(0.580055\pi\)
\(230\) 0 0
\(231\) −123.204 + 37.1859i −0.533350 + 0.160978i
\(232\) −31.7267 + 31.7267i −0.136753 + 0.136753i
\(233\) −307.851 + 82.4883i −1.32125 + 0.354027i −0.849445 0.527677i \(-0.823063\pi\)
−0.471802 + 0.881704i \(0.656396\pi\)
\(234\) −56.0568 + 32.3644i −0.239559 + 0.138309i
\(235\) 0 0
\(236\) 64.5228 111.757i 0.273402 0.473545i
\(237\) 71.6377 71.6377i 0.302269 0.302269i
\(238\) −6.55823 209.260i −0.0275556 0.879242i
\(239\) 174.725i 0.731065i 0.930798 + 0.365533i \(0.119113\pi\)
−0.930798 + 0.365533i \(0.880887\pi\)
\(240\) 0 0
\(241\) 121.909 + 211.152i 0.505846 + 0.876151i 0.999977 + 0.00676366i \(0.00215296\pi\)
−0.494131 + 0.869387i \(0.664514\pi\)
\(242\) 88.9161 + 23.8250i 0.367422 + 0.0984504i
\(243\) 147.033 39.3974i 0.605074 0.162129i
\(244\) 118.182i 0.484353i
\(245\) 0 0
\(246\) −97.2039 −0.395138
\(247\) 57.8654 + 215.956i 0.234273 + 0.874318i
\(248\) −11.7128 + 43.7128i −0.0472291 + 0.176261i
\(249\) 27.4779 15.8644i 0.110353 0.0637124i
\(250\) 0 0
\(251\) 54.2733 0.216228 0.108114 0.994138i \(-0.465519\pi\)
0.108114 + 0.994138i \(0.465519\pi\)
\(252\) 41.3420 1.29567i 0.164056 0.00514153i
\(253\) 109.863 + 109.863i 0.434243 + 0.434243i
\(254\) −5.27505 3.04555i −0.0207679 0.0119903i
\(255\) 0 0
\(256\) −8.00000 13.8564i −0.0312500 0.0541266i
\(257\) −5.60709 20.9259i −0.0218175 0.0814238i 0.954159 0.299301i \(-0.0967535\pi\)
−0.975976 + 0.217877i \(0.930087\pi\)
\(258\) −137.863 137.863i −0.534354 0.534354i
\(259\) −134.311 444.998i −0.518575 1.71814i
\(260\) 0 0
\(261\) 23.4338 40.5884i 0.0897845 0.155511i
\(262\) 155.602 + 41.6936i 0.593902 + 0.159136i
\(263\) 87.0184 324.757i 0.330868 1.23482i −0.577411 0.816454i \(-0.695937\pi\)
0.908279 0.418364i \(-0.137396\pi\)
\(264\) −45.0333 26.0000i −0.170581 0.0984848i
\(265\) 0 0
\(266\) 32.6356 139.089i 0.122690 0.522890i
\(267\) −84.7169 + 84.7169i −0.317292 + 0.317292i
\(268\) 107.140 28.7080i 0.399775 0.107119i
\(269\) −93.6867 + 54.0901i −0.348278 + 0.201078i −0.663926 0.747798i \(-0.731111\pi\)
0.315649 + 0.948876i \(0.397778\pi\)
\(270\) 0 0
\(271\) 30.7603 53.2785i 0.113507 0.196600i −0.803675 0.595068i \(-0.797125\pi\)
0.917182 + 0.398469i \(0.130458\pi\)
\(272\) 59.8178 59.8178i 0.219918 0.219918i
\(273\) −226.626 + 140.487i −0.830130 + 0.514604i
\(274\) 205.545i 0.750162i
\(275\) 0 0
\(276\) 51.0911 + 88.4924i 0.185113 + 0.320625i
\(277\) −344.920 92.4210i −1.24520 0.333650i −0.424719 0.905325i \(-0.639627\pi\)
−0.820480 + 0.571675i \(0.806294\pi\)
\(278\) 241.816 64.7945i 0.869842 0.233074i
\(279\) 47.2712i 0.169431i
\(280\) 0 0
\(281\) −398.542 −1.41830 −0.709150 0.705057i \(-0.750921\pi\)
−0.709150 + 0.705057i \(0.750921\pi\)
\(282\) 64.7365 + 241.600i 0.229562 + 0.856737i
\(283\) 127.393 475.436i 0.450151 1.67999i −0.251814 0.967776i \(-0.581027\pi\)
0.701965 0.712211i \(-0.252306\pi\)
\(284\) 62.9437 36.3406i 0.221633 0.127960i
\(285\) 0 0
\(286\) −163.818 −0.572790
\(287\) 195.585 6.12967i 0.681481 0.0213577i
\(288\) 11.8178 + 11.8178i 0.0410340 + 0.0410340i
\(289\) 137.067 + 79.1356i 0.474280 + 0.273826i
\(290\) 0 0
\(291\) −110.875 192.042i −0.381015 0.659937i
\(292\) −34.2397 127.784i −0.117259 0.437617i
\(293\) 187.818 + 187.818i 0.641016 + 0.641016i 0.950805 0.309789i \(-0.100258\pi\)
−0.309789 + 0.950805i \(0.600258\pi\)
\(294\) 170.050 10.6693i 0.578400 0.0362900i
\(295\) 0 0
\(296\) 93.9089 162.655i 0.317260 0.549510i
\(297\) 212.291 + 56.8832i 0.714785 + 0.191526i
\(298\) −92.5711 + 345.480i −0.310641 + 1.15933i
\(299\) 278.781 + 160.954i 0.932379 + 0.538309i
\(300\) 0 0
\(301\) 286.090 + 268.703i 0.950465 + 0.892700i
\(302\) 205.909 205.909i 0.681818 0.681818i
\(303\) 231.559 62.0460i 0.764221 0.204772i
\(304\) 49.9928 28.8634i 0.164450 0.0949452i
\(305\) 0 0
\(306\) −44.1822 + 76.5258i −0.144386 + 0.250084i
\(307\) 171.398 171.398i 0.558300 0.558300i −0.370523 0.928823i \(-0.620822\pi\)
0.928823 + 0.370523i \(0.120822\pi\)
\(308\) 92.2516 + 49.4751i 0.299518 + 0.160633i
\(309\) 119.135i 0.385549i
\(310\) 0 0
\(311\) 1.73861 + 3.01137i 0.00559039 + 0.00968285i 0.868807 0.495151i \(-0.164887\pi\)
−0.863217 + 0.504834i \(0.831554\pi\)
\(312\) −104.067 27.8846i −0.333547 0.0893738i
\(313\) 20.6120 5.52297i 0.0658530 0.0176453i −0.225742 0.974187i \(-0.572481\pi\)
0.291595 + 0.956542i \(0.405814\pi\)
\(314\) 374.816i 1.19368i
\(315\) 0 0
\(316\) −82.4079 −0.260784
\(317\) 105.415 + 393.415i 0.332540 + 1.24106i 0.906511 + 0.422182i \(0.138736\pi\)
−0.573971 + 0.818876i \(0.694598\pi\)
\(318\) 38.1246 142.283i 0.119889 0.447431i
\(319\) 102.723 59.3069i 0.322015 0.185915i
\(320\) 0 0
\(321\) −404.818 −1.26111
\(322\) −108.381 174.835i −0.336588 0.542965i
\(323\) 215.818 + 215.818i 0.668167 + 0.668167i
\(324\) 79.1221 + 45.6812i 0.244204 + 0.140991i
\(325\) 0 0
\(326\) 176.772 + 306.179i 0.542246 + 0.939198i
\(327\) −107.374 400.724i −0.328360 1.22546i
\(328\) 55.9089 + 55.9089i 0.170454 + 0.170454i
\(329\) −145.492 482.043i −0.442226 1.46518i
\(330\) 0 0
\(331\) 210.317 364.279i 0.635398 1.10054i −0.351033 0.936363i \(-0.614169\pi\)
0.986431 0.164179i \(-0.0524973\pi\)
\(332\) −24.9293 6.67977i −0.0750881 0.0201198i
\(333\) −50.7767 + 189.501i −0.152483 + 0.569073i
\(334\) −13.8770 8.01191i −0.0415480 0.0239877i
\(335\) 0 0
\(336\) 50.1822 + 47.1323i 0.149352 + 0.140275i
\(337\) 34.2712 34.2712i 0.101695 0.101695i −0.654429 0.756124i \(-0.727091\pi\)
0.756124 + 0.654429i \(0.227091\pi\)
\(338\) −96.9878 + 25.9878i −0.286946 + 0.0768870i
\(339\) −170.551 + 98.4674i −0.503099 + 0.290464i
\(340\) 0 0
\(341\) 59.8178 103.607i 0.175419 0.303834i
\(342\) −42.6377 + 42.6377i −0.124672 + 0.124672i
\(343\) −341.486 + 32.1910i −0.995586 + 0.0938514i
\(344\) 158.590i 0.461018i
\(345\) 0 0
\(346\) −87.8178 152.105i −0.253809 0.439610i
\(347\) 139.784 + 37.4549i 0.402834 + 0.107939i 0.454547 0.890723i \(-0.349801\pi\)
−0.0517123 + 0.998662i \(0.516468\pi\)
\(348\) 75.3506 20.1901i 0.216525 0.0580176i
\(349\) 248.861i 0.713070i 0.934282 + 0.356535i \(0.116042\pi\)
−0.934282 + 0.356535i \(0.883958\pi\)
\(350\) 0 0
\(351\) 455.358 1.29732
\(352\) 10.9474 + 40.8563i 0.0311006 + 0.116069i
\(353\) −103.352 + 385.714i −0.292781 + 1.09267i 0.650182 + 0.759778i \(0.274693\pi\)
−0.942963 + 0.332896i \(0.891974\pi\)
\(354\) −194.302 + 112.180i −0.548875 + 0.316893i
\(355\) 0 0
\(356\) 97.4534 0.273746
\(357\) −172.036 + 320.780i −0.481894 + 0.898542i
\(358\) −131.636 131.636i −0.367697 0.367697i
\(359\) −370.734 214.043i −1.03269 0.596221i −0.114933 0.993373i \(-0.536665\pi\)
−0.917753 + 0.397152i \(0.869999\pi\)
\(360\) 0 0
\(361\) −76.3634 132.265i −0.211533 0.366386i
\(362\) −54.7871 204.468i −0.151346 0.564829i
\(363\) −113.168 113.168i −0.311758 0.311758i
\(364\) 211.152 + 49.5445i 0.580089 + 0.136111i
\(365\) 0 0
\(366\) −102.737 + 177.945i −0.280701 + 0.486188i
\(367\) −227.458 60.9472i −0.619777 0.166069i −0.0647505 0.997901i \(-0.520625\pi\)
−0.555026 + 0.831833i \(0.687292\pi\)
\(368\) 21.5121 80.2844i 0.0584569 0.218164i
\(369\) −71.5251 41.2950i −0.193835 0.111911i
\(370\) 0 0
\(371\) −67.7386 + 288.693i −0.182584 + 0.778149i
\(372\) 55.6356 55.6356i 0.149558 0.149558i
\(373\) 146.535 39.2640i 0.392856 0.105265i −0.0569830 0.998375i \(-0.518148\pi\)
0.449839 + 0.893110i \(0.351481\pi\)
\(374\) −193.674 + 111.818i −0.517845 + 0.298978i
\(375\) 0 0
\(376\) 101.727 176.196i 0.270550 0.468606i
\(377\) 173.774 173.774i 0.460940 0.460940i
\(378\) −256.428 137.524i −0.678382 0.363820i
\(379\) 66.4317i 0.175281i 0.996152 + 0.0876407i \(0.0279327\pi\)
−0.996152 + 0.0876407i \(0.972067\pi\)
\(380\) 0 0
\(381\) 5.29503 + 9.17126i 0.0138977 + 0.0240716i
\(382\) −308.814 82.7464i −0.808413 0.216614i
\(383\) −657.478 + 176.171i −1.71665 + 0.459975i −0.977040 0.213058i \(-0.931658\pi\)
−0.739612 + 0.673034i \(0.764991\pi\)
\(384\) 27.8178i 0.0724422i
\(385\) 0 0
\(386\) 312.725 0.810167
\(387\) −42.8750 160.012i −0.110788 0.413467i
\(388\) −46.6845 + 174.229i −0.120321 + 0.449044i
\(389\) −80.4633 + 46.4555i −0.206846 + 0.119423i −0.599845 0.800116i \(-0.704771\pi\)
0.392999 + 0.919539i \(0.371438\pi\)
\(390\) 0 0
\(391\) 439.453 1.12392
\(392\) −103.944 91.6710i −0.265164 0.233855i
\(393\) −198.043 198.043i −0.503927 0.503927i
\(394\) −147.067 84.9089i −0.373265 0.215505i
\(395\) 0 0
\(396\) −22.0911 38.2629i −0.0557856 0.0966235i
\(397\) −93.6525 349.516i −0.235900 0.880393i −0.977741 0.209816i \(-0.932713\pi\)
0.741840 0.670576i \(-0.233953\pi\)
\(398\) −82.4555 82.4555i −0.207175 0.207175i
\(399\) −170.050 + 181.053i −0.426190 + 0.453768i
\(400\) 0 0
\(401\) 315.270 546.064i 0.786210 1.36176i −0.142064 0.989858i \(-0.545374\pi\)
0.928274 0.371898i \(-0.121293\pi\)
\(402\) −186.274 49.9121i −0.463369 0.124159i
\(403\) 64.1537 239.425i 0.159190 0.594107i
\(404\) −168.873 97.4990i −0.418003 0.241334i
\(405\) 0 0
\(406\) −150.341 + 45.3764i −0.370297 + 0.111765i
\(407\) −351.089 + 351.089i −0.862627 + 0.862627i
\(408\) −142.067 + 38.0666i −0.348203 + 0.0933006i
\(409\) 176.077 101.658i 0.430507 0.248554i −0.269055 0.963125i \(-0.586711\pi\)
0.699563 + 0.714571i \(0.253378\pi\)
\(410\) 0 0
\(411\) 178.681 309.485i 0.434747 0.753004i
\(412\) −68.5228 + 68.5228i −0.166317 + 0.166317i
\(413\) 383.883 237.972i 0.929498 0.576202i
\(414\) 86.8199i 0.209710i
\(415\) 0 0
\(416\) 43.8178 + 75.8947i 0.105331 + 0.182439i
\(417\) −420.425 112.652i −1.00821 0.270150i
\(418\) −147.406 + 39.4974i −0.352647 + 0.0944914i
\(419\) 716.269i 1.70947i 0.519062 + 0.854736i \(0.326281\pi\)
−0.519062 + 0.854736i \(0.673719\pi\)
\(420\) 0 0
\(421\) −692.449 −1.64477 −0.822386 0.568929i \(-0.807358\pi\)
−0.822386 + 0.568929i \(0.807358\pi\)
\(422\) 75.2925 + 280.995i 0.178418 + 0.665866i
\(423\) −55.0038 + 205.277i −0.130033 + 0.485289i
\(424\) −103.765 + 59.9089i −0.244729 + 0.141295i
\(425\) 0 0
\(426\) −126.364 −0.296630
\(427\) 195.496 364.524i 0.457836 0.853685i
\(428\) 232.840 + 232.840i 0.544018 + 0.544018i
\(429\) 246.658 + 142.408i 0.574960 + 0.331953i
\(430\) 0 0
\(431\) −248.737 430.824i −0.577115 0.999592i −0.995808 0.0914647i \(-0.970845\pi\)
0.418693 0.908128i \(-0.362488\pi\)
\(432\) −30.4301 113.567i −0.0704401 0.262886i
\(433\) 191.729 + 191.729i 0.442792 + 0.442792i 0.892949 0.450158i \(-0.148632\pi\)
−0.450158 + 0.892949i \(0.648632\pi\)
\(434\) −108.437 + 115.453i −0.249854 + 0.266022i
\(435\) 0 0
\(436\) −168.727 + 292.243i −0.386988 + 0.670283i
\(437\) 289.660 + 77.6141i 0.662837 + 0.177607i
\(438\) −59.5295 + 222.167i −0.135912 + 0.507231i
\(439\) −460.252 265.727i −1.04841 0.605300i −0.126206 0.992004i \(-0.540280\pi\)
−0.922204 + 0.386704i \(0.873614\pi\)
\(440\) 0 0
\(441\) 129.659 + 64.3913i 0.294012 + 0.146012i
\(442\) −327.636 + 327.636i −0.741257 + 0.741257i
\(443\) 152.513 40.8658i 0.344274 0.0922479i −0.0825391 0.996588i \(-0.526303\pi\)
0.426813 + 0.904340i \(0.359636\pi\)
\(444\) −282.794 + 163.271i −0.636924 + 0.367728i
\(445\) 0 0
\(446\) 62.8872 108.924i 0.141003 0.244224i
\(447\) 439.711 439.711i 0.983693 0.983693i
\(448\) −1.75419 55.9725i −0.00391560 0.124939i
\(449\) 297.590i 0.662784i −0.943493 0.331392i \(-0.892482\pi\)
0.943493 0.331392i \(-0.107518\pi\)
\(450\) 0 0
\(451\) −104.511 181.018i −0.231731 0.401371i
\(452\) 154.731 + 41.4601i 0.342326 + 0.0917260i
\(453\) −489.031 + 131.036i −1.07954 + 0.289262i
\(454\) 365.362i 0.804763i
\(455\) 0 0
\(456\) −100.364 −0.220097
\(457\) −188.834 704.739i −0.413204 1.54210i −0.788406 0.615155i \(-0.789093\pi\)
0.375202 0.926943i \(-0.377573\pi\)
\(458\) −45.0537 + 168.143i −0.0983705 + 0.367124i
\(459\) 538.349 310.816i 1.17287 0.677158i
\(460\) 0 0
\(461\) −16.3644 −0.0354976 −0.0177488 0.999842i \(-0.505650\pi\)
−0.0177488 + 0.999842i \(0.505650\pi\)
\(462\) −95.8927 154.689i −0.207560 0.334824i
\(463\) −185.921 185.921i −0.401557 0.401557i 0.477225 0.878781i \(-0.341643\pi\)
−0.878781 + 0.477225i \(0.841643\pi\)
\(464\) −54.9523 31.7267i −0.118432 0.0683765i
\(465\) 0 0
\(466\) −225.362 390.339i −0.483610 0.837637i
\(467\) 84.3641 + 314.851i 0.180651 + 0.674200i 0.995520 + 0.0945537i \(0.0301424\pi\)
−0.814869 + 0.579646i \(0.803191\pi\)
\(468\) −64.7288 64.7288i −0.138309 0.138309i
\(469\) 377.952 + 88.6822i 0.805868 + 0.189088i
\(470\) 0 0
\(471\) −325.830 + 564.354i −0.691783 + 1.19820i
\(472\) 176.279 + 47.2339i 0.373474 + 0.100072i
\(473\) 108.509 404.963i 0.229407 0.856158i
\(474\) 124.080 + 71.6377i 0.261772 + 0.151134i
\(475\) 0 0
\(476\) 283.453 85.5530i 0.595490 0.179733i
\(477\) 88.4990 88.4990i 0.185532 0.185532i
\(478\) −238.678 + 63.9537i −0.499327 + 0.133794i
\(479\) 452.460 261.228i 0.944592 0.545361i 0.0531954 0.998584i \(-0.483059\pi\)
0.891397 + 0.453223i \(0.149726\pi\)
\(480\) 0 0
\(481\) −514.360 + 890.898i −1.06936 + 1.85218i
\(482\) −243.818 + 243.818i −0.505846 + 0.505846i
\(483\) 11.2029 + 357.462i 0.0231945 + 0.740087i
\(484\) 130.182i 0.268971i
\(485\) 0 0
\(486\) 107.636 + 186.430i 0.221472 + 0.383602i
\(487\) 286.054 + 76.6478i 0.587379 + 0.157388i 0.540255 0.841501i \(-0.318328\pi\)
0.0471240 + 0.998889i \(0.484994\pi\)
\(488\) 161.440 43.2577i 0.330819 0.0886428i
\(489\) 614.677i 1.25701i
\(490\) 0 0
\(491\) −232.000 −0.472505 −0.236253 0.971692i \(-0.575919\pi\)
−0.236253 + 0.971692i \(0.575919\pi\)
\(492\) −35.5791 132.783i −0.0723153 0.269884i
\(493\) 86.8314 324.059i 0.176129 0.657321i
\(494\) −273.822 + 158.091i −0.554295 + 0.320022i
\(495\) 0 0
\(496\) −64.0000 −0.129032
\(497\) 254.259 7.96853i 0.511588 0.0160333i
\(498\) 31.7288 + 31.7288i 0.0637124 + 0.0637124i
\(499\) 181.375 + 104.717i 0.363477 + 0.209853i 0.670605 0.741815i \(-0.266035\pi\)
−0.307128 + 0.951668i \(0.599368\pi\)
\(500\) 0 0
\(501\) 13.9296 + 24.1268i 0.0278036 + 0.0481572i
\(502\) 19.8654 + 74.1387i 0.0395725 + 0.147687i
\(503\) 104.055 + 104.055i 0.206870 + 0.206870i 0.802935 0.596066i \(-0.203270\pi\)
−0.596066 + 0.802935i \(0.703270\pi\)
\(504\) 16.9021 + 56.0000i 0.0335360 + 0.111111i
\(505\) 0 0
\(506\) −109.863 + 190.289i −0.217121 + 0.376065i
\(507\) 168.624 + 45.1827i 0.332592 + 0.0891178i
\(508\) 2.22950 8.32059i 0.00438877 0.0163791i
\(509\) 65.4629 + 37.7950i 0.128611 + 0.0742535i 0.562925 0.826508i \(-0.309676\pi\)
−0.434314 + 0.900761i \(0.643009\pi\)
\(510\) 0 0
\(511\) 105.770 450.779i 0.206987 0.882151i
\(512\) 16.0000 16.0000i 0.0312500 0.0312500i
\(513\) 409.740 109.789i 0.798713 0.214014i
\(514\) 26.5330 15.3188i 0.0516206 0.0298032i
\(515\) 0 0
\(516\) 137.863 238.786i 0.267177 0.462764i
\(517\) −380.317 + 380.317i −0.735622 + 0.735622i
\(518\) 558.717 346.353i 1.07860 0.668635i
\(519\) 305.362i 0.588367i
\(520\) 0 0
\(521\) −172.135 298.146i −0.330393 0.572257i 0.652196 0.758050i \(-0.273848\pi\)
−0.982589 + 0.185793i \(0.940514\pi\)
\(522\) 64.0222 + 17.1547i 0.122648 + 0.0328634i
\(523\) −57.3080 + 15.3556i −0.109576 + 0.0293607i −0.313190 0.949690i \(-0.601398\pi\)
0.203615 + 0.979051i \(0.434731\pi\)
\(524\) 227.818i 0.434767i
\(525\) 0 0
\(526\) 475.477 0.903949
\(527\) −87.5793 326.851i −0.166185 0.620210i
\(528\) 19.0333 71.0333i 0.0360480 0.134533i
\(529\) −84.2017 + 48.6139i −0.159171 + 0.0918977i
\(530\) 0 0
\(531\) −190.629 −0.359001
\(532\) 201.944 6.32897i 0.379595 0.0118966i
\(533\) −306.226 306.226i −0.574532 0.574532i
\(534\) −146.734 84.7169i −0.274783 0.158646i
\(535\) 0 0
\(536\) 78.4317 + 135.848i 0.146328 + 0.253447i
\(537\) 83.7698 + 312.633i 0.155996 + 0.582185i
\(538\) −108.180 108.180i −0.201078 0.201078i
\(539\) 202.701 + 305.204i 0.376069 + 0.566241i
\(540\) 0 0
\(541\) 358.793 621.448i 0.663203 1.14870i −0.316566 0.948571i \(-0.602530\pi\)
0.979769 0.200131i \(-0.0641368\pi\)
\(542\) 84.0388 + 22.5181i 0.155053 + 0.0415464i
\(543\) −95.2536 + 355.491i −0.175421 + 0.654680i
\(544\) 103.607 + 59.8178i 0.190455 + 0.109959i
\(545\) 0 0
\(546\) −274.859 258.154i −0.503405 0.472810i
\(547\) −392.507 + 392.507i −0.717563 + 0.717563i −0.968105 0.250543i \(-0.919391\pi\)
0.250543 + 0.968105i \(0.419391\pi\)
\(548\) −280.779 + 75.2345i −0.512370 + 0.137289i
\(549\) −151.192 + 87.2909i −0.275396 + 0.159000i
\(550\) 0 0
\(551\) 114.467 198.263i 0.207745 0.359825i
\(552\) −102.182 + 102.182i −0.185113 + 0.185113i
\(553\) −254.180 136.319i −0.459639 0.246507i
\(554\) 504.998i 0.911549i
\(555\) 0 0
\(556\) 177.022 + 306.611i 0.318384 + 0.551458i
\(557\) 193.665 + 51.8922i 0.347692 + 0.0931638i 0.428439 0.903571i \(-0.359064\pi\)
−0.0807466 + 0.996735i \(0.525730\pi\)
\(558\) 64.5737 17.3025i 0.115723 0.0310080i
\(559\) 868.634i 1.55391i
\(560\) 0 0
\(561\) 388.816 0.693076
\(562\) −145.877 544.419i −0.259567 0.968717i
\(563\) 159.367 594.765i 0.283067 1.05642i −0.667173 0.744903i \(-0.732496\pi\)
0.950240 0.311518i \(-0.100837\pi\)
\(564\) −306.336 + 176.863i −0.543149 + 0.313588i
\(565\) 0 0
\(566\) 696.087 1.22984
\(567\) 168.480 + 271.783i 0.297143 + 0.479335i
\(568\) 72.6812 + 72.6812i 0.127960 + 0.127960i
\(569\) 72.8214 + 42.0435i 0.127981 + 0.0738901i 0.562624 0.826713i \(-0.309792\pi\)
−0.434642 + 0.900603i \(0.643125\pi\)
\(570\) 0 0
\(571\) 167.327 + 289.818i 0.293041 + 0.507562i 0.974527 0.224269i \(-0.0719993\pi\)
−0.681486 + 0.731831i \(0.738666\pi\)
\(572\) −59.9615 223.779i −0.104828 0.391223i
\(573\) 393.043 + 393.043i 0.685940 + 0.685940i
\(574\) 79.9624 + 264.931i 0.139307 + 0.461552i
\(575\) 0 0
\(576\) −11.8178 + 20.4690i −0.0205170 + 0.0355365i
\(577\) 444.640 + 119.141i 0.770606 + 0.206483i 0.622639 0.782509i \(-0.286060\pi\)
0.147967 + 0.988992i \(0.452727\pi\)
\(578\) −57.9313 + 216.203i −0.100227 + 0.374053i
\(579\) −470.864 271.854i −0.813237 0.469522i
\(580\) 0 0
\(581\) −65.8427 61.8410i −0.113326 0.106439i
\(582\) 221.751 221.751i 0.381015 0.381015i
\(583\) 305.957 81.9810i 0.524798 0.140619i
\(584\) 162.024 93.5445i 0.277438 0.160179i
\(585\) 0 0
\(586\) −187.818 + 325.310i −0.320508 + 0.555136i
\(587\) −484.313 + 484.313i −0.825064 + 0.825064i −0.986829 0.161765i \(-0.948281\pi\)
0.161765 + 0.986829i \(0.448281\pi\)
\(588\) 76.8170 + 228.387i 0.130641 + 0.388413i
\(589\) 230.907i 0.392032i
\(590\) 0 0
\(591\) 147.624 + 255.692i 0.249786 + 0.432643i
\(592\) 256.564 + 68.7461i 0.433385 + 0.116125i
\(593\) −206.021 + 55.2031i −0.347422 + 0.0930913i −0.428310 0.903632i \(-0.640891\pi\)
0.0808885 + 0.996723i \(0.474224\pi\)
\(594\) 310.816i 0.523259i
\(595\) 0 0
\(596\) −505.818 −0.848688
\(597\) 52.4727 + 195.831i 0.0878940 + 0.328025i
\(598\) −117.827 + 439.736i −0.197035 + 0.735344i
\(599\) 71.5663 41.3188i 0.119476 0.0689797i −0.439071 0.898452i \(-0.644692\pi\)
0.558547 + 0.829473i \(0.311359\pi\)
\(600\) 0 0
\(601\) 785.362 1.30676 0.653380 0.757030i \(-0.273351\pi\)
0.653380 + 0.757030i \(0.273351\pi\)
\(602\) −262.339 + 489.158i −0.435778 + 0.812555i
\(603\) −115.861 115.861i −0.192141 0.192141i
\(604\) 356.645 + 205.909i 0.590471 + 0.340909i
\(605\) 0 0
\(606\) 169.513 + 293.605i 0.279724 + 0.484497i
\(607\) 181.102 + 675.882i 0.298356 + 1.11348i 0.938515 + 0.345237i \(0.112202\pi\)
−0.640159 + 0.768242i \(0.721132\pi\)
\(608\) 57.7267 + 57.7267i 0.0949452 + 0.0949452i
\(609\) 265.811 + 62.3696i 0.436472 + 0.102413i
\(610\) 0 0
\(611\) −557.180 + 965.064i −0.911915 + 1.57948i
\(612\) −120.708 32.3436i −0.197235 0.0528490i
\(613\) −49.4286 + 184.470i −0.0806339 + 0.300930i −0.994452 0.105195i \(-0.966453\pi\)
0.913818 + 0.406125i \(0.133120\pi\)
\(614\) 296.870 + 171.398i 0.483502 + 0.279150i
\(615\) 0 0
\(616\) −33.8178 + 144.127i −0.0548990 + 0.233973i
\(617\) 423.089 423.089i 0.685720 0.685720i −0.275563 0.961283i \(-0.588864\pi\)
0.961283 + 0.275563i \(0.0888644\pi\)
\(618\) 162.741 43.6063i 0.263335 0.0705603i
\(619\) 93.5101 53.9881i 0.151066 0.0872182i −0.422561 0.906334i \(-0.638869\pi\)
0.573628 + 0.819116i \(0.305536\pi\)
\(620\) 0 0
\(621\) 305.383 528.939i 0.491760 0.851753i
\(622\) −3.47723 + 3.47723i −0.00559039 + 0.00559039i
\(623\) 300.587 + 161.207i 0.482484 + 0.258759i
\(624\) 152.364i 0.244174i
\(625\) 0 0
\(626\) 15.0890 + 26.1350i 0.0241039 + 0.0417491i
\(627\) 256.282 + 68.6707i 0.408744 + 0.109523i
\(628\) 512.008 137.192i 0.815299 0.218459i
\(629\) 1404.36i 2.23268i
\(630\) 0 0
\(631\) −711.200 −1.12710 −0.563550 0.826082i \(-0.690565\pi\)
−0.563550 + 0.826082i \(0.690565\pi\)
\(632\) −30.1634 112.571i −0.0477269 0.178119i
\(633\) 130.904 488.542i 0.206800 0.771789i
\(634\) −498.831 + 288.000i −0.786799 + 0.454259i
\(635\) 0 0
\(636\) 208.317 0.327542
\(637\) 569.327 + 502.103i 0.893762 + 0.788231i
\(638\) 118.614 + 118.614i 0.185915 + 0.185915i
\(639\) −92.9821 53.6832i −0.145512 0.0840113i
\(640\) 0 0
\(641\) 214.658 + 371.799i 0.334880 + 0.580030i 0.983462 0.181115i \(-0.0579707\pi\)
−0.648581 + 0.761145i \(0.724637\pi\)
\(642\) −148.174 552.991i −0.230800 0.861357i
\(643\) 289.770 + 289.770i 0.450653 + 0.450653i 0.895571 0.444918i \(-0.146767\pi\)
−0.444918 + 0.895571i \(0.646767\pi\)
\(644\) 199.158 212.046i 0.309252 0.329263i
\(645\) 0 0
\(646\) −215.818 + 373.807i −0.334083 + 0.578649i
\(647\) −435.592 116.716i −0.673248 0.180396i −0.0940307 0.995569i \(-0.529975\pi\)
−0.579218 + 0.815173i \(0.696642\pi\)
\(648\) −33.4409 + 124.803i −0.0516064 + 0.192598i
\(649\) −417.815 241.226i −0.643783 0.371688i
\(650\) 0 0
\(651\) 263.636 79.5715i 0.404970 0.122230i
\(652\) −353.545 + 353.545i −0.542246 + 0.542246i
\(653\) −340.019 + 91.1077i −0.520702 + 0.139522i −0.509592 0.860416i \(-0.670203\pi\)
−0.0111110 + 0.999938i \(0.503537\pi\)
\(654\) 508.098 293.350i 0.776908 0.448548i
\(655\) 0 0
\(656\) −55.9089 + 96.8371i −0.0852270 + 0.147617i
\(657\) −138.186 + 138.186i −0.210329 + 0.210329i
\(658\) 605.230 375.186i 0.919802 0.570192i
\(659\) 900.158i 1.36595i −0.730444 0.682973i \(-0.760687\pi\)
0.730444 0.682973i \(-0.239313\pi\)
\(660\) 0 0
\(661\) 174.090 + 301.533i 0.263374 + 0.456177i 0.967136 0.254259i \(-0.0818314\pi\)
−0.703763 + 0.710435i \(0.748498\pi\)
\(662\) 574.596 + 153.963i 0.867970 + 0.232572i
\(663\) 778.131 208.500i 1.17365 0.314479i
\(664\) 36.4990i 0.0549683i
\(665\) 0 0
\(666\) −277.449 −0.416590
\(667\) −85.3137 318.395i −0.127907 0.477354i
\(668\) 5.86512 21.8889i 0.00878012 0.0327679i
\(669\) −189.376 + 109.336i −0.283074 + 0.163433i
\(670\) 0 0
\(671\) −441.837 −0.658476
\(672\) −46.0160 + 85.8018i −0.0684762 + 0.127681i
\(673\) 13.2277 + 13.2277i 0.0196549 + 0.0196549i 0.716866 0.697211i \(-0.245576\pi\)
−0.697211 + 0.716866i \(0.745576\pi\)
\(674\) 59.3595 + 34.2712i 0.0880705 + 0.0508475i
\(675\) 0 0
\(676\) −71.0000 122.976i −0.105030 0.181917i
\(677\) 153.597 + 573.233i 0.226879 + 0.846725i 0.981643 + 0.190728i \(0.0610849\pi\)
−0.754764 + 0.655997i \(0.772248\pi\)
\(678\) −196.935 196.935i −0.290464 0.290464i
\(679\) −432.203 + 460.170i −0.636529 + 0.677718i
\(680\) 0 0
\(681\) −317.612 + 550.120i −0.466390 + 0.807812i
\(682\) 163.425 + 43.7897i 0.239627 + 0.0642077i
\(683\) −73.3428 + 273.719i −0.107383 + 0.400760i −0.998605 0.0528086i \(-0.983183\pi\)
0.891221 + 0.453569i \(0.149849\pi\)
\(684\) −73.8506 42.6377i −0.107969 0.0623358i
\(685\) 0 0
\(686\) −168.966 454.696i −0.246307 0.662822i
\(687\) 214.004 214.004i 0.311505 0.311505i
\(688\) −216.638 + 58.0480i −0.314881 + 0.0843721i
\(689\) 568.346 328.135i 0.824885 0.476248i
\(690\) 0 0
\(691\) −369.671 + 640.290i −0.534980 + 0.926613i 0.464184 + 0.885739i \(0.346348\pi\)
−0.999164 + 0.0408742i \(0.986986\pi\)
\(692\) 175.636 175.636i 0.253809 0.253809i
\(693\) −4.84399 154.562i −0.00698989 0.223033i
\(694\) 204.657i 0.294895i
\(695\) 0 0
\(696\) 55.1605 + 95.5407i 0.0792535 + 0.137271i
\(697\) −571.058 153.015i −0.819308 0.219533i
\(698\) −339.951 + 91.0896i −0.487036 + 0.130501i
\(699\) 783.636i 1.12108i
\(700\) 0 0
\(701\) 189.638 0.270525 0.135262 0.990810i \(-0.456812\pi\)
0.135262 + 0.990810i \(0.456812\pi\)
\(702\) 166.673 + 622.031i 0.237425 + 0.886084i
\(703\) −248.030 + 925.662i −0.352817 + 1.31673i
\(704\) −51.8037 + 29.9089i −0.0735849 + 0.0424842i
\(705\) 0 0
\(706\) −564.725 −0.799893
\(707\) −359.594 580.077i −0.508619 0.820476i
\(708\) −224.360 224.360i −0.316893 0.316893i
\(709\) −571.534 329.975i −0.806112 0.465409i 0.0394916 0.999220i \(-0.487426\pi\)
−0.845604 + 0.533811i \(0.820760\pi\)
\(710\) 0 0
\(711\) 60.8675 + 105.426i 0.0856083 + 0.148278i
\(712\) 35.6704 + 133.124i 0.0500989 + 0.186972i
\(713\) −235.089 235.089i −0.329718 0.329718i
\(714\) −501.163 117.592i −0.701909 0.164695i
\(715\) 0 0
\(716\) 131.636 228.000i 0.183849 0.318435i
\(717\) 414.969 + 111.191i 0.578757 + 0.155078i
\(718\) 156.691 584.778i 0.218232 0.814454i
\(719\) 851.435 + 491.576i 1.18419 + 0.683694i 0.956981 0.290151i \(-0.0937056\pi\)
0.227212 + 0.973845i \(0.427039\pi\)
\(720\) 0 0
\(721\) −324.703 + 98.0031i −0.450351 + 0.135927i
\(722\) 152.727 152.727i 0.211533 0.211533i
\(723\) 579.065 155.160i 0.800919 0.214606i
\(724\) 259.255 149.681i 0.358088 0.206742i
\(725\) 0 0
\(726\) 113.168 196.013i 0.155879 0.269990i
\(727\) −291.624 + 291.624i −0.401133 + 0.401133i −0.878632 0.477499i \(-0.841543\pi\)
0.477499 + 0.878632i \(0.341543\pi\)
\(728\) 9.60809 + 306.574i 0.0131979 + 0.421118i
\(729\) 785.404i 1.07737i
\(730\) 0 0
\(731\) −592.907 1026.94i −0.811090 1.40485i
\(732\) −280.681 75.2084i −0.383445 0.102744i
\(733\) 660.223 176.906i 0.900713 0.241345i 0.221391 0.975185i \(-0.428940\pi\)
0.679323 + 0.733840i \(0.262274\pi\)
\(734\) 333.022i 0.453708i
\(735\) 0 0
\(736\) 117.545 0.159707
\(737\) −107.328 400.554i −0.145628 0.543492i
\(738\) 30.2301 112.820i 0.0409621 0.152873i
\(739\) 110.947 64.0554i 0.150131 0.0866785i −0.423052 0.906105i \(-0.639041\pi\)
0.573184 + 0.819427i \(0.305708\pi\)
\(740\) 0 0
\(741\) 549.718 0.741860
\(742\) −419.157 + 13.1364i −0.564901 + 0.0177041i
\(743\) −443.624 443.624i −0.597071 0.597071i 0.342461 0.939532i \(-0.388740\pi\)
−0.939532 + 0.342461i \(0.888740\pi\)
\(744\) 96.3637 + 55.6356i 0.129521 + 0.0747790i
\(745\) 0 0
\(746\) 107.271 + 185.799i 0.143795 + 0.249061i
\(747\) 9.86753 + 36.8261i 0.0132095 + 0.0492987i
\(748\) −223.636 223.636i −0.298978 0.298978i
\(749\) 333.013 + 1103.34i 0.444611 + 1.47308i
\(750\) 0 0
\(751\) 141.957 245.876i 0.189023 0.327398i −0.755902 0.654685i \(-0.772801\pi\)
0.944925 + 0.327287i \(0.106134\pi\)
\(752\) 277.923 + 74.4691i 0.369578 + 0.0990281i
\(753\) 34.5382 128.898i 0.0458675 0.171180i
\(754\) 300.986 + 173.774i 0.399186 + 0.230470i
\(755\) 0 0
\(756\) 94.0021 400.625i 0.124341 0.529927i
\(757\) 494.590 494.590i 0.653355 0.653355i −0.300444 0.953799i \(-0.597135\pi\)
0.953799 + 0.300444i \(0.0971349\pi\)
\(758\) −90.7474 + 24.3157i −0.119719 + 0.0320787i
\(759\) 330.839 191.010i 0.435888 0.251660i
\(760\) 0 0
\(761\) 17.7288 30.7072i 0.0232967 0.0403511i −0.854142 0.520040i \(-0.825917\pi\)
0.877439 + 0.479689i \(0.159250\pi\)
\(762\) −10.5901 + 10.5901i −0.0138977 + 0.0138977i
\(763\) −1003.85 + 622.294i −1.31566 + 0.815589i
\(764\) 452.135i 0.591799i
\(765\) 0 0
\(766\) −481.307 833.648i −0.628338 1.08831i
\(767\) −965.523 258.711i −1.25883 0.337302i
\(768\) −37.9998 + 10.1820i −0.0494789 + 0.0132578i
\(769\) 702.447i 0.913455i 0.889607 + 0.456728i \(0.150979\pi\)
−0.889607 + 0.456728i \(0.849021\pi\)
\(770\) 0 0
\(771\) −53.2671 −0.0690883
\(772\) 114.465 + 427.190i 0.148271 + 0.553355i
\(773\) 216.901 809.487i 0.280597 1.04720i −0.671400 0.741095i \(-0.734307\pi\)
0.951997 0.306107i \(-0.0990266\pi\)
\(774\) 202.887 117.137i 0.262127 0.151339i
\(775\) 0 0
\(776\) −255.089 −0.328723
\(777\) −1142.34 + 35.8011i −1.47019 + 0.0460760i
\(778\) −92.9110 92.9110i −0.119423 0.119423i
\(779\) −349.380 201.715i −0.448498 0.258941i
\(780\) 0 0
\(781\) −135.863 235.322i −0.173961 0.301309i
\(782\) 160.851 + 600.305i 0.205692 + 0.767653i
\(783\) −329.707 329.707i −0.421081 0.421081i
\(784\) 87.1787 175.545i 0.111197 0.223909i
\(785\) 0 0
\(786\) 198.043 343.021i 0.251964 0.436414i
\(787\) 695.596 + 186.384i 0.883858 + 0.236829i 0.672071 0.740487i \(-0.265405\pi\)
0.211787 + 0.977316i \(0.432072\pi\)
\(788\) 62.1576 231.975i 0.0788802 0.294385i
\(789\) −715.918 413.335i −0.907374 0.523872i
\(790\) 0 0
\(791\) 408.673 + 383.836i 0.516654 + 0.485254i
\(792\) 44.1822 44.1822i 0.0557856 0.0557856i
\(793\) −884.243 + 236.932i −1.11506 + 0.298779i
\(794\) 443.168 255.863i 0.558147 0.322246i
\(795\) 0 0
\(796\) 82.4555 142.817i 0.103587 0.179418i
\(797\) 82.4079 82.4079i 0.103398 0.103398i −0.653516 0.756913i \(-0.726707\pi\)
0.756913 + 0.653516i \(0.226707\pi\)
\(798\) −309.566 166.022i −0.387927 0.208048i
\(799\) 1521.27i 1.90396i
\(800\) 0 0
\(801\) −71.9803 124.674i −0.0898631 0.155647i
\(802\) 861.334 + 230.794i 1.07398 + 0.287773i
\(803\) −477.736 + 128.009i −0.594938 + 0.159413i
\(804\) 272.725i 0.339210i
\(805\) 0 0
\(806\) 350.542 0.434916
\(807\) 68.8433 + 256.927i 0.0853077 + 0.318373i
\(808\) 71.3742 266.372i 0.0883344 0.329668i
\(809\) 289.803 167.318i 0.358224 0.206821i −0.310078 0.950711i \(-0.600355\pi\)
0.668301 + 0.743891i \(0.267022\pi\)
\(810\) 0 0
\(811\) 522.455 0.644211 0.322106 0.946704i \(-0.395609\pi\)
0.322106 + 0.946704i \(0.395609\pi\)
\(812\) −117.014 188.760i −0.144106 0.232463i
\(813\) −106.961 106.961i −0.131563 0.131563i
\(814\) −608.104 351.089i −0.747057 0.431313i
\(815\) 0 0
\(816\) −104.000 180.133i −0.127451 0.220752i
\(817\) −209.432 781.613i −0.256343 0.956686i
\(818\) 203.317 + 203.317i 0.248554 + 0.248554i
\(819\) −92.5768 306.725i −0.113036 0.374511i
\(820\) 0 0
\(821\) 196.950 341.128i 0.239891 0.415503i −0.720792 0.693151i \(-0.756222\pi\)
0.960683 + 0.277648i \(0.0895550\pi\)
\(822\) 488.166 + 130.804i 0.593876 + 0.159129i
\(823\) 67.2617 251.024i 0.0817275 0.305011i −0.912947 0.408078i \(-0.866199\pi\)
0.994674 + 0.103067i \(0.0328657\pi\)
\(824\) −118.685 68.5228i −0.144035 0.0831587i
\(825\) 0 0
\(826\) 465.586 + 437.290i 0.563663 + 0.529406i
\(827\) −143.561 + 143.561i −0.173592 + 0.173592i −0.788556 0.614964i \(-0.789171\pi\)
0.614964 + 0.788556i \(0.289171\pi\)
\(828\) −118.598 + 31.7783i −0.143234 + 0.0383796i
\(829\) −566.219 + 326.907i −0.683015 + 0.394339i −0.800990 0.598678i \(-0.795693\pi\)
0.117975 + 0.993017i \(0.462360\pi\)
\(830\) 0 0
\(831\) −438.998 + 760.367i −0.528277 + 0.915002i
\(832\) −87.6356 + 87.6356i −0.105331 + 0.105331i
\(833\) 1015.81 + 205.005i 1.21946 + 0.246105i
\(834\) 615.545i 0.738063i
\(835\) 0 0
\(836\) −107.909 186.904i −0.129078 0.223569i
\(837\) −454.267 121.720i −0.542732 0.145425i
\(838\) −978.442 + 262.173i −1.16759 + 0.312855i
\(839\) 128.301i 0.152922i 0.997073 + 0.0764608i \(0.0243620\pi\)
−0.997073 + 0.0764608i \(0.975638\pi\)
\(840\) 0 0
\(841\) 589.354 0.700778
\(842\) −253.454 945.903i −0.301014 1.12340i
\(843\) −253.623 + 946.534i −0.300858 + 1.12282i
\(844\) −356.288 + 205.703i −0.422142 + 0.243724i
\(845\) 0 0
\(846\) −300.547 −0.355256
\(847\) −215.346 + 401.537i −0.254246 + 0.474069i
\(848\) −119.818 119.818i −0.141295 0.141295i
\(849\) −1048.09 605.113i −1.23449 0.712736i
\(850\) 0 0
\(851\) 689.905 + 1194.95i 0.810699 + 1.40417i
\(852\) −46.2526 172.617i −0.0542871 0.202602i
\(853\) 941.404 + 941.404i 1.10364 + 1.10364i 0.993968 + 0.109671i \(0.0349796\pi\)
0.109671 + 0.993968i \(0.465020\pi\)
\(854\) 569.505 + 133.628i 0.666868 + 0.156473i
\(855\) 0 0
\(856\) −232.840 + 403.290i −0.272009 + 0.471133i
\(857\) −334.297 89.5747i −0.390078 0.104521i 0.0584487 0.998290i \(-0.481385\pi\)
−0.448527 + 0.893769i \(0.648051\pi\)
\(858\) −104.250 + 389.066i −0.121503 + 0.453456i
\(859\) 39.8336 + 22.9979i 0.0463720 + 0.0267729i 0.523007 0.852329i \(-0.324810\pi\)
−0.476635 + 0.879101i \(0.658144\pi\)
\(860\) 0 0
\(861\) 109.908 468.413i 0.127651 0.544034i
\(862\) 497.473 497.473i 0.577115 0.577115i
\(863\) −1354.85 + 363.032i −1.56993 + 0.420663i −0.935792 0.352554i \(-0.885313\pi\)
−0.634143 + 0.773216i \(0.718647\pi\)
\(864\) 143.997 83.1366i 0.166663 0.0962230i
\(865\) 0 0
\(866\) −191.729 + 332.084i −0.221396 + 0.383469i
\(867\) 275.172 275.172i 0.317385 0.317385i
\(868\) −197.403 105.868i −0.227423 0.121968i
\(869\) 308.091i 0.354535i
\(870\) 0 0
\(871\) −429.588 744.068i −0.493212 0.854269i
\(872\) −460.970 123.517i −0.528635 0.141647i
\(873\) 257.376 68.9636i 0.294817 0.0789961i
\(874\) 424.091i 0.485230i
\(875\) 0 0
\(876\) −325.275 −0.371319
\(877\) −288.777 1077.73i −0.329278 1.22888i −0.909941 0.414738i \(-0.863873\pi\)
0.580663 0.814144i \(-0.302793\pi\)
\(878\) 194.525 725.979i 0.221555 0.826855i
\(879\) 565.588 326.542i 0.643445 0.371493i
\(880\) 0 0
\(881\) −1392.40 −1.58048 −0.790239 0.612798i \(-0.790044\pi\)
−0.790239 + 0.612798i \(0.790044\pi\)
\(882\) −40.5015 + 200.687i −0.0459201 + 0.227536i
\(883\) 652.590 + 652.590i 0.739060 + 0.739060i 0.972396 0.233336i \(-0.0749642\pi\)
−0.233336 + 0.972396i \(0.574964\pi\)
\(884\) −567.482 327.636i −0.641947 0.370629i
\(885\) 0 0
\(886\) 111.648 + 193.379i 0.126013 + 0.218261i
\(887\) −130.525 487.127i −0.147154 0.549185i −0.999650 0.0264521i \(-0.991579\pi\)
0.852496 0.522733i \(-0.175088\pi\)
\(888\) −326.542 326.542i −0.367728 0.367728i
\(889\) 20.6406 21.9762i 0.0232177 0.0247201i
\(890\) 0 0
\(891\) 170.784 295.807i 0.191677 0.331994i
\(892\) 171.811 + 46.0366i 0.192613 + 0.0516105i
\(893\) −268.679 + 1002.72i −0.300872 + 1.12287i
\(894\) 761.601 + 439.711i 0.851903 + 0.491846i
\(895\) 0 0
\(896\) 75.8178 22.8836i 0.0846181 0.0255398i
\(897\) 559.675 559.675i 0.623941 0.623941i
\(898\) 406.516 108.926i 0.452690 0.121298i
\(899\) −219.809 + 126.907i −0.244504 + 0.141164i
\(900\) 0 0
\(901\) 447.952 775.876i 0.497172 0.861128i
\(902\) 209.022 209.022i 0.231731 0.231731i
\(903\) 820.227 508.465i 0.908336 0.563084i
\(904\) 226.542i 0.250600i
\(905\) 0 0
\(906\) −357.996 620.067i −0.395139 0.684401i
\(907\) 1.84469 + 0.494284i 0.00203384 + 0.000544966i 0.259836 0.965653i \(-0.416332\pi\)
−0.257802 + 0.966198i \(0.582998\pi\)
\(908\) 499.094 133.732i 0.549663 0.147282i
\(909\) 288.056i 0.316893i
\(910\) 0 0
\(911\) 456.063 0.500618 0.250309 0.968166i \(-0.419468\pi\)
0.250309 + 0.968166i \(0.419468\pi\)
\(912\) −36.7359 137.100i −0.0402806 0.150329i
\(913\) −24.9731 + 93.2008i −0.0273528 + 0.102082i
\(914\) 893.573 515.905i 0.977651 0.564447i
\(915\) 0 0
\(916\) −246.178 −0.268753
\(917\) −376.855 + 702.686i −0.410965 + 0.766288i
\(918\) 621.631 + 621.631i 0.677158 + 0.677158i
\(919\) −459.799 265.465i −0.500326 0.288863i 0.228522 0.973539i \(-0.426611\pi\)
−0.728848 + 0.684675i \(0.759944\pi\)
\(920\) 0 0
\(921\) −297.995 516.142i −0.323556 0.560415i
\(922\) −5.98978 22.3542i −0.00649651 0.0242453i
\(923\) −398.091 398.091i −0.431301 0.431301i
\(924\) 176.210 187.612i 0.190703 0.203043i
\(925\) 0 0
\(926\) 185.921 322.024i 0.200778 0.347758i
\(927\) 138.274 + 37.0504i 0.149163 + 0.0399681i
\(928\) 23.2256 86.6790i 0.0250275 0.0934041i
\(929\) −971.957 561.159i −1.04624 0.604047i −0.124645 0.992201i \(-0.539779\pi\)
−0.921594 + 0.388155i \(0.873113\pi\)
\(930\) 0 0
\(931\) 633.350 + 314.534i 0.680290 + 0.337845i
\(932\) 450.725 450.725i 0.483610 0.483610i
\(933\) 8.25837 2.21282i 0.00885142 0.00237173i
\(934\) −399.215 + 230.487i −0.427425 + 0.246774i
\(935\) 0 0
\(936\) 64.7288 112.114i 0.0691547 0.119779i
\(937\) 194.820 194.820i 0.207919 0.207919i −0.595464 0.803382i \(-0.703032\pi\)
0.803382 + 0.595464i \(0.203032\pi\)
\(938\) 17.1980 + 548.752i 0.0183347 + 0.585024i
\(939\) 52.4679i 0.0558764i
\(940\) 0 0
\(941\) −405.362 702.108i −0.430778 0.746130i 0.566162 0.824294i \(-0.308428\pi\)
−0.996941 + 0.0781640i \(0.975094\pi\)
\(942\) −890.183 238.524i −0.944993 0.253210i
\(943\) −561.077 + 150.340i −0.594991 + 0.159427i
\(944\) 258.091i 0.273402i
\(945\) 0 0
\(946\) 592.907 0.626751
\(947\) 166.389 + 620.971i 0.175701 + 0.655724i 0.996431 + 0.0844087i \(0.0269001\pi\)
−0.820730 + 0.571316i \(0.806433\pi\)
\(948\) −52.4424 + 195.718i −0.0553190 + 0.206453i
\(949\) −887.441 + 512.364i −0.935133 + 0.539899i
\(950\) 0 0
\(951\) 1001.44 1.05304
\(952\) 220.619 + 355.890i 0.231742 + 0.373834i
\(953\) −372.594 372.594i −0.390970 0.390970i 0.484063 0.875033i \(-0.339160\pi\)
−0.875033 + 0.484063i \(0.839160\pi\)
\(954\) 153.285 + 88.4990i 0.160676 + 0.0927662i
\(955\) 0 0
\(956\) −174.725 302.632i −0.182766 0.316561i
\(957\) −75.4831 281.707i −0.0788747 0.294364i
\(958\) 522.455 + 522.455i 0.545361 + 0.545361i
\(959\) −990.493 232.408i −1.03284 0.242344i
\(960\) 0 0
\(961\) 352.500 610.548i 0.366805 0.635326i
\(962\) −1405.26 376.538i −1.46077 0.391411i
\(963\) 125.897 469.853i 0.130734 0.487906i
\(964\) −422.305 243.818i −0.438076 0.252923i
\(965\) 0 0
\(966\) −484.202 + 146.144i −0.501244 + 0.151287i
\(967\) 989.576 989.576i 1.02335 1.02335i 0.0236256 0.999721i \(-0.492479\pi\)
0.999721 0.0236256i \(-0.00752097\pi\)
\(968\) −177.832 + 47.6500i −0.183711 + 0.0492252i
\(969\) 649.906 375.224i 0.670698 0.387228i
\(970\) 0 0
\(971\) −306.911 + 531.585i −0.316077 + 0.547462i −0.979666 0.200636i \(-0.935699\pi\)
0.663589 + 0.748098i \(0.269033\pi\)
\(972\) −215.271 + 215.271i −0.221472 + 0.221472i
\(973\) 38.8162 + 1238.54i 0.0398933 + 1.27291i
\(974\) 418.812i 0.429991i
\(975\) 0 0
\(976\) 118.182 + 204.698i 0.121088 + 0.209731i
\(977\) −417.882 111.971i −0.427720 0.114607i 0.0385359 0.999257i \(-0.487731\pi\)
−0.466256 + 0.884650i \(0.654397\pi\)
\(978\) 839.664 224.987i 0.858553 0.230048i
\(979\) 364.341i 0.372156i
\(980\) 0 0
\(981\) 498.495 0.508150
\(982\) −84.9179 316.918i −0.0864744 0.322727i
\(983\) 229.825 857.718i 0.233799 0.872551i −0.744887 0.667191i \(-0.767497\pi\)
0.978686 0.205360i \(-0.0658367\pi\)
\(984\) 168.362 97.2039i 0.171100 0.0987845i
\(985\) 0 0
\(986\) 474.455 0.481192
\(987\) −1237.44 + 38.7815i −1.25373 + 0.0392923i
\(988\) −316.182 316.182i −0.320022 0.320022i
\(989\) −1008.99 582.543i −1.02022 0.589023i
\(990\) 0 0
\(991\) 426.768 + 739.184i 0.430644 + 0.745897i 0.996929 0.0783124i \(-0.0249532\pi\)
−0.566285 + 0.824210i \(0.691620\pi\)
\(992\) −23.4256 87.4256i −0.0236145 0.0881307i
\(993\) −731.319 731.319i −0.736474 0.736474i
\(994\) 103.951 + 344.408i 0.104578 + 0.346487i
\(995\) 0 0
\(996\) −31.7288 + 54.9559i −0.0318562 + 0.0551766i
\(997\) −992.040 265.816i −0.995025 0.266616i −0.275665 0.961254i \(-0.588898\pi\)
−0.719360 + 0.694638i \(0.755565\pi\)
\(998\) −76.6581 + 286.092i −0.0768117 + 0.286665i
\(999\) 1690.32 + 975.909i 1.69202 + 0.976886i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 350.3.p.c.93.2 8
5.2 odd 4 inner 350.3.p.c.107.1 8
5.3 odd 4 70.3.l.a.37.2 yes 8
5.4 even 2 70.3.l.a.23.1 8
7.4 even 3 inner 350.3.p.c.193.1 8
35.4 even 6 70.3.l.a.53.2 yes 8
35.9 even 6 490.3.f.l.393.1 4
35.18 odd 12 70.3.l.a.67.1 yes 8
35.19 odd 6 490.3.f.e.393.2 4
35.23 odd 12 490.3.f.l.197.1 4
35.32 odd 12 inner 350.3.p.c.207.2 8
35.33 even 12 490.3.f.e.197.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
70.3.l.a.23.1 8 5.4 even 2
70.3.l.a.37.2 yes 8 5.3 odd 4
70.3.l.a.53.2 yes 8 35.4 even 6
70.3.l.a.67.1 yes 8 35.18 odd 12
350.3.p.c.93.2 8 1.1 even 1 trivial
350.3.p.c.107.1 8 5.2 odd 4 inner
350.3.p.c.193.1 8 7.4 even 3 inner
350.3.p.c.207.2 8 35.32 odd 12 inner
490.3.f.e.197.2 4 35.33 even 12
490.3.f.e.393.2 4 35.19 odd 6
490.3.f.l.197.1 4 35.23 odd 12
490.3.f.l.393.1 4 35.9 even 6