Properties

Label 7.10
Level 7
Weight 10
Dimension 15
Nonzero newspaces 2
Newform subspaces 3
Sturm bound 40
Trace bound 1

Downloads

Learn more

Defining parameters

Level: N N = 7 7
Weight: k k = 10 10
Nonzero newspaces: 2 2
Newform subspaces: 3 3
Sturm bound: 4040
Trace bound: 11

Dimensions

The following table gives the dimensions of various subspaces of M10(Γ1(7))M_{10}(\Gamma_1(7)).

Total New Old
Modular forms 21 19 2
Cusp forms 15 15 0
Eisenstein series 6 4 2

Trace form

15q3q2+159q33q4+849q57782q6+1365q7+50943q850697q950178q10+74085q11+81354q12365988q13+25305q14+44562q15+804273q16+2392338492q99+O(q100) 15 q - 3 q^{2} + 159 q^{3} - 3 q^{4} + 849 q^{5} - 7782 q^{6} + 1365 q^{7} + 50943 q^{8} - 50697 q^{9} - 50178 q^{10} + 74085 q^{11} + 81354 q^{12} - 365988 q^{13} + 25305 q^{14} + 44562 q^{15} + 804273 q^{16}+ \cdots - 2392338492 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S10new(Γ1(7))S_{10}^{\mathrm{new}}(\Gamma_1(7))

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space Sknew(N,χ) S_k^{\mathrm{new}}(N, \chi) we list available newforms together with their dimension.

Label χ\chi Newforms Dimension χ\chi degree
7.10.a χ7(1,)\chi_{7}(1, \cdot) 7.10.a.a 2 1
7.10.a.b 3
7.10.c χ7(2,)\chi_{7}(2, \cdot) 7.10.c.a 10 2